Freescale Semiconductor Technical Data Document Number: MRF6V10010N Rev. 3, 7/2010 RF Power Field Effect Transistor N--Channel Enhancement--Mode Lateral MOSFET MRF6V10010NR4 RF Power transistor designed for applications operating at frequencies between 960 and 1400 MHz, 1% to 20% duty cycle. This device is suitable for use in pulsed applications. • Typical Pulsed Performance: VDD = 50 Volts, IDQ = 10 mA, Pout = 10 Watts Peak (2 W Avg.), f = 1090 MHz, Pulse Width = 100 μsec, Duty Cycle = 20% Power Gain — 25 dB Drain Efficiency — 69% 1090 MHz, 10 W, 50 V PULSED LATERAL N--CHANNEL RF POWER MOSFET Features • Characterized with Series Equivalent Large--Signal Impedance Parameters • Qualified Up to a Maximum of 50 VDD Operation • Integrated ESD Protection • Greater Negative Gate--Source Voltage Range for Improved Class C Operation • RoHS Compliant • In Tape and Reel. R4 Suffix = 100 Units per 12 mm, 7 inch Reel. CASE 466--03, STYLE 1 PLD--1.5 PLASTIC Table 1. Maximum Ratings Rating Symbol Value Unit Drain--Source Voltage VDSS --0.5, +100 Vdc Gate--Source Voltage VGS --6.0, +10 Vdc Storage Temperature Range Tstg -- 65 to +150 °C Case Operating Temperature TC 150 °C Operating Junction Temperature TJ 200 °C Symbol Value (1,2) Unit ZθJC 1.6 °C/W Table 2. Thermal Characteristics Characteristic Thermal Resistance, Junction to Case Case Temperature 79°C, 10 W Pulsed, 100 μsec Pulse Width, 20% Duty Cycle 1. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. 2. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select Documentation/Application Notes -- AN1955. © Freescale Semiconductor, Inc., 2008--2010. All rights reserved. RF Device Data Freescale Semiconductor MRF6V10010NR4 1 Table 3. ESD Protection Characteristics Test Methodology Class Human Body Model (per JESD22--A114) 1C (Minimum) Machine Model (per EIA/JESD22--A115) A (Minimum) Charge Device Model (per JESD22--C101) IV (Minimum) Table 4. Moisture Sensitivity Level Test Methodology Per JESD22--A113, IPC/JEDEC J--STD--020 Rating Package Peak Temperature Unit 3 260 °C Table 5. Electrical Characteristics (TA = 25°C unless otherwise noted) Characteristic Symbol Min Typ Max Unit IGSS — — 10 μAdc 100 — — Vdc Off Characteristics Gate--Source Leakage Current (VGS = 5 Vdc, VDS = 0 Vdc) Drain--Source Breakdown Voltage (VGS = 0 Vdc, ID = 7 mA) V(BR)DSS Zero Gate Voltage Drain Leakage Current (VDS = 50 Vdc, VGS = 0 Vdc) IDSS — — 50 μAdc Zero Gate Voltage Drain Leakage Current (VDS = 100 Vdc, VGS = 0 Vdc) IDSS — — 2.5 mA Gate Threshold Voltage (VDS = 10 Vdc, ID = 36 μAdc) VGS(th) 1 1.7 2.5 Vdc Gate Quiescent Voltage (VDD = 50 Vdc, ID = 10 mAdc, Measured in Functional Test) VGS(Q) 1.7 2.4 3.2 Vdc Drain--Source On--Voltage (VGS = 10 Vdc, ID = 70 mAdc) VDS(on) — 0.2 — Vdc Reverse Transfer Capacitance (VDS = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Crss — 0.1 — pF Output Capacitance (VDS = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Coss — 3.38 — pF Input Capacitance (VDS = 50 Vdc, VGS = 0 Vdc ± 30 mV(rms)ac @ 1 MHz) Ciss — 9.55 — pF On Characteristics Dynamic Characteristics Functional Tests (In Freescale Test Fixture, 50 ohm system) VDD = 50 Vdc, IDQ = 10 mA, Pout = 10 W Peak (2 W Avg.), f = 1090 MHz, Pulsed, 100 μsec Pulse Width, 20% Duty Cycle Power Gain Gps 23 25 28 dB Drain Efficiency ηD 66 69 — % Input Return Loss IRL — --12 --8 dB MRF6V10010NR4 2 RF Device Data Freescale Semiconductor VBIAS L1 VSUPPLY + C2 C3 C9 C12 R1 Z1 Z2 Z3 C5 C6 Z4 Z5 Z6 C1 C16 Z1 Z2 Z3 Z4 Z5 Z6 Z7 C7 C13 L2 R2 RF INPUT C8 Z8 C10 Z9 Z10 Z11 Z12 RF OUTPUT C14 Z7 C15 C11 DUT C4 0.200″ x 0.080″ Microstrip 0.696″ x 0.120″ Microstrip 0.087″ x 0.320″ Microstrip 0.323″ x 0.320″ Microstrip 0.320″ x 0.620″ x 0.185″ Taper 0.135″ x 0.620″ Microstrip 0.714″ x 0.620″ Microstrip Z8 Z9 Z10 Z11 Z12 PCB 0.367″ x 0.320″ Microstrip 0.162″ x 0.320″ Microstrip 0.757″ x 0.080″ Microstip 0.763″ x 0.080″ Microstrip 0.290″ x 0.080″ Microstrip Arlon CuClad 250GX--0300--55--22, 0.030″, εr = 2.55 Figure 1. MR6V10010NR4 Test Circuit Schematic Table 6. MR6V10010NR4 Test Circuit Component Designations and Values Part Description Part Number Manufacturer C1, C9, C12 43 pF Chip Capacitors ATC100B430JT500XT ATC C2 10 μF, 35 V Tantalum Capacitor T491D106K035AT Kemet C3, C8 2.2 μF, 100 V Chip Capacitors GQM1885C2A2R2CB01B Murata C4, C6 7.5 pF Chip Capacitors ATC100B7R5CT500XT ATC C5, C16 3.0 pF Chip Capacitors ATC100B3R0CT500XT ATC C7 0.1 μF Chip Capacitor C1206C104K5RACTR Kemet C10, C15 0.3 pF Chip Capacitors ATC100B0R3BT500XT ATC C11 5.6 pF Chip Capacitor ATC100B5R6CT500XT ATC C13 470 μF, 63 V Chip Capacitor 477KXM063M Illlinois Capacitor C14 47 pF Chip Capacitor ATC100B470JT500XT ATC L1 8 nH Inductor A03TKLC Coilcraft L2 5 nH Inductor A02TKLC Coilcraft R1 3300 Ω, 1/4 W Chip Resistor CRCW12063301FKEA Vishay R2 10 Ω, 1/4 W Chip Resistor CRCW120610R0FKEA Vishay MRF6V10010NR4 RF Device Data Freescale Semiconductor 3 C2 C7 C3 L1 C12 R1 C1 C16 C5 C4 C13 C8 C9 R2 C15 C10 C6 C14 L2 C11 MRF6V10010N Rev. 3 Figure 2. MRF6V10010NR4 Test Circuit Component Layout MRF6V10010NR4 4 RF Device Data Freescale Semiconductor TYPICAL CHARACTERISTICS 100 10 ID, DRAIN CURRENT (AMPS) C, CAPACITANCE (pF) Measured with ±30 mV(rms)ac @ 1 MHz VGS = 0 Vdc Ciss 10 Coss 1 TJ = 200°C 1 TJ = 175°C TJ = 150°C Crss 0 10 20 40 30 VDS, DRAIN--SOURCE VOLTAGE (VOLTS) Figure 3. Capacitance versus Drain--Source Voltage Figure 4. DC Safe Operating Area 45 70 25 65 ηD 24 60 23 55 VDD = 50 Vdc, IDQ = 10 mA, f = 1090 MHz Pulse Width = 100 μsec, Duty Cycle = 20% 22 5 7 6 8 9 10 ηD, DRAIN EFFICIENCY (%) 26 Pout, OUTPUT POWER (dBm) PULSED 75 Gps Gps, POWER GAIN (dB) 100 10 1 50 VDS, DRAIN--SOURCE VOLTAGE (VOLTS) 27 50 P3dB = 40.66 dBm (11.65 W) Ideal P1dB = 40.18 dBm (10.42 W) Actual 40 VDD = 50 Vdc, IDQ = 10 mA, f = 1090 MHz Pulse Width = 100 μsec, Duty Cycle = 20% 35 12 12 11 13 14 15 16 17 18 19 Pout, OUTPUT POWER (WATTS) PULSED Pin, INPUT POWER (dBm) PULSED Figure 5. Pulsed Power Gain and Drain Efficiency versus Output Power Figure 6. Pulsed Output Power versus Input Power 27 Pout, OUTPUT POWER (WATTS) PULSED 14 25 Gps, POWER GAIN (dB) TC = 25°C 0.1 0.1 23 50 V 45 V 21 40 V 35 V 19 17 IDQ = 10 mA, f = 1090 MHz Pulse Width = 100 μsec Duty Cycle = 20% VDD = 30 V 0 2 4 6 8 10 Pout, OUTPUT POWER (WATTS) PULSED Figure 7. Pulsed Power Gain versus Output Power TC = --30_C 12 85_C 10 25_C 8 6 VDD = 50 Vdc IDQ = 10 mA f = 1090 MHz Pulse Width = 100 μsec Duty Cycle = 20% 4 2 0 12 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 Pin, INPUT POWER (WATTS) PULSED Figure 8. Pulsed Output Power versus Input Power MRF6V10010NR4 RF Device Data Freescale Semiconductor 5 TYPICAL CHARACTERISTICS 29 80 ηD 70 27 60 26 TC = --30_C 25_C 25 40 85_C Gps 24 23 50 30 20 VDD = 50 Vdc, IDQ = 10 mA, f = 1090 MHz Pulse Width = 100 μsec, Duty Cycle = 20% 22 0 2 4 6 8 10 ηD, DRAIN EFFICIENCY (%) Gps, POWER GAIN (dB) 28 10 12 14 Pout, OUTPUT POWER (WATTS) PULSED Figure 9. Pulsed Power Gain and Drain Efficiency versus Output Power 109 MTTF (HOURS) 108 107 106 105 90 110 130 150 170 190 210 230 250 TJ, JUNCTION TEMPERATURE (°C) This above graph displays calculated MTTF in hours when the device is operated at VDD = 50 Vdc, Pout = 10 W Peak, Pulse Width = 100 μsec, Duty Cycle = 20%, and ηD = 69%. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. Figure 10. MTTF versus Junction Temperature MRF6V10010NR4 6 RF Device Data Freescale Semiconductor Zo = 50 Ω Zload f = 1090 MHz Zsource f = 1090 MHz VDD = 50 Vdc, IDQ = 10 mA, Pout = 10 W Peak f MHz Zsource Ω Zload Ω 1090 1.15 + j8.96 13.47 + j34.32 Zsource = Test circuit impedance as measured from gate to ground. Zload = Test circuit impedance as measured from drain to ground. Output Matching Network Device Under Test Input Matching Network Z source Z load Figure 11. Series Equivalent Source and Load Impedance MRF6V10010NR4 RF Device Data Freescale Semiconductor 7 PACKAGE DIMENSIONS 0.146 3.71 A F 0.095 2.41 3 B D 1 2 R 0.115 2.92 0.115 2.92 L 0.020 0.51 4 0.35 (0.89) X 45_ 5 _ N K Q C 4 ZONE W 2 1 3 G S Y Y E NOTES: 1. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1984. 2. CONTROLLING DIMENSION: INCH 3. RESIN BLEED/FLASH ALLOWABLE IN ZONE V, W, AND X. STYLE 1: PIN 1. 2. 3. 4. DRAIN GATE SOURCE SOURCE ZONE X VIEW Y--Y mm SOLDER FOOTPRINT P U H ZONE V inches 10_DRAFT CASE 466--03 ISSUE D PLD--1.5 PLASTIC DIM A B C D E F G H J K L N P Q R S U ZONE V ZONE W ZONE X INCHES MIN MAX 0.255 0.265 0.225 0.235 0.065 0.072 0.130 0.150 0.021 0.026 0.026 0.044 0.050 0.070 0.045 0.063 0.160 0.180 0.273 0.285 0.245 0.255 0.230 0.240 0.000 0.008 0.055 0.063 0.200 0.210 0.006 0.012 0.006 0.012 0.000 0.021 0.000 0.010 0.000 0.010 MILLIMETERS MIN MAX 6.48 6.73 5.72 5.97 1.65 1.83 3.30 3.81 0.53 0.66 0.66 1.12 1.27 1.78 1.14 1.60 4.06 4.57 6.93 7.24 6.22 6.48 5.84 6.10 0.00 0.20 1.40 1.60 5.08 5.33 0.15 0.31 0.15 0.31 0.00 0.53 0.00 0.25 0.00 0.25 MRF6V10010NR4 8 RF Device Data Freescale Semiconductor PRODUCT DOCUMENTATION AND SOFTWARE Refer to the following documents to aid your design process. Application Notes • AN1955: Thermal Measurement Methodology of RF Power Amplifiers Engineering Bulletins • EB212: Using Data Sheet Impedances for RF LDMOS Devices Software • Electromigration MTTF Calculator For Software, do a Part Number search at http://www.freescale.com, and select the “Part Number” link. Go to the Software & Tools tab on the part’s Product Summary page to download the respective tool. REVISION HISTORY The following table summarizes revisions to this document. Revision Date Description 0 June 2008 • Initial Release of Data Sheet 1 Feb. 2009 • Corrected Zsource, “2.57 -- j7.33” to “1.15 + j8.96” and Zload, “14.10 -- j34.77” to “13.47 + j34.32” in Fig. 11, Series Equivalent Source and Load Impedance data table and replotted data, p. 7 2 June 2009 • Modified data sheet to reflect MSL rating change from 1 to 3 as a result of the standardization of packing process as described in Product and Process Change Notification number, PCN13516, p. 2 • Added Electromigration MTTF Calculator availability to Product Documentation, Tools and Software, p. 9 3 July 2010 • Reporting of pulsed thermal data now shown using the ZθJC symbol, Table 2, Thermal Characteristics, p. 1 • Corrected errors made in the translation of the printed circuit board to the schematic, Fig. 1, Test Circuit Schematic and Z list, p. 3 MRF6V10010NR4 RF Device Data Freescale Semiconductor 9 How to Reach Us: Home Page: www.freescale.com Web Support: http://www.freescale.com/support USA/Europe or Locations Not Listed: Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1--800--521--6274 or +1--480--768--2130 www.freescale.com/support Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1--8--1, Shimo--Meguro, Meguro--ku, Tokyo 153--0064 Japan 0120 191014 or +81 3 5437 9125 [email protected] Asia/Pacific: Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 [email protected] For Literature Requests Only: Freescale Semiconductor Literature Distribution Center 1--800--441--2447 or +1--303--675--2140 Fax: +1--303--675--2150 [email protected] Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2008--2010. All rights reserved. MRF6V10010NR4 Document Number: MRF6V10010N Rev. 3, 7/2010 10 RF Device Data Freescale Semiconductor