SAMSUNG K6F2008V2E-YF55

CMOS SRAM
K6F2008V2E Family
Document Title
256Kx8 bit Super Low Power and Low Voltage Full CMOS Static RAM
Revision History
Revision No. History
Draft Date
Remark
0.0
Initial draft
July 19 , 2001
Preliminary
1.0
Finalize
September 27, 2001
Final
1.1
Revised
May 13, 2003
- Added Lead Free(LF) product for 32-TSOP1-0813.4F(LF) package.
Final
The attached datasheets are provided by SAMSUNG Electronics. SAMSUNG Electronics CO., LTD. reserve the right to change the specifications and
products. SAMSUNG Electronics will answer to your questions about device. If you have any questions, please contact the SAMSUNG branch offices.
1
Revision 1.1
May 2003
CMOS SRAM
K6F2008V2E Family
256Kx8 bit Super Low Power and Low Voltage Full CMOS Static RAM
FEATURES
GENERAL DESCRIPTION
• Process Technology: Full CMOS
• Organization: 256Kx8
• Power Supply Voltage: 3.0 ~ 3.6V
• Low Data Retention Voltage: 1.5V(Min)
• Three State Outputs
• Package Type: 32-TSOP1-0813.4F, 32-TSOP1-0813.4F(LF)
The K6F2008V2E families are fabricated by SAMSUNG′s
advanced Full CMOS process technology. The families support
industrial temperature ranges for user flexibility of system
design. The families also supports low data retention voltage for
battery back-up operation with low data retention current.
PRODUCT FAMILY
Power Dissipation
Product Family
Operating Temperature
Vcc Range
Speed(ns)
Standby
(ISB1, Typ)
Operating
(ICC1, Max)
K6F2008V2E-F
Industrial(-40~85°C)
3.0~3.6V
551)/70ns
0.5µA2)
3mA
PKG Type
32-TSOP1-0813.4F
32-TSOP1-0813.4F(LF)
1. The parameter is measured with 30pF test load.
2. Typical values are measured at VCC=3.3V, TA=25°C and not 100% tested.
PIN DESCRIPTION
FUNCTIONAL BLOCK DIAGRAM
Clk gen.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
32-sTSOP
Type1-Forward
OE
A10
CS1
I/O8
I/O7
I/O6
I/O5
I/O4
VSS
I/O3
I/O2
I/O1
A0
A1
A2
A3
Address
A11
A9
A8
A13
WE
CS2
A15
VCC
A17
A16
A14
A12
A7
A6
A5
A4
Row
select
Data
cont
I/O1
I/O8
Precharge circuit.
Memory array
1024 rows
256x8 columns
I/O Circuit
Column select
Data
cont
Name
Function
CS1, CS2 Chip Select Input
Name
Function
OE
Output Enable
Vcc
Power
WE
Write Enable Input
Vss
Ground
DNU
Do Not Use
A0~A17 Address Inputs
Address
I/O1~I/O8 Data Inputs/Outputs
CS1
CS2
WE
OE
Control
logic
SAMSUNG ELECTRONICS CO., LTD. reserves the right to change products and specifications without notice.
2
Revision 1.1
May 2003
CMOS SRAM
K6F2008V2E Family
PRODUCT LIST
Industrial Temperature Products(-40~85°C)
Part Name
Function
K6F2008V2E-YF55
K6F2008V2E-YF70
K6F2008V2E-LF55
K6F2008V2E-LF70
32-sTSOP1-F, 55ns, 3.3V, LL
32-sTSOP1-F, 70ns, 3.3V, LL
32-sTSOP1-F(LF), 55ns, 3.3V, LL
32-sTSOP1-F(LF), 70ns, 3.3V, LL
FUNCTIONAL DESCRIPTION
CS1
CS2
H
X
1)
OE
WE
I/O
Mode
Power
1)
X
1)
High-Z
Deselected
Standby
1)
High-Z
Deselected
Standby
X
X
L
X
X
L
H
H
H
High-Z
Output Disable
Active
L
H
L
H
Dout
Read
Active
L
H
X1)
L
Din
Write
Active
1)
1)
1. X means don′t care (Must be high or low states)
ABSOLUTE MAXIMUM RATINGS1)
Item
Voltage on any pin relative to Vss
Symbol
Ratings
Unit
VIN,VOUT
-0.2 to VCC+0.5V
V
Voltage on Vcc supply relative to Vss
VCC
-0.2 to 4.6V
V
Power Dissipation
PD
1.0
W
TSTG
-65 to 150
°C
TA
-40 to 85
°C
Storage temperature
Operating Temperature
Remark
K6F2008V2E-F
1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation should be
restricted to recommended operating condition. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
3
Revision 1.1
May 2003
CMOS SRAM
K6F2008V2E Family
RECOMMENDED DC OPERATING CONDITIONS1)
Item
Symbol
Min
Typ.
Max
Unit
Supply voltage
Vcc
3.0
3.3
3.6
V
Ground
Vss
0
0
0
V
Input high voltage
VIH
2.2
-
Vcc+0.22)
V
Input low voltage
VIL
-0.23)
-
0.6
V
Note:
1. Industrial Product: TA=-40 to 85°C, unless otherwise specified.
2. Overshoot: Vcc+2.0V in case of pulse width≤20ns.
3. Undershoot: -2.0V in case of pulse width≤20ns.
4. Overshoot and undershoot are sampled, not 100% tested.
CAPACITANCE1) (f=1MHz, TA=25°C)
Item
Symbol
Test Condition
Min
Max
Unit
Input capacitance
CIN
VIN=0V
-
8
pF
Input/Output capacitance
CIO
VIO=0V
-
10
pF
1. Capacitance is sampled, not 100% tested
DC AND OPERATING CHARACTERISTICS
Item
Symbol
Test Conditions
Min
Typ1)
Max
Unit
Input leakage current
ILI
VIN=Vss to Vcc
-1
-
1
µA
Output leakage current
ILO
CS1=VIH or CS2=VIL or OE=VIH or WE=VIL, VIO=Vss to Vcc
-1
-
1
µA
ICC1
Cycle time=1µs, 100% duty, IIO=0mA, CS1≤0.2V,
CS2≥VCC-0.2V, VIN≤0.2V or VIN≥VCC-0.2V
-
-
3
mA
ICC2
Cycle time=Min, 100% duty, IIO=0mA, CS1=VIL,
CS2=VIH, VIN=VIL or VIH
-
-
35
mA
Output low voltage
VOL
IOL=2.1mA
-
-
0.4
V
Output high voltage
VOH
IOH =-1.0mA
2.4
-
-
V
ISB1
Other inputs=Vss to Vcc
1) CS1≥Vcc-0.2V, CS2≥Vcc-0.2V(CS1 controlled) or
2) 0V≤CS2≤0.2V CS2 controlled)
-
0.5
10
µA
Average operating current
Standby Current(CMOS)
1. Typical value are measured at VCC=3.3V, TA=25°C, and not 100% tested.
4
Revision 1.1
May 2003
CMOS SRAM
K6F2008V2E Family
AC OPERATING CONDITIONS
VTM3)
TEST CONDITIONS (Test Load and Test Input/Output Reference)
R12)
Input pulse level: 0.4 to 2.2V
Input rising and falling time: 5ns
Input and output reference voltage: 1.5V
Output load (See right): CL=100pF+1TTL
CL=30pF+1TTL
CL1)
R23)
1. Including scope and jig capacitance
2. R1=3070Ω, R2=3150Ω
3. VTM =2.8V
AC CHARACTERISTICS(Vcc=3.0~3.6V, TA=-40 to 85°C)
Speed Bins
Parameter List
Symbol
Min
Read
Write
Units
70ns
55ns1)
Max
Min
Max
Read Cycle Time
tRC
55
-
70
-
ns
Address Access Time
tAA
-
55
-
70
ns
Chip Select to Output
tCO
-
55
-
70
ns
Output Enable to Valid Output
tOE
-
25
-
35
ns
Chip Select to Low-Z Output
tLZ
10
-
10
-
ns
Output Enable to Low-Z Output
tOLZ
5
-
5
-
ns
Chip Disable to High-Z Output
tHZ
0
20
0
25
ns
Output Disable to High-Z Output
tOHZ
0
20
0
25
ns
Output Hold from Address Change
tOH
10
-
10
-
ns
Write Cycle Time
tWC
55
-
70
-
ns
Chip Select to End of Write
tCW
45
-
60
-
ns
Address Set-up Time
tAS
0
-
0
-
ns
Address Valid to End of Write
tAW
45
-
60
-
ns
Write Pulse Width
tWP
40
-
50
-
ns
Write Recovery Time
tWR
0
-
0
-
ns
Write to Output High-Z
tWHZ
0
20
0
20
ns
Data to Write Time Overlap
tDW
25
-
30
-
ns
Data Hold from Write Time
tDH
0
-
0
-
ns
End Write to Output Low-Z
tOW
5
-
5
-
ns
Min
Typ
Max
Unit
1.5
-
3.6
V
-
0.22)
2
µA
0
-
-
tRC
-
-
1. The parameter is measured with 30pF test load.
DATA RETENTION CHARACTERISTICS
Item
Vcc for data retention
Symbol
VDR
Data retention current
IDR
Data retention set-up time
tSDR
Recovery time
tRDR
Test Condition
CS1≥Vcc-0.2V1)
Vcc=1.5V,
CS1≥Vcc-0.2V1)
See data retention waveform
ns
1. CS1≥Vcc-0.2V, CS2≥Vcc-0.2V(CS1 controlled) or CS2≤0.2V(CS2 controlled).
2. Typical values are measured at TA=25°C and not 100% tested.
5
Revision 1.1
May 2003
CMOS SRAM
K6F2008V2E Family
TIMING DIAGRAMS
TIMING WAVEFORM OF READ CYCLE(1)
(Address Controlled, CS1=OE=VIL, WE=VIH)
tRC
Address
tAA
tOH
Data Out
Data Valid
Previous Data Valid
TIMING WAVEFORM OF READ CYCLE(2) (WE=VIH)
tRC
Address
tOH
tAA
tCO1
CS1
tHZ(1,2)
CS2
tCO2
tOE
OE
Data out
High-Z
tOHZ
tOLZ
tLZ
Data Valid
NOTES (READ CYCLE)
1. tHZ and tOHZ are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output voltage
levels.
2. At any given temperature and voltage condition, tHZ(Max.) is less than tLZ(Min.) both for a given device and from device to device
interconnection.
6
Revision 1.1
May 2003
CMOS SRAM
K6F2008V2E Family
TIMING WAVEFORM OF WRITE CYCLE(1) (WE Controlled)
tWC
Address
tWR(4)
tCW(2)
CS1
tAW
CS2
tWP(1)
WE
tAS(3)
tDW
tDH
Data Valid
Data in
tWHZ
Data out
tOW
Data Undefined
TIMING WAVEFORM OF WRITE CYCLE(2) (CS1
Controlled)
tWC
Address
tAS(3)
tCW(2)
tWR(4)
CS1
tAW
CS2
tWP(1)
WE
tDW
Data in
Data out
tDH
Data Valid
High-Z
High-Z
7
Revision 1.1
May 2003
CMOS SRAM
K6F2008V2E Family
TIMING WAVEFORM OF WRITE CYCLE(3) (CS2 Controlled)
tWC
Address
tAS(3)
tWR(4)
CS1
tAW
CS2
tCW(2)
tWP(1)
WE
tDW
Data Valid
Data in
Data out
tDH
High-Z
High-Z
NOTES (WRITE CYCLE)
1. A write occurs during the overlap of a low CS1, a high CS2 and a low WE. A write begins at the latest transition among CS1 goes low,
CS2 going high and WE going low : A write end at the earliest transition among CS1 going high, CS2 going low and WE going high,
tWP is measured from the begining of write to the end of write.
2. tCW is measured from the CS1 going low or CS2 going high to the end of write.
3. tAS is measured from the address valid to the beginning of write.
4. tWR is measured from the end of write to the address change.
DATA RETENTION WAVE FORM
CS1 controlled
VCC
tSDR
Data Retention Mode
tRDR
3.0V
2.2V
VDR
CS1≥VCC - 0.2V
CS1
GND
CS2 controlled
Data Retention Mode
VCC
3.0V
CS2
tSDR
tRDR
VDR
CS2≤0.2V
0.4V
GND
8
Revision 1.1
May 2003
CMOS SRAM
K6F2008V2E Family
PACKAGE DIMENSIONS
Units: millimeters(inches)
0.20
0.008
+0.10
-0.05
+0.004
-0.002
0.10
MAX
0.004
32 PIN THIN SMALL OUTLINE PACKAGE TYPE I (0813.4F)
13.40 ±0.20
0.528 ±0.008
#1
#32
0.50
0.0197
#16
0.25
)
0.010
8.00
0.315
8.40
0.331 MAX
(
#17
1.00 ±0.10
0.039 ±0.004
0.25
TYP
0.010
11.80 ±0.10
0.465 ±0.004
+0.10
-0.05
0.006 +0.004
-0.002
0.15
0.05
0.002 MIN
1.20
0.047 MAX
0~8°
0.45~0.75
0.018~0.030
(
9
0.50
)
0.020
Revision 1.1
May 2003