IRF IRLS3034-7PPBF Uninterruptible power supply Datasheet

PD - 97362
IRLS3034-7PPbF
Applications
l DC Motor Drive
l High Efficiency Synchronous Rectification in SMPS
l Uninterruptible Power Supply
l High Speed Power Switching
l Hard Switched and High Frequency Circuits
HEXFET® Power MOSFET
D
G
Benefits
l Optimized for Logic Level Drive
l Very Low RDS(ON) at 4.5V VGS
l Superior R*Q at 4.5V VGS
l Improved Gate, Avalanche and Dynamic dV/dt
Ruggedness
l Fully Characterized Capacitance and Avalanche
SOA
l Enhanced body diode dV/dt and dI/dt Capability
l Lead-Free
S
VDSS
RDS(on) typ.
max.
ID (Silicon Limited)
40V
1.0mΩ
1.4mΩ
380Ac
ID (Package Limited)
240A
D
S
G
S
S
S
S
D2Pak 7 Pin
G
D
S
Gate
Drain
Source
Absolute Maximum Ratings
Symbol
Parameter
Max.
ID @ TC = 25°C
ID @ TC = 100°C
ID @ TC = 25°C
Continuous Drain Current, VGS @ 10V (Silicon Limited)
Continuous Drain Current, VGS @ 10V (Silicon Limited)
Continuous Drain Current, VGS @ 10V (Wire Bond Limited)
380c
270c
240
IDM
PD @TC = 25°C
Pulsed Drain Current d
Maximum Power Dissipation
Linear Derating Factor
1540
380
2.5
VGS
Gate-to-Source Voltage
Peak Diode Recovery f
Operating Junction and
dv/dt
TJ
TSTG
Units
A
W
W/°C
V
± 20
1.3
-55 to + 175
Storage Temperature Range
Soldering Temperature, for 10 seconds
(1.6mm from case)
V/ns
°C
300
Avalanche Characteristics
EAS (Thermally limited)
IAR
EAR
Single Pulse Avalanche Energy e
Avalanche Currentd
Repetitive Avalanche Energy d
250
See Fig. 14, 15, 22a, 22b
mJ
A
mJ
Thermal Resistance
Symbol
RθJC
RθJA
www.irf.com
Parameter
Junction-to-Case kl
Junction-to-Ambient j
Typ.
Max.
Units
–––
0.40
40
°C/W
–––
1
1/12/09
IRLS3034-7PPbF
Static @ TJ = 25°C (unless otherwise specified)
Symbol
Parameter
Min. Typ. Max. Units
V(BR)DSS
Drain-to-Source Breakdown Voltage
∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient
RDS(on)
Static Drain-to-Source On-Resistance
40
–––
–––
VGS(th)
IDSS
Gate Threshold Voltage
Drain-to-Source Leakage Current
IGSS
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Internal Gate Resistance
1.0
–––
–––
–––
–––
–––
RG
––– –––
0.035 –––
1.0
1.4
1.2
1.7
–––
2.5
–––
20
––– 250
––– 100
––– -100
1.9
–––
Conditions
V VGS = 0V, ID = 250µA
V/°C Reference to 25°C, ID = 5mAd
mΩ VGS = 10V, ID = 200A g
VGS = 4.5V, ID = 180A g
V VDS = VGS, ID = 250µA
µA VDS = 40V, VGS = 0V
VDS = 40V, VGS = 0V, TJ = 125°C
nA VGS = 20V
VGS = -20V
Ω
Dynamic @ TJ = 25°C (unless otherwise specified)
Symbol
gfs
Qg
Qgs
Qgd
Qsync
td(on)
tr
td(off)
tf
Ciss
Coss
Crss
Coss eff. (ER)
Coss eff. (TR)
Parameter
Min. Typ. Max. Units
Forward Transconductance
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Total Gate Charge Sync. (Qg - Qgd)
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
370 ––– –––
––– 120 180
–––
32
–––
–––
71
–––
–––
49
–––
–––
71
–––
––– 590 –––
–––
94
–––
––– 200 –––
––– 10990 –––
––– 2030 –––
––– 1100 –––
Effective Output Capacitance (Energy Related) ––– 2520 –––
Effective Output Capacitance (Time Related)h ––– 3060 –––
S
nC
ns
pF
Conditions
VDS = 10V, ID = 220A
ID = 170A
VDS =20V
VGS = 4.5V g
ID = 170A, VDS =0V, VGS = 4.5V
VDD = 26V
ID = 220A
RG = 2.7Ω
VGS = 4.5V g
VGS = 0V
VDS = 40V
ƒ = 1.0MHz, See Fig. 5
VGS = 0V, VDS = 0V to 32V i, See Fig. 11
VGS = 0V, VDS = 0V to 32V h
Diode Characteristics
Symbol
IS
Parameter
Min. Typ. Max. Units
Continuous Source Current
VSD
trr
(Body Diode)
Pulsed Source Current
(Body Diode)d
Diode Forward Voltage
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM
ton
Reverse Recovery Current
Forward Turn-On Time
ISM
––– 380c
A
MOSFET symbol
–––
–––
A
showing the
integral reverse
1540
D
G
S
p-n junction diode.
––– –––
1.3
V TJ = 25°C, IS = 200A, VGS = 0V g
VR = 34V,
–––
46
–––
ns TJ = 25°C
IF = 220A
TJ = 125°C
–––
49
–––
di/dt = 100A/µs g
––– 100 –––
nC TJ = 25°C
TJ = 125°C
––– 110 –––
–––
3.7
–––
A TJ = 25°C
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Notes:
 Calculated continuous current based on maximum allowable junction
temperature. Bond wire current limit is 240A. Note that current
limitations arising from heating of the device leads may occur with
some lead mounting arrangements. (Refer to AN-1140)
‚ Repetitive rating; pulse width limited by max. junction
temperature.
ƒ Limited by TJmax, starting TJ = 25°C, L = 0.010mH
RG = 25Ω, IAS = 220A, VGS =10V. Part not recommended for use
above this value .
2
Conditions
–––
„ ISD ≤ 220A, di/dt ≤ 1240A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C.
Pulse width ≤ 400µs; duty cycle ≤ 2%.
† Coss eff. (TR) is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS.
‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as
Coss while VDS is rising from 0 to 80% VDSS.
ˆ When mounted on 1" square PCB (FR-4 or G-10 Material). For recom
mended footprint and soldering techniques refer to application note #AN-994.
‰ Rθ is measured at TJ approximately 90°C.
Š RθJC value shown is at time zero.
www.irf.com
IRFLS3034-7PPbF
10000
100000
10000
BOTTOM
1000
≤60µs PULSE WIDTH
1000
100
BOTTOM
≤60µs PULSE WIDTH
Tj = 175°C
100
10
2.5V
1
2.5V
10
0.1
1
10
0.1
100
Fig 1. Typical Output Characteristics
100
2.0
100
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID, Drain-to-Source Current (A)
10
Fig 2. Typical Output Characteristics
1000
T J = 175°C
10
T J = 25°C
1
VDS = 25V
≤60µs PULSE WIDTH
0.1
ID = 200A
VGS = 10V
1.5
1.0
0.5
1
2
3
4
5
-60 -40 -20 0 20 40 60 80 100120140160180
T J , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
Fig 4. Normalized On-Resistance vs. Temperature
Fig 3. Typical Transfer Characteristics
100000
5.0
VGS = 0V,
f = 1 MHZ
Ciss = C gs + Cgd, C ds SHORTED
Crss = C gd
VGS, Gate-to-Source Voltage (V)
ID= 170A
Coss = Cds + Cgd
Ciss
10000
Coss
Crss
1000
VDS= 32V
VDS= 20V
4.0
3.0
2.0
1.0
0.0
0.1
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage
www.irf.com
1
V DS, Drain-to-Source Voltage (V)
V DS, Drain-to-Source Voltage (V)
C, Capacitance (pF)
VGS
10V
5.0V
4.5V
4.0V
3.5V
3.0V
2.8V
2.5V
TOP
Tj = 25°C
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
10V
5.0V
4.5V
4.0V
3.5V
3.0V
2.8V
2.5V
0
25
50
75
100
125
150
QG, Total Gate Charge (nC)
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage
3
IRLS3034-7PPbF
1000
10000
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
OPERATION IN THIS AREA
LIMITED BY R DS(on)
T J = 175°C
100
T J = 25°C
10
1000
100µsec
1msec
100
Limited by package
10msec
10
DC
Tc = 25°C
Tj = 175°C
Single Pulse
VGS = 0V
1.0
1
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
0
VSD, Source-to-Drain Voltage (V)
300
200
100
0
100
125
150
175
V(BR)DSS , Drain-to-Source Breakdown Voltage (V)
ID, Drain Current (A)
Limited By Package
75
T C , Case Temperature (°C)
2.5
Id = 5mA
48
46
44
42
40
-60 -40 -20 0 20 40 60 80 100120140160180
Fig 10. Drain-to-Source Breakdown Voltage
EAS , Single Pulse Avalanche Energy (mJ)
1200
ID
47A
94A
BOTTOM 220A
TOP
1000
2.0
Energy (µJ)
50
T J , Temperature ( °C )
Fig 9. Maximum Drain Current vs. Case Temperature
1.5
1.0
0.5
0.0
800
600
400
200
0
-5
0
5
10 15 20 25 30 35 40 45
VDS, Drain-to-Source Voltage (V)
Fig 11. Typical COSS Stored Energy
4
100
VDS, Drain-to-Source Voltage (V)
400
50
10
Fig 8. Maximum Safe Operating Area
Fig 7. Typical Source-Drain Diode
Forward Voltage
25
1
25
50
75
100
125
150
175
Starting T J , Junction Temperature (°C)
Fig 12. Maximum Avalanche Energy Vs. DrainCurrent
www.irf.com
IRFLS3034-7PPbF
Thermal Response ( Z thJC ) °C/W
1
D = 0.50
0.1
0.20
0.10
0.05
τJ
0.02
0.01
0.01
R1
R1
τJ
τ1
R2
R2
τ2
τ1
R3
R3
τC
τ
τ2
τ3
τ3
Ci= τi/Ri
Ci i/Ri
1E-005
0.0001
τ4
τ4
τi (sec)
0.00741
0.000005
0.05041
0.000038
0.18384
0.001161
0.15864
0.008809
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
Ri (°C/W)
R4
R4
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case
1000
Duty Cycle = Single Pulse
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ∆Tj = 150°C and
Tstart =25°C (Single Pulse)
Avalanche Current (A)
0.01
100
0.05
0.10
10
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ∆Τ j = 25°C and
Tstart = 150°C.
1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 14. Typical Avalanche Current vs.Pulsewidth
EAR , Avalanche Energy (mJ)
300
Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a temperature far in
excess of Tjmax. This is validated for every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.
3. Equation below based on circuit and waveforms shown in Figures 22a, 22b.
4. PD (ave) = Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase
during avalanche).
6. Iav = Allowable avalanche current.
7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as
25°C in Figure 14, 15).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)
TOP
Single Pulse
BOTTOM 1.0% Duty Cycle
ID = 220A
250
200
150
100
50
0
25
50
75
100
125
150
175
Starting T J , Junction Temperature (°C)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
Fig 15. Maximum Avalanche Energy vs. Temperature
www.irf.com
5
3.0
16
2.5
14
IF = 89A
V R = 34V
TJ = 25°C
TJ = 125°C
12
2.0
1.5
IRRM (A)
VGS(th) , Gate threshold Voltage (V)
IRLS3034-7PPbF
ID = 250µA
ID = 1.0mA
ID = 1.0A
1.0
10
8
6
0.5
4
0.0
2
-75 -50 -25
0
25 50 75 100 125 150 175
0
100
200
T J , Temperature ( °C )
400
500
600
700
Fig. 17 - Typical Recovery Current vs. dif/dt
Fig 16. Threshold Voltage vs. Temperature
16
900
IF = 134A
V R = 34V
14
IF = 89A
V R = 34V
800
700
TJ = 25°C
TJ = 125°C
12
TJ = 25°C
TJ = 125°C
600
10
QRR (A)
IRRM (A)
300
diF /dt (A/µs)
8
500
400
300
6
200
4
100
2
0
0
100
200
300
400
500
600
700
0
diF /dt (A/µs)
100 200 300 400 500 600 700 800
diF /dt (A/µs)
Fig. 18 - Typical Recovery Current vs. dif/dt
Fig. 19 - Typical Stored Charge vs. dif/dt
800
IF = 134A
V R = 34V
700
TJ = 25°C
TJ = 125°C
600
QRR (A)
500
400
300
200
100
0
0
100 200 300 400 500 600 700 800
diF /dt (A/µs)
6
Fig. 20 - Typical Stored Charge vs. dif/dt
www.irf.com
IRFLS3034-7PPbF
Driver Gate Drive
D.U.T
ƒ
-
‚
-
-
„
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
•
•
•
•
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
VDD
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
+
D=
Period
P.W.
+
+
-
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor
Current
Inductor Curent
ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices
Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
V(BR)DSS
15V
DRIVER
L
VDS
tp
D.U.T
RG
+
V
- DD
IAS
VGS
20V
A
0.01Ω
tp
I AS
Fig 22a. Unclamped Inductive Test Circuit
RD
VDS
Fig 22b. Unclamped Inductive Waveforms
VDS
90%
VGS
D.U.T.
RG
+
- VDD
V10V
GS
10%
VGS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
td(on)
Fig 23a. Switching Time Test Circuit
tr
t d(off)
Fig 23b. Switching Time Waveforms
Id
Current Regulator
Same Type as D.U.T.
Vds
Vgs
50KΩ
12V
tf
.2µF
.3µF
D.U.T.
+
V
- DS
Vgs(th)
VGS
3mA
IG
ID
Current Sampling Resistors
Fig 24a. Gate Charge Test Circuit
www.irf.com
Qgs1 Qgs2
Qgd
Qgodr
Fig 24b. Gate Charge Waveform
7
IRLS3034-7PPbF
D2Pak - 7 Pin Package Outline
Dimensions are shown in millimeters (inches)
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
8
www.irf.com
IRFLS3034-7PPbF
D2Pak - 7 Pin Part Marking Information
14
D2Pak - 7 Pin Tape and Reel
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
www.irf.com
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 01/09
9
Similar pages