ON MC33202DR2 Low voltage, rail−to−rail operational amplifier Datasheet

MC33201, MC33202,
MC33204, NCV33202,
NCV33204
Low Voltage, Rail−to−Rail
Operational Amplifiers
http://onsemi.com
The MC33201/2/4 family of operational amplifiers provide
rail−to−rail operation on both the input and output. The inputs can be
driven as high as 200 mV beyond the supply rails without phase
reversal on the outputs, and the output can swing within 50 mV of each
rail. This rail−to−rail operation enables the user to make full use of the
supply voltage range available. It is designed to work at very low
supply voltages (± 0.9 V) yet can operate with a supply of up to +12 V
and ground. Output current boosting techniques provide a high output
current capability while keeping the drain current of the amplifier to a
minimum. Also, the combination of low noise and distortion with a
high slew rate and drive capability make this an ideal amplifier for
audio applications.
PDIP−8
P, VP SUFFIX
CASE 626
8
1
8
1
• Low Voltage, Single Supply Operation
•
•
•
•
•
•
•
•
•
•
(+1.8 V and Ground to +12 V and Ground)
Input Voltage Range Includes both Supply Rails
Output Voltage Swings within 50 mV of both Rails
No Phase Reversal on the Output for Over−driven Input Signals
High Output Current (ISC = 80 mA, Typ)
Low Supply Current (ID = 0.9 mA, Typ)
600 W Output Drive Capability
Extended Operating Temperature Ranges
(−40° to +105°C and −55° to +125°C)
Typical Gain Bandwidth Product = 2.2 MHz
NCV Prefix for Automotive and Other Applications Requiring Site
and Control Changes
Pb−Free Packages are Available
8
1
SOIC−8
D, VD SUFFIX
CASE 751
Micro8]
DM SUFFIX
CASE 846A
PDIP−14
P, VP SUFFIX
CASE 646
14
1
14
1
14
1
SOIC−14
D, VD SUFFIX
CASE 751A
TSSOP−14
DTB SUFFIX
CASE 948G
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 10 of this data sheet.
DEVICE MARKING INFORMATION
See general marking information in the device marking
section on page 12 of this data sheet.
© Semiconductor Components Industries, LLC, 2006
October, 2006 − Rev. 14
1
Publication Order Number:
MC33201/D
MC33201, MC33202, MC33204, NCV33202, NCV33204
PIN CONNECTIONS
MC33204
All Case Styles
MC33201
All Case Styles
NC 1
8
2
7
Output 1 1
NC
2
VCC
Inputs 1
Inputs
3
6
Output
VEE 4
5
NC
2
Inputs 1
1
3
VEE 4
4
13
12
11
5
10
6
2
3
Output 2 7
MC33202
All Case Styles
Output 1 1
1
3
VCC 4
Inputs 2
(Top View)
14 Output 4
9
8
Inputs 4
VEE
Inputs 3
Output 3
(Top View)
8
VCC
7
Output 2
6
2
Inputs 2
5
(Top View)
VCC
VCC
VEE
VCC
Vin−
Vout
VCC
Vin+
VEE
This device contains 70 active transistors (each amplifier).
Figure 1. Circuit Schematic
(Each Amplifier)
http://onsemi.com
2
MC33201, MC33202, MC33204, NCV33202, NCV33204
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
VS
+13
V
Input Differential Voltage Range
VIDR
Note 1
V
Common Mode Input Voltage Range (Note 2)
VCM
VCC + 0.5 V to
VEE − 0.5 V
V
Output Short Circuit Duration
ts
Note 3
sec
Maximum Junction Temperature
TJ
+150
°C
Storage Temperature
Tstg
− 65 to +150
°C
Maximum Power Dissipation
PD
Note 3
mW
Supply Voltage (VCC to VEE)
DC ELECTRICAL CHARACTERISTICS (TA = 25°C)
Characteristic
VCC = 2.0 V
VCC = 3.3 V
VCC = 5.0 V
Input Offset Voltage
VIO (max)
MC33201
MC33202, NCV33202
MC33204, NCV33204
± 8.0
±10
±12
± 8.0
±10
±12
± 6.0
± 8.0
±10
Output Voltage Swing
VOH (RL = 10 kW)
VOL (RL = 10 kW)
1.9
0.10
3.15
0.15
4.85
0.15
Power Supply Current
per Amplifier (ID)
1.125
1.125
1.125
Unit
mV
Vmin
Vmax
mA
Specifications at VCC = 3.3 V are guaranteed by the 2.0 V and 5.0 V tests. VEE = GND.
DC ELECTRICAL CHARACTERISTICS (VCC = + 5.0 V, VEE = Ground, TA = 25°C, unless otherwise noted.)
Characteristic
Figure
Symbol
Input Offset Voltage (VCM 0 V to 0.5 V, VCM 1.0 V to 5.0 V)
MC33201:
TA = + 25°C
MC33201:
TA = − 40° to +105°C
MC33201V: TA = − 55° to +125°C
MC33202:
TA = + 25°C
MC33202:
TA = − 40° to +105°C
MC33202V: TA = − 55° to +125°C
NCV33202V: TA = − 55° to +125°C (Note 4)
MC33204:
TA = + 25°C
MC33204:
TA = − 40° to +105°C
MC33204V: TA = − 55° to +125°C
NCV33204: TA = − 55° to +125°C
3
⎮VIO⎮
Input Offset Voltage Temperature Coefficient (RS = 50 W)
TA = − 40° to +105°C
TA = − 55° to +125°C
4
Input Bias Current (VCM = 0 V to 0.5 V, VCM = 1.0 V to 5.0 V)
TA = + 25°C
TA = − 40° to +105°C
TA = − 55° to +125°C
5, 6
DVIO/DT
⎮IIB⎮
Min
Typ
Max
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
6.0
9.0
13
8.0
11
14
14
10
13
17
17
−
−
2.0
2.0
−
−
−
−
−
80
100
−
200
250
500
Unit
mV
mV/°C
nA
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect
device reliability.
1. The differential input voltage of each amplifier is limited by two internal parallel back−to−back diodes. For additional differential input voltage
range, use current limiting resistors in series with the input pins.
2. The input common mode voltage range is limited by internal diodes connected from the inputs to both supply rails. Therefore, the voltage
on either input must not exceed either supply rail by more than 500 mV.
3. Power dissipation must be considered to ensure maximum junction temperature (TJ) is not exceeded. (See Figure 2)
4. NCV33202 and NCV33204 are qualified for automotive use.
http://onsemi.com
3
MC33201, MC33202, MC33204, NCV33202, NCV33204
DC ELECTRICAL CHARACTERISTICS (cont.) (VCC = + 5.0 V, VEE = Ground, TA = 25°C, unless otherwise noted.)
Figure
Symbol
Input Offset Current (VCM = 0 V to 0.5 V, VCM = 1.0 V to 5.0 V)
TA = + 25°C
TA = − 40° to +105°C
TA = − 55° to +125°C
Characteristic
−
⎮IIO⎮
Common Mode Input Voltage Range
−
VICR
Large Signal Voltage Gain (VCC = + 5.0 V, VEE = − 5.0 V)
RL = 10 kW
RL = 600 W
7
AVOL
Output Voltage Swing (VID = ± 0.2 V)
RL = 10 kW
RL = 10 kW
RL = 600 W
RL = 600 W
Min
Typ
Max
−
−
−
5.0
10
−
50
100
200
VEE
−
VCC
Unit
nA
V
kV/V
50
25
300
250
−
−
VOH
VOL
VOH
VOL
4.85
−
4.75
−
4.95
0.05
4.85
0.15
−
0.15
−
0.25
60
90
−
500
25
−
50
80
−
−
−
0.9
0.9
1.125
1.125
8, 9, 10
V
Common Mode Rejection (Vin = 0 V to 5.0 V)
11
CMR
Power Supply Rejection Ratio
VCC/VEE = 5.0 V/GND to 3.0 V/GND
12
PSRR
Output Short Circuit Current (Source and Sink)
13, 14
ISC
Power Supply Current per Amplifier (VO = 0 V)
TA = − 40° to +105°C
TA = − 55° to +125°C
15
ID
dB
mV/V
mA
mA
AC ELECTRICAL CHARACTERISTICS (VCC = + 5.0 V, VEE = Ground, TA = 25°C, unless otherwise noted.)
Characteristic
Slew Rate
(VS = ± 2.5 V, VO = − 2.0 V to + 2.0 V, RL = 2.0 kW, AV = +1.0)
Figure
Symbol
16, 26
SR
Min
Typ
Max
0.5
1.0
−
Unit
V/ms
Gain Bandwidth Product (f = 100 kHz)
17
GBW
−
2.2
−
MHz
Gain Margin (RL = 600 W, CL = 0 pF)
20, 21, 22
AM
−
12
−
dB
Phase Margin (RL = 600 W, CL = 0 pF)
20, 21, 22
OM
−
65
−
Deg
23
CS
−
90
−
dB
BWP
−
28
−
kHz
−
−
0.002
0.008
−
−
−
100
−
Rin
−
200
−
kW
Cin
−
8.0
−
pF
−
−
25
20
−
−
nV/
Hz
−
−
0.8
0.2
−
−
Channel Separation (f = 1.0 Hz to 20 kHz, AV = 100)
Power Bandwidth (VO = 4.0 Vpp, RL = 600 W, THD ≤ 1 %)
24
Total Harmonic Distortion (RL = 600 W, VO = 1.0 Vpp, AV = 1.0)
f = 1.0 kHz
f = 10 kHz
Open Loop Output Impedance
(VO = 0 V, f = 2.0 MHz, AV = 10)
THD
⎮ZO⎮
Differential Input Resistance (VCM = 0 V)
Differential Input Capacitance (VCM = 0 V)
Equivalent Input Noise Voltage (RS = 100 W)
f = 10 Hz
f = 1.0 kHz
25
Equivalent Input Noise Current
f = 10 Hz
f = 1.0 kHz
25
http://onsemi.com
4
en
in
%
W
pA/
Hz
2500
40
PERCENTAGE OF AMPLIFIERS (%)
PD(max) , MAXIMUM POWER DISSIPATION (mW
MC33201, MC33202, MC33204, NCV33202, NCV33204
8 and 14 Pin DIP Pkg
2000
TSSOP−14 Pkg
1500
SO−14 Pkg
1000
SOIC−8
Pkg
500
0
−55 −40 −25
0
25
50
85
TA, AMBIENT TEMPERATURE (°C)
30
25
20
15
10
5.0
0
−10 −8.0 −6.0 −4.0 −2.0
0
2.0 4.0 6.0
VIO, INPUT OFFSET VOLTAGE (mV)
125
Figure 2. Maximum Power Dissipation
versus Temperature
I IB , INPUT BIAS CURRENT (nA)
30
160
120
20
10
0
−50 −40 −30 −20
−10
0
10
20
30
40
VCC = +5.0 V
VEE = Gnd
VCM = 0 V to 0.5 V
80
VCM > 1.0 V
40
0
−55 −40 −25
50
TCV , INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT (mV/°C)
IO
0
25
70
85
125
TA, AMBIENT TEMPERATURE (°C)
Figure 5. Input Bias Current
versus Temperature
A VOL , OPEN LOOP VOLTAGE GAIN (kV/V)
Figure 4. Input Offset Voltage
Temperature Coefficient Distribution
150
I IB , INPUT BIAS CURRENT (nA)
10
200
360 amplifiers tested from
3 (MC33204) wafer lots
VCC = +5.0 V
VEE = Gnd
TA = 25°C
DIP Package
40
300
100
260
50
0
220
−50
180
−100
−150
VCC = 12 V
VEE = Gnd
TA = 25°C
−200
−250
8.0
Figure 3. Input Offset Voltage Distribution
50
PERCENTAGE OF AMPLIFIERS (%)
360 amplifiers tested from
3 (MC33204) wafer lots
VCC = +5.0 V
VEE = Gnd
TA = 25°C
DIP Package
35
0
2.0
4.0
6.0
8.0
10
VCM, INPUT COMMON MODE VOLTAGE (V)
140
VCC = +5.0 V
VEE = Gnd
RL = 600 W
DVO = 0.5 V to 4.5 V
100
−55 −40 −25
12
Figure 6. Input Bias Current
versus Common Mode Voltage
0
25
70
85
TA, AMBIENT TEMPERATURE (°C)
105
Figure 7. Open Loop Voltage Gain versus
Temperature
http://onsemi.com
5
125
VO , OUTPUT VOLTAGE (Vpp )
12
VSAT, OUTPUT SATURATION VOLTAGE (V)
MC33201, MC33202, MC33204, NCV33202, NCV33204
RL = 600 W
TA = 25°C
10
8.0
6.0
4.0
2.0
0
±1.0
±2.0
±3.0
±4.0
±5.0
VCC,⎮VEE⎮ SUPPLY VOLTAGE (V)
±6.0
VCC
TA = −55°C
TA = 125°C
VCC − 0.4 V
TA = −55°C
5.0
CMR, COMMON MODE REJECTION (dB)
VO, OUTPUT VOLTAGE (Vpp )
10
IL, LOAD CURRENT (mA)
VEE
20
15
6.0
VCC = +6.0 V
VEE = −6.0 V
RL = 600 W
AV = +1.0
TA = 25°C
100
80
60
40
VCC = +6.0 V
VEE = −6.0 V
TA = −55° to +125°C
20
0
1.0 M
10
100
1.0 k
10 k
f, FREQUENCY (Hz)
100 k
1.0 M
Figure 11. Common Mode Rejection
versus Frequency
I SC , OUTPUT SHORT CIRCUIT CURRENT (mA)
Figure 10. Output Voltage
versus Frequency
PSR, POWER SUPPLY REJECTION (dB)
VEE + 0.2 V
Figure 9. Output Saturation Voltage
versus Load Current
9.0
10 k
100 k
f, FREQUENCY (Hz)
TA = 25°C
TA = 125°C
0
12
0
1.0 k
VEE + 0.4 V
VCC = +5.0 V
VEE = −5.0 V
Figure 8. Output Voltage Swing
versus Supply Voltage
3.0
VCC − 0.2 V
TA = 25°C
120
100
100
PSR+
80
60
PSR−
40
VCC = +6.0 V
VEE = −6.0 V
TA = −55° to +125°C
20
0
10
100
1.0 k
10 k
f, FREQUENCY (Hz)
100 k
1.0 M
Source
80
60
Sink
40
VCC = +6.0 V
VEE = −6.0 V
TA = 25°C
20
0
0
Figure 12. Power Supply Rejection
versus Frequency
1.0
2.0
3.0
4.0
⎮Vout⎮, OUTPUT VOLTAGE (V)
5.0
Figure 13. Output Short Circuit Current
versus Output Voltage
http://onsemi.com
6
6.0
I CC , SUPPLY CURRENT PER AMPLIFIER (mA)
2.0
150
125
VCC = +5.0 V
VEE = Gnd
1.6
100
Source
75
TA = 125°C
1.2
Sink
TA = 25°C
0.8
50
TA = −55°C
0.4
25
0
−55 −40 −25
0
25
70 85
TA, AMBIENT TEMPERATURE (°C)
105
125
0
±0
±1.0
Figure 14. Output Short Circuit Current
versus Temperature
GBW, GAIN BANDWIDTH PRODUCT (MHz)
+Slew Rate
1.0
−Slew Rate
0.5
25
70
85
105
1.0
0
−55 −40 −25
0
25
70
85
105
TA, AMBIENT TEMPERATURE (°C)
Figure 16. Slew Rate
versus Temperature
Figure 17. Gain Bandwidth Product
versus Temperature
40
VS = ±6.0 V
TA = 25°C
RL = 600 W
50
80
120
30
1A
2A
10
−30
10 k
2.0
TA, AMBIENT TEMPERATURE (°C)
70
−10
VCC = +2.5 V
VEE = −2.5 V
f = 100 kHz
3.0
125
2B
1A − Phase, CL = 0 pF
1B − Gain, CL = 0 pF
2A − Phase, CL = 300 pF
2B − Gain, CL = 300 pF
100 k
1B
1.0 M
160
200
O , EXCESS PHASE (DEGREES)
A VOL, OPEN LOOP VOLTAGE GAIN (dB)
0
4.0
A VOL, OPEN LOOP VOLTAGE GAIN (dB)
SR, SLEW RATE (V/μ s)
VCC = +2.5 V
VEE = −2.5 V
VO = ±2.0 V
0
−55 −40 −25
±6.0
Figure 15. Supply Current per Amplifier
versus Supply Voltage with No Load
2.0
1.5
±2.0
±3.0
±4.0
±5.0
VCC, ⎮VEE⎮, SUPPLY VOLTAGE (V)
70
30
1A
10
−10
1A − Phase, VS = ±6.0 V
1B − Gain, VS = ±6.0 V
2A − Phase, VS = ±1.0 V
2B − Gain, VS = ±1.0 V
f, FREQUENCY (Hz)
100 k
1B
120
Figure 18. Voltage Gain and Phase
versus Frequency
200
1.0 M
Figure 19. Voltage Gain and Phase
versus Frequency
http://onsemi.com
160
2B
f, FREQUENCY (Hz)
7
80
2A
−30
10 k
240
10 M
40
CL = 0 pF
TA = 25°C
RL = 600 W
50
125
240
10 M
O , EXCESS PHASE (DEGREES)
I SC , OUTPUT SHORT CIRCUIT CURRENT (mA)
MC33201, MC33202, MC33204, NCV33202, NCV33204
MC33201, MC33202, MC33204, NCV33202, NCV33204
75
60
50
50
30
VCC = +6.0 V
VEE = −6.0 V
RL = 600 W
CL = 100 pF
40
30
20
20
10
10
Gain Margin
0
−55 −40 −25
0
25
70
85
105
60
60
VCC = +6.0 V
VEE = −6.0 V
TA = 25°C
45
30
30
15
0
0
125
10
100
16
60
Gain Margin
12
10
40
8.0
30
6.0
20
4.0
10
2.0
0
10
THD, TOTAL HARMONIC DISTORTION (%)
14
10
1.0
AV = 10
60
VCC = +6.0 V
VEE = −6.0 V
VO = 8.0 Vpp
TA = 25°C
30
1.0 k
10 k
f, FREQUENCY (Hz)
Figure 22. Gain and Phase Margin
versus Capacitive Load
Figure 23. Channel Separation
versus Frequency
VCC = +5.0 V
TA = 25°C
VO = 2.0 Vpp
VEE = −5.0 V
RL = 600 W
AV = 100
AV = 10
0.01
0.001
10
90
CL, CAPACITIVE LOAD (pF)
AV = 1000
0.1
AV = 100
120
0
100
0
1.0 k
100
AV = 1.0
100
1.0 k
10 k
100 k
en , EQUIVALENT INPUT NOISE VOLTAGE (nV/ Hz)
50
0
100 k
150
CS, CHANNEL SEPARATION (dB)
Phase Margin
10 k
Figure 21. Gain and Phase Margin
versus Differential Source Resistance
A , GAIN MARGIN (dB)
M
O M , PHASE MARGIN (DEGREES)
70
1.0 k
RT, DIFFERENTIAL SOURCE RESISTANCE (W)
Figure 20. Gain and Phase Margin
versus Temperature
VCC = +6.0 V
VEE = −6.0 V
RL = 600 W
AV = 100
TA = 25°C
15
Gain Margin
TA, AMBIENT TEMPERATURE (°C)
80
45
50
5.0
VCC = +6.0 V
VEE = −6.0 V
TA = 25°C
40
30
3.0
Noise Voltage
20
10
Noise Current
0
10
100
1.0 k
10 k
f, FREQUENCY (Hz)
Figure 25. Equivalent Input Noise Voltage
and Current versus Frequency
http://onsemi.com
8
2.0
1.0
f, FREQUENCY (Hz)
Figure 24. Total Harmonic Distortion
versus Frequency
4.0
0
100 k
i n , INPUT REFERRED NOISE CURRENT (pA/ Hz)
40
75
Phase Margin
A , GAIN MARGIN (dB)
M
60
O M , PHASE MARGIN (DEGREES)
70
Phase Margin
A , GAIN MARGIN (dB)
M
O M , PHASE MARGIN (DEGREES)
70
MC33201, MC33202, MC33204, NCV33202, NCV33204
DETAILED OPERATING DESCRIPTION
Circuit Information
The MC33201/2/4 family of operational amplifiers are
unique in their ability to swing rail−to−rail on both the input
and the output with a completely bipolar design. This offers
low noise, high output current capability and a wide
common mode input voltage range even with low supply
voltages. Operation is guaranteed over an extended
temperature range and at supply voltages of 2.0 V, 3.3 V and
5.0 V and ground.
Since the common mode input voltage range extends from
VCC to VEE, it can be operated with either single or split
voltage supplies. The MC33201/2/4 are guaranteed not to
latch or phase reverse over the entire common mode range,
however, the inputs should not be allowed to exceed
maximum ratings.
Rail−to−rail performance is achieved at the input of the
amplifiers by using parallel NPN−PNP differential input
stages. When the inputs are within 800 mV of the negative
rail, the PNP stage is on. When the inputs are more than 800
mV greater than VEE, the NPN stage is on. This switching of
input pairs will cause a reversal of input bias currents (see
Figure 6). Also, slight differences in offset voltage may be
noted between the NPN and PNP pairs. Cross−coupling
techniques have been used to keep this change to a minimum.
In addition to its rail−to−rail performance, the output stage
is current boosted to provide 80 mA of output current,
enabling the op amp to drive 600 W loads. Because of this
high output current capability, care should be taken not to
exceed the 150°C maximum junction temperature.
VCC = +6.0 V
VEE = −6.0 V
RL = 600 W
CL = 100 pF
TA = 25°C
VCC = +6.0 V
VEE = −6.0 V
RL = 600 W
CL = 100 pF
TA = 25°C
V , OUTPUT VOLTAGE (50 mV/DIV)
O
V , OUTPUT VOLTAGE (2.0 mV/DIV)
O
General Information
t, TIME (5.0 ms/DIV)
t, TIME (10 ms/DIV)
V , OUTPUT VOLTAGE (2.0 V/DIV)
O
Figure 26. Noninverting Amplifier Slew Rate
Figure 27. Small Signal Transient Response
VCC = +6.0 V
VEE = −6.0 V
RL = 600 W
CL = 100 pF
AV = 1.0
TA = 25°C
t, TIME (10 ms/DIV)
Figure 28. Large Signal Transient Response
Surface mount board layout is a critical portion of the total
design. The footprint for the semiconductor packages must be
the correct size to ensure proper solder connection interface
between the board and the package. With the correct pad
geometry, the packages will self−align when subjected to a
solder reflow process.
http://onsemi.com
9
MC33201, MC33202, MC33204, NCV33202, NCV33204
ORDERING INFORMATION
Operational
Amplifier Function
Device
Operating
Temperature Range
MC33201D
SOIC−8
(Pb−Free)
MC33201DR2
SOIC−8
TA= −40° to +105°C
MC33201P
PDIP−8
(Pb−Free)
MC33201VD
SOIC−8
(Pb−Free)
SOIC−8
MC33202DG
SOIC−8
(Pb−Free)
MC33202DR2
SOIC−8
MC33202DR2G
MC33202DMR2
TA= −40 ° to +105°C
MC33202DMR2G
SOIC−8
(Pb−Free)
50 Units / Rail
98 Units / Rail
2500 / Tape & Reel
Micro−8
Micro−8
(Pb−Free)
MC33202P
4000 / Tape & Reel
PDIP−8
MC33202PG
PDIP−8
(Pb−Free)
MC33202VD
SOIC−8
MC33202VDG
SOIC−8
(Pb−Free)
MC33202VDR2
SOIC−8
MC33202VDR2G
NCV33202VDR2*
2500 / Tape & Reel
SOIC−8
TA = −55° to 125°C
MC33202D
Dual
SOIC−8
(Pb−Free)
98 Units / Rail
PDIP−8
MC33201PG
MC33201VDG
Shipping †
SOIC−8
MC33201DG
MC33201DR2G
Single
Package
TA = −55° to 125°C
NCV33202VDR2G*
SOIC−8
(Pb−Free)
SOIC−8
50 Units / Rail
98 Units / Rail
2500 / Tape & Reel
SOIC−8
(Pb−Free)
MC33202VP
PDIP−8
MC33202VPG
PDIP−8
(Pb−Free)
50 Units / Rail
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
*NCV33202 and NCV33204 are qualified for automotive use.
http://onsemi.com
10
MC33201, MC33202, MC33204, NCV33202, NCV33204
ORDERING INFORMATION (continued)
Operational
Amplifier Function
Device
Operating
Temperature Range
MC33204D
MC33204DG
SO−14
(Pb−Free)
MC33204DR2
SO−14
MC33204DTB
SO−14
(Pb−Free)
TA= −40 ° to +105°C
TSSOP−14*
MC33204DTBG
TSSOP−14*
MC33204DTBR2
TSSOP−14*
MC33204DTBR2G
TSSOP−14*
MC33204P
PDIP−14
MC33204PG
PDIP−14
(Pb−Free)
MC33204VD
SO−14
MC33204VDG
SO−14
(Pb−Free)
MC33204VDR2
SO−14
MC33204VDR2G
NCV33204DR2**
NCV33204DR2G**
Shipping †
SO−14
MC33204DR2G
Quad
Package
55 Units / Rail
2500 / Tape & Reel
96 Units / Rail
2500 / Tape & Reel
25 Units / Rail
55 Units / Rail
SO−14
(Pb−Free)
TA = −55° to 125°C
SO−14
SO−14
(Pb−Free)
NCV33204DTBR2**
TSSOP−14*
NCV33204DTBR2G**
TSSOP−14*
MC33204VP
PDIP−14
MC33204VPG
PDIP−14
(Pb−Free)
2500 / Tape & Reel
25 Units / Rail
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
*This package is inherently Pb−Free.
**NCV33202 and NCV33204 are qualified for automotive use.
http://onsemi.com
11
MC33201, MC33202, MC33204, NCV33202, NCV33204
MARKING DIAGRAMS
SOIC−8
D SUFFIX
CASE 751
8
1
8
3320x
ALYW
G
1
320xV
ALYW
G
PDIP−8
VP SUFFIX
CASE 626
PDIP−8
P SUFFIX
CASE 626
SOIC−8
VD SUFFIX
CASE 751
*
8
8
MC3320xP
AWL
YYWWG
14
MC33204VDG
AWLYWW
1
*
MC33204P
AWLYYWWG
1
14
MC33204VP
AWLYYWWG
1
http://onsemi.com
12
MC33204DG
AWLYWW
1
TSSOP−14
DTB SUFFIX
CASE 948G
14
MC33
204
ALYWG
G
1
x
= 1 or 2
A
= Assembly Location
WL, L = Wafer Lot
YY, Y
= Year
WW, W = Work Week
G
= Pb−Free Package
G
= Pb−Free Package
(Note: Microdot may be in either location)
*This marking diagram applies to NCV3320x
14
1
PDIP−14
VP SUFFIX
CASE 646
14
SO−14
D SUFFIX
CASE 751A
3202
AYWG
G
1
PDIP−14
P SUFFIX
CASE 646
14
8
MC33202VP
AWL
YYWWG
1
SO−14
VD SUFFIX
CASE 751A
Micro−8
DM SUFFIX
CASE 846A
MC33
204V
ALYWG
G
1
*
MC33201, MC33202, MC33204, NCV33202, NCV33204
PACKAGE DIMENSIONS
PDIP−8
P, VP SUFFIX
CASE 626−05
ISSUE L
8
NOTES:
1. DIMENSION L TO CENTER OF LEAD WHEN
FORMED PARALLEL.
2. PACKAGE CONTOUR OPTIONAL (ROUND OR
SQUARE CORNERS).
3. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
5
−B−
1
4
F
−A−
NOTE 2
L
C
J
−T−
N
SEATING
PLANE
D
H
M
K
G
0.13 (0.005)
M
T A
M
B
M
http://onsemi.com
13
DIM
A
B
C
D
F
G
H
J
K
L
M
N
MILLIMETERS
MIN
MAX
9.40
10.16
6.10
6.60
3.94
4.45
0.38
0.51
1.02
1.78
2.54 BSC
0.76
1.27
0.20
0.30
2.92
3.43
7.62 BSC
−−−
10_
0.76
1.01
INCHES
MIN
MAX
0.370
0.400
0.240
0.260
0.155
0.175
0.015
0.020
0.040
0.070
0.100 BSC
0.030
0.050
0.008
0.012
0.115
0.135
0.300 BSC
−−−
10_
0.030
0.040
MC33201, MC33202, MC33204, NCV33202, NCV33204
PACKAGE DIMENSIONS
SOIC−8 NB
CASE 751−07
ISSUE AH
−X−
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A AND B DO NOT INCLUDE
MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL
IN EXCESS OF THE D DIMENSION AT
MAXIMUM MATERIAL CONDITION.
6. 751−01 THRU 751−06 ARE OBSOLETE. NEW
STANDARD IS 751−07.
A
8
5
S
B
1
0.25 (0.010)
M
Y
M
4
−Y−
K
G
C
N
DIM
A
B
C
D
G
H
J
K
M
N
S
X 45 _
SEATING
PLANE
−Z−
0.10 (0.004)
H
D
0.25 (0.010)
M
Z Y
S
X
M
J
S
SOLDERING FOOTPRINT*
1.52
0.060
7.0
0.275
4.0
0.155
0.6
0.024
1.270
0.050
SCALE 6:1
mm Ǔ
ǒinches
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
http://onsemi.com
14
MILLIMETERS
MIN
MAX
4.80
5.00
3.80
4.00
1.35
1.75
0.33
0.51
1.27 BSC
0.10
0.25
0.19
0.25
0.40
1.27
0_
8 _
0.25
0.50
5.80
6.20
INCHES
MIN
MAX
0.189
0.197
0.150
0.157
0.053
0.069
0.013
0.020
0.050 BSC
0.004
0.010
0.007
0.010
0.016
0.050
0 _
8 _
0.010
0.020
0.228
0.244
MC33201, MC33202, MC33204, NCV33202, NCV33204
PACKAGE DIMENSIONS
Micro8
DM SUFFIX
CASE 846A−02
ISSUE G
D
HE
PIN 1 ID
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE
BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED
0.15 (0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION.
INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
5. 846A−01 OBSOLETE, NEW STANDARD 846A−02.
E
e
b 8 PL
0.08 (0.003)
M
T B
S
A
S
SEATING
−T− PLANE
0.038 (0.0015)
A
A1
MILLIMETERS
NOM
MAX
−−
1.10
0.08
0.15
0.33
0.40
0.18
0.23
3.00
3.10
3.00
3.10
0.65 BSC
0.40
0.55
0.70
4.75
4.90
5.05
DIM
A
A1
b
c
D
E
e
L
HE
MIN
−−
0.05
0.25
0.13
2.90
2.90
L
c
SOLDERING FOOTPRINT*
8X
1.04
0.041
0.38
0.015
3.20
0.126
6X
8X
4.24
0.167
0.65
0.0256
5.28
0.208
SCALE 8:1
mm Ǔ
ǒinches
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
http://onsemi.com
15
INCHES
NOM
−−
0.003
0.013
0.007
0.118
0.118
0.026 BSC
0.016
0.021
0.187
0.193
MIN
−−
0.002
0.010
0.005
0.114
0.114
MAX
0.043
0.006
0.016
0.009
0.122
0.122
0.028
0.199
MC33201, MC33202, MC33204, NCV33202, NCV33204
PACKAGE DIMENSIONS
PDIP−14
CASE 646−06
ISSUE P
14
8
1
7
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION L TO CENTER OF LEADS WHEN
FORMED PARALLEL.
4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.
5. ROUNDED CORNERS OPTIONAL.
B
A
F
L
N
C
−T−
SEATING
PLANE
H
G
D 14 PL
J
K
0.13 (0.005)
M
M
http://onsemi.com
16
DIM
A
B
C
D
F
G
H
J
K
L
M
N
INCHES
MIN
MAX
0.715
0.770
0.240
0.260
0.145
0.185
0.015
0.021
0.040
0.070
0.100 BSC
0.052
0.095
0.008
0.015
0.115
0.135
0.290
0.310
−−−
10 _
0.015
0.039
MILLIMETERS
MIN
MAX
18.16
19.56
6.10
6.60
3.69
4.69
0.38
0.53
1.02
1.78
2.54 BSC
1.32
2.41
0.20
0.38
2.92
3.43
7.37
7.87
−−−
10 _
0.38
1.01
MC33201, MC33202, MC33204, NCV33202, NCV33204
SOIC−14
CASE 751A−03
ISSUE H
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
PER SIDE.
5. DIMENSION D DOES NOT INCLUDE
DAMBAR PROTRUSION. ALLOWABLE
DAMBAR PROTRUSION SHALL BE 0.127
(0.005) TOTAL IN EXCESS OF THE D
DIMENSION AT MAXIMUM MATERIAL
CONDITION.
−A−
14
8
−B−
P 7 PL
0.25 (0.010)
M
7
1
G
−T−
D 14 PL
0.25 (0.010)
T B
S
A
DIM
A
B
C
D
F
G
J
K
M
P
R
J
M
K
M
F
R X 45 _
C
SEATING
PLANE
B
M
S
SOLDERING FOOTPRINT*
7X
7.04
14X
1.52
1
14X
0.58
1.27
PITCH
DIMENSIONS: MILLIMETERS
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
http://onsemi.com
17
MILLIMETERS
MIN
MAX
8.55
8.75
3.80
4.00
1.35
1.75
0.35
0.49
0.40
1.25
1.27 BSC
0.19
0.25
0.10
0.25
0_
7_
5.80
6.20
0.25
0.50
INCHES
MIN
MAX
0.337 0.344
0.150 0.157
0.054 0.068
0.014 0.019
0.016 0.049
0.050 BSC
0.008 0.009
0.004 0.009
0_
7_
0.228 0.244
0.010 0.019
MC33201, MC33202, MC33204, NCV33202, NCV33204
PACKAGE DIMENSIONS
TSSOP−14
CASE 948G−01
ISSUE B
14X K REF
0.10 (0.004)
0.15 (0.006) T U
M
T U
V
S
S
N
2X
14
L/2
0.25 (0.010)
8
M
B
−U−
L
PIN 1
IDENT.
N
F
7
1
0.15 (0.006) T U
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD
FLASH, PROTRUSIONS OR GATE BURRS.
MOLD FLASH OR GATE BURRS SHALL NOT
EXCEED 0.15 (0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE
INTERLEAD FLASH OR PROTRUSION.
INTERLEAD FLASH OR PROTRUSION SHALL
NOT EXCEED 0.25 (0.010) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE
DAMBAR PROTRUSION. ALLOWABLE
DAMBAR PROTRUSION SHALL BE 0.08
(0.003) TOTAL IN EXCESS OF THE K
DIMENSION AT MAXIMUM MATERIAL
CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE
DETERMINED AT DATUM PLANE −W−.
S
S
DETAIL E
ÇÇÇ
ÉÉÉ
ÇÇÇ
ÉÉÉ
ÇÇÇ
K
A
−V−
K1
J J1
DIM
A
B
C
D
F
G
H
J
J1
K
K1
L
M
SECTION N−N
−W−
C
0.10 (0.004)
−T− SEATING
PLANE
D
H
G
DETAIL E
SOLDERING FOOTPRINT*
7.06
1
0.65
PITCH
14X
0.36
14X
1.26
DIMENSIONS: MILLIMETERS
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
http://onsemi.com
18
MILLIMETERS
MIN
MAX
4.90
5.10
4.30
4.50
−−−
1.20
0.05
0.15
0.50
0.75
0.65 BSC
0.50
0.60
0.09
0.20
0.09
0.16
0.19
0.30
0.19
0.25
6.40 BSC
0_
8_
INCHES
MIN MAX
0.193 0.200
0.169 0.177
−−− 0.047
0.002 0.006
0.020 0.030
0.026 BSC
0.020 0.024
0.004 0.008
0.004 0.006
0.007 0.012
0.007 0.010
0.252 BSC
0_
8_
MC33201, MC33202, MC33204, NCV33202, NCV33204
Micro8 is a trademark of International Rectifier.
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5773−3850
http://onsemi.com
19
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
MC33201/D
Similar pages