STMICROELECTRONICS MTC20136MB-I1

MTC20136
ADSL TRANSCEIVER CONTROLLER
■
Dedicated controller for use with ADSL
transceiver chips MTC20134, MTC20135 and
MTC20455
– Performs ADSL control functions :
PQFP144
LFBGA160
ORDERING NUMBERS:
– Initialization procedure
– Line monitoring during operation
– Rate adaptive modes
■
■
■
■
■
■
■
■
Supports the modem control interface protocol
(CTRLE)
Embedded high speed ARM microcore
Glueless connection to MTC20135 and
MTC20455
Parallel or serial modem control interface
(CTRLE) for glueless connection to
management entities
Embedded UART
Supports code download
External Bus Interface for 8 and 16-bit FEPROM
and 16-bit SDRAM
144 pins PQFP
Part number
Package
Temp.
MTC20136PQ- l1
144 pin PQFP
-40 /+85°C
MTC20136MB-I1
160 pin LBGA
-40 /+85°C
Can also be ordered using kit number MTK20131 or
MTC20455
DESCRIPTION
The MTC20136 is a dedicated controller chip, specifically designed to control operations of the STMicroelectronics
DynaMiTe
chipset.
The
MTC20136 offers direct glueless interfaces to the
MTC20135 and MTC20455 DMT/ATM transciever
and implements a complete control interface for
parameters and commands exchange between
transceiver and system management. All real time
ADSL-related functions (including EOC processing) are completely handled by the MTC20136.
Figure 1. Block Diagram
ROM
Peripherals
RAM
CTRLE Data
buffer
TIMER
Parallel
I/O
CTRLE
Interface
Logic
External Bus
Interface
ARM
Microcore
UART
MTC-20135
or
MTC-20455
MTC20136
Microcontroller
SDRAM
Local Bus
FEPROM
(optional)
8 data
9 address
RS232
February 2004
General
Purpose I/Os
Control Bus
1/25
MTC20136
Functional Description
Figure 1 is showing the global block diagram of the MTC20136. The functions can be grouped into the
following:
– Microcontroller
– External Bus Interface
– Control Interface (CTRLE)
– Peripherals
– Miscellaneous
Microcontroller
The microcontroller block includes an ARM-based microcore and its associated internal memory. 16
Kbytes on internal RAM and 128 x 32-bit words of ROM are foreseen. The ROM essentially contains the
boot sequence needed for code download at startup. The use of the ROM by the microcore is defined by
the state of the TROM pin during reset.
External Bus Interface
The External Bus Interface extends the internal microcontroller bus for connection of external devices. In
particular, the bus is used to connect to the MTC20135 or MTC20455 modem chip and to external SDRAM
(and optional FEEPROM).
The CTRLE functional block implements the ADSL modem command and data buffer and the interface
logic supporting the physical interfaces of the CTRLE.
Peripherals
The peripherals block includes two UARTS for RS232 interfacing to external systems and two general =
purpose parallel I/O lines.
Miscellaneous
This includes the clock circuitry, reset circuitry, test functions and configuration control signals.
CTRLE Interfaces
External Bus Interface
The external bus interface (EBI) provides a glueless interface to 8 and 16-bit asynchronous Flash EEPROM, 16 bit SDRAM devices and to slave devices with an i960-like 16 bit bus interface with multiplexed
address and data (as available on DynaMiTe chips).
The EBI provides two chip selects (E_nCS[1:0]) to be used for memory access (SRAM-like), one dedicated SDRAM chip select ((E_nCS_S) and four chip selects (E_nCS[7:4]) to be used for access to ADSL
slave devices. The chip selects all correspond to a fixed 1Mbyte memory region in the microcontroller
memory map, except for SDRAM access.
2/25
MTC20136
PIN LAYOUT
Functional Pin Summary
The signals hereunder are grouped per functional interface.
Figure 2. Pin functional description and type per interface
NTRST
TCK
TDI
TMS
IDDQ
T_REQA
T_REQB
notCS[7:0]
E_A[19:16]
E_A[15:0]
E_D[15:0]
C_clk
C_A[8:0]
C_notCS
C_Mode[1:0]
C_notWr
C_notRd
TROM
EIT[3:0]
JTAG Interface
Test Interface
TDO
T_ACK
E_CLK
E_ALE
EBI Interface
E_nRDY
E_nWEO
E_nWE1
CTRL-E Interface
C_D[7:0]
C_notint
C_notRdy
Misc
CLK_E
RESETN
RSRXD2
RSTXD2
Peripherals
Boot_M[1:0]
RSRXD1
RSTXD1
PA1
PA0
3/25
MTC20136
The table below describes the pins, organized per interface. Some of these pins have a multiple functionality. In this case both functionalities are mentioned.
Name
I/O Type
Description
External Bus Interface
E_A[19:16]
O
Address bus MSBs
E_A[15:0]
I/O
Address bus LSBs / Testbus MSBs
E_D[15:0]
I/O
Data bus / Testbus LSBs
E_CLK
O
EBI clock (ASIC Access)
E_ALE
O
Address latch enable (ASIC Access)
E_nCS_0
O
Chip select signal (Memory Bank 0)
E_nCS_1
O
Chip select signal (Memory Bank 1)
E_nCS_S
O
Chip select signal (SDRAM)
E_nCS_4
O
Chip select signal (ASIC 1)
E_nCS_5
O
Chip select signal (ASIC 2)
E_nCS_6
O
Chip select signal (ASIC 3)
E_nCS_7
O
Chip select signal (ASIC 4)
E_nRDYRCV
I
Data acknowledge
E_nOE
O
Output enable
E_nWE0
O
Write enable LSB / W/notR indication
E_nWE1
O
Write enable MSB
I
MTC20136 Master clock
PA[0]
I/O
Port A bit[0]
PA[1]
I/O
Port A bit[1]
Clock Bus Interface
CLK_IN
Parallel Port Interface
UART1 Interface
RSTXD1
O
Serial TX port
RSRXD1
I
Serial RX port
UART2 Interface
RSTXD2
O
Serial TX port
RSRXD2
I
Serial RX port
EIT_0
I
External interrupt lines
EIT_1
I
External interrupt lines
EIT_2
I
External interrupt lines
EIT_3
I
External interrupt lines
nTRST
I-PU
Reset JTAG interface
TCK
I-PU
JTAG clock
TDI
I-PU
Test Data In
TMS
I-PU
Test Mode Select
TDO
O
Test Data Out
I
Reset signal (Active High)
I
Boot from ROM select
Interrupt Interface
JTAG Interface
Reset Interface
RESETN
Boot Interface
TROM
4/25
MTC20136
Name
Boot_M0
I/O Type
I/O
Description
Download Mode .UART BaudRate.
(Auto adjust or 9600 Bps).
Boot_M1
I/O
Download Mode Select (CTRL-E or UART1)
Ctrl-E Interface (Parallel mode only described - see above for Serial Mode)
C_A[8:0]
I
Address bus (5 V tolerant)
C_D[7:0]
IO
Data bus (5 V tolerant)
C_nCS
I
Chip select (5 V tolerant)
C_nInt
OD
Ctrl-E external interrupt
C_mode[1:0]
I
Ctrl-E interface bus mode (5 V tolerant)
C_nWr
I
Write indication (5V tolerant)
C_nRd
I
Read indication (5V tolerant)
C_nRdy
OZ
Ready indication
C_clk
I
Serial Input clock (5V tolerant)
I
=
Input, CMOS levels
I-PU
=
Input with pull-up resistance, CMOS levels
I-PD
=
Input with pull-down resistance, CMOS levels
I-TTL
=
Input TTL levels
O
=
Push-pull output
OZ
=
Push-pull output with high-impedance state
OD
=
Open Drain output
IO
=
input / Tri-state Push-pull output
PQFP144 Pin Configuration
(Default Value between ( ))
Pin#
Name
Function
1
E_A14
EBI Address
2
E_A15
EBI Address
3
E_A16
EBI Address
4
E_A17
EBI Address
5
VDD
VDD
6
VSS
VSS
7
E_A18
EBI Address
8
E_A19
EBI Address
9
EIT0
External Interrupt In - 0
10
EIT1
External Interrupt In - 1
11
VDD
VDD
12
VSS
VSS
13
EIT2
External Interrupt In - 2
14
EIT3
External Interrupt In -3
15
I_MODE
16
E_CLK
EBI Clock Out
17
E_ALE
EBI ALE
18
VDD
Tracking ICE Mode Select (0)
VDD
5/25
MTC20136
PQFP144 Pin Configuration (continued)
(Default Value between ( ))
Pin#
Name
19
VSS
20
E_nRDYRCV
21
E_nWE0
Function
VSS
EBI Ack in
EBI Write Enable
22
E_nWE1
23
E_notCS_4
EBI Write Enable
24
VDD
VDD
25
VSS
VSS
26
Boot_M0
27
Boot_M1
28
PA0
General Purpose IO
29
PA1
General Purpose IO
30
TROM
31
VDD
VDD
32
VSS
VSS
33
T_REQA
34
T_REQB
35
T_ACK
EBI ASIC ChipSelect
BootMode Select
BootMode Select
Boot Mode Select
Reserved for test (0)
Reserved for test (0)
Reserved for test
36
IDDQ
Reserved for test (0)
37
RESETN
RESET (Active Low)
38
TDI
JTAG Interface
39
TDO
JTAG Interface
40
VDD
VDD
41
VSS
VSS
42
TMS
JTAG Interface
43
nTRST
JTAG Interface
44
TCK
JTAG Interface
45
RSTXD1
UART port 1 - TX
46
RSRXD1
UART port 1 - RX
47
RSTXD2
UART port 2 - TX
48
VDD
VDD
49
VSS
50
RSRXD2
UART port 2 - RX
51
TESTSE
Test Scan Enable
52
SCAN_CLK
Test Scan Clock
53
C_nInt
CTRL-E Interrupt
54
VDD
VDD
55
VSS
VSS
56
CLK_IN
57
VSS
58
C_nRdy
CTRL-E Interface
59
C_nRd
CTRL-E Interface
60
VDD
6/25
VSS
Master Clock In
VSS
VDD
MTC20136
PQFP144 Pin Configuration (continued)
(Default Value between ( ))
Pin#
Name
Function
61
VSS
62
C_nWr
CTRL-E Interface
VSS
63
C_Mode0
CTRL-E Interface
64
C_Mode1
CTRL-E Interface
65
C_notCS
CTRL-E Interface
66
C_CLK
CTRL-E Interface
67
VDD
VDD
68
VSS
VSS
69
C_D0
CTRL-E Interface
70
C_D1
CTRL-E Interface
71
C_D2
CTRL-E Interface
72
C_D3
CTRL-E Interface
73
C_D4
CTRL-E Interface
74
C_D5
CTRL-E Interface
75
C_D6
CTRL-E Interface
76
VDD
VDD
77
VSS
VSS
78
C_D7
CTRL-E Interface
79
C_A0
CTRL-E Interface
80
C_A1
CTRL-E Interface
81
C_A2
CTRL-E Interface
82
C_A3
CTRL-E Interface
83
C_A4
CTRL-E Interface
84
VDD
VDD
85
VSS
VSS
86
C_A5
CTRL-E Interface
87
C_A6
CTRL-E Interface
88
C_A7
CTRL-E Interface
89
C_A8
CTRL-E Interface
90
VDD
VDD
91
VSS
VSS
92
I_BP
Reserved (0)
93
I_DBGRQ
Reserved (0)
94
notCS_7
EBI - ASIC Chip Select
95
notCS_6
EBI - ASIC Chip Select
96
notCS_5
97
VDD
VDD
98
VSS
VSS
99
E_nCS_2
EBI - ASIC Chip Select
EBI - SDRAM Chip Select
100
E_nCS_1
EBI - SRAM Chip Select
101
E_nCS_0
EBI - FLASH Chip Select
102
E_nOE
EBI - OE
7/25
MTC20136
PQFP144 Pin Configuration (continued)
(Default Value between ( ))
Pin#
Name
Function
103
E_D15
104
VDD
VDD
105
VSS
VSS
106
E_D14
EBI Data
107
E_D13
EBI Data
108
E_D12
EBI Data
109
E_D11
EBI Data
110
E_D10
EBI Data
111
E_D9
EBI Data
112
VSS
VSS
113
VDD
VDD
114
E_D8
EBI Data
115
E_D7
EBI Data
116
E_D6
EBI Data
117
E_D5
EBI Data
118
E_D4
EBI Data
119
VDD
VDD
120
VSS
VSS
121
E_D3
EBI Data
122
E_D2
EBI Data
123
E_D1
EBI Data
124
E_D0
EBI Data
125
E_A0
EBI Address
126
VDD
VDD
127
VSS
VSS
128
E_A1
EBI Address
129
E_A2
EBI Address
130
E_A3
EBI Address
131
E_A4
EBI Address
132
VDD
VDD
133
VSS
VSS
134
E_A5
EBI Address
135
E_A6
EBI Address
136
E_A7
EBI Address
137
E_A8
EBI Address
138
E_A9
EBI Address
139
VDD
VDD
EBI Data
140
VSS
141
E_A10
EBI Address
142
E_A11
EBI Address
143
E_A12
EBI Address
144
E_A13
EBI Address
8/25
VSS
MTC20136
LFBGA160 Pin Configuration
Pin#
Name
Function
C4
E_A14
EBI Address
B2
E_A15
EBI Address
D4
E_A16
EBI Address
C3
E_A17
EBI Address
C2
VDD
VDD
E3
VSS
D3
E_A18
VSS
D2
E_A19
E4
EIT0
External Interrupt In - 0
E2
EIT1
External Interrupt In - 1
E1
VDD
VDD
EBI Address
EBI Address
F3
VSS
VSS
F4
EIT2
External Interrupt In - 2
F1
EIT3
External Interrupt In -3
F2
I_MODE
G3
E_CLK
H1
E_ALE
G4
VDD
G2
VSS
H3
E_nRDYRCV
H4
E_nWE0
Tracking ICE Mode Select (0)
EBI Clock Out
EBI ALE
VDD
VSS
EBI Ack in
EBI Write Enable
H2
E_nWE1
J3
E_notCS_4
EBI Write Enable
K2
VDD
VDD
J4
VSS
VSS
EBI ASIC ChipSelect
J2
Boot_M0
K3
Boot_M1
BootMode Select
K4
PA0
General Purpose IO
L2
PA1
General Purpose IO
L3
TROM
M2
VDD
VDD
M3
VSS
VSS
BootMode Select
Boot Mode Select
L4
T_REQA
Reserved for test (0)
N2
T_REQB
Reserved for test (0)
N3
T_ACK
N1
IDDQ
Reserved for test (0)
P1
RESETN
RESET (Active Low)
Reserved for test
P2
TDI
JTAG Interface
M4
TDO
JTAG Interface
P3
VDD
VDD
N4
VSS
VSS
M5
TMS
JTAG Interface
P4
nTRST
JTAG Interface
9/25
MTC20136
LFBGA160 Pin Configuration (continued)
Pin#
Name
N5
TCK
L5
RSTXD1
Function
JTAG Interface
UART port 1 - TX
P5
RSRXD1
UART port 1 - RX
M6
RSTXD2
UART port 2 - TX
N6
VDD
VDD
P6
VSS
L6
RSRXD2
UART port 2 - RX
N7
TESTSE
Test Scan Enable
P7
SCAN_CLK
Test Scan Clock
M7
C_nInt
CTRL-E Interrupt
L7
VDD
P8
VSS
N8
CLK_IN
M8
VSS
VSS
VDD
VSS
Master Clock In
VSS
L8
C_nRdy
CTRL-E Interface
N9
C_nRd
CTRL-E Interface
M9
VDD
VDD
P10
VSS
VSS
N10
C_nWr
CTRL-E Interface
L9
C_Mode0
CTRL-E Interface
P11
C_Mode1
CTRL-E Interface
M10
C_notCS
CTRL-E Interface
N11
C_CLK
CTRL-E Interface
P12
VDD
VDD
L10
VSS
VSS
N12
C_D0
CTRL-E Interface
P13
C_D1
CTRL-E Interface
M11
C_D2
CTRL-E Interface
N13
C_D3
CTRL-E Interface
N14
NOT CONNECTED
P14
C_D4
CTRL-E Interface
M12
C_D5
CTRL-E Interface
M14
C_D6
CTRL-E Interface
M13
VDD
VDD
L11
VSS
VSS
L14
C_D7
CTRL-E Interface
L13
C_A0
CTRL-E Interface
L12
C_A1
CTRL-E Interface
K14
C_A2
CTRL-E Interface
K11
C_A3
CTRL-E Interface
K13
C_A4
CTRL-E Interface
J14
VDD
VDD
K12
VSS
VSS
10/25
MTC20136
LFBGA160 Pin Configuration (continued)
Pin#
Name
Function
J11
C_A5
CTRL-E Interface
H14
C_A6
CTRL-E Interface
J13
C_A7
CTRL-E Interface
J12
C_A8
CTRL-E Interface
H11
VDD
VDD
H13
VSS
VSS
H12
I_BP
Reserved (0)
G11
I_DBGRQ
Reserved (0)
F14
notCS_7
EBI - ASIC Chip Select
G13
notCS_6
EBI - ASIC Chip Select
G12
notCS_5
EBI - ASIC Chip Select
E14
VDD
VDD
F11
VSS
VSS
F13
E_nCS_2
EBI - SDRAM Chip Select
F12
E_nCS_1
EBI - SRAM Chip Select
E11
E_nCS_0
EBI - FLASH Chip Select
E13
E_nOE
EBI - OE
E12
E_D15
EBI Data
C14
VDD
VDD
D11
VSS
VSS
D13
E_D14
EBI Data
B14
E_D13
EBI Data
D12
E_D12
EBI Data
A14
E_D11
EBI Data
C13
E_D10
EBI Data
B13
E_D9
EBI Data
C11
VSS
VSS
C12
VDD
VDD
B12
E_D8
EBI Data
D10
E_D7
EBI Data
B11
E_D6
EBI Data
A11
E_D5
EBI Data
C10
E_D4
EBI Data
B10
VDD
VDD
A10
VSS
VSS
D9
E_D3
EBI Data
C9
E_D2
EBI Data
A9
E_D1
EBI Data
B9
E_D0
EBI Data
D8
E_A0
EBI Address
B8
VDD
VDD
C8
VSS
VSS
D7
E_A1
EBI Address
11/25
MTC20136
LFBGA160 Pin Configuration (continued)
Pin#
Name
Function
B7
E_A2
EBI Address
A7
E_A3
EBI Address
C7
E_A4
EBI Address
D6
VDD
VDD
A6
VSS
VSS
B6
E_A5
EBI Address
C6
E_A6
EBI Address
A4
E_A7
EBI Address
D5
E_A8
EBI Address
B5
E_A9
EBI Address
A3
VDD
VDD
C5
VSS
B4
E_A10
EBI Address
VSS
A2
E_A11
EBI Address
B3
E_A12
EBI Address
B1
E_A13
EBI Address
External pins
E_D[15:0]
16 bit data, multiplexed address/data
E_A[19:0]
20 bit address (including commands for SDRAM)
nCS[7:4]
external chip select
E_CLK
external clock
ALE
Address Latch Enable
nRDYRCV
Ready/Recover driven by selected device together with external pull-up
nOE
output enable
nWE0
Write enable for LSB byte lane E_D[7:0]
nWE1
Write enable for MSB byte lane E_D[15:8]
These physical pins are used for different logical functions, depending on the external device which is accessed. The correspondance between physical and logical functions is given in Table 1
Table 1.
Pin Name
MTC20135, MTC20455
access function
SDRAM
access function
SRAM/FEPROM
access function
E_A [19]
-
S_nRAS
E_A [19]
E_A [18]
-
S_nCAS
E_A [18]
E_A [17]
-
S_DQM0
E_A [17]
E_A [16]
-
S_DQM1
E_A [16]
12/25
MTC20136
Table 1. (continued)
Pin Name
MTC20135, MTC20455
access function
SDRAM
access function
SRAM/FEPROM
access function
E_A [15:0]
-
S_A [11:0]
E_A [15:0]
E_D [15:0]
AD [15:0]
S_Q [15:0]
E_D [15:0]
E_nCS [1:0]
-
-
E_nCS [1:0]
E_nCS [7:4]
nCS [7:4]
-
-
E_nCS_S
-
S_nCS
-
E_Clk
E-Clk
S_Clk
-
E_ALE
ALE
-
-
E_nRDYRCV
nRDYRCV
-
-
E_nOE
-
-
E_nOE
E_nWE0
W/nR
-
E_nWE0
E_nWE1
-
S_nWE
E_nWE1
Memory map modes
Three modes are defined :
a) Normal mode:
The internal RAM is mapped in the lower part of memory. This is the normal operating mode, it allows
maximum speed access to exception vectors.
b) Normal boot mode:
If the TROM external pin is high at reset, the MTC20136 boots from an external FEPROM.
c) Internal boot mode:
If the TROM external pin is low at reset, the MTC20136 boots from its internal ROM. This mode can be
used to perform code download from a host.
Boot modes are used at RESET time.
Boot_M0 andBoot_M1 on pin 26 and 27 conrol the port to be used for downloading the code into the
SDRAM after Bootup. This when TROM is low.
Boot_M1
(Pin27)
Boot_M0
(Pin26)
0
1
9600 Bps via serail port 1
1
0
Par. CTRL-E
1
1
Par.CTRL-E
MTC20135, MTC20455 access
The MTC20136 directly connects to the MTC20135 without glue logic. Following features are provided for
MTC20135 access :
– 16 bit multiplexed address/data bus giving 64Kbyte address space per MTC20135.
– synchronous ready-controlled operation - control signals : nCS[4:7], E_CLK, ALE, W/nR, nRDYRCV
– Little endian byte ordering on 16 bit bus - nRDYRCV timeout mechanism
The timing diagram of the access to the MTC20135 or MTC20455 is shown in figure 3:
13/25
MTC20136
Figure 3. Access to MTC20135, MTC20455
Ta
Tw
Td
Tr
Ti
Ta
Tw
Td
Tr
E_CLK
notCSi
ALE
EBI
E_D
Add 1
Din
Add 2
Dout
notRDYRCV
W/notR
Read
Access
Write
Access
SDRAM
The SDRAM interface allows a glue-less interconnection of 1 SDRAM. Following features are provided for
SDRAM access.
– 16 bit databus and 12 bit address bus.
– control signals : S_nCS, S_nRAS, S_nCAS, S_nWE, S_DQM[1:0
Control signal timing
All SDRAM actions are triggered at the rising edge of its clock. Timing diagrams for a burst of four 16-bit
accesses to 16-bit SDRAM (Figure 3 and Figure 4) show the basic behavior of the control signals.
Figure 4. SDRAM read access (CAS latency = 3; Burst length = 4)
S_clk
S_nCS
S_nRAS
S_nCAS
S_nWE
S_DQM[1:0]
S_A[11:0]
S_Q[15:0]
14/25
EAact
EArw
EApre
MTC20136
Figure 5. SDRAM write access (CAS latency = 3; Burst length = 4)
S_clk
S_nCS
S_nRAS
S_nCAS
S_nWE
S_DQM[1:0]
EAact
S_A[11:0]
EArw
EApre
S_Q[15:0]
Memory
Following features are provided for memory access (SRAM or FEPROM) :
– 16 bit databus and 20 bit address bus giving 1Mbyte address space per chip select
– control signals : E_nCS[0:1], E_nOE, E_nWE0, E_nWE1
– setup and wait state insertion
– 8, 16 and 32 bit access by MTC20136 to 8 or 16 bit memory according to little endian convention
Figure 6. EBI memory access (32-bit Word R/W to 16 bit memory), maximum speed timing
E_nCSi
E_nOE
E_nWEO
EBI
E_nWE1
E_A[19:2]
E_A[1:0]
E_D[15:0]
A1[19:2]
00
10
LSB MSB
A2[19:2]
00
LSB
10
MSB
15/25
MTC20136
EBI Interface Timing
All timing parameters are specified at a load of 100 pF, all the electrical levels are CMOS compatible.
Table 2. All signals
Symbol
Parameters
Min
Typ
Max
Unit
3
ns
tr,tf
Rise and Fall time (10% - 90%)
Ci
Input load
10
pF
Co
Output load
100
pF
Max
Unit
Table 3. EBI signal timing with respect to E_CLK
Symbol
Parameters
Min
Tdh
Data input hold time from E_CLK
3
ns
Tds
Data input setup time to E_CLK
10
ns
T
Data/Address output valid/tri-state delay from E_CLK
10
ns
Twrd
ALE delay from E_CLK
6
ns
Toed
notOE delay from E_CLK
6
ns
Twed
notWEi delay from E_CLK (falling edge)
6
ns
Twrd
W/notR delay from E_CLK
3
10
ns
Tcsd
notCSi delay from E_CLK
3
10
ns
dd
CTRLE
The Ctrl-E interface is an ADSL-oriented mailbox system to exchange control and status messages between MTC20136 and an external controller. It consists of a mailbox and a physical interface. The mailbox
has two 8-bit command registers to pass commands from the MTC20136 internal controller bus (ASB) to
Ctrl-E (RxCommand) and from Ctrl-E to ASB (TxCommand), and two status registers (RxComAv and TxComAv) to indicate the status of the command register. Data associated with a command can be exchanged using a common CtrleDataBuffer. A hardware semaphore mechanism is provided to allow
control of data consistency of the CtrleDataBuffer.
Figure 7. Ctrl-E interface controller principle
RX
TX
D_SELctrle
Ctrl-E
Mailbox
CtrleDataBuffer
Ctrl-E
physical interface
MRd
MWr
ASB
(512*8 bit
dual port RAM)
MA[8:0]
MD[7:0]
Ctrl-E
Serial
Interface
MQ[7:0]
Semaphore
RxComAv
TxComAv
RxCommand
TxCommand
To ITController
16/25
Ctrlelnt0
Mailbox Interrupt
controller
I/O
Generic
Parallel
Interface
Ctrlelnt1
MTC20136
The Ctrl-E physical interface between the mailbox and an external controller can be used in one of two
modes: as a dedicated serial bus interface or as a generic parallel bus interface. Selection between serial
and parallel mode is done with an external mode strap, IO pins are shared.
Ctrl-E Mailbox
The Ctrl-E Mailbox occupies a 512 byte memory map accessible by the Ctrl-E physical interface and by
the ASB bus. The mailbox memory map is given in Table 4.
An external interrupt can be generated by the Mailbox interrupt controller.
A full description of the CTRLE protocol and use of the CTRLE mailbox is available in the “CTRLE Interface Specifications” documents, available separately.
Table 4. Ctrl-E controller memory map:
Field
Acc
Mailbox
Address MA[8:0]
Size(bit)
Initial
Function
TxCommand
RW
000h
8
00h
Command written by Ctrl-E, read by
ASB
RxCommand
RW
001h
8
00h
Command written by ASB, read by
Ctrl-E
TxComAv
RW
002h
1
0b
1-bit register : 1 if TX command
available
RxComAv
RW
003h
1
0b
1-bit register : 1 if RX command
available
Semaphore
PV
004h
2
00b
Semaphore for access to written by
ASB, read by Ctrl-E
CtrleDataBuffer
RW
005h-1FFh
8
00h
507x8 bit data buffer
17/25
MTC20136
Ctrl-E Semaphore
A simple semaphore mechanism is provided to allow control of the data consistency of the CtrleDataBuffer. One mailbox address is defined as a two-bit semaphore register protected by control logic to
prevent unallowed write accesses to this register.
Before the databuffer is read or written by one of the two interfaces (ASB or Ctrl-E) this interface should
perform a ’P-operation’ on the semaphore. After a read or write of the databuffer the interface should do
a ’V-operation’ releasing the semaphore. P and V operations are performed by write and read accesses
to the semaphore register. The semaphore will be updated as shown in Table 5.
Each semaphore operation (P or V) consists of two consecutive actions that don’t have to be atomic :
a)Write the correct value to the semaphore address (see Table 5)
b)Read the value in the semaphore address.
If the value read is different from the value writen the P or V operation was not succesfull and should be
tried again.
Table 5. Semaphore P and V operations: new value after write by ASB or Ctrl-E
semaphore
operation
write
value
originator
previous semaphore value
semaphore
free
P
V
semaphore
taken by
ASB
Ctrl-E
00b
01b
11b
ASB
01
01b
01b
11b
Ctrl-E
11
11b
01b
11b
ASB
00
00b
00b
11b
Ctrl-E
00
00b
01b
00b
b
b
b
b
The databuffers can be accessed without using the semaphore mechanism if data consistency is guaranteed in another way. If other values are written to the semaphore address than the values listed the write
will not be performed.
Ctrl-E Physical Interface
Two parallel bus modes are defined to support both Motorola-compatible and Intel-compatible timing and
control signals. This interface specification is compliant to Utopia Level 2 Parallel Management Interface.
Selection of the Ctrl-E physical interface bus mode is done with the C_Mode[1:0] input pins :
Table 6. Bus mode selected with C_Mode[1:0] inputs
18/25
C_Mode[1]
C_Mode[0]
0
0
Description
Motorola-type parallel interface
0
1
Intel-type parallel interface
1
1
Reserved
1
0
Reserved
MTC20136
Generic Parallel Interface
The two parallel bus modes differ only in the definition of 3 control signals: busmode 0 provides a read/
write selector, a data strobe and a ready acknowledge. Busmode 1 provides a read strobe, a write strobe
and a ready acknowledge. The signal definition is shown in following table:
Table 7. Ctrl-E interface signals in parallel interface modes
Signal name
Type
C_A[8:0]
I
C_D[7:0]
IO
C_notCS
I
C_notInt
OZ
Function
PIN
address bus
C_A[8:0]
byte wide bidirectional data bus
C_D[7:0]
chip select
C_notCS
Interrupt output, derived from CtrleInt1 signal from
Mailbox : low when CtrleInt1 is low, else tri-stated
C_notInt
Mode 0 : Motorola-compatible mode
C_Mode[1:0]
I
00b
C_Mode[1:0]
C_Rd/notWr
I
read access if 1, write access if 0
C_notWr
C_notDS
I
Data Strobe
C_notRd
C_notDtAck
OZ
Bus cycle ready indication, indicates that data on bus
can be sampled or removed
C_notRdy
Mode 1 : Intel-compatible mode
C_Mode[1:0]
I
01b
C_Mode[1:0]
C_notWr
I
write cycle indication
C_notWr
C_notRd
I
read cycle indication
C_notRd
C_notRdy
OZ
Bus cycle ready indication, indicates that data on bus
can be sampled or removed, same as in mode 0
C_notRdy
Write cycle timing
Figure 8. Ctrl-E interface: write cycle timing in parallel modes 0 and 1
t1
C_A[8:0]
C_D[7:0]
C_notCS
t8
t2
t9
t4
t5
C_Rd/notWr
t3
C_notDS
Mode 0
t7
C_notDtAck
t6
C_notWr
C_notRd
Mode 1
C_notRdy
19/25
MTC20136
Table 8. write cycle timing in parallel modes 0 and 1
Symbol
Description
Min
Max
Unit
t1
C_A Setup to C_notDS (C_notWr) low
0
ns
t2
C_notCS, C_Rd/notWr setup to C_notDS (C_notWr) low
0
ns
t3
C_notDS (C_notWr) pulse width
215
ns
t4
C_D setup to C_notDS (C_notWr) high
15
ns
t5
C_A, C_D hold from C_notDS (C_notWr) high
5
ns
t6
C_notDtAck (C_notRdy) valid from C_notDS (C_notWr) low
15
ns
t7
C_notDtAck (C_notRdy) tri-state from C_notDS (C_notWr) high
15
ns
t8
C_notCS, C_Rd/notWr hold from C_notDS (C_notWr) high
t9
C_notCS high to C_notCS Low
0
ns
100
ns
Read cycle timing
Figure 9. Ctrl-E interface: read cycle timing in parallel modes 0 and 1
t1
C_A[8:0]
t9
C_D[7:0]
t8
t2
C_notCS
t10
t11
t4
t5
C_Rd/notWr
t3
C_notDS
Mode 0
t7
C_notDtAck
t6
C_notRd
C_notWr
Mode 1
C_notRdy
Table 9. read cycle timing in parallel modes 0 and 1
Symbol
20/25
Description
Min
Max
Unit
t1
C_A Setup to C_notDS (C_notRd) low
0
ns
t2
C_notCS, C_Rd/notWr setup to C_notDS (C_notRd) low
0
ns
t3
C_notDS (C_notRd) pulse width
t4
C_D valid from C_notDtAck (C_notRdy) low
215
ns
10
ns
15
ns
t5
C_A, hold from C_notDS (C_notRd) high
t6
C_notDtAck (C_notRdy) valid from C_notDS (C_notRd) high
0
ns
t7
C_notDtAck (C_notRdy) tri-state from C_notDS (C_notRd) high
t8
C_notCS, C_Rd/notWr hold from C_notDS (C_notRd) high
10
t9
Data tri-state from C_notDS (C_notRd) high
90
100
ns
t10
Data tri-state from C_notCS high
5
15
ns
t11
C_notCS high to C_notCS low (Min. time between 2 Accesses)
10
100
ns
ns
ns
MTC20136
Peripherals
UART
Two identical UARTs are implemented in MTC20136. They offer similar functionality to the standard
16C550 device. They can support bit rates of up to 115.2 K bps and contain two 16 byte FIFOs for receive
and transmit.
General purpose I/Os
Four pins are available for general purpose IOs, two are used as inputs to specify the boot configuration
and two are output under SW control. The latter can be used for instance to drive external LEDs.
Reset
The MTC20136 has an asynchronous, active-low reset pin. An external clock is required to leave the reset
state.
Clock
The MTC20136 is operated from the 35.328MHz Master clock, also used by the other DynaMiTe chips.
ELECTRICAL SPECIFICATIONS
Generic
The values presented in the following table apply for all inputs and/or outputs unless specified otherwise.
Specifically they are not influenced by the choice between CMOS or TTL levels.
Table 10. IO buffers generic DC characteristics
DC Electrical Characteristics
All voltages are referenced to VSS, unless otherwise specified, positive current is towards the device
Symbol
Parameter
Test Conditions
Min
Typ
Max
Unit
IIN
Input leakage current
VDD, no
pull up/pull down
-1
1
µA
IOZ
Tristate leakage
current
VIN = VSS, VDD, no
pull up/pull down
-1
1
µA
IPU
Pull up current
VIN = VSS
-25
-66
-125
µA
25
66
125
VIN = VSS,
IPD
Pull down current
VIN = VDD
RPU
Pull up resistance
VIN = VSS
50
kOhm
µA
RPD
Pull down resistance
VIN = VDD
50
kOhm
Table 11. IO buffers dynamic characteristics
DC Electrical Characteristics, important for transient but measured at (near) DC
All voltages are referenced to VSS, unless otherwise specified, positive current is towards the device
Symbol
Parameter
Test Conditions
CIN
Input capacitance
@f = 1MHz
dI/dt
Current derivative
8 mA driver, slew rate control
8 mA driver, no slew rate control
Ipeak
Peak current
8 mA driver, slew rate control
8 mA driver, no slew rate control
COUT
Output capacitance
(also bidirectional and
tristate drivers)
@f = 1MHz
Min
Typ
Max
5
Unit
pF
23.5
mA/ns
89
mA/ns
85
mA
100
mA
7
pF
21/25
MTC20136
Input/Output CMOS Generic Characteristics
The values presented in the following table apply for all CMOS inputs and/ or outputs unless specified otherwise.
Table 12. CMOS IO buffers generic characteristics
DC Electrical Characteristics
All voltages are referenced to VSS, unless otherwise specified, positive current is towards the device
Symbol
Parameter
VIL
Low level input voltage
Test Conditions
VIH
High level input voltage
VHY
Schmitt trigger
hysteresis
slow edge < 1 V/ms, only
for SCHMITx
VOL
Low level output
voltage
IOUT = XmA[
VOH
High level output
voltage
IOUT = -XmA[
Min
Typ
Max
Unit
0.2*
VDD
V
0.8*VDD
V
0.8
V
0.4
0.85*VDD
V
V
The reference current is dependent on the exact buffer chosen and is a part of the buffer name. The available values are 2, 4 and 8 mA.
Input/Output TTL Generic Characteristics
The values presented in the following table apply for all TTL inputs and/or outputs unless specified otherwise.
Table 13. TTL IO buffers generic characteristics
DC Electrical Characteristics
All voltages are referenced to VSS, unless otherwise specified, positive current is towards the device
Symbol
Parameter
VIL
Low level input voltage
VIH
High level input voltage
Test Conditions
Min
Typ
Max
Unit
0.8
V
1.35
V
2.0
slow edge < 1 V/ms
V
VILHY
Low level threshold, falling
0.9
VIHHY
High level threshold, rising
slow edge < 1 V/ms
1.3
1.9
V
VHY
Schmitt trigger hysteresis
slow edge < 1 V/ms
0.4
0.7
V
VOL
Low level output voltage
IOUT = XmA[
0.4
V
VOH
High level output voltage
IOUT = -XmA[
2.4
V
The reference current is dependent on the exact buffer chosen and is a part of the buffer name. The available values are currently 2, 4 and 8 mA.
OPERATING CONDITIONS
Table 14. Operating Conditions
Maximum ratings
Symbol
Min
Typ
Max
Unit
VDD
Supply voltage
3.0
3.3
3.6
V
Tamb
Ambient temperature1m/s airflow
-40
+85
°C
400
mW
P
22/25
Parameter
Power dissipation
Test Conditions
300
MTC20136
mm
DIM.
MIN.
inch
TYP.
MAX.
A
MIN.
TYP.
4.07
A1
0.25
A2
3.17
B
0.160
0.010
3.67
0.125
0.22
0.38
0.009
0.015
C
0.13
0.23
0.005
0.009
D
30.95
31.20
31.45
1.219
1.228
1.238
D1
27.90
28.00
28.10
1.098
1.102
1.106
3.42
0.135
D3
22.75
0.896
e
0.65
0.026
0.144
E
30.95
31.20
31.45
1.219
1.228
1.238
E1
27.90
28.00
28.10
1.098
1.102
1.106
E3
22.75
L
OUTLINE AND
MECHANICAL DATA
MAX.
0.65
0.896
0.80
L1
0.95
0.026
1.60
0.031
0.037
0.063
PQFP144
0°(min.), 7°(max.)
K
D
D1
A
D3
A2
A1
108
109
73
72
0.10mm
.004
E
E1
E3
B
B
Seating Plane
37
144
1
36
C
L
L1
e
K
PQFP144
23/25
MTC20136
mm
inch
DIM.
MIN.
A
1.210
A1
0.270
A2
TYP.
MAX.
MIN.
1.700
0.047
TYP.
MAX.
0.067
0.010
1.120
0.044
b
0.450
0.500
0.550
0.018
0.02
0.021
D
11.85
12.00
12.15
0.466
0.472
0.478
D1
E
10.40
11.85
E1
12.00
0.409
12.15
0.466
10.40
0.472
0.478
Body: 12 x 12 x 1.7mm
0.409
e
0.720
0.800
0.880
0.028
0.031
0.034
f
0.650
0.800
0.950
0.025
0.031
0.037
ddd
OUTLINE AND
MECHANICAL DATA
0.120
LFBGA160
Low Profile Fine Pitch Ball Grid Array
0.004
7254214 A
24/25
MTC20136
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners
© 2004 STMicroelectronics - All rights reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States
www.st.com
25/25