MOTOROLA MPX50GVP 0 to 50 kpa (0-7.25 psi) 60 mv full scale span (typical) Datasheet

Order this document
by MPX50/D
SEMICONDUCTOR TECHNICAL DATA
The MPX50 silicon piezoresistive pressure sensor provides a very accurate and linear
voltage output — directly proportional to the applied pressure. This standard, low cost,
uncompensated sensor permits manufacturers to design and add their own external
temperature compensating and signal conditioning networks. Compensation techniques
are simplified because of the predictability of Motorola’s single element strain gauge
design.
0 to 50 kPa (0 – 7.25 psi)
60 mV FULL SCALE SPAN
(TYPICAL)
Features
• Low Cost
• Patented Silicon Shear Stress Strain Gauge Design
• Ratiometric to Supply Voltage
• Easy to Use Chip Carrier Package Options
• 60 mV Span (Typ)
• Differential and Gauge Options
• ± 0.25% (Max) Linearity
BASIC CHIP
CARRIER ELEMENT
CASE 344–15, STYLE 1
Application Examples
• Air Movement Control
• Environmental Control Systems
• Level Indicators
• Leak Detection
• Medical Instrumentation
• Industrial Controls
• Pneumatic Control Systems
• Robotics
DIFFERENTIAL
PORT OPTION
CASE 344C–01, STYLE 1
Figure 1 shows a schematic of the internal circuitry on the stand–alone pressure
sensor chip.
PIN 3
NOTE: Pin 1 is the notched pin.
+ VS
PIN NUMBER
PIN 2
+ Vout
X–ducer
1
Gnd
3
VS
2
+Vout
4
–Vout
PIN 4
– Vout
PIN 1
Figure 1. Uncompensated Pressure Sensor Schematic
VOLTAGE OUTPUT versus APPLIED DIFFERENTIAL PRESSURE
The differential voltage output of the X–ducer is directly proportional to the differential
pressure applied.
The output voltage of the differential or gauge sensor increases with increasing
pressure applied to the pressure side (P1) relative to the vacuum side (P2). Similarly,
output voltage increases as increasing vacuum is applied to the vacuum side (P2)
relative to the pressure side (P1).
Senseon and X–ducer are trademarks of Motorola, Inc.
REV 5
Motorola Sensor Device Data
 Motorola, Inc. 1997
1
MAXIMUM RATINGS
Symbol
Value
Unit
Overpressure(8) (P1 > P2)
Rating
Pmax
200
kPa
Burst Pressure(8) (P1 > P2)
Pburst
500
kPa
Tstg
– 40 to +125
°C
TA
– 40 to +125
°C
Storage Temperature
Operating Temperature
OPERATING CHARACTERISTICS (VS = 3.0 Vdc, TA = 25°C unless otherwise noted, P1 > P2)
Symbol
Min
Typ
Max
Unit
Pressure Range(1)
POP
0
—
50
kPa
Supply Voltage(2)
VS
—
3.0
6.0
Vdc
Characteristic
Supply Current
Full Scale Span(3)
Offset(4)
Io
—
6.0
—
mAdc
VFSS
45
60
90
mV
Voff
0
20
35
mV
Sensitivity
∆V/∆P
—
1.2
—
mV/kPa
Linearity(5)
—
– 0.25
—
0.25
%VFSS
Pressure Hysteresis(5) (0 to 50 kPa)
—
—
± 0.1
—
%VFSS
Temperature Hysteresis(5) (– 40°C to +125°C)
—
—
± 0.5
—
%VFSS
Temperature Coefficient of Full Scale Span(5)
TCVFSS
– 0.22
—
– 0.16
%VFSS/°C
TCVoff
—
± 15
—
µV/°C
TCR
0.21
—
0.27
%Zin/°C
Zin
400
—
550
Ω
Temperature Coefficient of Offset(5)
Temperature Coefficient of Resistance(5)
Input Impedance
Zout
750
—
1800
Ω
Response Time(6) (10% to 90%)
tR
—
1.0
—
ms
Warm–Up
—
—
20
—
ms
Offset Stability(9)
—
—
± 0.5
—
%VFSS
Output Impedance
MECHANICAL CHARACTERISTICS
Symbol
Min
Typ
Max
Unit
Weight (Basic Element Case 344–15)
Characteristic
—
—
2.0
—
Grams
Common Mode Line Pressure(7)
—
—
—
690
kPa
NOTES:
1. 1.0 kPa (kiloPascal) equals 0.145 psi.
2. Device is ratiometric within this specified excitation range. Operating the device above the specified excitation range may induce additional
error due to device self–heating.
3. Full Scale Span (VFSS) is defined as the algebraic difference between the output voltage at full rated pressure and the output voltage at the
minimum rated pressure.
4. Offset (Voff) is defined as the output voltage at the minimum rated pressure.
5. Accuracy (error budget) consists of the following:
• Linearity:
Output deviation from a straight line relationship with pressure, using end point method, over the specified
pressure range.
• Temperature Hysteresis: Output deviation at any temperature within the operating temperature range, after the temperature is
cycled to and from the minimum or maximum operating temperature points, with zero differential pressure
applied.
• Pressure Hysteresis:
Output deviation at any pressure within the specified range, when this pressure is cycled to and from the
minimum or maximum rated pressure, at 25°C.
• TcSpan:
Output deviation at full rated pressure over the temperature range of 0 to 85°C, relative to 25°C.
• TcOffset:
Output deviation with minimum rated pressure applied, over the temperature range of 0 to 85°C, relative
to 25°C.
• TCR:
Zin deviation with minimum rated pressure applied, over the temperature range of – 40°C to +125°C,
relative to 25°C.
6. Response Time is defined as the time for the incremental change in the output to go from 10% to 90% of its final value when subjected to
a specified step change in pressure.
7. Common mode pressures beyond specified may result in leakage at the case–to–lead interface.
8. Exposure beyond these limits may cause permanent damage or degradation to the device.
9. Offset stability is the product’s output deviation when subjected to 1000 hours of Pulsed Pressure, Temperature Cycling with Bias Test.
2
Motorola Sensor Device Data
or by designing your system using the MPX2050 series
sensors.
Several approaches to external temperature compensation over both – 40 to +125°C and 0 to + 80°C ranges are
presented in Motorola Applications Note AN840.
TEMPERATURE COMPENSATION
Figure 2 shows the typical output characteristics of the
MPX50 series over temperature.
The X–ducer piezoresistive pressure sensor element is a
semiconductor device which gives an electrical output signal
proportional to the pressure applied to the device. This device uses a unique transverse voltage diffused semiconductor strain gauge which is sensitive to stresses produced in a
thin silicon diaphragm by the applied pressure.
Because this strain gauge is an integral part of the silicon
diaphragm, there are no temperature effects due to differences in the thermal expansion of the strain gauge and the
diaphragm, as are often encountered in bonded strain gauge
pressure sensors. However, the properties of the strain
gauge itself are temperature dependent, requiring that the
device be temperature compensated if it is to be used over
an extensive temperature range.
Temperature compensation and offset calibration can be
achieved rather simply with additional resistive components,
LINEARITY
Linearity refers to how well a transducer’s output follows
the equation: Vout = Voff + sensitivity x P over the operating
pressure range (see Figure 3). There are two basic methods
for calculating nonlinearity: (1) end point straight line fit or (2)
a least squares best line fit. While a least squares fit gives
the “best case” linearity error (lower numerical value), the
calculations required are burdensome.
Conversely, an end point fit will give the “worst case” error
(often more desirable in error budget calculations) and the
calculations are more straightforward for the user. Motorola’s
specified pressure sensor linearities are based on the end
point straight line method measured at the midrange
pressure.
70
100
OUTPUT (mVdc)
70
MPX50
VS = 3 Vdc
P1 > P2
– 40°C
+ 25°C
50
60
OUTPUT (mVdc)
80
LINEARITY
60
90
SPAN
RANGE
(TYP)
+ 125°C
50
40
30
ACTUAL
40
SPAN
(VFSS)
30
THEORETICAL
20
20
10
0
PSI 0
kPa 0
OFFSET
(TYP)
1
2
10
3
20
4
5
30
6
40
7
10
OFFSET
(VOFF)
0
8
0
50
MAX
POP
PRESSURE (kPA)
PRESSURE DIFFERENTIAL
Figure 2. Output versus Pressure Differential
SILICONE
DIE COAT
Figure 3. Linearity Specification Comparison
STAINLESS STEEL
METAL COVER
EPOXY
CASE
ÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉ
DIE
P1
WIRE BOND
LEAD FRAME
P2
RTV DIE
BOND
Figure 4. Cross–Sectional Diagram (not to scale)
Figure 4 illustrates the differential or gauge configuration
in the basic chip carrier (Case 344–15). A silicone gel isolates the die surface and wire bonds from the environment,
while allowing the pressure signal to be transmitted to the silicon diaphragm.
The MPX50 series pressure sensor operating characteris-
Motorola Sensor Device Data
tics and internal reliability and qualification tests are based
on use of dry air as the pressure media. Media other than dry
air may have adverse effects on sensor performance and
long term reliability. Contact the factory for information regarding media compatibility in your application.
3
PRESSURE (P1)/VACUUM (P2) SIDE IDENTIFICATION TABLE
Motorola designates the two sides of the pressure sensor
as the Pressure (P1) side and the Vacuum (P2) side. The
Pressure (P1) side is the side containing silicone gel which
isolates the die from the environment. The Motorola MPX
Part Number
pressure sensor is designed to operate with positive differential pressure applied, P1 > P2.
The Pressure (P1) side may be identified by using the
table below:
Case Type
Pressure (P1) Side Identifier
MPX50D
344–15
Stainless Steel Cap
MPX50DP
344C–01
Side with Part Marking
MPX50GP
344B–01
Side with Port Attached
MPX50GVP
344D–01
Stainless Steel Cap
MPX50GS
344E–01
Side with Port Attached
MPX50GVS
344A–01
Stainless Steel Cap
MPX50GSX
344F–01
Side with Port Attached
MPX50GVSX
344G–01
Stainless Steel Cap
ORDERING INFORMATION
MPX50 series pressure sensors are available in differential and gauge configurations. Devices are available with basic
element package or with pressure port fittings which provide printed circuit board mounting ease and barbed hose pressure
connections.
MPX Series
D i T
Device
Type
O i
Options
C
Case
Type
T
Order Number
Device Marking
Basic Element
Differential
Case 344–15
MPX50D
MPX50D
Ported Elements
Differential
Case 344C–01
MPX50DP
MPX50DP
Gauge
Case 344B–01
MPX50GP
MPX50GP
Gauge Vacuum
Case 344D–01
MPX50GVP
MPX50GVP
Gauge Stovepipe
Case 344E–01
MPX50GS
MPX50D
Gauge Vacuum Stovepipe
Case 344A–01
MPX50GVS
MPX50D
Gauge Axial
Case 344F–01
MPX50GSX
MPX50D
Gauge Vacuum Axial
Case 344G–01
MPX50GVSX
MPX50D
4
Motorola Sensor Device Data
PACKAGE DIMENSIONS
NOTES:
C
1. DIMENSIONING AND TOLERANCING PER ASME
Y14.5M, 1994.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION –A– IS INCLUSIVE OF THE MOLD
STOP RING. MOLD STOP RING NOT TO EXCEED
16.00 (0.630).
POSITIVE
PRESSURE (P1)
R
M
B
–A–
DIM
A
B
C
D
F
G
J
L
M
N
R
N
1
PIN 1
2
3
L
4
–T–
SEATING
PLANE
J
POSITIVE
PRESSURE
(P1)
G
F
D
4 PL
0.136 (0.005)
M
T A
M
INCHES
MIN
MAX
0.595
0.630
0.514
0.534
0.200
0.220
0.016
0.020
0.048
0.064
0.100 BSC
0.014
0.016
0.695
0.725
30_ NOM
0.475
0.495
0.430
0.450
STYLE 1:
PIN 1.
2.
3.
4.
MILLIMETERS
MIN
MAX
15.11
16.00
13.06
13.56
5.08
5.59
0.41
0.51
1.22
1.63
2.54 BSC
0.36
0.40
17.65
18.42
30_ NOM
12.07
12.57
10.92
11.43
GROUND
+ OUTPUT
+ SUPPLY
– OUTPUT
CASE 344–15
ISSUE W
PORT #2
VACUUM
PRESSURE
(P2)
–B–
C
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
A
POSITIVE
PRESSURE
(P1)
PIN 1
V
1 2
3 4
K
J
N
R
SEATING
PLANE
S
–T–
G
F
D 4 PL
0.13 (0.005)
M
T B
M
DIM
A
B
C
D
F
G
J
K
N
R
S
V
INCHES
MIN
MAX
0.690
0.720
0.245
0.255
0.780
0.820
0.016
0.020
0.048
0.064
0.100 BSC
0.014
0.016
0.345
0.375
0.300
0.310
0.178
0.186
0.220
0.240
0.182
0.194
STYLE 1:
PIN 1.
2.
3.
4.
MILLIMETERS
MIN
MAX
17.53
18.28
6.22
6.48
19.81
20.82
0.41
0.51
1.22
1.63
2.54 BSC
0.36
0.41
8.76
9.53
7.62
7.87
4.52
4.72
5.59
6.10
4.62
4.93
GROUND
+ OUTPUT
+ SUPPLY
– OUTPUT
CASE 344A–01
ISSUE B
Motorola Sensor Device Data
5
PACKAGE DIMENSIONS — CONTINUED
SEATING
PLANE
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5, 1982.
2. CONTROLLING DIMENSION: INCH.
–A–
–T–
U
L
R
H
N
PORT #1
POSITIVE
PRESSURE
(P1)
–Q–
B
1 2
3 4
PIN 1
K
–P–
0.25 (0.010)
T Q
M
S
S
J
F
G
D 4 PL
0.13 (0.005)
C
M
T S
S
Q
S
INCHES
MIN
MAX
1.145
1.175
0.685
0.715
0.305
0.325
0.016
0.020
0.048
0.064
0.100 BSC
0.182
0.194
0.014
0.016
0.695
0.725
0.290
0.300
0.420
0.440
0.153
0.159
0.153
0.159
0.230
0.250
0.220
0.240
0.910 BSC
DIM
A
B
C
D
F
G
H
J
K
L
N
P
Q
R
S
U
STYLE 1:
PIN 1.
2.
3.
4.
MILLIMETERS
MIN
MAX
29.08
29.85
17.40
18.16
7.75
8.26
0.41
0.51
1.22
1.63
2.54 BSC
4.62
4.93
0.36
0.41
17.65
18.42
7.37
7.62
10.67
11.18
3.89
4.04
3.89
4.04
5.84
6.35
5.59
6.10
23.11 BSC
GROUND
+ OUTPUT
+ SUPPLY
– OUTPUT
CASE 344B–01
ISSUE B
PORT #1
R
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
–A–
U
V
W
L
H
PORT #2
N
PORT #1
POSITIVE PRESSURE
(P1)
PORT #2
VACUUM
(P2)
–Q–
B
SEATING
PLANE
SEATING
PLANE
1 2 3 4
PIN 1
K
–P–
–T–
–T–
0.25 (0.010)
M
T Q
S
S
F
J
G
D 4 PL
C
0.13 (0.005)
M
T S
S
Q
S
DIM
A
B
C
D
F
G
H
J
K
L
N
P
Q
R
S
U
V
W
INCHES
MIN
MAX
1.145
1.175
0.685
0.715
0.405
0.435
0.016
0.020
0.048
0.064
0.100 BSC
0.182
0.194
0.014
0.016
0.695
0.725
0.290
0.300
0.420
0.440
0.153
0.159
0.153
0.159
0.063
0.083
0.220
0.240
0.910 BSC
0.248
0.278
0.310
0.330
STYLE 1:
PIN 1.
2.
3.
4.
MILLIMETERS
MIN
MAX
29.08
29.85
17.40
18.16
10.29
11.05
0.41
0.51
1.22
1.63
2.54 BSC
4.62
4.93
0.36
0.41
17.65
18.42
7.37
7.62
10.67
11.18
3.89
4.04
3.89
4.04
1.60
2.11
5.59
6.10
23.11 BSC
6.30
7.06
7.87
8.38
GROUND
+ OUTPUT
+ SUPPLY
– OUTPUT
CASE 344C–01
ISSUE B
6
Motorola Sensor Device Data
PACKAGE DIMENSIONS — CONTINUED
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5, 1982.
2. CONTROLLING DIMENSION: INCH.
–A–
U
L
SEATING
PLANE
–T–
R
DIM
A
B
C
D
F
G
H
J
K
L
N
P
Q
R
S
U
H
PORT #2
VACUUM
(P2)
POSITIVE
PRESSURE
(P1)
N
–Q–
B
1 2
3 4
K
PIN 1
S
C
J
F
–P–
0.25 (0.010)
M
T Q
G
D 4 PL
0.13 (0.005)
S
M
T S
S
Q
S
INCHES
MIN
MAX
1.145
1.175
0.685
0.715
0.305
0.325
0.016
0.020
0.048
0.064
0.100 BSC
0.182
0.194
0.014
0.016
0.695
0.725
0.290
0.300
0.420
0.440
0.153
0.159
0.153
0.158
0.230
0.250
0.220
0.240
0.910 BSC
STYLE 1:
PIN 1.
2.
3.
4.
MILLIMETERS
MIN
MAX
29.08
29.85
17.40
18.16
7.75
8.26
0.41
0.51
1.22
1.63
2.54 BSC
4.62
4.93
0.36
0.41
17.65
18.42
7.37
7.62
10.67
11.18
3.89
4.04
3.89
4.04
5.84
6.35
5.59
6.10
23.11 BSC
GROUND
+ OUTPUT
+ SUPPLY
– OUTPUT
CASE 344D–01
ISSUE B
PORT #1
POSITIVE
PRESSURE
(P1)
–B–
C
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
A
BACK SIDE
VACUUM
(P2)
DIM
A
B
C
D
F
G
J
K
N
R
S
V
V
4 3
2 1
PIN 1
K
J
N
R
SEATING
PLANE
S
–T–
INCHES
MIN
MAX
0.690
0.720
0.245
0.255
0.780
0.820
0.016
0.020
0.048
0.064
0.100 BSC
0.014
0.016
0.345
0.375
0.300
0.310
0.178
0.186
0.220
0.240
0.182
0.194
MILLIMETERS
MIN
MAX
17.53
18.28
6.22
6.48
19.81
20.82
0.41
0.51
1.22
1.63
2.54 BSC
0.36
0.41
8.76
9.53
7.62
7.87
4.52
4.72
5.59
6.10
4.62
4.93
G
F
D 4 PL
0.13 (0.005)
M
T B
M
STYLE 1:
PIN 1.
2.
3.
4.
GROUND
+ OUTPUT
+ SUPPLY
– OUTPUT
CASE 344E–01
ISSUE B
Motorola Sensor Device Data
7
PACKAGE DIMENSIONS — CONTINUED
–T–
C
A
E
–Q–
U
N
V
B
R
PORT #1
POSITIVE
PRESSURE
(P1)
PIN 1
–P–
0.25 (0.010)
M
T Q
M
4
3
2
1
S
K
F
J
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
DIM
A
B
C
D
E
F
G
J
K
N
P
Q
R
S
U
V
INCHES
MIN
MAX
1.080
1.120
0.740
0.760
0.630
0.650
0.016
0.020
0.160
0.180
0.048
0.064
0.100 BSC
0.014
0.016
0.220
0.240
0.070
0.080
0.150
0.160
0.150
0.160
0.440
0.460
0.695
0.725
0.840
0.860
0.182
0.194
MILLIMETERS
MIN
MAX
27.43
28.45
18.80
19.30
16.00
16.51
0.41
0.51
4.06
4.57
1.22
1.63
2.54 BSC
0.36
0.41
5.59
6.10
1.78
2.03
3.81
4.06
3.81
4.06
11.18
11.68
17.65
18.42
21.34
21.84
4.62
4.92
G
D 4 PL
0.13 (0.005)
T P
M
S
Q
STYLE 1:
PIN 1.
2.
3.
4.
S
GROUND
V (+) OUT
V SUPPLY
V (–) OUT
CASE 344F–01
ISSUE B
–T–
C
A
E
–Q–
U
POSITIVE
PRESSURE
(P1)
N
V
B
R
PIN 1
PORT #2
VACUUM
(P2)
–P–
0.25 (0.010)
M
T Q
M
1
2
3
4
S
K
J
F
G
D 4 PL
0.13 (0.005)
M
T P
S
Q
S
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
DIM
A
B
C
D
E
F
G
J
K
N
P
Q
R
S
U
V
INCHES
MIN
MAX
1.080
1.120
0.740
0.760
0.630
0.650
0.016
0.020
0.160
0.180
0.048
0.064
0.100 BSC
0.014
0.016
0.220
0.240
0.070
0.080
0.150
0.160
0.150
0.160
0.440
0.460
0.695
0.725
0.840
0.860
0.182
0.194
STYLE 1:
PIN 1.
2.
3.
4.
MILLIMETERS
MIN
MAX
27.43
28.45
18.80
19.30
16.00
16.51
0.41
0.51
4.06
4.57
1.22
1.63
2.54 BSC
0.36
0.41
5.59
6.10
1.78
2.03
3.81
4.06
3.81
4.06
11.18
11.68
17.65
18.42
21.34
21.84
4.62
4.92
GROUND
V (+) OUT
V SUPPLY
V (–) OUT
CASE 344G–01
ISSUE B
8
Motorola Sensor Device Data
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola
data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury
or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that
Motorola was negligent regarding the design or manufacture of the part. Motorola and
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.
Motorola Sensor Device Data
9
Mfax is a trademark of Motorola, Inc.
How to reach us:
USA / EUROPE / Locations Not Listed: Motorola Literature Distribution;
P.O. Box 5405, Denver, Colorado 80217. 303–675–2140 or 1–800–441–2447
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center,
3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 81–3–3521–8315
Mfax: [email protected] – TOUCHTONE 602–244–6609
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
– US & Canada ONLY 1–800–774–1848 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298
INTERNET: http://motorola.com/sps
10
◊
MPX50/D
Motorola Sensor Device
Data
Similar pages