STMICROELECTRONICS ST62T52C

ST62T52C
ST62T62C/E62C
8-BIT OTP/EPROM MCUs WITH A/D CONVERTER,
SAFE RESET, AUTO-RELOAD TIMER AND EEPROM
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
3.0 to 6.0V Supply Operating Range
8 MHz Maximum Clock Frequency
-40 to +125°C Operating Temperature Range
Run, Wait and Stop Modes
5 Interrupt Vectors
Look-up Table capability in Program Memory
Data Storage in Program Memory:
User selectable size
Data RAM: 128 bytes
Data EEPROM: 64 bytes (none on ST62T52C)
User Programmable Options
9 I/O pins, fully programmable as:
– Input with pull-up resistor
– Input without pull-up resistor
– Input with interrupt generation
– Open-drain or push-pull output
– Analog Input
5 I/O lines can sink up to 30mA to drive LEDs or
TRIACs directly
8-bit Timer/Counter with 7-bit programmable
prescaler
8-bit Auto-reload Timer with 7-bit programmable
prescaler (AR Timer)
Digital Watchdog
Oscillator Safe Guard
Low Voltage Detector for Safe Reset
8-bit A/D Converter with 4 analog inputs
On-chip Clock oscillator can be driven by Quartz
Crystal Ceramic resonator or RC network
User configurable Power-on Reset
One external Non-Maskable Interrupt
ST626x-EMU2 Emulation and Development
System (connects to an MS-DOS PC via a
parallel port)
PDIP16
PSO16
SSOP16
CDIP16W
(See end of Datasheet for Ordering Information)
DEVICE SUMMARY
DEVICE
EPROM
OTP
(Bytes)
(Bytes)
EEPROM
ST62T52C
1836
-
ST62T62C
1836
64
ST62E62C
1836
64
Rev. 2.7
November 1999
1/78
1
Table of Contents
Document
Page
ST62T52C/ST62T62C/E62C . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1 GENERAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 PIN DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 MEMORY MAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.2 Program Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.3 Data Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.4 Stack Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.5 Data Window Register (DWR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.6 Data RAM/EEPROM Bank Register (DRBR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.7 EEPROM Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4 PROGRAMMING MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4.1 Option Bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.4.2 Program Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.4.3 . EEPROM Data Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 CENTRAL PROCESSING UNIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14
14
15
16
16
2.2 CPU REGISTERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3 CLOCKS, RESET, INTERRUPTS AND POWER SAVING MODES . . . . . . . . . . . . . . . . . . . . . 18
3.1 CLOCK SYSTEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.1 Main Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1.2 Low Frequency Auxiliary Oscillator (LFAO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1.3 Oscillator Safe Guard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2 RESETS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
18
19
19
22
3.2.1 RESET Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2.2 Power-on Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2.3 Watchdog Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2.4 LVD Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2.5 Application Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2.6 MCU Initialization Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3 DIGITAL WATCHDOG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
22
22
23
23
23
24
26
3.3.1 Digital Watchdog Register (DWDR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.2 Application Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 INTERRUPTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4.1 Interrupt request . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.4.2 Interrupt Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.4.3 Interrupt Option Register (IOR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.4.4 Interrupt Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.5 POWER SAVING MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.5.1 WAIT Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.5.2 STOP Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.5.3 Exit from WAIT and STOP Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
78
2/78
2
30
31
32
32
34
34
34
35
Table of Contents
Document
Page
4 ON-CHIP PERIPHERALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1 I/O PORTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.1 Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.2 Safe I/O State Switching Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.3 ARTimer alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2 TIMER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
36
36
37
38
40
41
4.2.1 Timer Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.2 Timer Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.3 Application Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.4 Timer Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3 AUTO-RELOAD TIMER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
42
42
42
43
44
4.3.1 AR Timer Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.2 Timer Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.3 AR Timer Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.4 A/D CONVERTER (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
44
44
48
50
4.4.1 Application Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5 SOFTWARE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.1 ST6 ARCHITECTURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2 ADDRESSING MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.3 INSTRUCTION SET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6 ELECTRICAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.1 ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.2 RECOMMENDED OPERATING CONDITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
53
58
58
59
6.3 DC ELECTRICAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.4 AC ELECTRICAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.5 A/D CONVERTER CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.6 TIMER CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.7 SPI CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.8 ARTIMER ELECTRICAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
7 GENERAL INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.1 PACKAGE MECHANICAL DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.2 ORDERING INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
ST62P52C/ST62P62C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
1 GENERAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
1.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
1.2 ORDERING INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
1.2.1 Transfer of Customer Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
1.2.2 Listing Generation and Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3/78
3
Table of Contents
Document
Page
ST6252C/ST6262B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
1 GENERAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
1.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
1.2 ROM READOUT PROTECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
1.3 ORDERING INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
1.3.1 Transfer of Customer Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
1.3.2 Listing Generation and Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
78
4/78
1
ST62T52C ST62T62C/E62C
1 GENERAL DESCRIPTION
1.1 INTRODUCTION
The ST62T52C and ST62T62C devices is low cost
members of the ST62xx 8-bit HCMOS family of microcontrollers, which is targeted at low to medium
complexity applications. All ST62xx devices are
based on a building block approach: a common
core is surrounded by a number of on-chip peripherals.
The ST62E62C is the erasable EPROM version of
the ST62T62C device, which may be used to emulate the ST62T52C and ST62T62C devices as
well as the ST6252C and ST6262B ROM devices.
OTP and EPROM devices are functionally identical. The ROM based versions offer the same functionality selecting as ROM options the options de-
fined in the programmable option byte of the
OTP/EPROM versions.
OTP devices offer all the advantages of user programmability at low cost, which make them the
ideal choice in a wide range of applications where
frequent code changes, multiple code versions or
last minute programmability are required.
These compact low-cost devices feature a Timer
comprising an 8-bit counter and a 7-bit programmable prescaler, an 8-bit Auto-Reload Timer,
EEPROM data capability (except ST62T52C), an
8-bit A/D Converter with 4 analog inputs and a Digital Watchdog timer, making them well suited for a
wide range of automotive, appliance and industrial
applications.
Figure 1. Block Diagram
TEST/VPP
NMI
8-BIT
A/D CONVERTER
PORT A
PA4..PA 5 / Ain
PORT B
PB0, PB2..PB3 / 30 mA Sink
PB6 / ARTimin / 20 mA Sink
PB7 / ARTimout / 20 mA Sink
PORT C
PC2..PC3 / Ain
TEST
INTERRUPT
DATA ROM
USER
SELECTABLE
PROGRAM
MEMORY
DATA RAM
1836 byte s OTP
(ST62T52C, T62C)
1836 byte s EPROM
(ST62E62C)
128 Bytes
AUTORELOAD
TIMER
DATA EEPROM
64 Bytes
TIMER
(ST62T62C/E6 2C)
PC
STACK LEVEL 1
STACK LEVEL 2
STACK LEVEL 3
8 BIT CORE
DIGITAL
WATCHD OG
STACK LEVEL 4
STACK LEVEL 5
STACK LEVEL 6
POWER
SUPPLY
OSCILLATOR
RESET
VDD VSS
OSCin OSCout
RESET
5/78
4
ST62T52C ST62T62C/E62C
1.2 PIN DESCRIPTIONS
VDD and VSS. Power is supplied to the MCU via
these two pins. VDD is the power connection and
VSS is the ground connection.
OSCin and OSCout. These pins are internally
connected to the on-chip oscillator circuit. A quartz
crystal, a ceramic resonator or an external clock
signal can be connected between these two pins.
The OSCin pin is the input pin, the OSCout pin is
the output pin.
RESET. The active-low RESET pin is used to restart the microcontroller.
TEST/VPP. The TEST must be held at VSS for normal operation. If TEST pin is connected to a
+12.5V level during the reset phase, the
EPROM/OTP programming Mode is entered.
NMI. The NMI pin provides the capability for asynchronous interruption, by applying an external non
maskable interrupt to the MCU. The NMI input is
falling edge sensitive. It is provided with an on-chip
pullup resistor (if option has been enabled), and
Schmitt trigger characteristics.
PA4-PA5. These 2 lines are organized as one I/O
port (A). Each line may be configured under software control as inputs with or without internal pullup resistors, interrupt generating inputs with pullup resistors, open-drain or push-pull outputs, analog inputs for the A/D converter.
PB0, PB2-PB3, PB6-PB7. These 5 lines are organized as one I/O port (B). Each line may be configured under software control as inputs with or
without internal pull-up resistors, interrupt generating inputs with pull-up resistors, open-drain or
push-pull outputs. PB6/ARTIMin and PB7/ARTI-
6/78
5
Mout are either Port B I/O bits or the Input and
Output pins of the ARTimer.
Reset state of PB2-PB3 pins can be defined by option either with pull-up or high impedance.
PB0, PB2-PB3, PB6-PB7 scan also sink 30mA for
direct LED driving.
PC2-PC3. These 2 lines are organized as one I/O
port (C). Each line may be configured under software control as input with or without internal pullup resistor, interrupt generating input with pull-up
resistor, analog input for the A/D converter, opendrain or push-pull output.
Figure 2. ST62T52C, E62C and T62C Pin
Configuration
1
16
PC2/Ain
2
15
PC3/Ain
PB2
3
14
PB3
4
13
RESET
ARTIMin/PB6
5
12
OSCout
ARTIMout/PB7
PB0
VPP/TEST
NMI
6
11
OSCin
VDD
7
10
PA5/Ain
VSS
8
9
PA4/Ain
ST62T52C ST62T62C/E62C
1.3 MEMORY MAP
1.3.1 Introduction
The MCU operates in three separate memory
spaces: Program space, Data space, and Stack
space. Operation in these three memory spaces is
described in the following paragraphs.
Briefly, Program space contains user program
code in OTP and user vectors; Data space contains user data in RAM and in OTP, and Stack
space accommodates six levels of stack for subroutine and interrupt service routine nesting.
Figure 3. Memory Addressing Diagram
PROGRAM SPACE
DATA SPACE
0000h
000h
RAM / EEPROM
BANKING AREA
0-63
PROGRAM
MEMORY
03Fh
040h
DATA READ-ONLY
MEMORY WINDOW
07Fh
080h
081h
082h
083h
084h
RAM
0C0h
DATA READ-ONLY
MEMORY
WINDOW SELECT
DATA RAM
BANK SELECT
0FFh
ACCUMULATOR
0FF0h
INTERRUPT &
RESET VECTORS
0FFFh
X REGISTER
Y REGISTER
V REGISTER
W REGISTER
7/78
6
ST62T52C ST62T62C/E62C
MEMORY MAP (Cont’d)
1.3.2 Program Space
Program Space comprises the instructions to be
executed, the data required for immediate addressing mode instructions, the reserved factory
test area and the user vectors. Program Space is
addressed via the 12-bit Program Counter register
(PC register).
1.3.2.1 Program Memory Protection
The Program Memory in OTP or EPROM devices
can be protected against external readout of memory by selecting the READOUT PROTECTION option in the option byte.
Figure 4. ST62T52C/T62C Program
Memory Map
0000h
RESERVED *
In the EPROM parts, READOUT PROTECTION
option can be disactivated only by U.V. erasure
that also results into the whole EPROM context
erasure.
Note: Once the Readout Protection is activated, it
is no longer possible, even for STMicroelectronics,
to gain access to the OTP contents. Returned
parts with a protection set can therefore not be accepted.
087Fh
0880h
USER
PROGRAM MEMORY
1836 BYTES
(OTP/EPROM)
0F9Fh
0FA0h
0FEFh
0FF0h
0FF7h
0FF8h
0FFBh
0FFCh
0FFDh
0FFEh
0FFFh
RESERVED *
INTERRUPT VECTORS
RESERVED
NMI VECTOR
USER RESET VECTOR
(*) Reserved areas should be filled with 0FFh
8/78
7
ST62T52C ST62T62C/E62C
MEMORY MAP (Cont’d)
1.3.3 Data Space
Data Space accommodates all the data necessary
for processing the user program. This space comprises the RAM resource, the processor core and
peripheral registers, as well as read-only data
such as constants and look-up tables in
OTP/EPROM.
1.3.3.1 Data ROM
All read-only data is physically stored in program
memory, which also accommodates the Program
Space. The program memory consequently contains the program code to be executed, as well as
the constants and look-up tables required by the
application.
The Data Space locations in which the different
constants and look-up tables are addressed by the
processor core may be thought of as a 64-byte
window through which it is possible to access the
read-only data stored in OTP/EPROM.
1.3.3.2 Data RAM/EEPROM
In ST62T52C, T62C and ST62E62C devices, the
data space includes 60 bytes of RAM, the accumulator (A), the indirect registers (X), (Y), the short
direct registers (V), (W), the I/O port registers, the
peripheral data and control registers, the interrupt
option register and the Data ROM Window register
(DRW register).
Additional RAM and EEPROM pages can also be
addressed using banks of 64 bytes located between addresses 00h and 3Fh.
1.3.4 Stack Space
Stack space consists of six 12-bit registers which
are used to stack subroutine and interrupt return
addresses, as well as the current program counter
contents.
Table 1. Additional RAM / EEPROM Banks
Device
ST62T52C
ST62T62C
RAM
1 x 64 bytes
1 x 64 bytes
EEPROM
1 x 64 bytes
Table 2. ST62T52C, T62C and ST62E62C Data
Memory Space
RAM / EEPROM banks
000h
03Fh
040h
DATA ROM WINDOW AREA
X REGISTER
Y REGISTER
V REGISTER
W REGISTER
DATA RAM 60 BYTES
PORT A DATA REGISTE R
PORT B DATA REGISTE R
PORT C DATA REGISTER
RESERVED
PORT A DIRECTION REGISTER
PORT B DIRECTION REGISTER
PORT C DIRECTI ON REGISTER
RESERVED
INTERRUPT OPTION REGISTE R
DATA ROM WINDOW REGISTER
RESERVED
PORT A OPTION REGISTER
PORT B OPTION REGISTER
PORT C OPTION REGISTE R
RESERVED
A/D DATA REGISTER
A/D CONTROL REGISTER
TIMER PRESCALER REGISTER
TIMER COUNTE R REGISTE R
TIMER STATUS CONTROL REGISTER
AR TIMER MODE CONTROL REGISTER
AR TIMER STATUS/CONT ROL REGISTE R1
AR TIMER STATUS/CONT ROL REGISTE R2
WATCHDOG REGISTER
AR TIMER RELOAD/CAPTU RE REGISTE R
AR TIMER COMPARE REGISTER
AR TIMER LOAD REGISTER
OSCILLATOR CONTROL REGISTER
MISCELLANEOUS
RESERVED
DATA RAM/EEP ROM REGISTER
RESERVED
EEPROM CONTROL REGISTER
RESERVED
ACCUMULATOR
07Fh
080h
081h
082h
083h
084h
0BFh
0C0h
0C1h
0C2h
0C3h
0C4h
0C5h
0C6h
0C7h
0C8h*
0C9h*
0CAh
0CBh
0CCh
0CDh
0CEh
0CFh
0D0h
0D1h
0D2h
0D3h
0D4h
0D5h
0D6h
0D7h
0D8h
0D9h
0DAh
0DBh
0DCh*
0DDh
0DEh
0E7h
0E8h*
0E9h
0EAh
0EBh
0FEh
0FFh
* WRITE ONLY REGISTER
9/78
8
ST62T52C ST62T62C/E62C
MEMORY MAP (Cont’d)
1.3.5 Data Window Register (DWR)
Data Window Register (DWR)
Address: 0C9h — Write Only
The Data read-only memory window is located from
address 0040h to address 007Fh in Data space. It
allows direct reading of 64 consecutive bytes located anywhere in program memory, between address 0000h and 0FFFh (top memory address depends on the specific device). All the program
memory can therefore be used to store either instructions or read-only data. Indeed, the window
can be moved in steps of 64 bytes along the program memory by writing the appropriate code in the
Data Window Register (DWR).
7
0
-
-
DWR5 DWR4 DWR3 DWR2 DWR1 DWR0
Bits 6, 7 = Not used.
Bit 5-0 = DWR5-DWR0: Data read-only memory
Window Register Bits. These are the Data readonly memory Window bits that correspond to the
upper bits of the data read-only memory space.
The DWR can be addressed like any RAM location
in the Data Space, it is however a write-only register and therefore cannot be accessed using singlebit operations. This register is used to position the
64-byte read-only data window (from address 40h
to address 7Fh of the Data space) in program
memory in 64-byte steps. The effective address of
the byte to be read as data in program memory is
obtained by concatenating the 6 least significant
bits of the register address given in the instruction
(as least significant bits) and the content of the
DWR register (as most significant bits), as illustrated in Figure 5 below. For instance, when addressing location 0040h of the Data Space, with 0 loaded in the DWR register, the physical location addressed in program memory is 00h. The DWR register is not cleared on reset, therefore it must be
written to prior to the first access to the Data readonly memory window area.
Caution: This register is undefined on reset. Neither read nor single bit instructions may be used to
address this register.
Note: Care is required when handling the DWR
register as it is write only. For this reason, the
DWR contents should not be changed while executing an interrupt service routine, as the service
routine cannot save and then restore the register’s
previous contents. If it is impossible to avoid writing to the DWR during the interrupt service routine,
an image of the register must be saved in a RAM
location, and each time the program writes to the
DWR, it must also write to the image register. The
image register must be written first so that, if an interrupt occurs between the two instructions, the
DWR is not affected.
Figure 5. Data read-only memory Window Memory Addressing
13 12
DATA ROM
WINDOW REGISTER 7 6
CONTENTS
(DWR)
11 10 9
8
7
6
5
2
1
0
4
3
5
4
3
2
1
0 PROGRAM SPACE ADDRESS
READ
5
4
3
2
1
0
0
1
0
0
0
1
0
1
1
0
0
1
0
0
0
1
1
0
0
1
DATA SPACE ADDRESS
:
40h-7Fh
IN INSTRUCTION
Example:
DWR=28h
ROM
ADDRESS:A19h
1
1
0
0
1
1
0
0
DATA SPACE ADDRESS
:
59h
VR01573C
10/78
9
ST62T52C ST62T62C/E62C
MEMORY MAP (Cont’d)
1.3.6 Data RAM/EEPROM
(DRBR)
Address: E8h — Write only
Bank
Register
7
-
0
-
-
DRBR
4
-
-
-
DRBR
0
Bit 7-5 = These bits are not used
Bit 4 - DRBR4. This bit, when set, selects RAM
Page 2.
Bit 3-1. Not used
Bit 0. DRBR0. This bit, when set, selects EEPROM page 0.
The selection of the bank is made by programming
the Data RAM Bank Switch register (DRBR register) located at address E8h of the Data Space according to Table 1. No more than one bank should
be set at a time.
The DRBR register can be addressed like a RAM
Data Space at the address E8h; nevertheless it is
a write only register that cannot be accessed with
single-bit operations. This register is used to select
the desired 64-byte RAM bank of the Data Space.
The bank number has to be loaded in the DRBR
register and the instruction has to point to the selected location as if it was in bank 0 (from 00h address to 3Fh address).
This register is not cleared during the MCU initialization, therefore it must be written before the first
access to the Data Space bank region. Refer to
the Data Space description for additional informa-
tion. The DRBR register is not modified when an
interrupt or a subroutine occurs.
Notes :
Care is required when handling the DRBR register
as it is write only. For this reason, it is not allowed
to change the DRBR contents while executing interrupt service routine, as the service routine cannot save and then restore its previous content. If it
is impossible to avoid the writing of this register in
interrupt service routine, an image of this register
must be saved in a RAM location, and each time
the program writes to DRBR it must write also to
the image register. The image register must be
written first, so if an interrupt occurs between the
two instructions the DRBR is not affected.
In DRBR Register, only 1 bit must be set. Otherwise two or more pages are enabled in parallel,
producing errors.
Care must also be taken not to change the
E PROM page (when available) when the parallel
writing mode is set for the E PROM, as defined in
EECTL register.
Table 3. Data RAM Bank Register Set-up
DRBR
00
01
02
08
10h
other
ST62T52C
None
Not available
Not Available
Not available
RAM Page 2
Reserved
ST62T62C
None
EEPROM page 0
Not Available
Not available
RAM Page 2
Reserved
11/78
10
ST62T52C ST62T62C/E62C
MEMORY MAP (Cont’d)
1.3.7 EEPROM Description
EEPROM memory is located in 64-byte pages in
data space. This memory may be used by the user
program for non-volatile data storage.
Data space from 00h to 3Fh is paged as described
in Table 4 . EEPROM locations are accessed directly by addressing these paged sections of data
space.
The EEPROM does not require dedicated instructions for read or write access. Once selected via the
Data RAM Bank Register, the active EEPROM
page is controlled by the EEPROM Control Register (EECTL), which is described below.
Bit E20FF of the EECTL register must be reset prior
to any write or read access to the EEPROM. If no
bank has been selected, or if E2OFF is set, any access is meaningless.
Programming must be enabled by setting the
E2ENA bit of the EECTL register.
The E2BUSY bit of the EECTL register is set when
the EEPROM is performing a programming cycle.
Any access to the EEPROM when E2BUSY is set
is meaningless.
Provided E2OFF and E2BUSY are reset, an EEPROM location is read just like any other data location, also in terms of access time.
Writing to the EEPROM may be carried out in two
modes: Byte Mode (BMODE) and Parallel Mode
(PMODE). In BMODE, one byte is accessed at a
time, while in PMODE up to 8 bytes in the same
row are programmed simultaneously (with consequent speed and power consumption advantages,
the latter being particularly important in battery
powered circuits).
General Notes:
Data should be written directly to the intended address in EEPROM space. There is no buffer memory between data RAM and the EEPROM space.
When the EEPROM is busy (E2BUSY = “1”)
EECTL cannot be accessed in write mode, it is
only possible to read the status of E2BUSY. This
implies that as long as the EEPROM is busy, it is
not possible to change the status of the EEPROM
Control Register. EECTL bits 4 and 5 are reserved
and must never be set.
Care is required when dealing with the EECTL register, as some bits are write only. For this reason,
the EECTL contents must not be altered while executing an interrupt service routine.
If it is impossible to avoid writing to this register
within an interrupt service routine, an image of the
register must be saved in a RAM location, and
each time the program writes to EECTL it must
also write to the image register. The image register
must be written to first so that, if an interrupt occurs between the two instructions, the EECTL will
not be affected.
Table 4. Row Arrangement for Parallel Writing of EEPROM Locations
Dataspace
addresses.
Banks 0 and 1.
Byte
ROW7
ROW6
ROW5
ROW4
ROW3
ROW2
ROW1
ROW0
0
1
2
3
4
5
6
7
38h-3Fh
30h-37h
28h-2Fh
20h-27h
18h-1Fh
10h-17h
08h-0Fh
00h-07h
Up to 8 bytes in each row may be programmed simultaneously in Parallel Write mode.
The number of available 64-byte banks (1 or 2) is device dependent.
Note: The EEPROM is disabled as soon as STOP instruction is executed in order to achieve the lowest
power-consumption.
12/78
11
ST62T52C ST62T62C/E62C
MEMORY MAP (Cont’d)
Additional Notes on Parallel Mode:
If the user wishes to perform parallel programming, the first step should be to set the E2PAR2
bit. From this time on, the EEPROM will be addressed in write mode, the ROW address will be
latched and it will be possible to change it only at
the end of the programming cycle, or by resetting
E2PAR2 without programming the EEPROM. After the ROW address is latched, the MCU can only
“see” the selected EEPROM row and any attempt
to write or read other rows will produce errors.
The EEPROM should not be read while E2PAR2
is set.
As soon as the E2PAR2 bit is set, the 8 volatile
ROW latches are cleared. From this moment on,
the user can load data in all or in part of the ROW.
Setting E2PAR1 will modify the EEPROM registers corresponding to the ROW latches accessed
after E2PAR2. For example, if the software sets
E2PAR2 and accesses the EEPROM by writing to
addresses 18h, 1Ah and 1Bh, and then sets
E2PAR1, these three registers will be modified simultaneously; the remaining bytes in the row will
be unaffected.
Note that E2PAR2 is internally reset at the end of
the programming cycle. This implies that the user
must set the E2PAR2 bit between two parallel programming cycles. Note that if the user tries to set
E2PAR1 while E2PAR2 is not set, there will be no
programming cycle and the E2PAR1 bit will be unaffected. Consequently, the E2PAR1 bit cannot be
set if E2ENA is low. The E2PAR1 bit can be set by
the user, only if the E2ENA and E2PAR2 bits are
also set.
Notes: The EEPROM page shall not be changed
through the DRBR register when the E2PAR2 bit
is set.
EEPROM Control Register (EECTL)
Address: EAh — Read/Write
Reset status: 00h
7
D7
0
E2O
FF
D5
D4
E2PA
R1
E2PA E2BU
R2
SY
E2E
NA
Bit 7 = D7: Unused.
Bit 6 = E2OFF: Stand-by Enable Bit. WRITE ONLY.
If this bit is set the EEPROM is disabled (any access
will be meaningless) and the power consumption of
the EEPROM is reduced to its lowest value.
Bit 5-4 = D5-D4: Reserved. MUST be kept reset.
Bit 3 = E2PAR1: Parallel Start Bit. WRITE ONLY.
Once in Parallel Mode, as soon as the user software
sets the E2PAR1 bit, parallel writing of the 8 adjacent registers will start. This bit is internally reset at
the end of the programming procedure. Note that
less than 8 bytes can be written if required, the undefined bytes being unaffected by the parallel programming cycle; this is explained in greater detail in
the Additional Notes on Parallel Mode overleaf.
Bit 2 = E2PAR2: Parallel Mode En. Bit. WRITE
ONLY. This bit must be set by the user program in
order to perform parallel programming. If E2PAR2
is set and the parallel start bit (E2PAR1) is reset,
up to 8 adjacent bytes can be written simultaneously. These 8 adjacent bytes are considered as a
row, whose address lines A7, A6, A5, A4, A3 are
fixed while A2, A1 and A0 are the changing bits, as
illustrated in Table 4. E2PAR2 is automatically reset at the end of any parallel programming procedure. It can be reset by the user software before
starting the programming procedure, thus leaving
the EEPROM registers unchanged.
Bit 1 = E2BUSY: EEPROM Busy Bit. READ ONLY. This bit is automatically set by the EEPROM
control logic when the EEPROM is in programming mode. The user program should test it before
any EEPROM read or write operation; any attempt
to access the EEPROM while the busy bit is set
will be aborted and the writing procedure in
progress will be completed.
Bit 0 = E2ENA: EEPROM Enable Bit. WRITE ONLY. This bit enables programming of the EEPROM
cells. It must be set before any write to the EEPROM register. Any attempt to write to the EEPROM when E2ENA is low is meaningless and will
not trigger a write cycle.
13/78
12
ST62T52C ST62T62C/E62C
1.4 PROGRAMMING MODES
1.4.1 Option Bytes
The two Option Bytes allow configuration capability to the MCUs. Option byte’s content is automatically read, and the selected options enabled, when
the chip reset is activated.
It can only be accessed during the programming
mode. This access is made either automatically
(copy from a master device) or by selecting the
OPTION BYTE PROGRAMMING mode of the programmer.
The option bytes are located in a non-user map.
No address has to be specified.
EPROM Code Option Byte (LSB)
7
PROTECT
0
EXTCNTL
PB2-3
PULL
-
WDACT
DELAY
OSCIL
OSGEN
EPROM Code Option Byte (MSB)
15
-
8
-
-
ADC
SYNCHRO
-
-
NMI
PULL
LVD
D15-D13. Reserved. Must be cleared.
ADC SYNCHRO. When set, an A/D conversion is
started upon WAIT instruction execution, in order
to reduce supply noise. When this bit is low, an
A/D conversion is started as soon as the STA bit of
the A/D Converter Control Register is set.
D11. Reserved, must be set to one.
D10. Reserved, must be cleared.
NMI PULL. NMI Pull-Up. This bit must be set high
to configure the NMI pin with a pull-up resistor.
When it is low, no pull-up is provided.
LVD. LVD RESET enable.When this bit is set, safe
RESET is performed by MCU when the supply
voltage is too low. When this bit is cleared, only
power-on reset or external RESET are active.
PROTECT. Readout Protection. This bit allows the
protection of the software contents against piracy.
When the bit PROTECT is set high, readout of the
OTP contents is prevented by hardware.. When
this bit is low, the user program can be read.
EXTCNTL. External STOP MODE control.. When
EXTCNTL is high, STOP mode is available with
watchdog active by setting NMI pin to one. When
14/78
13
EXTCNTL is low, STOP mode is not available with
the watchdog active.
PB2-3 PULL. When set this bit removes pull-up at
reset on PB2-PB3 pins. When cleared PB2-PB3
pins have an internal pull-up resistor at reset.
D4. Reserved. Must be cleared to 0.
WDACT. This bit controls the watchdog activation.
When it is high, hardware activation is selected.
The software activation is selected when WDACT
is low.
DELAY. This bit enables the selection of the delay
internally generated after the internal reset (external pin, LVD, or watchdog activated) is released.
When DELAY is low, the delay is 2048 cycles of
the oscillator, it is of 32768 cycles when DELAY is
high.
OSCIL. Oscillator selection. When this bit is low,
the oscillator must be controlled by a quartz crystal, a ceramic resonator or an external frequency.
When it is high, the oscillator must be controlled by
an RC network, with only the resistor having to be
externally provided.
OSGEN. Oscillator Safe Guard. This bit must be
set high to enable the Oscillator Safe Guard.
When this bit is low, the OSG is disabled.
The Option byte is written during programming either by using the PC menu (PC driven Mode) or
automatically (stand-alone mode).
1.4.2 Program Memory
EPROM/OTP programming mode is set by a
+12.5V voltage applied to the TEST/VPP pin. The
programming flow of the ST62T62C is described
in the User Manual of the EPROM Programming
Board.
The MCUs can be programmed with the
ST62E6xB EPROM programming tools available
from STMicroelectronics.
Table 5. ST62T52C/T62C Program Memory Map
Device Address
Description
0000h-087Fh
0880h-0F9Fh
0FA0h-0FEFh
0FF0h-0FF7h
0FF8h-0FFBh
0FFCh-0FFDh
0FFEh-0FFFh
Reserved
User ROM
Reserved
Interrupt Vectors
Reserved
NMI Interrupt Vector
Reset Vector
Note: OTP/EPROM devices can be programmed
with the development tools available from STMicroelectronics (ST62E6X-EPB or ST626X-KIT).
ST62T52C ST62T62C/E62C
PROGRAMMING MODES (Cont’d)
1.4.3 . EEPROM Data Memory
EEPROM data pages are supplied in the virgin
state FFh. Partial or total programming of EEPROM data memory can be performed either
through the application software or through an ex-
ternal programmer. Any STMicroelectronics tool
used for the program memory (OTP/EPROM) can
also be used to program the EEPROM data memory.
15/78
14
ST62T52C ST62T62C/E62C
2 CENTRAL PROCESSING UNIT
2.1 INTRODUCTION
The CPU Core of ST6 devices is independent of the
I/O or Memory configuration. As such, it may be
thought of as an independent central processor
communicating with on-chip I/O, Memory and Peripherals via internal address, data, and control
buses. In-core communication is arranged as
shown in Figure 6; the controller being externally
linked to both the Reset and Oscillator circuits,
while the core is linked to the dedicated on-chip peripherals via the serial data bus and indirectly, for
interrupt purposes, through the control registers.
Indirect Registers (X, Y). These two indirect registers are used as pointers to memory locations in
Data space. They are used in the register-indirect
addressing mode. These registers can be addressed in the data space as RAM locations at addresses 80h (X) and 81h (Y). They can also be accessed with the direct, short direct, or bit direct addressing modes. Accordingly, the ST6 instruction
set can use the indirect registers as any other register of the data space.
Short Direct Registers (V, W). These two registers are used to save a byte in short direct addressing mode. They can be addressed in Data
space as RAM locations at addresses 82h (V) and
83h (W). They can also be accessed using the direct and bit direct addressing modes. Thus, the
ST6 instruction set can use the short direct registers as any other register of the data space.
2.2 CPU REGISTERS
The ST6 Family CPU core features six registers and
three pairs of flags available to the programmer.
These are described in the following paragraphs.
Accumulator (A). The accumulator is an 8-bit
general purpose register used in all arithmetic calculations, logical operations, and data manipulations. The accumulator can be addressed in Data
space as a RAM location at address FFh. Thus the
ST6 can manipulate the accumulator just like any
other register in Data space.
Program Counter (PC). The program counter is a
12-bit register which contains the address of the
next ROM location to be processed by the core.
This ROM location may be an opcode, an operand, or the address of an operand. The 12-bit
length allows the direct addressing of 4096 bytes
in Program space.
Figure 6ST6 Core Block Diagram
0,01 TO 8MHz
RESET
OSCin
OSCout
INTERRUPTS
CONTROLLER
DATA SPACE
OPCODE
FLAG
VALUES
CONTROL
SIGNALS
DATA
ADDRESS /READ LINE
2
RAM/EEPR OM
PROGRAM
ADDRESS
256
DECODER
ROM/EPRO M
A-DATA
B-DATA
DATA
ROM/EPROM
DEDICAT IONS
ACCUMULATOR
12
Program Counter
and
6 LAYER STACK
FLAGS
ALU
RESULTS TO DATA SPACE (WRITE LINE)
VR01811
16/78
15
ST62T52C ST62T62C/E62C
CPU REGISTERS (Cont’d)
However, if the program space contains more than
4096 bytes, the additional memory in program
space can be addressed by using the Program
Bank Switch register.
The PC value is incremented after reading the address of the current instruction. To execute relative
jumps, the PC and the offset are shifted through
the ALU, where they are added; the result is then
shifted back into the PC. The program counter can
be changed in the following ways:
- JP (Jump) instructionPC=Jump address
- CALL instructionPC= Call address
- Relative Branch Instruction.PC= PC +/- offset
- Interrupt PC=Interrupt vector
- ResetPC= Reset vector
- RET & RETI instructionsPC= Pop (stack)
- Normal instructionPC= PC + 1
Flags (C, Z). The ST6 CPU includes three pairs of
flags (Carry and Zero), each pair being associated
with one of the three normal modes of operation:
Normal mode, Interrupt mode and Non Maskable
Interrupt mode. Each pair consists of a CARRY
flag and a ZERO flag. One pair (CN, ZN) is used
during Normal operation, another pair is used during Interrupt mode (CI, ZI), and a third pair is used
in the Non Maskable Interrupt mode (CNMI, ZNMI).
The ST6 CPU uses the pair of flags associated
with the current mode: as soon as an interrupt (or
a Non Maskable Interrupt) is generated, the ST6
CPU uses the Interrupt flags (resp. the NMI flags)
instead of the Normal flags. When the RETI instruction is executed, the previously used set of
flags is restored. It should be noted that each flag
set can only be addressed in its own context (Non
Maskable Interrupt, Normal Interrupt or Main routine). The flags are not cleared during context
switching and thus retain their status.
The Carry flag is set when a carry or a borrow occurs during arithmetic operations; otherwise it is
cleared. The Carry flag is also set to the value of
the bit tested in a bit test instruction; it also participates in the rotate left instruction.
The Zero flag is set if the result of the last arithmetic or logical operation was equal to zero; otherwise it is cleared.
Switching between the three sets of flags is performed automatically when an NMI, an interrupt or
a RETI instructions occurs. As the NMI mode is
automatically selected after the reset of the MCU,
the ST6 core uses at first the NMI flags.
Stack. The ST6 CPU includes a true LIFO hardware stack which eliminates the need for a stack
pointer. The stack consists of six separate 12-bit
RAM locations that do not belong to the data
space RAM area. When a subroutine call (or interrupt request) occurs, the contents of each level are
shifted into the next higher level, while the content
of the PC is shifted into the first level (the original
contents of the sixth stack level are lost). When a
subroutine or interrupt return occurs (RET or RETI
instructions), the first level register is shifted back
into the PC and the value of each level is popped
back into the previous level. Since the accumulator, in common with all other data space registers,
is not stored in this stack, management of these
registers should be performed within the subroutine. The stack will remain in its “deepest” position
if more than 6 nested calls or interrupts are executed, and consequently the last return address will
be lost. It will also remain in its highest position if
the stack is empty and a RET or RETI is executed.
In this case the next instruction will be executed.
Figure 7ST6 CPU Programming Mode
l
INDEX
REGISTER
b11
b7
X REG. POINTER
b0
b7
Y REG. POINTER
b0
SHORT
DIRECT
ADDRESSING
MODE
b0
b7
V REGISTER
b7
W REGISTER
b0
b7
ACCUM ULATO R
b0
PROGRAM COUNTER
b0
SIX LEVELS
STACK REGISTER
NORMAL FLAGS
C
Z
INTERRUPT FLAGS
C
Z
NMI FLAGS
C
Z
VA000423
17/78
16
ST62T52C ST62T62C/E62C
3 CLOCKS, RESET, INTERRUPTS AND POWER SAVING MODES
3.1 CLOCK SYSTEM
The MCU features a Main Oscillator which can be
driven by an external clock, or used in conjunction
with an AT-cut parallel resonant crystal or a suitable ceramic resonator, or with an external resistor
(RNET). In addition, a Low Frequency Auxiliary Oscillator (LFAO) can be switched in for security reasons, to reduce power consumption, or to offer the
benefits of a back-up clock system.
The Oscillator Safeguard (OSG) option filters
spikes from the oscillator lines, provides access to
the LFAO to provide a backup oscillator in the
event of main oscillator failure and also automatically limits the internal clock frequency (f INT) as a
function of VDD, in order to guarantee correct operation. These functions are illustrated in Figure 9.,
Figure 10., Figure 11. and Figure 12..
Figure 8. illustrates various possible oscillator configurations using an external crystal or ceramic resonator, an external clock input, an external resistor
(RNET), or the lowest cost solution using only the
LFAO. CL1 an CL2 should have a capacitance in the
range 12 tST6_CLK1o 22 pF for an oscillator frequency in the 4-8 MHz range.
The internal MCU clock frequency (fINT) is divided
by 12 to drive the Timer, the A/D converter and the
Watchdog timer, and by 13 to drive the CPU core,
as may be seen in Figure 11..
With an 8MHz oscillator frequency, the fastest machine cycle is therefore 1.625µs.
A machine cycle is the smallest unit of time needed
to execute any operation (for instance, to increment
the Program Counter). An instruction may require
two, four, or five machine cycles for execution.
3.1.1 Main Oscillator
The oscillator configuration may be specified by selecting the appropriate option. When the CRYSTAL/RESONATOR option is selected, it must be
used witha quartz crystal, a ceramic resonator or an
external signalprovided onthe OSCinpin. When the
RC NETWORK option is selected, the system clock
is generated by an external resistor.
The main oscillator can be turned off (when the
OSG ENABLED option is selected) by setting the
OSCOFF bit of the ADC Control Register. The
Low Frequency Auxiliary Oscillator is automatically started.
Figure 8. Oscillator Configurations
CRYSTAL/RES ONATOR CLOCK
CRYSTAL/RESON ATOR option
ST6xxx
OSCin
OSCout
CL1n
C L2
EXTERNAL CLOCK
CRYSTAL/RESON ATOR option
ST6xxx
OSCin
OSCout
NC
RC NETW ORK
RC NETW ORK option
ST6xxx
OSCin
OSCout
NC
RNET
INTEGRA TED CLOCK
CRYSTAL/RESON ATOR option
OSG ENABLED option
ST6xxx
OSCin
OSCout
NC
18/78
17
ST62T52C ST62T62C/E62C
CLOCK SYSTEM (Cont’d)
Turning on the main oscillator is achieved by resetting the OSCOFF bit of the A/D Converter Control Register or by resetting the MCU. Restarting
the main oscillator implies a delay comprising the
oscillator start up delay period plus the duration of
the software instruction at fLFAO clock frequency.
3.1.2 Low Frequency Auxiliary Oscillator
(LFAO)
The Low Frequency Auxiliary Oscillator has three
main purposes. Firstly, it can be used to reduce
power consumption in non timing critical routines.
Secondly, it offers a fully integrated system clock,
without any external components. Lastly, it acts as
a safety oscillator in case of main oscillator failure.
This oscillator is available when the OSG ENABLED option is selected. In this case, it automatically starts one of its periods after the first missing
edge from the main oscillator, whatever the reason
(main oscillator defective, no clock circuitry provided, main oscillator switched off...).
User code, normal interrupts, WAIT and STOP instructions, are processed as normal, at the reduced fLFAO frequency. The A/D converter accuracy is decreased, since the internal frequency is below 1MHz.
At power on, the Low Frequency Auxiliary Oscillator starts faster than the Main Oscillator. It therefore feeds the on-chip counter generating the POR
delay until the Main Oscillator runs.
The Low Frequency Auxiliary Oscillator is automatically switched off as soon as the main oscillator starts.
ADCR
Address: 0D1h — Read/Write
7
ADCR ADCR ADCR ADCR ADCR
7
6
5
4
3
0
OSC
OFF
ADCR ADCR
1
0
Bit 7-3, 1-0= ADCR7-ADCR3, ADCR1-ADCR0:
ADC Control Register . These bits are not used.
Bit 2 = OSCOFF. When low, this bit enables main
oscillator to run. The main oscillator is switched off
when OSCOFF is high.
3.1.3 Oscillator Safe Guard
The Oscillator Safe Guard (OSG) affords drastically increased operational integrity in ST62xx devices. The OSG circuit provides three basic func-
tions: it filters spikes from the oscillator lines which
would result in over frequency to the ST62 CPU; it
gives access to the Low Frequency Auxiliary Oscillator (LFAO), used to ensure minimum processing in case of main oscillator failure, to offer reduced power consumption or to provide a fixed frequency low cost oscillator; finally, it automatically
limits the internal clock frequency as a function of
supply voltage, in order to ensure correct operation even if the power supply should drop.
The OSG is enabled or disabled by choosing the
relevant OSG option. It may be viewed as a filter
whose cross-over frequency is device dependent.
Spikes on the oscillator lines result in an effectively
increased internal clock frequency. In the absence
of an OSG circuit, this may lead to an over frequency for a given power supply voltage. The
OSG filters out such spikes (as illustrated in Figure
9.). In all cases, when the OSG is active, the maximum internal clock frequency, fINT, is limited to
fOSG, which is supply voltage dependent. This relationship is illustrated in Figure 12..
When the OSG is enabled, the Low Frequency
Auxiliary Oscillator may be accessed. This oscillator starts operating after the first missing edge of
the main oscillator (see Figure 10.).
Over-frequency, at a given power supply level, is
seen by the OSG as spikes; it therefore filters out
some cycles in order that the internal clock frequency of the device is kept within the range the
particular device can stand (depending on VDD),
and below fOSG: the maximum authorised frequency with OSG enabled.
Note. The OSG should be used wherever possible
as it provides maximum safety. Care must be taken, however, as it can increase power consumption and reduce the maximum operating frequency
to fOSG.
Warning: Care has to be taken when using the
OSG, as the internal frequency is defined between
a minimum and a maximum value and is not accurate.
For precise timing measurements, it is not recommended to use the OSG and it should not be enabled in applications that use the SPI or the UART.
It should also be noted that power consumption in
Stop mode is higher when the OSG is enabled
(around 50µA at nominal conditions and room
temperature).
19/78
18
ST62T52C ST62T62C/E62C
CLOCK SYSTEM (Cont’d)
Figure 9. OSG Filtering Principle
(1)
(2)
(3)
(4)
(1) Maximum Frequency for the device to work correctly
(2) Actual Quartz Crystal Frequency at OSCin pin
(3) Noise from OSCin
(4) Resulting Internal Frequency
VR001932
Figure 10. OSG Emergency Oscillator Principle
Main
Oscillator
Emergency
Oscillator
Internal
Frequency
VR001933
20/78
19
ST62T52C ST62T62C/E62C
CLOCK SYSTEM (Cont’d)
Figure 11. Clock Circuit Block Diagram
POR
Core
: 13
OSG
TIMER 1
M
U
X
MAIN
OSCILLATOR
fINT
Watchdog
: 12
LFAO
:1
Main Oscillator off
Figure 12. Maximum Operating Frequency (fMAX) versus Supply Voltage (VDD)
Maximum FREQU ENCY (MHz)
8
4
FUNCTIONALITY IS NOT
GUARANTEED
IN THIS AREA
7
6
5
4
3
3
fOSG
fOSG Min (at 85°C)
2
fOSG Min (at 125°C)
2
1
1
2.5
3
3.6
4
4.5
5
5.5
6
SUPPLY VOLTAGE (VDD )
VR01807J
Notes:
1. In this area, operation is guaranteed at the
quartz crystal frequency.
2. When the OSG is disabled, operation in this
area is guaranteed at the crystal frequency. When
the OSG is enabled, operation in this area is guaranteed at a frequency of at least fOSG Min.
3. When the OSG is disabled, operation in this
area is guaranteed at the quartz crystal frequency.
When the OSG is enabled, access to this area is
prevented. The internal frequency is kept a fOSG.
4. When the OSG is disabled, operation in this
area is not guaranteed
When the OSG is enabled, access to this area is
prevented. The internal frequency is kept at fOSG.
21/78
20
ST62T52C ST62T62C/E62C
3.2 RESETS
The MCU can be reset in four ways:
– by the external Reset input being pulled low;
– by Power-on Reset;
– by the digital Watchdog peripheral timing out.
– by Low Voltage Detection (LVD)
3.2.1 RESET Input
The RESET pin may be connected to a device of
the application board in order to reset the MCU if
required. The RESET pin may be pulled low in
RUN, WAIT or STOP mode. This input can be
used to reset the MCU internal state and ensure a
correct start-up procedure. The pin is active low
and features a Schmitt trigger input. The internal
Reset signal is generated by adding a delay to the
external signal. Therefore even short pulses on
the RESET pin are acceptable, provided VDD has
completed its rising phase and that the oscillator is
running correctly (normal RUN or WAIT modes).
The MCU is kept in the Reset state as long as the
RESET pin is held low.
If RESET activation occurs in the RUN or WAIT
modes, processing of the user program is stopped
(RUN mode only), the Inputs and Outputs are configured as inputs with pull-up resistors and the
main Oscillator is restarted. When the level on the
RESET pin then goes high, the initialization sequence is executed following expiry of the internal
delay period.
If RESET pin activation occurs in the STOP mode,
the oscillator starts up and all Inputs and Outputs
are configured as inputs with pull-up resistors.
When the level of the RESET pin then goes high,
the initialization sequence is executed following
expiry of the internal delay period.
3.2.2 Power-on Reset
The function of the POR circuit consists in waking
up the MCU by detecting around 2V a dynamic
(rising edge) variation of the VDD Supply. At the
beginning of this sequence, the MCU is configured
in the Reset state: all I/O ports are configured as
inputs with pull-up resistors and no instruction is
executed. When the power supply voltage rises to
a sufficient level, the oscillator starts to operate,
whereupon an internal delay is initiated, in order to
allow the oscillator to fully stabilize before executing the first instruction. The initialization sequence
22/78
21
is executed immediately following the internal delay.
To ensure correct start-up, the user should take
care that the VDD Supply is stabilized at a sufficient level for the chosen frequency (see recommended operation) before the reset signal is released. In addition, supply rising must start from
0V.
As a consequence, the POR does not allow to supervise static, slowly rising, or falling, or noisy
(presenting oscillation) VDD supplies.
An external RC network connected to the RESET
pin, or the LVD reset can be used instead to get
the best performances.
Figure 13. Reset and Interrupt Processing
RESET
NMI MASK SET
INT LATCH CLEARED
( IF PRESENT )
SELECT
NMI MODE FLAGS
PUT FFEH
ON ADDRESS BUS
YES
IS RESET STILL
PRESENT?
NO
LOAD PC
FROM RESET LOCATIONS
FFE/FFF
FETCH INSTRUCTION
VA000427
ST62T52C ST62T62C/E62C
RESETS (Cont’d)
3.2.3 Watchdog Reset
The MCU provides a Watchdog timer function in
order to ensure graceful recovery from software
upsets. If the Watchdog register is not refreshed
before an end-of-count condition is reached, the
internal reset will be activated. This, amongst other things, resets the watchdog counter.
The MCU restarts just as though the Reset had
been generated by the RESET pin, including the
built-in stabilisation delay period.
3.2.4 LVD Reset
The on-chip Low Voltage Detector, selectable as
user option, features static Reset when supply
voltage is below a reference value. Thanks to this
feature, external reset circuit can be removed
while keeping the application safety. This SAFE
RESET is effective as well in Power-on phase as
in power supply drop with different reference val-
ues, allowing hysteresis effect. Reference value in
case of voltage drop has been set lower than the
reference value for power-on in order to avoid any
parasitic Reset when MCU start’s running and
sinking current on the supply.
As long as the supply voltage is below the reference value, there is a internal and static RESET
command. The MCU can start only when the supply voltage rises over the reference value. Therefore, only two operating mode exist for the MCU:
RESET active below the voltage reference, and
running mode over the voltage reference as
shown on the Figure 14., that represents a powerup, power-down sequence.
Note: When the RESET state is controlled by one
of the internal RESET sources (Low Voltage Detector, Watchdog, Power on Reset), the RESET
pin is tied to low logic level.
Figure 14. LVD Reset on Power-on and Power-down (Brown-out)
VDD
VUp
Vdn
RESET
RESET
time
VR02106A
3.2.5 Application Notes
No external resistor is required between VDD and
the Reset pin, thanks to the built-in pull-up device.
Direct external connection of the pin RESET to
VDD must be avoided in order to ensure safe behaviour of the internal reset sources (AND.Wired
structure).
23/78
22
ST62T52C ST62T62C/E62C
RESETS (Cont’d)
3.2.6 MCU Initialization Sequence
When a reset occurs the stack is reset, the PC is
loaded with the address of the Reset Vector (located in program ROM starting at address 0FFEh). A
jump to the beginning of the user program must be
coded at this address. Following a Reset, the Interrupt flag is automatically set, so that the CPU is
in Non Maskable Interrupt mode; this prevents the
initialisation routine from being interrupted. The initialisation routine should therefore be terminated
by a RETI instruction, in order to revert to normal
mode and enable interrupts. If no pending interrupt
is present at the end of the initialisation routine, the
MCU will continue by processing the instruction
immediately following the RETI instruction. If, however, a pending interrupt is present, it will be serviced.
Figure 15. Reset and Interrupt Processing
RESET
JP
JP:2 BYTES/4 CYCLES
RESET
VECTOR
INITIALIZATION
ROUTINE
RETI: 1 BYTE/2 CYCLES
RETI
VA00181
Figure 16. Reset Block Diagram
VDD
fOSC
COUNTER
RPU
RESD1)
RESET
ST6
INTERNA L
RESET
CK
AND. Wired
RESET
RESET
POWER ON RESET
WATCHD OG RESET
LVD RESET
VR02107A
1) Resistive ESD protection. Value not guaranteed.
24/78
23
ST62T52C ST62T62C/E62C
RESETS (Cont’d)
Table 6. Register Reset Status
Register
Oscillator Control Register
Address(es)
0DCh
Status
Comment
fINT = fOSC; user must set bit3 to 1
EEPROM Control Register
0EAh
EEPROM enabled (if available)
Port Data Registers
0C0h to 0C2h
I/O are Input with pull-up
Port Direction Register
0C4h to 0C6h
I/O are Input with pull-up
Port Option Register
0CCh to 0CEh
I/O are Input with pull-up
Interrupt Option Register
0C8h
TIMER Status/Control
0D4h
AR TIMER Mode Control Register
0D5h
AR TIMER Status/Control 1 Register
0D6h
AR TIMER Status/Control 2Register
0D7h
AR TIMER Compare Register
0DAh
Miscellaneous Register
0DDh
X, Y, V, W, Register
080H TO 083H
Accumulator
0FFh
Data RAM
084h to 0BFh
Data RAM Page REgister
0E8h
Data ROM Window Register
0C9h
EEPROM
00h to F3h
A/D Result Register
0D0h
AR TIMER Load Register
0DBh
AR TIMER Reload/Capture Register
0D9h
TIMER Counter Register
0D3h
TIMER Prescaler Register
0D2h
7Fh
Watchdog Counter Register
0D8h
FEh
A/D Control Register
0D1h
40h
Interrupt disabled
00h
TIMER disabled
AR TIMER stopped
Undefined
As written if programmed
FFh
Max count loaded
A/D in Standby
25/78
24
ST62T52C ST62T62C/E62C
3.3 DIGITAL WATCHDOG
The digital Watchdog consists of a reloadable
downcounter timer which can be used to provide
controlled recovery from software upsets.
The Watchdog circuit generates a Reset when the
downcounter reaches zero. User software can
prevent this reset by reloading the counter, and
should therefore be written so that the counter is
regularly reloaded while the user program runs
correctly. In the event of a software mishap (usually caused by externally generated interference),
the user program will no longer behave in its usual
fashion and the timer register will thus not be reloaded periodically. Consequently the timer will
decrement down to 00h and reset the MCU. In order to maximise the effectiveness of the Watchdog
function, user software must be written with this
concept in mind.
Watchdog behaviour is governed by two options,
known as “WATCHDOG ACTIVATION” (i.e.
HARDWARE or SOFTWARE) and “EXTERNAL
STOP MODE CONTROL” (see Table 7 ).
In the SOFTWARE option, the Watchdog is disabled until bit C of the DWDR register has been set.
When the Watchdog is disabled, low power Stop
mode is available. Once activated, the Watchdog
cannot be disabled, except by resetting the MCU.
In the HARDWARE option, the Watchdog is permanently enabled. Since the oscillator will run continuously, low power mode is not available. The
STOP instruction is interpreted as a WAIT instruction, and the Watchdog continues to countdown.
However, when the EXTERNAL STOP MODE
CONTROL option has been selected low power
consumption may be achieved in Stop Mode.
Execution of the STOP instruction is then governed by a secondary function associated with the
NMI pin. If a STOP instruction is encountered
when the NMI pin is low, it is interpreted as WAIT,
as described above. If, however, the STOP instruction is encountered when the NMI pin is high,
the Watchdog counter is frozen and the CPU enters STOP mode.
When the MCU exits STOP mode (i.e. when an interrupt is generated), the Watchdog resumes its
activity.
Table 7. Recommended Option Choices
Functions Required
Stop Mode & Watchdog
Stop Mode
Watchdog
26/78
25
Recommended Options
“EXTERNAL STOP MODE” & “HARDWARE WATCHDOG”
“SOFTWARE WATCHDOG”
“HARDWARE WATCHDOG”
ST62T52C ST62T62C/E62C
Figure 17. Watchdog Counter Control
D0
C
D1
SR
D2
D3
D4
D5
WATCHDOG COUNTER
WATCHDOG CONTROL REGISTER
DIGITAL WATCHDOG (Cont’d)
The Watchdog is associated with a Data space
register (Digital WatchDog Register, DWDR, location 0D8h) which is described in greater detail in
Section 3.3.1 Digital Watchdog Register (DWDR).
This register is set to 0FEh on Reset: bit C is
cleared to “0”, which disables the Watchdog; the
timer downcounter bits, T0 to T5, and the SR bit
are all set to “1”, thus selecting the longest Watchdog timer period. This time period can be set to the
user’s requirements by setting the appropriate value for bits T0 to T5 in the DWDR register. The SR
bit must be set to “1”, since it is this bit which generates the Reset signal when it changes to “0”;
clearing this bit would generate an immediate Reset.
It should be noted that the order of the bits in the
DWDR register is inverted with respect to the associated bits in the down counter: bit 7 of the
DWDR register corresponds, in fact, to T0 and bit
2 to T5. The user should bear in mind the fact that
these bits are inverted and shifted with respect to
the physical counter bits when writing to this register. The relationship between the DWDR register
bits and the physical implementation of the Watchdog timer downcounter is illustrated in Figure 17..
Only the 6 most significant bits may be used to define the time period, since it is bit 6 which triggers
the Reset when it changes to “0”. This offers the
user a choice of 64 timed periods ranging from
3,072 to 196,608 clock cycles (with an oscillator
frequency of 8MHz, this is equivalent to timer periods ranging from 384µs to 24.576ms).
RESET
T5
T4
T3
T2
D6
T1
D7
T0
÷28
OSC ÷12
VR02068A
27/78
26
ST62T52C ST62T62C/E62C
DIGITAL WATCHDOG (Cont’d)
3.3.1 Digital Watchdog Register (DWDR)
Address: 0D8h — Read/Write
Reset status: 1111 1110b
7
T0
0
T1
T2
T3
T4
T5
SR
C
Bit 0 = C: Watchdog Control bit
If the hardware option is selected, this bit is forced
high and the user cannot change it (the Watchdog
is always active). When the software option is selected, the Watchdog function is activated by setting bit C to 1, and cannot then be disabled (save
by resetting the MCU).
When C is kept low the counter can be used as a
7-bit timer.
This bit is cleared to “0” on Reset.
Bit 1 = SR: Software Reset bit
This bit triggers a Reset when cleared.
When C = “0” (Watchdog disabled) it is the MSB of
the 7-bit timer.
This bit is set to “1” on Reset.
Bits 2-7 = T5-T0: Downcounter bits
It should be noted that the register bits are reversed and shifted with respect to the physical
counter: bit-7 (T0) is the LSB of the Watchdog
downcounter and bit-2 (T5) is the MSB.
These bits are set to “1” on Reset.
28/78
27
3.3.2 Application Notes
The Watchdog plays an important supporting role
in the high noise immunity of ST62xx devices, and
should be used wherever possible. Watchdog related options should be selected on the basis of a
trade-off between application security and STOP
mode availability.
When STOP mode is not required, hardware activation without EXTERNAL STOP MODE CONTROL should be preferred, as it provides maximum security, especially during power-on.
When STOP mode is required, hardware activation and EXTERNAL STOP MODE CONTROL
should be chosen. NMI should be high by default,
to allow STOP mode to be entered when the MCU
is idle.
The NMI pin can be connected to an I/O line (see
Figure 18.) to allow its state to be controlled by
software. The I/O line can then be used to keep
NMI low while Watchdog protection is required, or
to avoid noise or key bounce. When no more
processing is required, the I/O line is released and
the device placed in STOP mode for lowest power
consumption.
When software activation is selected and the
Watchdog is not activated, the downcounter may
be used as a simple 7-bit timer (remember that the
bits are in reverse order).
The software activation option should be chosen
only when the Watchdog counter is to be used as
a timer. To ensure the Watchdog has not been unexpectedly activated, the following instructions
should be executed within the first 27 instructions:
jrr 0, WD, #+3
ldi WD, 0FDH
ST62T52C ST62T62C/E62C
DIGITAL WATCHDOG (Cont’d)
These instructions test the C bit and Reset the
MCU (i.e. disable the Watchdog) if the bit is set
(i.e. if the Watchdog is active), thus disabling the
Watchdog.
In all modes, a minimum of 28 instructions are executed after activation, before the Watchdog can
generate a Reset. Consequently, user software
should load the watchdog counter within the first
27 instructions following Watchdog activation
(software mode), or within the first 27 instructions
executed following a Reset (hardware activation).
It should be noted that when the GEN bit is low (interrupts disabled), the NMI interrupt is active but
cannot cause a wake up from STOP/WAIT modes.
Figure 18. A typical circuit making use of the
EXERNAL STOP MODE CONTROL feature
SWITCH
NMI
I/O
VR02002
Figure 19. Digital Watchdog Block Diagram
RESET
Q
RSFF
R
S
-27
DB 1.7 LOAD SET
DB0
-2 8
SET
-12
OSCILLATOR
CLOCK
8
WRITE
RESET
DATA BUS
VA00010
29/78
28
ST62T52C ST62T62C/E62C
3.4 INTERRUPTS
The CPU can manage four Maskable Interrupt
sources, in addition to a Non Maskable Interrupt
source (top priority interrupt). Each source is associated with a specific Interrupt Vector which contains a Jump instruction to the associated interrupt
service routine. These vectors are located in Program space (see Table 8 ).
When an interrupt source generates an interrupt
request, and interrupt processing is enabled, the
PC register is loaded with the address of the interrupt vector (i.e. of the Jump instruction), which
then causes a Jump to the relevant interrupt service routine, thus servicing the interrupt.
Interrupt sources are linked to events either on external pins, or on chip peripherals. Several events
can be ORed on the same interrupt source, and
relevant flags are available to determine which
event triggered the interrupt.
The Non Maskable Interrupt request has the highest priority and can interrupt any interrupt routine
at any time; the other four interrupts cannot interrupt each other. If more than one interrupt request
is pending, these are processed by the processor
core according to their priority level: source #1 has
the higher priority while source #4 the lower. The
priority of each interrupt source is fixed.
Table 8. Interrupt Vector Map
Interrupt Source
Interrupt source #0
Interrupt source #1
Interrupt source #2
Interrupt source #3
Interrupt source #4
Priority
1
2
3
4
5
Vector Address
(FFCh-FFDh)
(FF6h-FF7h)
(FF4h-FF5h)
(FF2h-FF3h)
(FF0h-FF1h)
ically reset by the core at the beginning of the nonmaskable interrupt service routine.
Interrupt request from source #1 can be configured either as edge or level sensitive by setting accordingly the LES bit of the Interrupt Option Register (IOR).
Interrupt request from source #2 are always edge
sensitive. The edge polarity can be configured by
setting accordingly the ESB bit of the Interrupt Option Register (IOR).
Interrupt request from sources #3 & #4 are level
sensitive.
In edge sensitive mode, a latch is set when a edge
occurs on the interrupt source line and is cleared
when the associated interrupt routine is started.
So, the occurrence of an interrupt can be stored,
until completion of the running interrupt routine before being processed. If several interrupt requests
occurs before completion of the running interrupt
routine, only the first request is stored.
Storage of interrupt requests is not available in level sensitive mode. To be taken into account, the
low level must be present on the interrupt pin when
the MCU samples the line after instruction execution.
At the end of every instruction, the MCU tests the
interrupt lines: if there is an interrupt request the
next instruction is not executed and the appropriate interrupt service routine is executed instead.
Table 9. Interrupt Option Register Description
GEN
SET
CLEARED
SET
3.4.1 Interrupt request
All interrupt sources but the Non Maskable Interrupt source can be disabled by setting accordingly
the GEN bit of the Interrupt Option Register (IOR).
This GEN bit also defines if an interrupt source, including the Non Maskable Interrupt source, can restart the MCU from STOP/WAIT modes.
Interrupt request from the Non Maskable Interrupt
source #0 is latched by a flip flop which is automat-
30/78
29
ESB
CLEARED
SET
LES
CLEARED
OTHERS
NOT USED
Enable all interrupts
Disable all interrupts
Rising edge mode on interrupt source #2
Falling edge mode on interrupt source #2
Level-sensitive mode on interrupt source #1
Falling edge mode on interrupt source #1
ST62T52C ST62T62C/E62C
INTERRUPTS (Cont’d)
3.4.2 Interrupt Procedure
The interrupt procedure is very similar to a call procedure, indeed the user can consider the interrupt
as an asynchronous call procedure. As this is an
asynchronous event, the user cannot know the
context and the time at which it occurred. As a result, the user should save all Data space registers
which may be used within the interrupt routines.
There are separate sets of processor flags for normal, interrupt and non-maskable interrupt modes,
which are automatically switched and so do not
need to be saved.
The following list summarizes the interrupt procedure:
MCU
– The interrupt is detected.
– The C and Z flags are replaced by the interrupt
flags (or by the NMI flags).
– The PC contents are stored in the first level of
the stack.
– The normal interrupt lines are inhibited (NMI still
active).
– The first internal latch is cleared.
– Theassociated interrupt vectoris loaded inthe PC.
WARNING: In some circumstances, when a
maskable interrupt occurs while the ST6 core is in
NORMAL mode and especially during the execution of an ”ldi IOR, 00h” instruction (disabling all
maskable interrupts): if the interrupt arrives during
the first 3 cycles of the ”ldi” instruction (which is a
4-cycle instruction) the core will switch to interrupt
mode BUT the flags CN and ZN will NOT switch to
the interrupt pair CI and ZI.
User
– User selected registers are saved within the interrupt service routine (normally on a software
stack).
– The source of the interrupt is found by polling the
interrupt flags (if more than one source is associated with the same vector).
– The interrupt is serviced.
– Return from interrupt (RETI)
MCU
– Automatically the MCU switches back to the normal flag set (or the interrupt flag set) and pops
the previous PC value from the stack.
The interrupt routine usually begins by the identifying the device which generated the interrupt request (by polling). The user should save the registers which are used within the interrupt routine in a
software stack. After the RETI instruction is executed, the MCU returns to the main routine.
Figure 20. Interrupt Processing Flow Chart
INS TRU CTION
FETCH
INS TRU CTION
EXEC UTE
IN STRUC TION
WAS
THE INS TRU CTION
A RE TI ?
LOAD PC FROM
INT ERR UP T VEC TOR
NO
(FFC/FFD)
YES
YES
IS THE CORE
ALREADY IN
NORMAL MODE?
?
SET
INTER RU PT MASK
NO
C LEAR
INT ERR UP T MASK
SELECT
PROGRAM FLAGS
PUSH THE
PC IN TO THE STACK
SELECT
IN TER NA L MODE FLAG
”POP”
THE STACK ED PC
C HEC K IF THER E IS
AN IN TER RUP T R EQUEST
AN D INTE RRU PT MASK
NO
?
YES
VA000014
31/78
30
ST62T52C ST62T62C/E62C
INTERRUPTS (Cont’d)
3.4.3 Interrupt Option Register (IOR)
The Interrupt Option Register (IOR) is used to enable/disable the individual interrupt sources and to
select the operating mode of the external interrupt
inputs. This register is write-only and cannot be
accessed by single-bit operations.
Address: 0C8h — Write Only
Reset status: 00h
7
0
-
LES
ESB
GEN
-
-
-
-
Bit 7, Bits 3-0 = Unused.
Bit 6 = LES: Level/Edge Selection bit.
When this bit is set to one, the interrupt source #1
is level sensitive. When cleared to zero the edge
sensitive mode for interrupt request is selected.
Bit 5 = ESB: Edge Selection bit.
The bit ESB selects the polarity of the interrupt
source #2.
Bit 4 = GEN: Global Enable Interrupt. When this bit
is set to one, all interrupts are enabled. When this
bit is cleared to zero all the interrupts (excluding
NMI) are disabled.
When the GEN bit is low, the NMI interrupt is active but cannot cause a wake up from STOP/WAIT
modes.
This register is cleared on reset.
3.4.4 Interrupt Sources
Interrupt
sources
available
on
the
ST62E62C/T62C are summarized in the Table 10
with associated mask bit to enable/disable the interrupt request.
Table 10. Interrupt Requests and Mask Bits
GENERAL
TIMER
A/D CONVERTER
IOR
TSCR1
ADCR
Address
Register
C8h
D4h
D1h
AR TIMER
ARMC
D5h
Port PAn
Port PBn
Port PCn
ORPA-DRPA
ORPB-DRPB
ORPC-DRPC
C0h-C4h
C1h-C5h
C2h-C6h
Peripheral
32/78
31
Register
Mask bit
Masked Interrupt Source
GEN
ETI
EAI
OVIE
CPIE
EIE
ORPAn-DRPAn
ORPBn-DRPBn
ORPCn-DRPCn
All Interrupts, excluding NMI
TMZ: TIMER Overflow
EOC: End of Conversion
OVF: AR TIMER Overflow
CPF: Successful compare
EF: Active edge on ARTIMin
PAn pin
PBn pin
PCn pin
Interrupt
vector
Vector 4
Vector 4
Vector 3
Vector 1
Vector 1
Vector 2
ST62T52C ST62T62C/E62C
INTERRUPTS (Cont’d)
Figure 21. Interrupt Block Diagram
FROM REGISTER PORT A,B,C
SINGLE BIT ENABLE
PBE
V DD
FF
CLK Q
CLR
PORT A
PORT B
Bits
PBE
0
INT #1 (FF6,7)
I Start MUX
1
1
IOR REG. C8H, bit 6
PORT C
Bits
FF
CLK Q
CLR
PBE
RESTART FROM
STOP/WAIT
INT #2 (FF4,5)
SPIDIV Register
SPINT bit
SPIE bit
IOR REG. C8H, bit 5
I 2 Start
OVF
OVIE
SPIMOD Register
AR TIMER
CPF
CPIE
INT #3 (FF2,3)
EF
EIE
VDD
NMI
TIMER1
TMZ
ETI
ADC
EOC
EAI
INT #4 (FF0,1)
FF
CLK Q
CLR
NMI (FFC,D)
I 0 Start
Bit GEN (IOR Register)
VA0426K
33/78
32
ST62T52C ST62T62C/E62C
3.5 POWER SAVING MODES
The WAIT and STOP modes have been implemented in the ST62xx family of MCUs in order to
reduce the product’s electrical consumption during
idle periods. These two power saving modes are
described in the following paragraphs.
3.5.1 WAIT Mode
The MCU goes into WAIT mode as soon as the
WAIT instruction is executed. The microcontroller
can be considered as being in a “software frozen”
state where the core stops processing the program instructions, the RAM contents and peripheral registers are preserved as long as the power
supply voltage is higher than the RAM retention
voltage. In this mode the peripherals are still active.
WAIT mode can be used when the user wants to
reduce the MCU power consumption during idle
periods, while not losing track of time or the capability of monitoring external events. The active oscillator is not stopped in order to provide a clock
signal to the peripherals. Timer counting may be
enabled as well as the Timer interrupt, before entering the WAIT mode: this allows the WAIT mode
to be exited when a Timer interrupt occurs. The
same applies to other peripherals which use the
clock signal.
If the WAIT mode is exited due to a Reset (either
by activating the external pin or generated by the
Watchdog), the MCU enters a normal reset procedure. If an interrupt is generated during WAIT
mode, the MCU’s behaviour depends on the state
34/78
33
of the processor core prior to the WAIT instruction,
but also on the kind of interrupt request which is
generated. This is described in the following paragraphs. The processor core does not generate a
delay following the occurrence of the interrupt, because the oscillator clock is still available and no
stabilisation period is necessary.
3.5.2 STOP Mode
If the Watchdog is disabled, STOP mode is available. When in STOP mode, the MCU is placed in
the lowest power consumption mode. In this operating mode, the microcontroller can be considered
as being “frozen”, no instruction is executed, the
oscillator is stopped, the RAM contents and peripheral registers are preserved as long as the
power supply voltage is higher than the RAM retention voltage, and the ST62xx core waits for the
occurrence of an external interrupt request or a
Reset to exit the STOP state.
If the STOP state is exited due to a Reset (by activating the external pin) the MCU will enter a normal reset procedure. Behaviour in response to interrupts depends on the state of the processor
core prior to issuing the STOP instruction, and
also on the kind of interrupt request that is generated.
This case will be described in the following paragraphs. The processor core generates a delay after occurrence of the interrupt request, in order to
wait for complete stabilisation of the oscillator, before executing the first instruction.
ST62T52C ST62T62C/E62C
POWER SAVING MODE (Cont’d)
3.5.3 Exit from WAIT and STOP Modes
The following paragraphs describe how the MCU
exits from WAIT and STOP modes, when an interrupt occurs (not a Reset). It should be noted that
the restart sequence depends on the original state
of the MCU (normal, interrupt or non-maskable interrupt mode) prior to entering WAIT or STOP
mode, as well as on the interrupt type.
Interrupts do not affect the oscillator selection.
3.5.3.1 Normal Mode
If the MCU was in the main routine when the WAIT
or STOP instruction was executed, exit from Stop
or Wait mode will occur as soon as an interrupt occurs; the related interrupt routine is executed and,
on completion, the instruction which follows the
STOP or WAIT instruction is then executed, providing no other interrupts are pending.
3.5.3.2 Non Maskable Interrupt Mode
If the STOP or WAIT instruction has been executed during execution of the non-maskable interrupt
routine, the MCU exits from the Stop or Wait mode
as soon as an interrupt occurs: the instruction
which follows the STOP or WAIT instruction is executed, and the MCU remains in non-maskable interrupt mode, even if another interrupt has been
generated.
3.5.3.3 Normal Interrupt Mode
If the MCU was in interrupt mode before the STOP
or WAIT instruction was executed, it exits from
STOP or WAIT mode as soon as an interrupt occurs. Nevertheless, two cases must be considered:
– If the interrupt is a normal one, the interrupt routine in which the WAIT or STOP mode was en-
tered will be completed, starting with the
execution of the instruction which follows the
STOP or the WAIT instruction, and the MCU is
still in the interrupt mode. At the end of this routine pending interrupts will be serviced in accordance with their priority.
– In the event of a non-maskable interrupt, the
non-maskable interrupt service routine is processed first, then the routine in which the WAIT or
STOP mode was entered will be completed by
executing the instruction following the STOP or
WAIT instruction. The MCU remains in normal
interrupt mode.
Notes:
To achieve the lowest power consumption during
RUN or WAIT modes, the user program must take
care of:
– configuring unused I/Os as inputs without pull-up
(these should be externally tied to well defined
logic levels);
– placing all peripherals in their power down
modes before entering STOP mode;
When the hardware activated Watchdog is selected, or when the software Watchdog is enabled, the
STOP instruction is disabled and a WAIT instruction will be executed in its place.
If all interrupt sources are disabled (GEN low), the
MCU can only be restarted by a Reset. Although
setting GEN low does not mask the NMI as an interrupt, it will stop it generating a wake-up signal.
The WAIT and STOP instructions are not executed if an enabled interrupt request is pending.
35/78
34
ST62T52C ST62T62C/E62C
4 ON-CHIP PERIPHERALS
4.1 I/O PORTS
The MCU features Input/Output lines which may
be individually programmed as any of the following
input or output configurations:
– Input without pull-up or interrupt
– Input with pull-up and interrupt
– Input with pull-up, but without interrupt
– Analog input
– Push-pull output
– Open drain output
The lines are organised as bytewise Ports.
Each port is associated with 3 registers in Data
space. Each bit of these registers is associated
with a particular line (for instance, bits 0 of Port A
Data, Direction and Option registers are associated with the PA0 line of Port A).
The DATA registers (DRx), are used to read the
voltage level values of the lines which have been
configured as inputs, or to write the logic value of
the signal to be output on the lines configured as
outputs. The port data registers can be read to get
the effective logic levels of the pins, but they can
be also written by user software, in conjunction
with the related option registers, to select the different input mode options.
Single-bit operations on I/O registers are possible
but care is necessary because reading in input
mode is done from I/O pins while writing will directly affect the Port data register causing an undesired change of the input configuration.
The Data Direction registers (DDRx) allow the
data direction (input or output) of each pin to be
set.
The Option registers (ORx) are used to select the
different port options available both in input and in
output mode.
All I/O registers can be read or written to just as
any other RAM location in Data space, so no extra
RAM cells are needed for port data storage and
manipulation. During MCU initialization, all I/O registers are cleared and the input mode with pull-ups
and no interrupt generation is selected for all the
pins, thus avoiding pin conflicts.
Figure 22. I/O Port Block Diagram
SIN CONTROLS
RESET
VDD
DATA
DIRECTION
REGISTE R
VDD
INPUT /OUTPUT
DATA
REGISTE R
SHIFT
REGIST ER
OPTION
REGISTE R
SOUT
TO INTERRU PT
TO ADC
36/78
35
VA00413
ST62T52C ST62T62C/E62C
I/O PORTS (Cont’d)
4.1.1 Operating Modes
Each pin may be individually programmed as input
or output with various configurations.
This is achieved by writing the relevant bit in the
Data (DR), Data Direction (DDR) and Option registers (OR). Table 11 illustrates the various port
configurations which can be selected by user software.
4.1.1.1 Input Options
Pull-up, High Impedance Option. All input lines
can be individually programmed with or without an
internal pull-up by programming the OR and DR
registers accordingly. If the pull-up option is not
selected, the input pin will be in the high-impedance state.
4.1.1.2 Interrupt Options
All input lines can be individually connected by
software to the interrupt system by programming
the OR and DR registers accordingly. The interrupt trigger modes (falling edge, rising edge and
low level) can be configured by software as described in the Interrupt Chapter for each port.
4.1.1.3 Analog Input Options
Some pins can be configured as analog inputs by
programming the OR and DR registers accordingly. These analog inputs are connected to the onchip 8-bit Analog to Digital Converter. ONLY ONE
pin should be programmed as an analog input at
any time, since by selecting more than one input
simultaneously their pins will be effectively shorted.
Table 11. I/O Port Option Selection
DDR
OR
DR
Mode
0
0
0
Input
With pull-up, no interrupt
Optio n
0
0
1
Input
No pull-up, no interrupt
0
1
0
Input
With pull-up and with interrupt
0
1
1
Input
Analog input (when available)
1
0
X
Output
Open-drain output (20mA sink when available)
1
1
X
Output
Push-pull output (20mA sink when available)
Note: X = Don’t care
37/78
36
ST62T52C ST62T62C/E62C
I/O PORTS (Cont’d)
4.1.2 Safe I/O State Switching Sequence
Switching the I/O ports from one state to another
should be done in a sequence which ensures that
no unwanted side effects can occur. The recommended safe transitions are illustrated in Figure
23.. All other transitions are potentially risky and
should be avoided when changing the I/O operating mode, as it is most likely that undesirable sideeffects will be experienced, such as spurious interrupt generation or two pins shorted together by the
analog multiplexer.
Single bit instructions (SET, RES, INC and DEC)
should be used with great caution on Ports Data
registers, since these instructions make an implicit
read and write back of the entire register. In port
input mode, however, the data register reads from
the input pins directly, and not from the data register latches. Since data register information in input
mode is used to set the characteristics of the input
pin (interrupt, pull-up, analog input), these may be
unintentionally reprogrammed depending on the
state of the input pins. As a general rule, it is better
to limit the use of single bit instructions on data
registers to when the whole (8-bit) port is in output
mode. In the case of inputs or of mixed inputs and
outputs, it is advisable to keep a copy of the data
register in RAM. Single bit instructions may then
be used on the RAM copy, after which the whole
copy register can be written to the port data register:
SET bit, datacopy
LD a, datacopy
LD DRA, a
Warning: Care must also be taken to not use instructions that act on a whole port register (INC,
DEC, or read operations) when all 8 bits are not
available on the device. Unavailable bits must be
masked by software (AND instruction).
The WAIT and STOP instructions allow the
ST62xx to be used in situations where low power
consumption is needed. The lowest power consumption is achieved by configuring I/Os in input
mode with well-defined logic levels.
The user must take care not to switch outputs with
heavy loads during the conversion of one of the
analog inputs in order to avoid any disturbance to
the conversion.
Figure 23. Diagram showing Safe I/O State Transitions
Interrupt
pull-up
010*
011
Input
Analog
Input
pull-up (Reset
state)
000
001
Input
Output
Open Drain
100
101
Output
Open Drain
Output
Push-pull
110
111
Output
Push-pull
Note *. xxx = DDR, OR, DR Bits respectively
38/78
37
ST62T52C ST62T62C/E62C
I/O PORTS (Cont’d)
Table 12. I/O Port Option Selections
MODE
Input
Reset state(
AVAILABLE ON (1)
SCHEMATIC
PA4-PA5
PB0, PB6-PB7
PC2-PC3
Data in
Reset state if PULL-UP PB2-PB3,
option disabled
Input
Reset state
Interrupt
PA4-PA5
PB0,,PB6-PB7
PC2-PC3
Data in
Reset state if PULL-UP
option enabled
PB2-PB3
Input
with pull up
with interrupt
Interrupt
PA4-PA5
PB0, PB2-PB3,PB6-PB7
Data in
PC2-PC3
Interrupt
Analog Input
Open drain output
5mA
PA4-PA5
PC2-PC3
ADC
PA4-PA5
PC2-PC3
Data out
Open drain output
30mA
Push-pull output
5mA
PB0, PB2-PB3,PB6-PB7
PA4-PA5
PC2-PC3
Data out
Push-pull output
30mA
PB0, PB2-PB3,PB6-PB7
Note 1. Provided the correct configuration has been selected.
39/78
38
ST62T52C ST62T62C/E62C
I/O PORTS (Cont’d)
4.1.3 ARTimer alternate functions
ARTIMin/PB6 is connected to the AR Timer input.
It is configured through the port registers as any
standard pin of port B. To use ARTIMin/PB6 as AR
Timer input, it must be configured as input through
DDRB.
When bit PWMOE of register ARMC is low, pin
ARTIMout/PB7 is configured as any standard pin
of port B through the port registers. When PWMOE is high, ARTMout/PB7 is the PWM output, independently of the port registers configuration.
Figure 24. Peripheral Interface Configuration of AR Timer
PID
ARTIMin
ARTIMin
DR
AR TIMER
PID
OR
PWMOE
ARTIMout
MUX
1
0
ARTIMout
DR
VR01661G
40/78
39
ST62T52C ST62T62C/E62C
4.2 TIMER
The prescaler input is the internal frequency (fINT)
divided by 12. The prescaler decrements on the
rising edge. Depending on the division factor programmed by PS2, PS1 and PS0 bits in the TSCR
(see Table 13.), the clock input of the timer/counter register is multiplexed to different sources. For
division factor 1, the clock input of the prescaler is
also that of timer/counter; for factor 2, bit 0 of the
prescaler register is connected to the clock input of
TCR. This bit changes its state at half the frequency of the prescaler input clock. For factor 4, bit 1 of
the PSC is connected to the clock input of TCR,
and so forth. The prescaler initialize bit, PSI, in the
TSCR register must be set to allow the prescaler
(and hence the counter) to start. If it is cleared, all
the prescaler bits are set and the counter is inhibited from counting. The prescaler can be loaded
with any value between 0 and 7Fh, if bit PSI is set.
The prescaler tap is selected by means of the
PS2/PS1/PS0 bits in the control register.
Figure 26. illustrates the Timer’s working principle.
The MCU features an on-chip Timer peripheral,
consisting of an 8-bit counter with a 7-bit programmable prescaler, giving a maximum count of 215.
Figure 25. shows the Timer Block Diagram. The
content of the 8-bit counter can be read/written in
the Timer/Counter register, TCR, which can be addressed in Data space as a RAM location at address 0D3h. The state of the 7-bit prescaler can be
read in the PSC register at address 0D2h. The
control logic device is managed in the TSCR register as described in the following paragraphs.
The 8-bit counter is decrement by the output (rising edge) coming from the 7-bit prescaler and can
be loaded and read under program control. When
it decrements to zero then the TMZ (Timer Zero)bit
in the TSCR is set. If the ETI (Enable Timer Interrupt) bit in the TSCR is also set, an interrupt request is generated. The Timer interrupt can be
used to exit the MCU from WAIT mode.
Figure 25. Timer Block Diagram
DATA BUS
PSC
fINT
12
8
8
6
5
4
3
2
1
0
8-BIT
COUNTER
SELECT
1 OF 7
8
b7 b6
b5
b4
b3 b2
b1
b0
STATUS/CONTROL
REGISTER
TMZ ETI D5
D4 PSI PS2 PS1 PS0
3
INTERRUPT
LINE
VR02070A
41/78
40
ST62T52C ST62T62C/E62C
TIMER (Cont’d)
4.2.1 Timer Operation
The Timer prescaler is clocked by the prescaler
clock input (fINT ÷ 12).
The user can select the desired prescaler division
ratio through the PS2, PS1, PS0 bits. When the
TCR count reaches 0, it sets the TMZ bit in the
TSCR. The TMZ bit can be tested under program
control to perform a timer function whenever it
goes high.
4.2.2 Timer Interrupt
When the counter register decrements to zero with
the ETI (Enable Timer Interrupt) bit set to one, an
interrupt request associated with Interrupt Vector
#3 is generated. When the counter decrements to
zero, the TMZ bit in the TSCR register is set to
one.
4.2.3 Application Notes
TMZ is set when the counter reaches zero; however, it may also be set by writing 00h in the TCR
register or by setting bit 7 of the TSCR register.
The TMZ bit must be cleared by user software
when servicing the timer interrupt to avoid undesired interrupts when leaving the interrupt service
routine. After reset, the 8-bit counter register is
loaded with 0FFh, while the 7-bit prescaler is loaded with 07Fh, and the TSCR register is cleared.
This means that the Timer is stopped (PSI=“0”)
and the timer interrupt is disabled.
Figure 26. Timer Working Principle
7-BIT PRESCALER
BIT0
CLOCK
0
BIT1
1
BIT2
2
BIT3
BIT4
3
4
8-1 MULTIPLEXER
BIT5
BIT6
6
5
7
PS0
PS1
PS2
BIT0
BIT1
BIT2
BIT3
BIT4
BIT5
BIT6
BIT7
8-BIT COUNTER
VA00186
42/78
41
ST62T52C ST62T62C/E62C
TIMER (Cont’d)
A write to the TCR register will predominate over
the 8-bit counter decrement to 00h function, i.e. if a
write and a TCR register decrement to 00h occur
simultaneously, the write will take precedence,
and the TMZ bit is not set until the 8-bit counter
reaches 00h again. The values of the TCR and the
PSC registers can be read accurately at any time.
PSI=“0” both counter and prescaler are not running.
Bit 2, 1, 0 = PS2, PS1, PS0: Prescaler Mux. Select. These bits select the division ratio of the prescaler register.
Table 13. Prescaler Division Factors
PS2
0
0
0
0
1
1
1
1
4.2.4 Timer Registers
Timer Status Control Register (TSCR)
Address: 0D4h — Read/Write
7
TMZ
0
ETI
D5
D4
PSI
PS2
PS1
PS0
Bit 7 = TMZ: Timer Zero bit
A low-to-high transition indicates that the timer
count register has decrement to zero. This bit
must be cleared by user software before starting a
new count.
Bit 6 = ETI: Enable Timer Interrup
When set, enables the timer interrupt request
(vector #3). If ETI=0 the timer interrupt is disabled.
If ETI=1 and TMZ=1 an interrupt request is generated.
Bit 5 = D5: Reserved
Must be set to “1”.
Bit 4 = D4
Do not care.
Bit 3 = PSI: Prescaler Initialize Bit
Used to initialize the prescaler and inhibit its counting. When PSI=“0” the prescaler is set to 7Fh and
the counter is inhibited. When PSI=“1” the prescaler is enabled to count downwards. As long as
PS1
0
0
1
1
0
0
1
1
PS0
0
1
0
1
0
1
0
1
Divided by
1
2
4
8
16
32
64
128
Timer Counter Register (TCR)
Address: 0D3h — Read/Write
7
D7
0
D6
D5
D4
D3
D2
D1
D0
Bit 7-0 = D7-D0: Counter Bits.
Prescaler Register PSC
Address: 0D2h — Read/Write
7
D7
0
D6
D5
D4
D3
D2
D1
D0
Bit 7 = D7: Always read as ”0”.
Bit 6-0 = D6-D0: Prescaler Bits.
43/78
42
ST62T52C ST62T62C/E62C
4.3 AUTO-RELOAD TIMER
The Auto-Reload Timer (AR Timer) on-chip peripheral consists of an 8-bit timer/counter with
compare and capture/reload capabilities and of a
7-bit prescaler with a clock multiplexer, enabling
the clock input to be selected as f INT, fINT/3 or an
external clock source. A Mode Control Register,
ARMC, two Status Control Registers, ARSC0 and
ARSC1, an output pin, ARTIMout, and an input
pin, ARTIMin, allow the Auto-Reload Timer to be
used in 4 modes:
– Auto-reload (PWM generation),
– Output compare and reload on external event
(PLL),
– Input capture and output compare for time measurement.
– Input capture and output compare for period
measurement.
The AR Timer can be used to wake the MCU from
WAIT mode either with an internal or with an external clock. It also can be used to wake the MCU
from STOP mode, if used with an external clock
signal connected to the ARTIMin pin. A Load register allows the program to read and write the
counter on the fly.
4.3.1 AR Timer Description
The AR COUNTER is an 8-bit up-counter incremented on the input clock’s rising edge. The counter is loaded from the ReLoad/Capture Register,
ARRC, for auto-reload or capture operations, as
well as for initialization. Direct access to the AR
counter is not possible; however, by reading or
writing the ARLR load register, it is possible to
read or write the counter’s contents on the fly.
The AR Timer’s input clock can be either the internal clock (from the Oscillator Divider), the internal
clock divided by 3, or the clock signal connected to
the ARTIMin pin. Selection between these clock
sources is effected by suitably programming bits
CC0-CC1 of the ARSC1 register. The output of the
AR Multiplexer feeds the 7-bit programmable AR
Prescaler, ARPSC, which selects one of the 8
available taps of the prescaler, as defined by
PSC0-PSC2 in the AR Mode Control Register.
Thus the division factor of the prescaler can be set
to 2n (where n = 0, 1,..7).
The clock input to the AR counter is enabled by the
TEN (Timer Enable) bit in the ARMC register.
When TEN is reset, the AR counter is stopped and
44/78
43
the prescaler and counter contents are frozen.
When TEN is set, the AR counter runs at the rate
of the selected clock source. The counter is
cleared on system reset.
The AR counter may also be initialized by writing
to the ARLR load register, which also causes an
immediate copy of the value to be placed in the AR
counter, regardless of whether the counter is running or not. Initialization of the counter, by either
method, will also clear the ARPSC register, whereupon counting will start from a known value.
4.3.2 Timer Operating Modes
Four different operating modes are available for
the AR Timer:
Auto-reload Mode with PWM Generation. This
mode allows a Pulse Width Modulated signal to be
generated on the ARTIMout pin with minimum
Core processing overhead.
The free running 8-bit counter is fed by the prescaler’s output, and is incremented on every rising
edge of the clock signal.
When a counter overflow occurs, the counter is
automatically reloaded with the contents of the Reload/Capture Register, ARCC, and ARTIMout is
set. When the counter reaches the value contained in the compare register (ARCP), ARTIMout
is reset.
On overflow, the OVF flag of the ARSC0 register is
set and an overflow interrupt request is generated
if the overflow interrupt enable bit, OVIE, in the
Mode Control Register (ARMC), is set. The OVF
flag must be reset by the user software.
When the counter reaches the compare value, the
CPF flag of the ARSC0 register is set and a compare interrupt request is generated, if the Compare
Interrupt enable bit, CPIE, in the Mode Control
Register (ARMC), is set. The interrupt service routine may then adjust the PWM period by loading a
new value into ARCP. The CPF flag must be reset
by user software.
The PWM signal is generated on the ARTIMout
pin (refer to the Block Diagram). The frequency of
this signal is controlled by the prescaler setting
and by the auto-reload value present in the Reload/Capture register, ARRC. The duty cycle of
the PWM signal is controlled by the Compare Register, ARCP.
ST62T52C ST62T62C/E62C
AUTO-RELOAD TIMER (Cont’d)
Figure 27. AR Timer Block Diagram
DATA BUS
DDRB7
8
DRB7
AR COMPARE
REGISTER
8
PB7/
ARTIMout
CPF
R
COMPARE
S
8
f INT
M
f INT /3
U
PWMOE
OVF
8-Bit
7-Bit
AR PRESCALER
X
CC0-CC1
AR COUNTER
OVF
OVIE
LOAD
PS0-PS2
TCLD
EIE
EF
8
CPF
AR TIMER
INTERRUPT
CPIE
8
8
AR
AR
PB6/
ARTIMin
SL0-SL1
EF
SYNCHRO
RELOAD/CAPTURE
LOAD
REGISTER
REGISTER
8
8
DATA BUS
VR01660A
45/78
44
ST62T52C ST62T62C/E62C
AUTO-RELOAD TIMER (Cont’d)
It should be noted that the reload values will also
affect the value and the resolution of the duty cycle
of PWM output signal. To obtain a signal on ARTIMout, the contents of the ARCP register must be
greater than the contents of the ARRC register.
The maximum available resolution for the ARTIMout duty cycle is:
Resolution = 1/[255-(ARRC)]
Where ARRC is the content of the Reload/Capture
register. The compare value loaded in the Compare Register, ARCP, must be in the range from
(ARRC) to 255.
The ARTC counter is initialized by writing to the
ARRC register and by then setting the TCLD (Timer Load) and the TEN (Timer Clock Enable) bits in
the Mode Control register, ARMC.
Enabling and selection of the clock source is controlled by the CC0, CC1, SL0 and SL1 bits in the
Status Control Register, ARSC1. The prescaler division ratio is selected by the PS0, PS1 and PS2
bits in the ARSC1 register.
In Auto-reload Mode, any of the three available
clock sources can be selected: Internal Clock, Internal Clock divided by 3 or the clock signal
present on the ARTIMin pin.
Figure 28. Auto-reload Timer PWM Function
COUNTER
255
COMPARE
VALUE
RELOAD
REGISTER
000
t
PWM OUTPUT
t
VR001852
46/78
45
ST62T52C ST62T62C/E62C
AUTO-RELOAD TIMER (Cont’d)
Capture Mode with PWM Generation. In this
mode, the AR counter operates as a free running
8-bit counter fed by the prescaler output. The
counter is incremented on every clock rising edge.
An 8-bit capture operation from the counter to the
ARRC register is performed on every active edge
on the ARTIMin pin, when enabled by Edge Control bits SL0, SL1 in the ARSC1 register. At the
same time, the External Flag, EF, in the ARSC0
register is set and an external interrupt request is
generated if the External Interrupt Enable bit, EIE,
in the ARMC register, is set. The EF flag must be
reset by user software.
Each ARTC overflow sets ARTIMout, while a
match between the counter and ARCP (Compare
Register) resets ARTIMout and sets the compare
flag, CPF. A compare interrupt request is generated if the related compare interrupt enable bit,
CPIE, is set. A PWM signal is generated on ARTIMout. The CPF flag must be reset by user software.
The frequency of the generated signal is determined by the prescaler setting. The duty cycle is
determined by the ARCP register.
Initialization and reading of the counter are identical to the auto-reload mode (see previous description).
Enabling and selection of clock sources is controlled by the CC0 and CC1 bits in the AR Status Control Register, ARSC1.
The prescaler division ratio is selected by programming the PS0, PS1 and PS2 bits in the
ARSC1 Register.
In Capture mode, the allowed clock sources are
the internal clock and the internal clock divided by
3; the external ARTIMin input pin should not be
used as a clock source.
Capture Mode with Reset of counter and prescaler, and PWM Generation. This mode is identical to the previous one, with the difference that a
capture condition also resets the counter and the
prescaler, thus allowing easy measurement of the
time between two captures (for input period measurement on the ARTIMin pin).
Load on External Input. The counter operates as
a free running 8-bit counter fed by the prescaler.
the count is incremented on every clock rising
edge.
Each counter overflow sets the ARTIMout pin. A
match between the counter and ARCP (Compare
Register) resets the ARTIMout pin and sets the
compare flag, CPF. A compare interrupt request is
generated if the related compare interrupt enable
bit, CPIE, is set. A PWM signal is generated on
ARTIMout. The CPF flag must be reset by user
software.
Initialization of the counter is as described in the
previous paragraph. In addition, if the external ARTIMin input is enabled, an active edge on the input
pin will copy the contents of the ARRC register into
the counter, whether the counter is running or not.
Notes:
The allowed AR Timer clock sources are the following:
AR Timer Mode
Auto-reload mode
Capture mode
Capture/Reset mode
External Load mode
fINT,
fINT,
fINT,
fINT,
Clock Sources
fINT/3, ARTIMin
fINT/3
fINT/3
fINT/3
The clock frequency should not be modified while
the counter is counting, since the counter may be
set to an unpredictable value. For instance, the
multiplexer setting should not be modified while
the counter is counting.
Loading of the counter by any means (by auto-reload, through ARLR, ARRC or by the Core) resets
the prescaler at the same time.
Care should be taken when both the Capture interrupt and the Overflow interrupt are used. Capture
and overflow are asynchronous. If the capture occurs when the Overflow Interrupt Flag, OVF, is
high (between counter overflow and the flag being
reset by software, in the interrupt routine), the External Interrupt Flag, EF, may be cleared simultaneusly without the interrupt being taken into account.
The solution consists in resetting the OVF flag by
writing 06h in the ARSC0 register. The value of EF
is not affected by this operation. If an interrupt has
occured, it will be processed when the MCU exits
from the interrupt routine (the second interrupt is
latched).
47/78
46
ST62T52C ST62T62C/E62C
AUTO-RELOAD TIMER (Cont’d)
4.3.3 AR Timer Registers
AR Mode Control Register (ARMC)
Address: D5h — Read/Write
Reset status: 00h
7
TCLD
0
TEN
PWMOE
EIE
CPIE
OVIE ARMC1 ARMC0
ARSC0 register is also set, an interrupt request is
generated.
Bit 1-0 = ARMC1-ARMC0: Mode Control Bits 1-0.
These are the operating mode control bits. The following bit combinations will select the various operating modes:
ARMC1
0
0
ARMC0
0
1
1
0
1
1
The AR Mode Control Register ARMC is used to
program the different operating modes of the AR
Timer, to enable the clock and to initialize the
counter. It can be read and written to by the Core
and it is cleared on system reset (the AR Timer is
disabled).
Bit 7 = TLCD: Timer Load Bit. This bit, when set,
will cause the contents of ARRC register to be
loaded into the counter and the contents of the
prescaler register, ARPSC, are cleared in order to
initialize the timer before starting to count. This bit
is write-only and any attempt to read it will yield a
logical zero.
Bit 6 = TEN: Timer Clock Enable. This bit, when
set, allows the timer to count. When cleared, it will
stop the timer and freeze ARPSC and ARTSC.
Bit 5 = PWMOE: PWM Output Enable. This bit,
when set, enables the PWM output on the ARTIMout pin. When reset, the PWM output is disabled.
Bit 4 = EIE: External Interrupt Enable. This bit,
when set, enables the external interrupt request.
When reset, the external interrupt request is
masked. If EIE is set and the related flag, EF, in
the ARSC0 register is also set, an interrupt request is generated.
Bit 3 = CPIE: Compare Interrupt Enable. This bit,
when set, enables the compare interrupt request.
If CPIE is reset, the compare interrupt request is
masked. If CPIE is set and the related flag, CPF, in
the ARSC0 register is also set, an interrupt request is generated.
Bit 2 = OVIE: Overflow Interrupt. This bit, when
set, enables the overflow interrupt request. If OVIE
is reset, the compare interrupt request is masked.
If OVIE is set and the related flag, OVF in the
48/78
47
Operating Mode
Auto-reload Mode
Capture Mode
Capture Mode with Reset
of ARTC and ARPSC
Load on External Edge
Mode
AR Timer Status/Control Registers ARSC0 &
ARSC1. These registers contain the AR Timer status information bits and also allow the programming of clock sources, active edge and prescaler
multiplexer setting.
ARSC0 register bits 0,1 and 2 contain the interrupt
flags of the AR Timer. These bits are read normally. Each one may be reset by software. Writing a
one does not affect the bit value.
AR Status Control Register 0 (ARSC0)
Address: D6h — Read/Clear
7
D7
0
D6
D5
D4
D3
EF
CPF
OVF
Bits 7-3 = D7-D3: Unused
Bit 2 = EF: External Interrupt Flag. This bit is set by
any active edge on the external ARTIMin input pin.
The flag is cleared by writing a zero to the EF bit.
Bit 1 = CPF: Compare Interrupt Flag. This bit is set
if the contents of the counter and the ARCP register are equal. The flag is cleared by writing a zero
to the CPF bit.
Bit 0 = OVF: Overflow Interrupt Flag. This bit is set
by a transition of the counter from FFh to 00h
(overflow). The flag is cleared by writing a zero to
the OVF bit.
ST62T52C ST62T62C/E62C
AUTO-RELOAD TIMER (Cont’d)
AR Status Control Register 1(ARSC1)
Address: D7h — Read/Write
7
0
PS2
PS1
PS0
D4
SL1
SL0
CC1
CC0
Bist 7-5 = PS2-PS0: Prescaler Division Selection
Bits 2-0. These bits determine the Prescaler division ratio. The prescaler itself is not affected by
these bits. The prescaler division ratio is listed in the
following table:
Table 14. Prescaler Division Ratio Selection
PS2
0
PS1
0
PS0
0
ARPSC Division Ratio
1
0
0
1
2
0
1
0
4
0
1
1
8
1
0
0
16
1
0
1
32
1
1
0
64
1
1
1
128
Bit 4 = D4: Reserved. Must be kept reset.
Bit 3-2 = SL1-SL0: Timer Input Edge Control Bits 10. These bits control the edge function of the Timer
input pinfor external synchronization. If bit SL0 is reset, edge detection is disabled; if set edge detection
is enabled. If bit SL1 is reset, the AR Timer input pin
is rising edge sensitive; if set, it is falling edge sensitive.
SL1
X
0
1
SL0
0
1
1
Edge Detection
Disabled
Rising Edge
Falling Edge
Bit 1-0 = CC1-CC0: Clock Source Select Bit 1-0.
These bits select the clock source for the AR Timer
through the AR Multiplexer. The programming of
the clocksources is explained in the following Table
15 :
AR Load Register ARLR. The ARLR load register
is used to read or write the ARTC counter register
“on the fly” (while it is counting). The ARLR register is not affected by system reset.
AR Load Register (ARLR)
Address: DBh — Read/Write
7
D7
0
D6
D5
D4
D3
D2
D1
D0
Bit 7-0 = D7-D0: Load Register Data Bits. These
are the load register data bits.
AR Reload/Capture Register. The ARRC reload/capture register is used to hold the auto-reload value which is automatically loaded into the
counter when overflow occurs.
AR Reload/Capture (ARRC)
Address: D9h — Read/Write
7
D7
0
D6
D5
D4
D3
D2
D1
D0
Bit 7-0 = D7-D0: Reload/Capture Data Bits. These
are the Reload/Capture register data bits.
AR Compare Register. The CP compare register
is used to hold the compare value for the compare
function.
AR Compare Register (ARCP)
Address: DAh — Read/Write
7
D7
0
D6
D5
D4
D3
D2
D1
D0
Bit 7-0 = D7-D0: Compare Data Bits. These are
the Compare register data bits.
Table 15. Clock Source Selection.
CC1
0
0
1
1
CC0
0
1
0
1
Clock Source
Fint
Fint Divided by 3
ARTIMin Input Clock
Reserved
49/78
48
ST62T52C ST62T62C/E62C
4.4 A/D CONVERTER (ADC)
The A/D converter peripheral is an 8-bit analog to
digital converter with analog inputs as alternate I/O
functions (the number of which is device dependent), offering 8-bit resolution with a typical conversion time of 70us (at an oscillator clock frequency
of 8MHz).
The ADC converts the input voltage by a process
of successive approximations, using a clock frequency derived from the oscillator with a division
factor of twelve. With an oscillator clock frequency
less than 1.2MHz, conversion accuracy is decreased.
Selection of the input pin is done by configuring
the related I/O line as an analog input via the Option and Data registers (refer to I/O ports description for additional information). Only one I/O line
must be configured as an analog input at any time.
The user must avoid any situation in which more
than one I/O pin is selected as an analog input simultaneously, to avoid device malfunction.
The ADC uses two registers in the data space: the
ADC data conversion register, ADR, which stores
the conversion result, and the ADC control register, ADCR, used to program the ADC functions.
A conversion is started by writing a “1” to the Start
bit (STA) in the ADC control register. This automatically clears (resets to “0”) the End Of Conversion Bit (EOC). When a conversion is complete,
the EOC bit is automatically set to “1”, in order to
flag that conversion is complete and that the data
in the ADC data conversion register is valid. Each
conversion has to be separately initiated by writing
to the STA bit.
The STA bit is continuously scanned so that, if the
user sets it to “1” while a previous conversion is in
progress, a new conversion is started before completing the previous one. The start bit (STA) is a
write only bit, any attempt to read it will show a logical “0”.
The A/D converter features a maskable interrupt
associated with the end of conversion. This interrupt is associated with interrupt vector #4 and occurs when the EOC bit is set (i.e. when a conversion is completed). The interrupt is masked using
the EAI (interrupt mask) bit in the control register.
The power consumption of the device can be reduced by turning off the ADC peripheral. This is
done by setting the PDS bit in the ADC control register to “0”. If PDS=“1”, the A/D is powered and enabled for conversion. This bit must be set at least
one instruction before the beginning of the conver-
50/78
49
sion to allow stabilisation of the A/D converter.
This action is also needed before entering WAIT
mode, since the A/D comparator is not automatically disabled in WAIT mode.
During Reset, any conversion in progress is
stopped, the control register is reset to 40h and the
ADC interrupt is masked (EAI=0).
Figure 29. ADC Block Diagram
Ain
CONVERTER
INTERRUPT
CLOCK
RESET
AVSS
AVDD
CONTROL REGISTER
RESULT REGISTER
8
8
CORE
CONTROL SIGNALS
CORE
VA00418
4.4.1 Application Notes
The A/D converter does not feature a sample and
hold circuit. The analog voltage to be measured
should therefore be stable during the entire conversion cycle. Voltage variation should not exceed
±1/2 LSB for the optimum conversion accuracy. A
low pass filter may be used at the analog input
pins to reduce input voltage variation during conversion.
When selected as an analog channel, the input pin
is internally connected to a capacitor Cad of typically 12pF. For maximum accuracy, this capacitor
must be fully charged at the beginning of conversion. In the worst case, conversion starts one instruction (6.5 µs) after the channel has been selected. In worst case conditions, the impedance,
ASI, of the analog voltage source is calculated using the following formula:
6.5µs = 9 x Cad x ASI
(capacitor charged to over 99.9%), i.e. 30 kΩ including a 50% guardband. ASI can be higher if Cad
has been charged for a longer period by adding instructions before the start of conversion (adding
more than 26 CPU cycles is pointless).
ST62T52C ST62T62C/E62C
A/D CONVERTER (Cont’d)
Since the ADC is on the same chip as the microprocessor, the user should not switch heavily loaded output signals during conversion, if high precision is required. Such switching will affect the supply voltages used as analog references.
The accuracy of the conversion depends on the
quality of the power supplies (V DD and VSS). The
user must take special care to ensure a well regulated reference voltage is present on the VDD and
VSS pins (power supply voltage variations must be
less than 5V/ms). This implies, in particular, that a
suitable decoupling capacitor is used at the VDD
pin.
The converter resolution is given by::
V DD – V SS
--------------------------256
The Input voltage (Ain) which is to be converted
must be constant for 1µs before conversion and
remain constant during conversion.
Conversion resolution can be improved if the power supply voltage (VDD ) to the microcontroller is
lowered.
In order to optimise conversion resolution, the user
can configure the microcontroller in WAIT mode,
because this mode minimises noise disturbances
and power supply variations due to output switching. Nevertheless, the WAIT instruction should be
executed as soon as possible after the beginning
of the conversion, because execution of the WAIT
instruction may cause a small variation of the VDD
voltage. The negative effect of this variation is minimized at the beginning of the conversion when the
converter is less sensitive, rather than at the end
of conversion, when the less significant bits are
determined.
The best configuration, from an accuracy standpoint, is WAIT mode with the Timer stopped. Indeed, only the ADC peripheral and the oscillator
are then still working. The MCU must be woken up
from WAIT mode by the ADC interrupt at the end
of the conversion. It should be noted that waking
up the microcontroller could also be done using
the Timer interrupt, but in this case the Timer will
be working and the resulting noise could affect
conversion accuracy.
One extra feature is available in the ADC to get a
better accuracy. In fact, each ADC conversion has
to be followed by a WAIT instruction to minimize
the noise during the conversion. But the first conversion step is performed before the execution of
the WAIT when most of clocks signals are still enabled . The key is to synchronize the ADC start
with the effective execution of the WAIT. This is
achieved by setting ADC SYNC option. This way,
ADC conversion starts in effective WAIT for maximum accuracy.
Note: With this extra option, it is mandatory to execute WAIT instruction just after ADC start instruction. Insertion of any extra instruction may cause
spurious interrupt request at ADC interrupt vector.
A/D Converter Control Register (ADCR)
Address: 0D1h — Read/Write
7
EAI
0
EOC
STA
PDS
D3
D2
D1
D0
Bit 7 = EAI: Enable A/D Interrupt. If this bit is set to
“1” the A/D interrupt is enabled, when EAI=0 the
interrupt is disabled.
Bit 6 = EOC: End of conversion. Read Only. This
read only bit indicates when a conversion has
been completed. This bit is automatically reset to
“0” when the STA bit is written. If the user is using
the interrupt option then this bit can be used as an
interrupt pending bit. Data in the data conversion
register are valid only when this bit is set to “1”.
Bit 5 = STA: Start of Conversion. Write Only. Writing a “1” to this bit will start a conversion on the selected channel and automatically reset to “0” the
EOC bit. If the bit is set again when a conversion is
in progress, the present conversion is stopped and
a new one will take place. This bit is write only, any
attempt to read it will show a logical zero.
Bit 4 = PDS: Power Down Selection. This bit activates the A/D converter if set to “1”. Writing a “0” to
this bit will put the ADC in power down mode (idle
mode).
Bit 3-0 = D3-D0. Not used
A/D Converter Data Register (ADR)
Address: 0D0h — Read only
7
D7
0
D6
D5
D4
D3
D2
D1
D0
Bit 7-0 = D7-D0: 8 Bit A/D Conversion Result.
51/78
50
ST62T52C ST62T62C/E62C
5 SOFTWARE
5.1 ST6 ARCHITECTURE
The ST6 software has been designed to fully use
the hardware in the most efficient way possible
while keeping byte usage to a minimum; in short,
to provide byte efficient programming capability.
The ST6 core has the ability to set or clear any
register or RAM location bit of the Data space with
a single instruction. Furthermore, the program
may branch to a selected address depending on
the status of any bit of the Data space. The carry
bit is stored with the value of the bit when the SET
or RES instruction is processed.
5.2 ADDRESSING MODES
The ST6 core offers nine addressing modes,
which are described in the following paragraphs.
Three different address spaces are available: Program space, Data space, and Stack space. Program space contains the instructions which are to
be executed, plus the data for immediate mode instructions. Data space contains the Accumulator,
the X,Y,V and W registers, peripheral and Input/Output registers, the RAM locations and Data
ROM locations (for storage of tables and constants). Stack space contains six 12-bit RAM cells
used to stack the return addresses for subroutines
and interrupts.
Immediate. In the immediate addressing mode,
the operand of the instruction follows the opcode
location. As the operand is a ROM byte, the immediate addressing mode is used to access constants which do not change during program execution (e.g., a constant used to initialize a loop counter).
Direct. In the direct addressing mode, the address
of the byte which is processed by the instruction is
stored in the location which follows the opcode. Direct addressing allows the user to directly address
the 256 bytes in Data Space memory with a single
two-byte instruction.
Short Direct. The core can address the four RAM
registers X,Y,V,W (locations 80h, 81h, 82h, 83h) in
the short-direct addressing mode. In this case, the
instruction is only one byte and the selection of the
location to be processed is contained in the opcode. Short direct addressing is a subset of the direct addressing mode. (Note that 80h and 81h are
also indirect registers).
Extended. In the extended addressing mode, the
12-bit address needed to define the instruction is
obtained by concatenating the four less significant
52/78
51
bits of the opcode with the byte following the opcode. The instructions (JP, CALL) which use the
extended addressing mode are able to branch to
any address of the 4K bytes Program space.
An extended addressing mode instruction is twobyte long.
Program Counter Relative. The relative addressing mode is only used in conditional branch instructions. The instruction is used to perform a test
and, if the condition is true, a branch with a span of
-15 to +16 locations around the address of the relative instruction. If the condition is not true, the instruction which follows the relative instruction is
executed. The relative addressing mode instruction is one-byte long. The opcode is obtained in
adding the three most significant bits which characterize the kind of the test, one bit which determines whether the branch is a forward (when it is
0) or backward (when it is 1) branch and the four
less significant bits which give the span of the
branch (0h to Fh) which must be added or subtracted to the address of the relative instruction to
obtain the address of the branch.
Bit Direct. In the bit direct addressing mode, the
bit to be set or cleared is part of the opcode, and
the byte following the opcode points to the address of the byte in which the specified bit must be
set or cleared. Thus, any bit in the 256 locations of
Data space memory can be set or cleared.
Bit Test & Branch. The bit test and branch addressing mode is a combination of direct addressing and relative addressing. The bit test and
branch instruction is three-byte long. The bit identification and the tested condition are included in
the opcode byte. The address of the byte to be
tested follows immediately the opcode in the Program space. The third byte is the jump displacement, which is in the range of -127 to +128. This
displacement can be determined using a label,
which is converted by the assembler.
Indirect. In the indirect addressing mode, the byte
processed by the register-indirect instruction is at
the address pointed by the content of one of the indirect registers, X or Y (80h,81h). The indirect register is selected by the bit 4 of the opcode. A register indirect instruction is one byte long.
Inherent. In the inherent addressing mode, all the
information necessary to execute the instruction is
contained in the opcode. These instructions are
one byte long.
ST62T52C ST62T62C/E62C
5.3 INSTRUCTION SET
The ST6 core offers a set of 40 basic instructions
which, when combined with nine addressing
modes, yield 244 usable opcodes. They can be divided into six different types: load/store, arithmetic/logic, conditional branch, control instructions,
jump/call, and bit manipulation. The following paragraphs describe the different types.
All the instructions belonging to a given type are
presented in individual tables.
Load & Store. These instructions use one, two or
three bytes in relation with the addressing mode.
One operand is the Accumulator for LOAD and the
other operand is obtained from data memory using
one of the addressing modes.
For Load Immediate one operand can be any of
the 256 data space bytes while the other is always
immediate data.
Table 16. Load & Store Instructions
Instruction
LD
LD
LD
LD
LD
A, X
A, Y
A, V
A, W
X, A
LD Y, A
LD V, A
LD W, A
LD A, rr
LD rr, A
LD A, (X)
LD A, (Y)
LD (X), A
LD (Y), A
LDI A, #N
LDI rr, #N
Addressing Mode
Bytes
Cycles
Direct
Direct
Direct
Direct
Direct
1
1
1
1
1
Short Direct
Short Direct
Short Direct
Direct
Direct
Indirect
Indirect
Indirect
Indirect
Immediate
Immediate
1
1
1
2
2
1
1
1
1
2
3
Short
Short
Short
Short
Short
Flags
4
4
4
4
4
Z
∆
∆
∆
∆
∆
C
*
*
*
*
*
4
4
4
4
4
4
4
4
4
4
4
∆
∆
∆
∆
∆
∆
∆
∆
∆
∆
*
*
*
*
*
*
*
*
*
*
*
*
Notes:
X,Y. Indirect Register Pointers, V & W Short Direct Registers
# . Immediate data (stored in ROM memory)
rr. Data space register
∆ . Affected
* . Not Affected
53/78
52
ST62T52C ST62T62C/E62C
INSTRUCTION SET (Cont’d)
Arithmetic and Logic. These instructions are
used to perform the arithmetic calculations and
logic operations. In AND, ADD, CP, SUB instructions one operand is always the accumulator while
the other can be either a data space memory con-
tent or an immediate value in relation with the addressing mode. In CLR, DEC, INC instructions the
operand can be any of the 256 data space addresses. In COM, RLC, SLA the operand is always
the accumulator.
Table 17. Arithmetic & Logic Instructions
Instruction
ADD A, (X)
ADD A, (Y)
ADD A, rr
ADDI A, #N
AND A, (X)
AND A, (Y)
AND A, rr
ANDI A, #N
CLR A
CLR r
COM A
CP A, (X)
CP A, (Y)
CP A, rr
CPI A, #N
DEC X
DEC Y
DEC V
DEC W
DEC A
DEC rr
DEC (X)
DEC (Y)
INC X
INC Y
INC V
INC W
INC A
INC rr
INC (X)
INC (Y)
RLC A
SLA A
SUB A, (X)
SUB A, (Y)
SUB A, rr
SUBI A, #N
Addressing Mode
Indirect
Indirect
Direct
Immediate
Indirect
Indirect
Direct
Immediate
Short Direct
Direct
Inherent
Indirect
Indirect
Direct
Immediate
Short Direct
Short Direct
Short Direct
Short Direct
Direct
Direct
Indirect
Indirect
Short Direct
Short Direct
Short Direct
Short Direct
Direct
Direct
Indirect
Indirect
Inherent
Inherent
Indirect
Indirect
Direct
Immediate
Bytes
Cycles
1
1
2
2
1
1
2
2
2
3
1
1
1
2
2
1
1
1
1
2
2
1
1
1
1
1
1
2
2
1
1
1
2
1
1
2
2
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
Notes:
X,Y.Indirect Register Pointers, V & W Short Direct RegistersD. Affected
# . Immediate data (stored in ROM memory)* . Not Affected
rr. Data space register
54/78
53
Flags
Z
∆
∆
∆
∆
∆
∆
∆
∆
∆
*
∆
∆
∆
∆
∆
∆
∆
∆
∆
∆
∆
∆
∆
∆
∆
∆
∆
∆
∆
∆
∆
∆
∆
∆
∆
∆
∆
C
∆
∆
∆
∆
∆
∆
∆
∆
∆
*
∆
∆
∆
∆
∆
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
∆
∆
∆
∆
∆
∆
ST62T52C ST62T62C/E62C
INSTRUCTION SET (Cont’d)
Conditional Branch. The branch instructions
achieve a branch in the program when the selected condition is met.
Control Instructions. The control instructions
control the MCU operations during program execution.
Bit Manipulation Instructions. These instructions can handle any bit in data space memory.
One group either sets or clears. The other group
(see Conditional Branch) performs the bit test
branch operations.
Table 18. Conditional Branch Instructions
Jump and Call. These two instructions are used
to perform long (12-bit) jumps or subroutines call
inside the whole program space.
Instruction
JRC e
JRNC e
JRZ e
JRNZ e
JRR b, rr, ee
JRS b, rr, ee
Branch If
C=1
C=0
Z=1
Z=0
Bit = 0
Bit = 1
Bytes
Cycles
1
1
1
1
3
3
2
2
2
2
5
5
Notes :
b.
3-bit address
e.
5 bit signed displacement in the range -15 to +16<F128M>
ee. 8 bit signed displacement in the range -126 to +129
Flags
Z
*
*
*
*
*
*
C
*
*
*
*
∆
∆
rr. Data space register
∆ . Affected. The tested bit is shifted into carry.
* . Not Affected
Table 19. Bit Manipulation Instructions
Instruction
SET b,rr
RES b,rr
Addressing Mode
Bit Direct
Bit Direct
Bytes
Cycles
2
2
4
4
Notes:
b.
3-bit address;
rr. Data space register;
Flags
Z
*
*
C
*
*
* . Not<M> Affected
Table 20. Control Instructions
Instruction
NOP
RET
RETI
STOP (1)
WAIT
Addressing Mode
Inherent
Inherent
Inherent
Inherent
Inherent
Bytes
Cycles
1
1
1
1
1
2
2
2
2
2
Flags
Z
*
*
∆
*
*
C
*
*
∆
*
*
Notes:
1.
This instruction is deactivated<N>and a WAI T is automatically executed instead of a STOP if the watchdog function is selected.
∆ . Affected
*.
Not Affected
Table 21. Jump & Call Instructions
Instruction
CALL abc
JP abc
Addressing Mode
Extended
Extended
Bytes
Cycles
2
2
4
4
Flags
Z
C
*
*
*
*
Notes:
abc. 12-bit address;
* . Not Affected
55/78
54
ST62T52C ST62T62C/E62C
Opcode Map Summary. The following table contains an opcode map for the instructions used by the ST6
LOW
0
0000
HI
0
0000
1
0001
2
0010
3
0011
4
0100
5
0101
6
0110
7
0111
8
1000
9
1001
A
1010
B
1011
C
1100
D
1101
E
1110
F
1111
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
JRNZ
e
pcr
JRNZ
e
pcr
JRNZ
e
pcr
JRNZ
e
pcr
JRNZ
e
pcr
JRNZ
e
pcr
JRNZ
e
pcr
JRNZ
e
pcr
JRNZ
e
pcr
RNZ
e
pcr
JRNZ
e
pcr
JRNZ
e
pcr
JRNZ
e
pcr
JRNZ
e
pcr
JRNZ
e
pcr
JRNZ
e
pcr
1
0001
4
2
4
2
4
2
4
2
4
2
4
2
4
2
4
2
4
2
4
2
4
2
4
2
4
2
4
2
4
2
4
2
CALL
abc
ext
CALL
abc
ext
CALL
abc
ext
CALL
abc
ext
CALL
abc
ext
CALL
abc
ext
CALL
abc
ext
CALL
abc
ext
CALL
abc
ext
CALL
abc
ext
CALL
abc
ext
CALL
abc
ext
CALL
abc
ext
CALL
abc
ext
CALL
abc
ext
CALL
abc
ext
Abbreviations for Addressing Modes:
dir
Direct
sd
Short Direct
imm Immediate
inh
Inherent
ext
Extended
b.d
Bit Direct
bt
Bit Test
pcr
Program Counter Relative
ind
Indirect
56/78
55
2
0010
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
JRNC
e
pcr
JRNC
e
pcr
JRNC
e
pcr
JRNC
e
pcr
JRNC
e
pcr
JRNC
e
pcr
JRNC
e
pcr
JRNC
e
pcr
JRNC
e
pcr
JRNC
e
pcr
JRNC
e
pcr
JRNC
e
pcr
JRNC
e
pcr
JRNC
e
pcr
JRNC
e
pcr
JRNC
e
pcr
3
0011
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
JRR
b0,rr,ee
bt
JRS
b0,rr,ee
bt
JRR
b4,rr,ee
bt
JRS
b4,rr,ee
bt
JRR
b2,rr,ee
bt
JRS
b2,rr,ee
bt
JRR
b6,rr,ee
bt
JRS
b6,rr,ee
bt
JRR
b1,rr,ee
bt
JRS
b1,rr,ee
bt
JRR
b5,rr,ee
bt
JRS
b5,rr,ee
bt
JRR
b3,rr,ee
bt
JRS
b3,rr,ee
bt
JRR
b7,rr,ee
bt
JRS
b7,rr,ee
bt
4
0100
2
5
0101
6
0110
JRZ
2
e
1
2
#
pcr
JRZ 4
e
1
2
e
x
e
sd 1
2
#
sd 1
2
#
pcr
JRZ 4
e
1
2
e
y
e
1
2
sd 1
2
#
e
sd 1
2
#
pcr
JRZ 4
e
1
2
1
2
sd 1
2
e
1
2
a,v
e
sd 1
2
#
pcr
JRZ 4
e
1
2
e
w
e
1
Legend:
#
Indicates Ill egal Instructions
e
5 Bit Displacement
b
3 Bit Address
rr
1byte dataspace address
nn
1 byte immediate data
abc
12 bit address
ee
8 bit Displacement
prc 1
JRC 4
e
sd 1
2
#
pcr
JRZ 4
e
prc 2
JRC 4
1
INC 2
pcr 1
JRZ
1
2
prc 1
JRC 4
e
pcr 1
JRZ
1
2
prc
JRC 4
1
LD 2
prc 2
JRC 4
e
1
LD 2
a,w
pcr 1
prc 1
JRC
e
sd 1
Cycle
Addressing Mode
AND
a,(x)
ind
ANDI
a,nn
imm
SUB
a,(x)
ind
SUBI
a,nn
imm
DEC
(x)
ind
2
2
0010
3
0011
4
0100
5
0101
6
0110
8
1000
9
1001
A
1010
B
1011
C
1100
D
1101
E
1110
F
1111
JRC
Mnemonic
e
1
1
0001
#
prc
Operand
Bytes
ind
#
e
pcr
JRZ 4
LD
prc 1
JRC
0
0000
7
0111
(x),a
e
#
a,nn
imm
CP
a,(x)
ind
CPI
a,nn
imm
ADD
a,(x)
ind
ADDI
a,nn
imm
INC
(x)
ind
prc
JRC 4
1
INC 2
pcr 1
JRZ
ind
LDI
#
e
v
e
prc 1
JRC
e
pcr 1
JRZ
1
2
prc 2
JRC 4
1
LD 2
a,y
e
prc 1
JRC 4
e
pcr
JRZ 4
e
prc 2
JRC 4
1
INC 2
pcr 1
JRZ
1
2
prc 1
JRC 4
e
pcr 1
JRZ
e
prc 2
JRC 4
1
LD 2
a,x
1
2
a,(x)
e
pcr
JRZ 4
HI
LD
prc 1
JRC 4
e
pcr 1
JRZ
1
2
e
1
2
JRC 4
1
INC 2
LOW
7
0111
prc
ST62T52C ST62T62C/E62C
Opcode Map Summary (Continued)
LOW
8
1000
HI
0
0000
1
0001
2
0010
3
0011
4
0100
5
0101
6
0110
7
0111
8
1000
9
1001
A
1010
B
1011
C
1100
D
1101
E
1110
F
1111
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
JRNZ
e
pcr
JRNZ
e
pcr
JRNZ
e
pcr
JRNZ
e
pcr
JRNZ
e
pcr
JRNZ
e
pcr
JRNZ
e
pcr
JRNZ
e
pcr
JRNZ
e
pcr
RNZ
e
pcr
JRNZ
e
pcr
JRNZ
e
pcr
JRNZ
e
pcr
JRNZ
e
pcr
JRNZ
e
pcr
JRNZ
e
pcr
9
1001
4
A
1010
JP 2
abc
2
4
ext 1
JP 2
abc
2
4
ext 1
JP 2
abc
2
4
ext 1
JP 2
abc
2
4
ext 1
JP 2
abc
2
4
ext 1
JP 2
abc
2
4
ext 1
JP 2
abc
2
4
ext 1
JP 2
abc
2
4
ext 1
JP 2
abc
2
4
ext 1
JP 2
abc
2
4
ext 1
JP 2
abc
2
4
ext 1
JP 2
abc
2
4
ext 1
JP 2
abc
2
4
ext 1
JP 2
abc
2
4
ext 1
JP 2
abc
2
4
ext 1
JP 2
abc
2
ext 1
Abbreviations for Addressing Modes:
dir
Direct
sd
Short Direct
imm Immediate
inh
Inherent
ext
Extended
b.d
Bit Direct
bt
Bit Test
pcr
Program Counter Relative
ind
Indirect
JRNC
e
pcr
JRNC
e
pcr
JRNC
e
pcr
JRNC
e
pcr
JRNC
e
pcr
JRNC
e
pcr
JRNC
e
pcr
JRNC
e
pcr
JRNC
e
pcr
JRNC
e
pcr
JRNC
e
pcr
JRNC
e
pcr
JRNC
e
pcr
JRNC
e
pcr
JRNC
e
pcr
JRNC
e
pcr
B
1011
4
2
4
2
4
2
4
2
4
2
4
2
4
2
4
2
4
2
4
2
4
2
4
2
4
2
4
2
4
2
4
2
RES
b0,rr
b.d
SET
b0,rr
b.d
RES
b4,rr
b.d
SET
b4,rr
b.d
RES
b2,rr
b.d
SET
b2,rr
b.d
RES
b6,rr
b.d
SET
b6,rr
b.d
RES
b1,rr
b.d
SET
b1,rr
b.d
RES
b5,rr
b.d
SET
b5,rr
b.d
RES
b3,rr
b.d
SET
b3,rr
b.d
RES
b7,rr
b.d
SET
b7,rr
b.d
C
1100
2
D
1101
JRZ 4
e
1
2
pcr 3
JRZ 4
e
1
2
pcr 1
JRZ 4
e
1
2
e
1
2
E
1110
LDI 2
rr,nn
imm
DEC
x
sd
COM
a
pcr
JRZ 4
e
1
2
pcr 1
JRZ 2
sd 1
RETI 2
pcr 1
JRZ 4
inh 1
DEC 2
y
pcr 1
JRZ 2
sd 1
STOP 2
pcr 1
JRZ 4
inh 1
LD 2
1
2
y,a
e
#
e
v
e
pcr 1
JRZ 2
sd 1
RET 2
pcr 1
JRZ 4
inh 1
DEC 2
2
JRC
prc 1
JRC 4
prc 2
JRC 4
e
w
prc 1
JRC 4
e
pcr 1
JRZ 2
sd 1
WAIT 2
pcr 1
JRZ 4
inh 1
LD 2
prc 2
JRC 4
e
e
Legend:
#
Indicates Ill egal Instructions
e
5 Bit Displacement
b
3 Bit Address
rr
1byte dataspace address
nn
1 byte immediate data
abc
12 bit address
ee
8 bit Displacement
prc 2
prc 2
JRC 4
e
e
1
prc 1
JRC 4
e
v,a
e
1
2
prc 2
JRC 4
inh 1
LD 2
e
1
2
prc 1
JRC 4
sd 1
RCL 2
a
e
1
2
prc 2
JRC 4
e
pcr 1
JRZ 4
1
2
prc 1
JRC 4
1
DEC 2
pcr 1
JRZ 4
1
2
dir
ADD
a,(y)
ind
ADD
a,rr
dir
INC
(y)
ind
INC
rr
dir
LD
(y),a
ind
LD
rr,a
dir
AND
a,(y)
ind
AND
a,rr
dir
SUB
a,(y)
ind
SUB
a,rr
dir
DEC
(y)
ind
DEC
rr
dir
e
pcr
JRZ 4
1
2
prc 2
JRC 4
sd 1
2
w,a
pcr 1
prc 1
JRC 4
e
sd 1
Cycle
Operand
Bytes
ind
CP
a,rr
e
pcr 1
JRZ
1
2
a,(y)
e
e
dir
CP
prc 1
JRC 4
e
e
1
2
e
e
e
ind
LD
a,rr
e
e
1
2
a,(y)
prc 2
JRC 4
1
LD 2
HI
LD
prc 1
JRC 4
e
x,a
1
2
JRC 4
1
2
LOW
F
1111
0
0000
1
0001
2
0010
3
0011
4
0100
5
0101
6
0110
7
0111
8
1000
9
1001
A
1010
B
1011
C
1100
D
1101
E
1110
F
1111
Mnemonic
e
1
prc
Addressing Mode
57/78
56
ST62T52C ST62T62C/E62C
6 ELECTRICAL CHARACTERISTICS
6.1 ABSOLUTE MAXIMUM RATINGS
This product contains devices to protect the inputs
against damage due to high static voltages, however it is advisable to take normal precaution to
avoid application of any voltage higher than the
specified maximum rated voltages.
For proper operation it is recommended that VI
and VO be higher than VSS and lower than V DD.
Reliability is enhanced if unused inputs are connected to an appropriate logic voltage level (VDD
or VSS).
Symbol
VDD
Parameter
Supply Voltage
Power Considerations.The average chip-junction temperature, Tj, in Celsius can be obtained
from:
Tj=TA + PD x RthJA
Where:TA = Ambient Temperature.
RthJA =Package thermal resistance (junction-to ambient).
PD = Pint + Pport.
Pint =IDD x VDD (chip internal power).
Pport =Port power dissipation (determined
by the user).
Value
Unit
-0.3 to 7.0
V
(1)
V
V
VI
Input Voltage
V SS - 0.3 to VDD + 0.3
VO
Output Voltage
V SS - 0.3 to VDD + 0.3 (1)
80
mA
100
mA
150
°C
-60 to 150
°C
IV DD
Total Current into VDD (source)
IVSS
Total Current out of VSS (sink)
Junction Temperature
Tj
TSTG
Storage Temperature
Notes:
- Stresses above those listed as “absolute maximum ratings” may cause permanent damage to the device. This is a stress rating only and
functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may
affect device reliability.
- (1) Within these limits, clamping diodes are guarantee to be not conductive. Voltages outside these limits are authorised as long as injection
current is kept within the specification.
58/78
57
ST62T52C ST62T62C/E62C
6.2 RECOMMENDED OPERATING CONDITIONS
Symbol
TA
VDD
Parameter
Test Conditio ns
Value
Min.
Typ.
Max.
Unit
-40
0
-40
85
70
125
°C
fOSC = 4MHz, 1 & 6 Suffix
fOSC = 4MHz, 3 Suffix
Operating Supply Voltage
(Except ST626xB ROM devices) fosc= 8MHz , 1 & 6 Suffix
fosc= 8MHz , 3 Suffix
3.0
3.0
3.6
4.5
6.0
6.0
6.0
6.0
V
fOSC = 4MHz, 1 & 6 Suffix
fOSC = 4MHz, 3 Suffix
fosc= 8MHz , 1 & 6 Suffix
fosc= 8MHz , 3 Suffix
3.0
3.0
4.0
4.5
6.0
6.0
6.0
6.0
V
6 Suffix Version
1 Suffix Version
3 Suffix Version
Operating Temperature
Operating Supply Voltage
(ST626xB ROM devices)
VDD =
Oscillator Frequency 2)
VDD =
(Except ST626xB ROM devices) VDD =
VDD =
3.0V, 1 & 6 Suffix
3.0V , 3 Suffix
3.6V , 1 & 6 Suffix
3.6V , 3 Suffix
0
0
0
0
4.0
4.0
8.0
4.0
MHz
Oscillator Frequency 2)
(ST626xB ROM devices)
VDD =
VDD =
VDD =
VDD =
3.0V, 1 & 6 Suffix
3.0V , 3 Suffix
4.0V , 1 & 6 Suffix
4.0V , 3 Suffix
0
0
0
0
4.0
4.0
8.0
4.0
MHz
IINJ+
Pin Injection Current (positive)
VDD = 4.5 to 5.5V
+5
mA
IINJ-
Pin Injection Current (negative)
VDD = 4.5 to 5.5V
-5
mA
fOSC
Notes:
1. Care must be taken in case of negative current injection, where adapted impedance must be respected on analog sources to not affect the
A/D conversion. For a -1mA injection, a maximum 10 KΩ is recommended.
2.An oscillator frequency above 1MHz is recommended for reliable A/D results
Figure 30. Maximum Operating FREQUENCY (Fmax) Versus SUPPLY VOLTAGE (VDD)
Maximum FREQUENCY (MHz)
1 & 6 Suffix version
8
FUNCTIONAL ITY IS NOT
1 & 6 Suffix
GUARANTE ED IN
version
THIS AREA
7
3 Suffix version
6
5
4
3 Suffix version
3
2
1
2.5
3
3.6
4
4.5
5
5.5
6
SUPPLY VOLTAGE (VDD)
All devices except ST626xB ROM devices
ST626xB ROM devices
The shaded area is outside the recommended operating range; device functionality is not guaranteed under these conditions.
59/78
58
ST62T52C ST62T62C/E62C
6.3 DC ELECTRICAL CHARACTERISTICS
(TA = -40 to +125°C unless otherwise specified)
Symbol
VIL
VIH
V Hys
Vup
V dn
VOL
VOH
R PU
IIL
IIH
IDD
Retention
Parameter
Input Low Level Voltage
All Input pins
Input High Level Voltage
All Input pins
Hysteresis Voltage (1)
All Input pins
59
Value
Min.
Typ.
Max.
VDD x 0.3
VDD= 5V
VDD= 3V
LVD Threshold in power-on
LVD threshold in powerdown
Low Level Output Voltage
VDD= 5.0V; IOL = +10µA
All Output pins
VDD= 5.0V; IOL = + 3mA
VDD= 5.0V; IOL = +10µA
Low Level Output Voltage
VDD= 5.0V; IOL = +7mA
30 mA Sink I/O pins
VDD= 5.0V; IOL = +15mA
High Level Output Voltage
VDD= 5.0V; IOH = -10µA
All Output pins
VDD= 5.0V; IOH = -3.0mA
All Input pins
Pull-up Resistance
RESET pin
Input Leakage Current
VIN = VSS (No Pull-Up configured)
All Input pins but RESET
VIN = VDD
Input Leakage Current
VIN = VSS
VIN = VDD
RESET pin
Supply Current in RESET
VRESET=VSS
Mode
fOSC=8MHz
Supply Current in
VDD=5.0V fINT=8MHz
RUN Mode (2)
Supply Current in WAIT
VDD=5.0V fINT=8MHz
Mode (3)
Supply Current in STOP
ILOAD=0mA
Mode, with LVD disabled(3) VDD=5.0V
Supply Current in STOP
ILOAD=0mA
Mode, with LVD enabled(3) VDD=5.0V
EPROM Data Retention
TA = 55°C
Notes:
(1) Hysteresis voltage between switching levels
(2) All peripherals running
(3) All peripherals in stand-by
60/78
Test Conditions
Unit
V
VDD x 0.7
V
0.2
0.2
V
3.5
4.1
3.8
4.3
0.1
0.8
0.1
0.8
1.3
4.9
3.5
40
150
-8
V
V
100
350
350
900
0.1
1.0
-16
-30
10
ΚΩ
µA
7
mA
7
mA
2.5
mA
20
µA
500
10
years
ST62T52C ST62T62C/E62C
DC ELECTRICAL CHARACTERISTICS (Cont’d)
(TA = -40 to +85°C unless otherwise specified))
Symbol
Parameter
Vup
V dn
LVD Threshold in power-on
LVD threshold in powerdown
Low Level Output Voltage
All Output pins
VOL
Low Level Output Voltage
30 mA Sink I/O pins
VOH
IDD
High Level Output Voltage
All Output pins
Supply Current in STOP
Mode, with LVD disabled(*)
Test Conditions
VDD= 5.0V; IOL = +10µA
VDD= 5.0V; IOL = + 5mA
VDD= 5.0V; IOL = + 10mAv
VDD= 5.0V; IOL = +10µA
VDD= 5.0V; IOL = +10mA
VDD= 5.0V; IOL = +20mA
VDD= 5.0V; IOL = +30mA
VDD= 5.0V; IOH = -10µA
VDD= 5.0V; IOH = -5.0mA
ILOAD=0mA
VDD=5.0V
Value
Unit
Min.
Typ.
Max.
Vdn +50 mV
3.6
4.1
3.8
4.3
Vup -50 mV
0.1
0.8
1.2
0.1
0.8
1.3
2.0
V
V
V
4.9
3.5
V
µA
10
Note:
(*) All Peripherals in stand-by.
6.4 AC ELECTRICAL CHARACTERISTICS
(TA = -40 to +125°C unless otherwise specified)
Symbol
tREC
TWEE
Endurance
(2)
Retention
fLFAO
fOSG
fRC
CIN
C OUT
Parameter
Test Conditions
Supply Recovery Time (1)
Typ.
Max.
5
10
20
10
20
30
100
EEPROM Write Time
TA = 25°C
TA = 85°C
TA = 125°C
EEPROM WRITE/ERASE Cycle
QA LOT Acceptance (25°C)
EEPROM Data Retention
TA = 55°C
Internal frequency with LFAO active
Internal Frequency with OSG
enabled 2)
Value
Min.
ms
cycles
10
3V
3.6V
4.5V
6V
VDD=5.0V (Except 626xB ROM)
R=47kΩ
R=100kΩ
Internal frequency with RC oscilla- R=470kΩ
tor and OSG disabled2) 3)
VDD=5.0V (626xB ROM)
R=10kΩ
R=27kΩ
R=100kΩ
ms
300,000 1 million
200
VDD =
VDD =
VDD =
VDD =
Unit
years
400
1
1
2
2
800
kHz
fOSC
MHz
4
2.7
800
5
3.2
850
5.8
3.5
900
MHz
MHz
kHz
2.4
1.8
800
3.1
2.2
980
3.8
2.5
1200
MHz
MHz
kHz
Input Capacitance
All Inputs Pins
10
pF
Output Capacitance
All Outputs Pins
10
pF
Notes:
1. Period for which VDD has to be connected at 0V to allow internal Reset function at next power-up.
2 An oscillator frequency above 1MHz is recommended for reliable A/D results.
3. Measure performed with OSCin pin soldered on PCB, with an around 2pF equivalent capacitance.
61/78
60
ST62T52C ST62T62C/E62C
6.5 A/D CONVERTER CHARACTERISTICS
(TA = -40 to +125°C unless otherwise specified)
Symbol
Res
ATOT
tC
Parameter
Total Accuracy (1) (2)
Conversion Time
Zero Input Reading
FSR
Full Scale Reading
ACIN
Value
Typ.
8
Min.
Resolution
ZIR
AD I
Test Conditions
fOSC > 1.2MHz
fOSC > 32kHz
fOSC = 8MHz (TA < 85°C)
fOSC = 4 MHz
Conversion result when
VIN = VSS
Conversion result when
VIN = VDD
Max.
Unit
Bit
±2
±4
70
140
LSB
µs
00
Hex
Analog Input Current During
VDD= 4.5V
Conversion
Analog Input Capacitance
2
FF
Hex
1.0
µA
5
pF
Notes:
1. Noise at VDD, VSS <10mV
2. With oscillator frequencies less than 1MHz, the A/D Converter accuracy is decreased.
6.6 TIMER CHARACTERISTICS
(TA = -40 to +125°C unless otherwise specified)
Symbol
Parameter
fIN
Input Frequency on TIMER Pin
tW
Pulse Width at TIMER Pin
Test Conditions
VDD = 3.0V
VDD >4.5V
(TA = -40 to +125°C unless otherwise specified)
6.8 ARTIMER ELECTRICAL CHARACTERISTICS
62/78
Value
Typ.
Max.
IINT
---------4
6.7 SPI CHARACTERISTICS
(TA = -40 to +125°C unless otherwise specified)
Min.
1
125
Unit
MHz
µs
ns
ST62T52C ST62T62C/E62C
Figure 31. Vol versus Iol on all I/O port at Vdd=5V
8
Vol (V)
6
T = -40°C
T = 25°C
T = 95°C
T = 125°C
4
2
0
0
10
20
Iol (mA)
30
40
This curves represents typical variations and is given for guidance only
Figure 32. Vol versus Iol on all I/O port at T=25°C
Vol (V)
8
Vdd
Vdd
Vdd
Vdd
6
4
2
= 3.0V
= 4.0V
= 5.0V
= 6.0V
0
0
10
20
Iol (mA)
30
40
This curves represents typical variations and is given for guidance only
Figure 33. Vol versus Iol for High sink (30mA) I/Oports at T=25°C
5
Vol (V)
4
Vdd = 3.0V
Vdd = 4.0V
3
2
Vdd = 5.0V
Vdd = 6.0V
1
0
0
10
20
30
Iol (mA)
This curves represents typical variations and is given for guidance only
40
63/78
62
ST62T52C ST62T62C/E62C
Figure 34. Vol versus Iol for High sink (30mA) I/O ports at Vdd=5V
5
Vol (V)
4
T=
T=
T=
T=
3
2
1
-40°C
25°C
95°C
125°C
0
0
10
20
Iol (mA)
30
40
This curves represents typical variations and is given for guidance only
Figure 35. Voh versus Ioh on all I/O port at 25°C
6
Vdd
Vdd
Vdd
Vdd
Voh (V)
4
2
0
= 3.0V
= 4.0V
= 5.0V
= 6.0V
-2
0
10
20
Ioh (mA)
30
40
This curves represents typical variations and is given for guidance only
Figure 36. Voh versus Ioh on all I/O port at Vdd=5V
6
Voh (V)
4
T=
T=
T=
T=
2
0
-2
0
10
20
Ioh (mA)
30
40
This curves represents typical variations and is given for guidance only
64/78
63
-40°C
25°C
95°C
125°C
ST62T52C ST62T62C/E62C
Idd WAIT (mA)
Figure 37. Idd WAIT versus Vcc at 8 Mhz for OTP devices
2.5
T = -40°C
T = 25°C
T = 95°C
T = 125°C
2
1.5
1
0.5
0
3V
4V
5V
6V
Vdd
This curves represents typical variations and is given for guidance only
Figure 38. Idd STOP versus Vcc for OTP devices
Idd STOP (µA)
8
6
T=
T=
T=
T=
4
2
0
-40°C
25°C
95°C
125°C
-2
3V
4V
5V
6V
Vdd
This curves represents typical variations and is given for guidance only
Figure 39. Idd STOP versus Vcc for ROM devices
Idd STOP (µA)
2
1.5
T = -40°C
T = 25°C
T = 95°C
T = 125°C
1
0.5
0
-0.5
3V
4V
5V
6V
Vdd
This curves represents typical variations and is given for guidance only
65/78
64
ST62T52C ST62T62C/E62C
Figure 40. Idd WAIT versus Vcc at 8Mhz for ROM devices
Idd WAIT (mA)
2.5
2
T = -40°C
T = 25°C
1.5
T = 95°C
T = 125°C
1
0.5
0
3V
4V
5V
6V
Vdd
This curves represents typical variations and is given for guidance only
Figure 41. Idd RUN versus Vcc at 8 Mhz for ROM and OTP devices
Idd RUN (mA)
8
6
T = -40°C
T = 25°C
4
T = 95°C
T = 125°C
2
0
3V
4V
5V
6V
Vdd
This curves represents typical variations and is given for guidance only
Figure 42. LVD thresholds versus temperature
4.2
Vthresh.
4.1
4
Vup
Vdn
3.9
3.8
3.7
-40°C
25°C
95°C
125°C
Temp
This curves represents typical variations and is given for guidance only
66/78
65
ST62T52C ST62T62C/E62C
Figure 43. RC frequency versus Vcc for ROM ST626xB only
MHz
Frequency
10
R=10K
1
R=27K
R=100K
0.1
3
3.5
4
4.5
5
5.5
6
VDD (volts)
This curves represents typical variations and is given for guidance only
Figure 44. RC frequency versus Vcc (Except for ST626xB ROM devices)
R=47K
MHz
Frequency
10
R=100K
1
R=470K
0.1
3
3.5
4
4.5
5
5.5
6
VDD (volts)
This curves represents typical variations and is given for guidance only
67/78
66
ST62T52C ST62T62C/E62C
7 GENERAL INFORMATION
7.1 PACKAGE MECHANICAL DATA
Figure 45. 16-Pin Plastic Dual In Line Package (B), 300-mil Width
Dim.
mm
Min
Typ
A
Min
Typ
5.33
A1
0.38
A2
2.92
b
0.36
b2
Max
0.210
0.015
3.30
4.95 0.115 0.130 0.195
0.56 0.014
0.022
1.52
1.78
0.25
0.36 0.008 0.010 0.014
0.060 0.070
c
0.20
D
18.67 19.18 19.69 0.735 0.755 0.775
e
PDIP16
inches
Max
2.54
0.100
E1
6.10
6.35
7.11 0.240 0.250 0.280
L
2.92
3.30
3.81 0.115 0.130 0.150
Number of Pins
N
16
Figure 46. 16-Pin Ceramic Side-Brazed Dual In-Line Package
Dim.
mm
Min
Typ
A
Min
Typ
3.78
0.38
B
0.36 0.46 0.56 0.014 0.018 0.022
B1
0.015
1.14 1.37 1.78 0.045 0.054 0.070
C
0.20 0.25 0.36 0.008 0.010 0.014
D
19.86 20.32 20.78 0.782 0.800 0.818
E1
e
17.78
0.700
7.04 7.49 7.95 0.277 0.295 0.313
2.54
0.100
G
6.35 6.60 6.86 0.250 0.260 0.270
G1
9.47 9.73 9.98 0.373 0.383 0.393
G2
L
1.02
0.040
2.92 3.30 3.81 0.115 0.130 0.150
S
1.27
0.050
Ø
4.22
0.166
Number of Pins
N
68/78
67
Max
0.149
A1
D1
CDIP16W
inches
Max
16
ST62T52C ST62T62C/E62C
PACKAGE MECHANICAL DATA (Cont’d)
Figure 47. 16-Pin Plastic Small Outline Package (M), 300-mil Width
Dim.
mm
Min
A
2.35
A1
0.10
B
0.33
Typ
Min
Typ
Max
2.65 0.0926
0.1043
0.0040
0.51
C
0.013
0.020
0.32
0.0125
D
10.10
10.50 0.3977
0.4133
E
7.40
7.60 0.2914
0.2992
e
1.27
0.050
H
10.01
10.64 0.394
0.419
h
0.25
0.74
0.010
0.029
K
0°
8°
0°
8°
L
0.41
1.27
0.016
0.050
G
SO16
inches
Max
0.10
0.004
Number of Pins
N
16
Figure 1. 16-Pin Plastic Shrink Small Outline Package, 0.209” Width
Dim.
mm
Min
Typ
A
1.73
A1
inches
Min
Typ
Max
1.86 1.99
0.068
0.073
0.078
0.05
0.13 0.21
0.002
0.005
0.008
B
0.25
0.38
0.010
C
0.09
0.20
0.004
D
6.07
6.20 6.33
0.239
0.244
0.249
E
7.65
7.80 7.90
0.301
0.307
0.311
E1
5.20
5.30 5.38
0.205
0.209
0.212
e
Max
0.65
G
0°
L
0.63
4°
0.008
0.026
0.076
K
0.015
0.003
8°
0.75 0.95
0°
4°
8°
0.025
0.030
0.037
Number of Pins
SSOP16
N
16
THERMAL CHARACTERISTIC
Symbol
RthJA
Parameter
Thermal Resistance
Test Conditions
Value
Min.
Typ.
Max.
PDIP16
55
PSO16
75
Unit
°C/W
69/78
68
ST62T52C ST62T62C/E62C
7.2 ORDERING INFORMATION
Table 22. OTP/EPROM VERSION ORDERING INFORMATION
Sales Type
ST62E62CF1
ST62T52CM6
ST62T52CM3
ST62T62CM6
ST62T62CM3
ST62T52CB6
ST62T52CB3
ST62T62CB6
ST62T62CB3
ST62T52CN6
ST62T52CN3
ST62T62CN6
ST62T62CN3
70/78
69
Program
Memory (Bytes)
1836 EPROM
EEPROM (Bytes)
Temperature Range
Package
64
0 to +70°C
-40 to + 85°C
-40 to + 125°C
-40 to + 85°C
-40 to + 125°C
-40 to + 85°C
-40 to + 125°C
-40 to + 85°C
-40 to + 125°C
-40 to + 85°C
-40 to + 125°C
-40 to + 85°C
-40 to + 125°C
CDIP16W
1836 OTP
None
1836 OTP
64
1836 OTP
None
1836 OTP
64
1836 OTP
None
1836 OTP
64
PSO16
PSO16
PDIP16
PDIP16
SSOP16
SSOP16
ST62P52C
ST62P62C
8-BIT FASTROM MCUs WITH A/D CONVERTER,
SAFE RESET, AUTO-RELOAD TIMER AND EEPROM
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
3.0 to 6.0V Supply Operating Range
8 MHz Maximum Clock Frequency
-40 to +125°C Operating Temperature Range
Run, Wait and Stop Modes
5 Interrupt Vectors
Look-up Table capability in Program Memory
Data Storage in Program Memory:
User selectable size
Data RAM: 128 bytes
Data EEPROM: 64 bytes (none on ST62T52C)
9 I/O pins, fully programmable as:
– Input with pull-up resistor
– Input without pull-up resistor
– Input with interrupt generation
– Open-drain or push-pull output
– Analog Input
5 I/O lines can sink up to 30mA to drive LEDs or
TRIACs directly
8-bit Timer/Counter with 7-bit programmable
prescaler
8-bit Auto-reload Timer with 7-bit programmable
prescaler (AR Timer)
Digital Watchdog
Oscillator Safe Guard
Low Voltage Detector for Safe Reset
8-bit A/D Converter with 4 analog inputs
On-chip Clock oscillator can be driven by Quartz
Crystal Ceramic resonator or RC network
User configurable Power-on Reset
One external Non-Maskable Interrupt
ST626x-EMU2 Emulation and Development
System (connects to an MS-DOS PC via a
parallel port)
PDIP16
PSO16
SSOP16
(See end of Datasheet for Ordering Information)
DEVICE SUMMARY
DEVICE
ROM
(Bytes)
EEPROM
ST62P52C
1836
-
ST62P62C
1836
64
Rev. 2.7
November 1999
71/78
70
ST62P52C ST62P62C
1 GENERAL DESCRIPTION
1.1 INTRODUCTION
1.2.2 Listing Generation and Verification
The ST62P52C and ST62P62C are the Factory
Advanced Service Technique ROM (FASTROM)
version of ST62T52C and ST62T62C OTP devices.
They offer the same functionality as OTP devices,
selecting as FASTROM options the options defined in the programmable option byte of the OTP
version.
When STMicroelectronics receives the user’s
ROM contents, a computer listing is generated
from it. This listing refers exactly to the ROM contents and options which will be used to produce
the specified MCU. The listing is then returned to
the customer who must thoroughly check, complete, sign and return it to STMicroelectronics. The
signed listing forms a part of the contractual agreement for the production of the specific customer
MCU.
1.2 ORDERING INFORMATION
The following section deals with the procedure for
transfer of customer codes to STMicroelectronics.
1.2.1 Transfer of Customer Code
Customer code is made up of the ROM contents
and the list of the selected FASTROM options.
The ROM contents are to be sent on diskette, or
by electronic means, with the hexadecimal file
generated by the development tool. All unused
bytes must be set to FFh.
The STMicroelectronics Sales Organization will be
pleased to provide detailed information on contractual points.
Table 1. ROM Memory Map for ST62P52C/P62C
The selected options are communicated to STMicroelectronics using the correctly filled OPTION
LIST appended.
Table 2. FASTROM version Ordering Information
Sales Type
ST62P52CM1/XXX
ST62P52CM6/XXX
ST62P52CM3/XXX (*)
ST62P62CM1/XXX
ST62P62CM6/XXX
ST62P62CM3/XXX (*)
ST62P52CB1/XXX
ST62P52CB6/XXX
ST62P52CB3/XXX (*)
ST62P62CB1/XXX
ST62P62CB6/XXX
ST62P62CB3/XXX (*)
ST62P52CN1/XXX
ST62P52CN6/XXX
ST62P52CN3/XXX (*)
ST62P62CN1/XXX
ST62P62CN6/XXX
ST62P62CN3/XXX (*)
(*) Advanced information
72/78
71
ROM
EEPROM (Bytes)
1836 Bytes
None
1836 Bytes
64
1836 Bytes
None
1836 Bytes
64
1836 Bytes
None
1836 Bytes
64
Device Address
Description
0000h-087Fh
0880h-0F9Fh
0FA0h-0FEFh
0FF0h-0FF7h
0FF8h-0FFBh
0FFCh-0FFDh
0FFEh-0FFFh
Reserved
User ROM
Reserved
Interrupt Vectors
Reserved
NMI Interrupt Vector
Reset Vector
Temperature Range
0 to +70°C
-40 to + 85°C
-40 to + 125°C
0 to +70°C
-40 to + 85°C
-40 to + 125°C
0 to +70°C
-40 to + 85°C
-40 to + 125°C
0 to +70°C
-40 to + 85°C
-40 to + 125°C
0 to +70°C
-40 to + 85°C
-40 to + 125°C
0 to +70°C
-40 to + 85°C
-40 to + 125°C
Package
PSO16
PDIP16
SSOP16
ST62P52C ST62P62C
ST62P52C and ST62P62C FASTROM MICROCONTROLLER OPTION LIST
Customer
Address
Contact
Phone No
Reference
.. .. . .... . ... .. .. ... ... . .
.. .. . .... . ... .. .. ... ... . .
. .. . .. .. .. . . .... . .. .. . .. .
.. .. . .... . ... .. .. ... ... . .
.. .. . .... . ... .. .. ... ... . .
.. .. . .... . ... .. .. ... ... . .
STMicroelectronics references
Device:
[ ] ST62P52C
Package:
[ ] Dual in Line Plastic
Temperature Range:
[ ] ST62P62C
[ ] Small Outline Plastic with condionning:
[ ] Standard (Stick)
[ ] Tape & Reel
[ ] Shrink Small Outline Plastic
[ ] 0°C to + 70°C [ ] - 40°C to + 85°C [ ] - 40°C to + 125°C
Oscillator Source Selection:
Watchdog Selection:
Power on Reset Delay
Readout Protection:
External STOP Mode Control
PB2-PB3 Pull-Up at RESET
LVD Reset
ADC Synchro
Oscillator Safe Guard
[ ] Crystal Quartz/Ceramic resonator
[ ] RC Network
[ ] Software Activation
[ ] Hardware Activation
[ ] 32768 cycle delay
[ ] 2048 cycle delay
[ ] Disabled
[ ] Enabled
[ ] Enabled
[ ] Disabled
[ ] Enabled
[ ] Disabled
[ ] Enabled
[ ] Disabled
[ ] Enabled
[ ] Disabled
[ ] Enabled
[ ] Disabled
Comments : Supply Operating Range in the application:
Oscillator Fequency in the application:
Notes
Signature
Date
.. .. . .... . ... .. .. ... ... . .
.. .. . .... . ... .. .. ... ... . .
.. .. . .... . ... .. .. ... ... . .
73/78
72
ST62P52C ST62P62C
Notes:
74/78
73
ST6252C
ST6262B
8-BIT ROM MCUs WITH A/D CONVERTER,
SAFE RESET AUTO-RELOAD TIMER, ROM AND EEPROM
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
3.0 to 6.0V Supply Operating Range
8 MHz Maximum Clock Frequency
-40 to +125°C Operating Temperature Range
Run, Wait and Stop Modes
5 Interrupt Vectors
Look-up Table capability in Program Memory
Data Storage in Program Memory:
User selectable size
Data RAM: 128 bytes
Data EEPROM: 64 bytes (none on ST62T52C)
9 I/O pins, fully programmable as:
– Input with pull-up resistor
– Input without pull-up resistor
– Input with interrupt generation
– Open-drain or push-pull output
– Analog Input
5 I/O lines can sink up to 30mA to drive LEDs or
TRIACs directly
8-bit Timer/Counter with 7-bit programmable
prescaler
8-bit Auto-reload Timer with 7-bit programmable
prescaler (AR Timer)
Digital Watchdog
Oscillator Safe Guard
Low Voltage Detector for Safe Reset
8-bit A/D Converter with 4 analog inputs
On-chip Clock oscillator can be driven by Quartz
Crystal Ceramic resonator or RC network
User configurable Power-on Reset
One external Non-Maskable Interrupt
ST626x-EMU2 Emulation and Development
System (connects to an MS-DOS PC via a
parallel port)
PDIP16
PSO16
SSOP16
(See end of Datasheet for Ordering Information)
DEVICE SUMMARY
DEVICE
ROM
(Bytes)
EEPROM
LVD & OSG
ST6252C
1836
-
Yes
ST6262B
1836
64
No
Rev. 2.7
November 1999
75/78
74
ST6252C ST6262B
1 GENERAL DESCRIPTION
1.1 INTRODUCTION
1.2 ROM READOUT PROTECTION
The ST6252C and ST6262B are mask programmed ROM version of ST62T52C and
ST62T62C OTP devices.
They offer the same functionality as OTP devices,
selecting as ROM options the options defined in
the programmable option byte of the OTP version,
except the LVD & OSG options that are not available on the ST6262B ROM device.
If the ROM READOUT PROTECTION option is
selected, a protection fuse can be blown to prevent any access to the program memory content.
In case the user wants to blow this fuse, high voltage must be applied on the TEST pin.
Figure 2. Programming Circuit
Figure 1. Programming wave form
TEST
0.5s min
5V
47mF
100nF
15
14V typ
10
VSS
5
VDD
TEST
PROTECT
150 µs typ
14V
TEST
100nF
100mA
max
ZPD15
15V
VR02003
4mA typ
t
VR02001
76/78
75
Note: ZPD15 is used for overvoltage protection
ST6252C ST6262B
Customer
Address
Contact
Phone No
Reference
ST6252C and ST6262B MICROCONTROLLER OPTION LIST
.. .. . .... . ... .. .. ... ... . .
.. .. . .... . ... .. .. ... ... . .
. .. . .. .. .. . . .... . .. .. . .. .
.. .. . .... . ... .. .. ... ... . .
.. .. . .... . ... .. .. ... ... . .
.. .. . .... . ... .. .. ... ... . .
STMicroelectronics references
Device:
[ ] ST6252C
Package:
[ ] Dual in Line Plastic
[ ] ST6262B
[ ] Small Outline Plastic with condionning:
[ ] Standard (Stick)
[ ] Tape & Reel
[ ] Shrink Small Outline Plastic
Temperature Range:
[ ] 0°C to + 70°C [ ] - 40°C to + 85°C [ ] - 40°C to + 125°C
Special Marking:
[ ] No
[ ] Yes ”_ _ _ _ _ _ _ _ _ _ _ ”
Authorized characters are letters, digits, ’.’, ’-’, ’/’ and spaces only.
Maximum character count:
DIP16: 9
SO16: 5
Oscillator Source Selection:
[ ] Crystal Quartz/Ceramic resonator
[ ] RC Network
Watchdog Selection:
[ ] Software Activation
[ ] Hardware Activation
Power on Reset Delay
[ ] 32768 cycle delay
[ ] 2048 cycle delay
ROM Readout Protection:
[ ] Disabled (Fuse cannot be blown)
[ ] Enabled (Fuse can be blown by the customer)
Note:
No part is delivered with protected ROM.
The fuse must be blown for protection to be effective.
External STOP Mode Control
[ ] Enabled
[ ] Disabled
PB2-PB3 Pull-Up at RESET
[ ] Enabled
[ ] Disabled
LVD Reset*
[ ] Enabled
[ ] Disabled
ADC Synchro*
[ ] Enabled
[ ] Disabled
Oscillator Safe Guard*
[ ] Enabled
[ ] Disabled
*ST6252C only
Comments : Supply Operating Range in the application:
Oscillator Fequency in the application:
Notes
Signature
Date
.. .. . .... . ... .. .. ... ... . .
.. .. . .... . ... .. .. ... ... . .
.. .. . .... . ... .. .. ... ... . .
77/78
76
ST6252C ST6262B
1.3 ORDERING INFORMATION
The following section deals with the procedure for
transfer of customer codes to STMicroelectronics.
1.3.1 Transfer of Customer Code
Customer code is made up of the ROM contents
and the list of the selected mask options. The
ROM contents are to be sent on diskette, or by
electronic means, with the hexadecimal file generated by the development tool. All unused bytes
must be set to FFh.
from it. This listing refers exactly to the mask which
will be used to produce the specified MCU. The
listing is then returned to the customer who must
thoroughly check, complete, sign and return it to
STMicroelectronics. The signed listing forms a
part of the contractual agreement for the creation
of the specific customer mask.
The STMicroelectronics Sales Organization will be
pleased to provide detailed information on contractual points.
Table 1. ROM Memory Map for ST6252C/62B
The selected mask options are communicated to
STMicroelectronics using the correctly filled OPTION LIST appended.
1.3.2 Listing Generation and Verification
Device Address
Description
0000h-087Fh
0880h-0F9Fh
0FA0h-0FEFh
0FF0h-0FF7h
0FF8h-0FFBh
0FFCh-0FFDh
0FFEh-0FFFh
Reserved
User ROM
Reserved
Interrupt Vectors
Reserved
NMI Interrupt Vector
Reset Vector
When STMicroelectronics receives the user’s
ROM contents, a computer listing is generated
Table 2. ROM version Ordering Information
Sales Type
ST6252CB1/XXX
ST6252CB6/XXX
ST6252CB3/XXX
ST6252CM1/XXX
ST6252CM6/XXX
ST6252CM3/XXX
ST6252CN1/XXX
ST6252CN6/XXX
ST6252CN3/XXX
ST6262BB1/XXX
ST6262BB6/XXX
ST6262BB3/XXX
ST6262BM1/XXX
ST6262BM6/XXX
ST6262BM3/XXX
ST6262BN1/XXX
ST6262BN6/XXX
ST6262BN3/XXX
ROM
EEPROM (Bytes)
1836 Bytes
1836 Bytes
None
64
Temperature Range
0 to +70°C
-40 to + 85°C
-40 to + 125°C
0 to +70°C
-40 to + 85°C
-40 to + 125°C
0 to +70°C
-40 to + 85°C
-40 to + 125°C
0 to +70°C
-40 to + 85°C
-40 to + 125°C
0 to +70°C
-40 to + 85°C
-40 to + 125°C
0 to +70°C
-40 to + 85°C
-40 to + 125°C
Package
PDIP16
PSO16
SSOP16
PDIP16
PSO16
SSOP16
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without the express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics
1999 STMicroelectronics - All Rights Reserved.
Purchase of I2 C Components by STMicroelectronics conveys a license under the Philips I2C Patent. Rights to use these components in an
I2C system is granted provided that the system conforms to the I2C Standard Specification as defined by Philips.
STMicroelectronics Group of Companies
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain
Sweden - Switzerland - United Kingdom - U.S.A.
http:// www.st.com
78/78