FREESCALE MRF6V10010NR4

Freescale Semiconductor
Technical Data
Document Number: MRF6V10010N
Rev. 3, 7/2010
RF Power Field Effect Transistor
N--Channel Enhancement--Mode Lateral MOSFET
MRF6V10010NR4
RF Power transistor designed for applications operating at frequencies
between 960 and 1400 MHz, 1% to 20% duty cycle. This device is suitable for
use in pulsed applications.
• Typical Pulsed Performance: VDD = 50 Volts, IDQ = 10 mA, Pout = 10 Watts
Peak (2 W Avg.), f = 1090 MHz, Pulse Width = 100 μsec, Duty Cycle = 20%
Power Gain — 25 dB
Drain Efficiency — 69%
1090 MHz, 10 W, 50 V
PULSED
LATERAL N--CHANNEL
RF POWER MOSFET
Features
• Characterized with Series Equivalent Large--Signal Impedance Parameters
• Qualified Up to a Maximum of 50 VDD Operation
• Integrated ESD Protection
• Greater Negative Gate--Source Voltage Range for Improved Class C
Operation
• RoHS Compliant
• In Tape and Reel. R4 Suffix = 100 Units per 12 mm, 7 inch Reel.
CASE 466--03, STYLE 1
PLD--1.5
PLASTIC
Table 1. Maximum Ratings
Rating
Symbol
Value
Unit
Drain--Source Voltage
VDSS
--0.5, +100
Vdc
Gate--Source Voltage
VGS
--6.0, +10
Vdc
Storage Temperature Range
Tstg
-- 65 to +150
°C
Case Operating Temperature
TC
150
°C
Operating Junction Temperature
TJ
200
°C
Symbol
Value (1,2)
Unit
ZθJC
1.6
°C/W
Table 2. Thermal Characteristics
Characteristic
Thermal Resistance, Junction to Case
Case Temperature 79°C, 10 W Pulsed, 100 μsec Pulse Width, 20% Duty Cycle
1. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF
calculators by product.
2. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.
Select Documentation/Application Notes -- AN1955.
© Freescale Semiconductor, Inc., 2008--2010. All rights reserved.
RF Device Data
Freescale Semiconductor
MRF6V10010NR4
1
Table 3. ESD Protection Characteristics
Test Methodology
Class
Human Body Model (per JESD22--A114)
1C (Minimum)
Machine Model (per EIA/JESD22--A115)
A (Minimum)
Charge Device Model (per JESD22--C101)
IV (Minimum)
Table 4. Moisture Sensitivity Level
Test Methodology
Per JESD22--A113, IPC/JEDEC J--STD--020
Rating
Package Peak Temperature
Unit
3
260
°C
Table 5. Electrical Characteristics (TA = 25°C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
Unit
IGSS
—
—
10
μAdc
100
—
—
Vdc
Off Characteristics
Gate--Source Leakage Current
(VGS = 5 Vdc, VDS = 0 Vdc)
Drain--Source Breakdown Voltage
(VGS = 0 Vdc, ID = 7 mA)
V(BR)DSS
Zero Gate Voltage Drain Leakage Current
(VDS = 50 Vdc, VGS = 0 Vdc)
IDSS
—
—
50
μAdc
Zero Gate Voltage Drain Leakage Current
(VDS = 100 Vdc, VGS = 0 Vdc)
IDSS
—
—
2.5
mA
Gate Threshold Voltage
(VDS = 10 Vdc, ID = 36 μAdc)
VGS(th)
1
1.7
2.5
Vdc
Gate Quiescent Voltage
(VDD = 50 Vdc, ID = 10 mAdc, Measured in Functional Test)
VGS(Q)
1.7
2.4
3.2
Vdc
Drain--Source On--Voltage
(VGS = 10 Vdc, ID = 70 mAdc)
VDS(on)
—
0.2
—
Vdc
Reverse Transfer Capacitance
(VDS = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)
Crss
—
0.1
—
pF
Output Capacitance
(VDS = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)
Coss
—
3.38
—
pF
Input Capacitance
(VDS = 50 Vdc, VGS = 0 Vdc ± 30 mV(rms)ac @ 1 MHz)
Ciss
—
9.55
—
pF
On Characteristics
Dynamic Characteristics
Functional Tests (In Freescale Test Fixture, 50 ohm system) VDD = 50 Vdc, IDQ = 10 mA, Pout = 10 W Peak (2 W Avg.), f = 1090 MHz,
Pulsed, 100 μsec Pulse Width, 20% Duty Cycle
Power Gain
Gps
23
25
28
dB
Drain Efficiency
ηD
66
69
—
%
Input Return Loss
IRL
—
--12
--8
dB
MRF6V10010NR4
2
RF Device Data
Freescale Semiconductor
VBIAS
L1
VSUPPLY
+
C2
C3
C9
C12
R1
Z1
Z2
Z3
C5
C6
Z4
Z5
Z6
C1
C16
Z1
Z2
Z3
Z4
Z5
Z6
Z7
C7
C13
L2
R2
RF
INPUT
C8
Z8
C10
Z9
Z10
Z11
Z12
RF
OUTPUT
C14
Z7
C15
C11
DUT
C4
0.200″ x 0.080″ Microstrip
0.696″ x 0.120″ Microstrip
0.087″ x 0.320″ Microstrip
0.323″ x 0.320″ Microstrip
0.320″ x 0.620″ x 0.185″ Taper
0.135″ x 0.620″ Microstrip
0.714″ x 0.620″ Microstrip
Z8
Z9
Z10
Z11
Z12
PCB
0.367″ x 0.320″ Microstrip
0.162″ x 0.320″ Microstrip
0.757″ x 0.080″ Microstip
0.763″ x 0.080″ Microstrip
0.290″ x 0.080″ Microstrip
Arlon CuClad 250GX--0300--55--22, 0.030″, εr = 2.55
Figure 1. MR6V10010NR4 Test Circuit Schematic
Table 6. MR6V10010NR4 Test Circuit Component Designations and Values
Part
Description
Part Number
Manufacturer
C1, C9, C12
43 pF Chip Capacitors
ATC100B430JT500XT
ATC
C2
10 μF, 35 V Tantalum Capacitor
T491D106K035AT
Kemet
C3, C8
2.2 μF, 100 V Chip Capacitors
GQM1885C2A2R2CB01B
Murata
C4, C6
7.5 pF Chip Capacitors
ATC100B7R5CT500XT
ATC
C5, C16
3.0 pF Chip Capacitors
ATC100B3R0CT500XT
ATC
C7
0.1 μF Chip Capacitor
C1206C104K5RACTR
Kemet
C10, C15
0.3 pF Chip Capacitors
ATC100B0R3BT500XT
ATC
C11
5.6 pF Chip Capacitor
ATC100B5R6CT500XT
ATC
C13
470 μF, 63 V Chip Capacitor
477KXM063M
Illlinois Capacitor
C14
47 pF Chip Capacitor
ATC100B470JT500XT
ATC
L1
8 nH Inductor
A03TKLC
Coilcraft
L2
5 nH Inductor
A02TKLC
Coilcraft
R1
3300 Ω, 1/4 W Chip Resistor
CRCW12063301FKEA
Vishay
R2
10 Ω, 1/4 W Chip Resistor
CRCW120610R0FKEA
Vishay
MRF6V10010NR4
RF Device Data
Freescale Semiconductor
3
C2
C7
C3
L1
C12
R1
C1
C16
C5
C4
C13
C8
C9
R2
C15
C10
C6
C14
L2
C11
MRF6V10010N
Rev. 3
Figure 2. MRF6V10010NR4 Test Circuit Component Layout
MRF6V10010NR4
4
RF Device Data
Freescale Semiconductor
TYPICAL CHARACTERISTICS
100
10
ID, DRAIN CURRENT (AMPS)
C, CAPACITANCE (pF)
Measured with ±30 mV(rms)ac @ 1 MHz
VGS = 0 Vdc
Ciss
10
Coss
1
TJ = 200°C
1
TJ = 175°C
TJ = 150°C
Crss
0
10
20
40
30
VDS, DRAIN--SOURCE VOLTAGE (VOLTS)
Figure 3. Capacitance versus Drain--Source Voltage
Figure 4. DC Safe Operating Area
45
70
25
65
ηD
24
60
23
55
VDD = 50 Vdc, IDQ = 10 mA, f = 1090 MHz
Pulse Width = 100 μsec, Duty Cycle = 20%
22
5
7
6
8
9
10
ηD, DRAIN EFFICIENCY (%)
26
Pout, OUTPUT POWER (dBm) PULSED
75
Gps
Gps, POWER GAIN (dB)
100
10
1
50
VDS, DRAIN--SOURCE VOLTAGE (VOLTS)
27
50
P3dB = 40.66 dBm (11.65 W)
Ideal
P1dB = 40.18 dBm
(10.42 W)
Actual
40
VDD = 50 Vdc, IDQ = 10 mA, f = 1090 MHz
Pulse Width = 100 μsec, Duty Cycle = 20%
35
12
12
11
13
14
15
16
17
18
19
Pout, OUTPUT POWER (WATTS) PULSED
Pin, INPUT POWER (dBm) PULSED
Figure 5. Pulsed Power Gain and Drain Efficiency
versus Output Power
Figure 6. Pulsed Output Power versus
Input Power
27
Pout, OUTPUT POWER (WATTS) PULSED
14
25
Gps, POWER GAIN (dB)
TC = 25°C
0.1
0.1
23
50 V
45 V
21
40 V
35 V
19
17
IDQ = 10 mA, f = 1090 MHz
Pulse Width = 100 μsec
Duty Cycle = 20%
VDD = 30 V
0
2
4
6
8
10
Pout, OUTPUT POWER (WATTS) PULSED
Figure 7. Pulsed Power Gain versus
Output Power
TC = --30_C
12
85_C
10
25_C
8
6
VDD = 50 Vdc
IDQ = 10 mA
f = 1090 MHz
Pulse Width = 100 μsec
Duty Cycle = 20%
4
2
0
12
0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
Pin, INPUT POWER (WATTS) PULSED
Figure 8. Pulsed Output Power versus
Input Power
MRF6V10010NR4
RF Device Data
Freescale Semiconductor
5
TYPICAL CHARACTERISTICS
29
80
ηD
70
27
60
26
TC = --30_C
25_C
25
40
85_C
Gps
24
23
50
30
20
VDD = 50 Vdc, IDQ = 10 mA, f = 1090 MHz
Pulse Width = 100 μsec, Duty Cycle = 20%
22
0
2
4
6
8
10
ηD, DRAIN EFFICIENCY (%)
Gps, POWER GAIN (dB)
28
10
12
14
Pout, OUTPUT POWER (WATTS) PULSED
Figure 9. Pulsed Power Gain and Drain Efficiency
versus Output Power
109
MTTF (HOURS)
108
107
106
105
90
110
130
150
170
190
210
230
250
TJ, JUNCTION TEMPERATURE (°C)
This above graph displays calculated MTTF in hours when the device
is operated at VDD = 50 Vdc, Pout = 10 W Peak, Pulse Width = 100 μsec,
Duty Cycle = 20%, and ηD = 69%.
MTTF calculator available at http://www.freescale.com/rf. Select
Software & Tools/Development Tools/Calculators to access MTTF
calculators by product.
Figure 10. MTTF versus Junction Temperature
MRF6V10010NR4
6
RF Device Data
Freescale Semiconductor
Zo = 50 Ω
Zload
f = 1090 MHz
Zsource
f = 1090 MHz
VDD = 50 Vdc, IDQ = 10 mA, Pout = 10 W Peak
f
MHz
Zsource
Ω
Zload
Ω
1090
1.15 + j8.96
13.47 + j34.32
Zsource = Test circuit impedance as measured from
gate to ground.
Zload
= Test circuit impedance as measured
from drain to ground.
Output
Matching
Network
Device
Under
Test
Input
Matching
Network
Z
source
Z
load
Figure 11. Series Equivalent Source and Load Impedance
MRF6V10010NR4
RF Device Data
Freescale Semiconductor
7
PACKAGE DIMENSIONS
0.146
3.71
A
F
0.095
2.41
3
B
D
1
2
R
0.115
2.92
0.115
2.92
L
0.020
0.51
4
0.35 (0.89) X 45_ 5 _
N
K
Q
C
4
ZONE W
2
1
3
G
S
Y
Y
E
NOTES:
1. INTERPRET DIMENSIONS AND TOLERANCES
PER ASME Y14.5M, 1984.
2. CONTROLLING DIMENSION: INCH
3. RESIN BLEED/FLASH ALLOWABLE IN ZONE V, W,
AND X.
STYLE 1:
PIN 1.
2.
3.
4.
DRAIN
GATE
SOURCE
SOURCE
ZONE X
VIEW Y--Y
mm
SOLDER FOOTPRINT
P
U
H
ZONE V
inches
10_DRAFT
CASE 466--03
ISSUE D
PLD--1.5
PLASTIC
DIM
A
B
C
D
E
F
G
H
J
K
L
N
P
Q
R
S
U
ZONE V
ZONE W
ZONE X
INCHES
MIN
MAX
0.255
0.265
0.225
0.235
0.065
0.072
0.130
0.150
0.021
0.026
0.026
0.044
0.050
0.070
0.045
0.063
0.160
0.180
0.273
0.285
0.245
0.255
0.230
0.240
0.000
0.008
0.055
0.063
0.200
0.210
0.006
0.012
0.006
0.012
0.000
0.021
0.000
0.010
0.000
0.010
MILLIMETERS
MIN
MAX
6.48
6.73
5.72
5.97
1.65
1.83
3.30
3.81
0.53
0.66
0.66
1.12
1.27
1.78
1.14
1.60
4.06
4.57
6.93
7.24
6.22
6.48
5.84
6.10
0.00
0.20
1.40
1.60
5.08
5.33
0.15
0.31
0.15
0.31
0.00
0.53
0.00
0.25
0.00
0.25
MRF6V10010NR4
8
RF Device Data
Freescale Semiconductor
PRODUCT DOCUMENTATION AND SOFTWARE
Refer to the following documents to aid your design process.
Application Notes
• AN1955: Thermal Measurement Methodology of RF Power Amplifiers
Engineering Bulletins
• EB212: Using Data Sheet Impedances for RF LDMOS Devices
Software
• Electromigration MTTF Calculator
For Software, do a Part Number search at http://www.freescale.com, and select the “Part Number” link. Go to the Software &
Tools tab on the part’s Product Summary page to download the respective tool.
REVISION HISTORY
The following table summarizes revisions to this document.
Revision
Date
Description
0
June 2008
• Initial Release of Data Sheet
1
Feb. 2009
• Corrected Zsource, “2.57 -- j7.33” to “1.15 + j8.96” and Zload, “14.10 -- j34.77” to “13.47 + j34.32” in Fig. 11,
Series Equivalent Source and Load Impedance data table and replotted data, p. 7
2
June 2009
• Modified data sheet to reflect MSL rating change from 1 to 3 as a result of the standardization of packing
process as described in Product and Process Change Notification number, PCN13516, p. 2
• Added Electromigration MTTF Calculator availability to Product Documentation, Tools and Software, p. 9
3
July 2010
• Reporting of pulsed thermal data now shown using the ZθJC symbol, Table 2, Thermal Characteristics, p. 1
• Corrected errors made in the translation of the printed circuit board to the schematic, Fig. 1, Test Circuit
Schematic and Z list, p. 3
MRF6V10010NR4
RF Device Data
Freescale Semiconductor
9
How to Reach Us:
Home Page:
www.freescale.com
Web Support:
http://www.freescale.com/support
USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1--800--521--6274 or +1--480--768--2130
www.freescale.com/support
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1--8--1, Shimo--Meguro, Meguro--ku,
Tokyo 153--0064
Japan
0120 191014 or +81 3 5437 9125
[email protected]
Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
[email protected]
For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
1--800--441--2447 or +1--303--675--2140
Fax: +1--303--675--2150
[email protected]
Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.
Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2008--2010. All rights reserved.
MRF6V10010NR4
Document Number: MRF6V10010N
Rev. 3, 7/2010
10
RF Device Data
Freescale Semiconductor