STw4810 Power Management for Multimedia Processors PRELIMINARY DATA Features ■ 2 Step-down converters – 1 to 1.5V with 15 steps at 600mA – 1.8V at 600mA for general purpose usage ■ 3 Low-drop output regulators for different uses – PLL analog supplies: 1.05V, 1.2V, 1.3V 1.8V - 10mA – Processor analogue functions: 2.5V - 10mA – Auxiliary device: 1.5V, 1.8V, 2.5V, 2.8V - 150 mA ■ USB OTG module – Full and low speed USB OTG transceiver – Charge-pump (5V, 100mA) for USB cable ■ Mass memory cards (SD/MMC/SDIO) – 1 linear regulator: 1.8V, 2.85V, 3V - 150mA – Level shifter ■ Miscellaneous – 32 kHz control for multimedia processor – Processor supply monitoring – Processor reset control – 2 Serial I2C interfaces STw4810BHD TFBGA 84 6x6x1.2mm 0.5mm pitch STw4810BRA VFBGA 84 4.6x4.6x1.0mm 0.4mm pitch Description STw4810 is a power management companion chip for multimedia processors used in portable applications. It supplies the multimedia processor including its memories and peripherals. STw4810 supports the main mass memory standard cards. SDIOTM is also supported and allows to connect multimedia peripherals like cameras. Application ■ ST NOMADIKTM STn88xx ■ Multimedia processor ■ Mobile phones, PDA, Videophone Order codes Part number Package Packing STw4810BHD/LF TFBGA84- 6x 6 x 1.2 mm / 0.5 mm pitch Tray STw4810BRA/LF VFBGA 84 - 4.6x 4.6 x 1 mm / 0.4 mm pitch Tray February 2006 Rev3 This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to change without notice. 1/72 www.st.com 1 STw4810 Contents 1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Functional block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3 Ball information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4 3.1 Ball connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.2 Ball functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 4.2 Digital control module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 4.3 4.4 4.5 2/72 4.2.1 State machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 4.2.2 POWER OFF / VDDOK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.2.3 SLEEP mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.2.4 I2C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.2.5 Control registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.2.6 IT generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.2.7 Clock switching and control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Power management module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.3.1 Bandgap, biasing and references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.3.2 VCORE regulator: DC/DC STEP- DOWN regulator . . . . . . . . . . . . . . . . . . . 30 4.3.3 VIO_VMEM regulator: DC/DC step- down regulator . . . . . . . . . . . . . . . . . . . 31 4.3.4 VPLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.3.5 VANA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.3.6 VAUX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.3.7 Power supply monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.3.8 Power supply domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.3.9 Thermal shut-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 USB OTG module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.4.1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.4.2 Modes and operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.4.3 USB enable control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 SD/MMC/SDIO module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Rev3 STw4810 5 Electrical and timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 5.1 Absolute maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 5.2 Package dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 5.3 Power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 5.4 6 7 8 5.3.1 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 5.3.2 VREF18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 5.3.3 VCORE DC/DC step-down converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5.3.4 VIO_VMEM DC/DC step-down converter . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 5.3.5 LDO regulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.3.6 Power supply monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Digital specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.4.1 CMOS input/output static characteristics: I2C interface . . . . . . . . . . . . . . . . 53 5.4.2 CMOS input/output dynamic characteristics: I2C interface . . . . . . . . . . . . . . 53 5.4.3 CMOS input/output static characteristics: VIO level . . . . . . . . . . . . . . . . . . . 54 5.4.4 CMOS input/output static characteristics: VBAT level . . . . . . . . . . . . . . . . . . . 56 5.4.5 CMOS input/output static characteristics: VMMC level . . . . . . . . . . . . . . . . . 57 5.5 USB OTG transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5.6 SD/MMC card interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 6.1 Components list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 6.2 Application schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 7.1 TFBGA 84 balls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 7.2 VFBGA 84 balls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Rev3 3/72 STw4810 1 Overview 1 Overview ● ● ● ● Figure 1. 4/72 Power management module – 1 Step-down converter for processor core (1 to 1.5 V with 15 steps at 600 mA) – 1 Step-down converter (1.8 V at 600 mA) for general purpose usage such as processor input/output supply, external memory, DDR and SDRAM and peripherals – 1 Low-drop output regulator for analog supplies, such as PLL (1.05 V, 1.2 V, 1.3 V, 1.8 V at 10 mA) – 1 Low-drop Output regulator for processor analogue functions (2.5 V at 10 mA) – 1 Low-drop output regulator for auxiliary devices (1.5 V, 1.8 V, 2.5 V, 2.8 V at 150 mA) USB OTG module – Full and low speed USB OTG transceiver – 1 Linear regulators (3.1 V at 40 mA) supplying transceiver – 1 Charge-pump (5 V at 100 mA) supplying VBUS line of the USB cable Mass memory cards (SD/MMC/SDIO) – 1 Linear regulator (1.8 V, 2.85 V, 3 V at 150 mA) – Level shifter Miscellaneous – 32 kHz control for multimedia processor – Processor supply monitoring – Processor reset control – 2 Serial I2C interfaces Typical mobile multimedia system Rev3 STw4810 Functional block diagram MASTER_CLK CLK32K_IN CLK32K 1.8V- 600mA VMINUS_DIG Internal oscillator clock switching and control VBAT_ANA VMINUS_ANA SOFT_START VREF_VIO_VMEM GPO1 BG VREF_VCORE VREF_VPLL VREF_VAUX GPO2 USBINTn SDA SCL Buffer VREF_18 BIAS Control registers VBAT_VPLL_ANA Thermal shutdown TCXO_EN REQUEST_MC PON VDDOK PORn PWREN SW_RESETn VCORE 1V=>1.5V- 600mA VBAT_DIG VMINUS_VCORE VLX_VCORE VBAT_VCORE VIO_VMEM VMINUS_VIO_VMEM STw4810 block diagram VBAT_VIO_VMEM Figure 2. VLX_VIO_VMEM 2 2 Functional block diagram VPLL_LDO 1.05V,1.2V,1.3V,1.8V, 10mA Monitoring VPLL VANA_LDO 2.5V, 10mA General PORn_VBAT control VANA VBAT_VAUX VAUX_LDO 1.5V,1.8V2.5V,2.8V, 150mA I2C interface VAUX VBAT_USB USB OTG transceiver interface USBSDA USBSCL I2C Mux USB control Control Charge pump 5V - 100mA CP CN VBUS 3.1V - 40mA VUSB IT_WAKE_UP SD/MMC/ SDIO control USBOEn USBVP USBVM USBRCV VMINUS_USB MCCMDDIR MCDAT0DIR MCDAT2DIR MCDAT31DIR MCCLK MCFBCLK MCCMD MCDATA0 MCDATA[3:1] Driver Level shifter ID Pull up & down DP DN VBAT_MMC SD/ MMC/SDIO interface 1.8/2.85/3V-150mA Level shifter Driver Rev3 VMMC LATCHCLK CLKOUT CMDOUT DATAOUT0 DATAOUT[3:1] 5/72 STw4810 3 Ball information 3 Ball information 3.1 Ball connections Table 1. STw4810 ball connections 1 2 3 5 VBAT_VIO_ VIO_VMEM VMEM 6 7 8 9 10 VAUX VANA VPLL VREF_18 VCORE A CLK32K_IN VMINUS_ VIO_VMEM B “Reserved” REQUEST_ VMINUS_ VBAT_VIO_ MC VIO_VMEM VMEM VMINUS_ ANA VBAT_ VAUX “Reserved” “Reserved” “Reserved” VMINUS_ VCORE C TCXO_EN IT_WAKE_ UP VMINUS_ DIG “Reserved” VBAT_ANA VBAT_ VPLL_ANA PON VMINUS_ VCORE VLX_ VCORE D VBAT_DIG MASTER_ CLK “reserved” VLX_ VCORE VBAT_ VCORE VBAT_ VCORE E DATAOUT0 DATAOUT <1> DATAOUT <2> ID DP DN F DATAOUT <3> CMDOUT LATCHCLK “Reserved” VBAT_USB VUSB G CLKOUT MCCLK MCCMD DIR “Reserved” USBSCL VBUS H MCCMD MCDATA <3> MCDATA <1> MCDATA31 DIR MCFBCLK PWREN SDA USBINTn USBSDA CP J MCDATA <2> VDDOK PORN VBAT_ MMC GPO1 SCL USBVP USBVM VMINUS_ USB CN K MCDATA0 MCDAT0 DIR CLK32K SW_ RESET VMMC GPO2 USBRCV USBOEn MCDAT2 DIR “Reserved” 3.2 VLX_VIO_ VMEM 4 VLX_VIO_ VMEM Ball functions STw4810 includes the following ball types ● VDDD/VDDA: digital/analog power supply ● VSSD/VSSA: digital/analog ground supply ● DO/DI/DIO: Digital Output / Digital Input / Digital Input Output ● DOz: Digital Output with high impedance capability ● AO/AI/AIO: Analog Output / Analog Input / Analog Input-Output ● G: to be connected to ground ● O: to be left open ● Int-Ref: Associated to internal reference Table 2 details the ballout. 6/72 Rev3 STw4810 3 Ball information Table 2. STw4810 balls function Ball Ball name Ball type Description General supplies D1 VBAT_DIG VDDD-VBAT Battery supply for digital/oscillator C3 VMINUS_DIG VSSD Ground for digital and oscillator C6 VBAT_ANA VDDA-VBAT Battery supply for analog B5 VMINUS_ANA VSSA Ground for analog F9 VBAT_USB VDDA-VBAT Battery supply for USB block J9 VMINUS_USB VSSA Ground for USB block A9 VREF_18 Int-Ref Internal reference Control balls C8 PON DI(VBAT) Pull Down 1.5MΩ Power-on and reset K4 SW_RESETn DI(VIO_VMEM) Pull Up 1.5MΩ Software reset, reset all applications when SW_RESETn = 0 J2 VDDOK DO(VIO_VMEM) Supply monitoring for multimedia processors. Interruption for high temperature warning J3 PORn DO(VIO_VMEM) Multimedia processor Resetn H6 PWREN DI(VIO_VMEM) Pull Up 1.5MΩ Sleep mode from multimedia processor C1 TCXO_EN DI(VIO_VMEM) Pull Down 1.5MΩ Request of master clock from modem part B2 REQUEST_MC DO(VIO_VMEM) Request to master clock oscillator J6 SCL DI(VIO_VMEM) Clock for Main I2C interface H7 SDA DIO(VIO_VMEM) SDA for Main I2C interface D2 MASTER_CLK AI Pull Down 1.5MΩ 26 MHz, 13 MHz or 19.2 MHz from modem A1 CLK32K_IN DI(VIO_VMEM) Pull Down 1.5MΩ 32 kHz input K3 CLK32K DO(VIO_VMEM) 32 kHz to multimedia processor Rev3 7/72 STw4810 3 Ball information Table 2. STw4810 balls function Ball Ball name Ball type Description Regulator balls A4 B4 VBAT_VIO_VMEM VDDA-VBAT Battery power supply for step down VIO_VMEM A2 B3 VMINUS_VIO_VMEM VSSA Ground for step down VIO_VMEM A3 C4 VLX_VIO_VMEM AIO BUCK of step down VIO_VMEM A5 VIO_VMEM AI VIO_VMEM Feed back input D9 D10 VBAT_VCORE VDDA-VBAT Battery power supply for step down VCORE B10 C9 VMINUS_VCORE VSSA Ground for step down VCORE C10 D8 VLX_VCORE AIO BUCK of step-down VCORE A10 VCORE AI VCORE sense C7 VBAT_VPLL_ANA VDDA-VBAT Battery supply for VPLL, VANA A7 VANA AO VANA output A8 VPLL AO VPLL output A6 VAUX AO VAUX output B6 VBAT_VAUX VDDA-VBAT Battery supply for VAUX C2 IT_WAKE_UP DO(VBAT-DIG) Interrupt to modem for wake-up due to USB plug K8 USBOEn DIO(VIO_VMEM) Pull Down 1.5MΩ Output enable of the differential driver in the USB mode J7 USBVP DIO(VIO_VMEM) Pull Down 1.5MΩ Data input in the USB transmit mode, positive data input the single-ended transmit mode, or TXD in UART mode J8 USBVM DIO(VIO_VMEM) Pull Down 1.5MΩ Single-ended zero input in the USB transmit mode, negative data input in the single-ended transmit mode, or RXD in the UART mode K7 USBRCV DO(VIO_VMEM) Differential receiver output E9 DP AIO(VUSB) Positive data line in the USB mode, or serial data input in the UART mode E10 DN AIO(VUSB) Negative data line in the USB mode, or serial data output in the UART mode. E8 ID AI(VBAT-USB) ID ball of the USB detector used for protocol identification. USB balls 8/72 Rev3 STw4810 3 Ball information Table 2. STw4810 balls function Ball Ball name Ball type Description H10 CP AIO(VBUS) C plus flying capacitor (VBUS level 4.4 to 5.25) J10 CN AIO(VBUS) C minus flying capacitor (VBUS Level) G10 VBUS AIO(VBUS) USB cable supply (VBUS Level) F10 VUSB AIO Decoupling capacitor for USB internal regulator G9 USBSCL DI(VIO_VMEM) Clock for dedicated USB I2C H9 USBSDA DIO(VIO_VMEM) SDA for dedicated USB I2C H8 USBINTn DO(VIO_VMEM) Interrupt to multimedia processor for USB or accessory plug DI(VIO_VMEM) Pull Down 1.5MΩ CMD direction. - “high”: CMD signal from processor to card - “Low”: CMD signal from card to processor DI(VIO_VMEM) Pull Down 1.5MΩ DATA0 direction - “high”: DATA0 signal from processor to card - “Low”: DATA0 signal from card to processor DI(VIO_VMEM) Pull Down 1.5MΩ DATA2 direction - “high”: DATA2 signal from processor to card - “Low”: DATA2 signal from card to processor SD MMC balls G3 K2 K9 MCCMDDIR MCDAT0DIR MCDAT2DIR H4 MCDAT31DIR DI(VIO_VMEM) Pull Down 1.5MΩ DATA(3,1) direction - “high”: DATA(3,1) signal from processor to card - “Low”: DATA(3,1) signal from card to processor G2 MCCLK DI(VIO_VMEM) Pull Down 1.5MΩ Host clock, between processor and STw4810, to the card (processor clock). H5 MCFBCLK DO(VIO_VMEM) Host feedback clock between STw4810 and processor, to re-synchronize data in processor. H1 MCCMD DIO(VIO_VMEM) Pull Up 1.5MΩ Bidirectional command/response signal between processor and STw4810. K1 MCDATA0 DIO(VIO_VMEM) Pull Up1.5MΩ Bidirectional data0 between processor and STw4810 H2 H3 J1 MCDATA[3:1] DIO(VIO_VMEM) Pull Up 1.5MΩ Bidirectional data [3:1] between processor and STw4810. Rev3 9/72 STw4810 3 Ball information Table 2. STw4810 balls function Ball Ball name Ball type Description F3 LATCHCLK DI(VMMC) Pull Down 1.5MΩ Host feedback clock to STw4810, to resynchronize data in processor. G1 CLKOUT DO(VMMC) Host clock, between STw4810 and card (processor clock). F2 CMDOUT DIO(VMMC) Pull Up 1.5MΩ Bidirectional command/response signal between STw4810 and processor. E1 DATAOUT0 DIO(VMMC) Pull Up 1.5MΩ Bidirectional data0 between STw4810 and card F1 E3 E2 DATAOUT[3:1] DIO(VMMC) Pull Up 1.5MΩ Bidirectional data[3:1] between STw4810 and card. J4 VBAT_MMC VDDA-VBAT Battery supply for VMMC K5 VMMC AIO VMMC supply output Other balls 10/72 J5 GPO1 AO General purpose output K6 GPO2 AO General purpose output B9 D3 “Reserved” G To be connected to ground B1 B7 B8 C5 F8 G8 K10 “Reserved” O To be left open Rev3 STw4810 4 Functional description 4 Functional description 4.1 Introduction The STw4810 integrates all the power supplies for a multimedia processor as well as memories and peripherals: 4.2 ● Two switched mode power supply regulators: one for the multimedia processor core, one for multimedia processor I/Os and memories ● Three low-drop output regulators for multimedia processor analog supplies (PLL and others) and auxiliary components ● USB OTG FS/LS physical interface ● MMC card power supplies and level shifters ● Multimedia processor supply monitoring / power-on reset and power supply alarms / interrupt management ● Two serial I2C communication interfaces; one to control the devices (SDA, SCL) and one to control the USB (USBSDA, USBSCL). Digital control module This module describes the interfaces used to program the device and the related registers. 4.2.1 State machine Description of each states: (Figure 3.) OFF: In this mode the STw4810 is switched off. Off is when PON=0, when battery level is under 2.4 V or when thermal shutdown is activated. There is no multimedia processor power supply. The only active cell is the USB cable detection and VBAT level detection. OSC_START: Oscillator is enabled and the power up module is waiting for the rising edge of the internal signal OSC_OK to start power up sequence. This state duration is 300 µs. START_BIAS: Bias, reference and thermal shut-down are enabled, a counter is activated to wait for rising edge of internal signals PDN_regulators. This state duration has a typical value of 7.77 ms and a worst case value of 9.46 ms. START_PM: after a 1 ms wait, multimedia processor power supplies are available (VIO_VMEM, VCORE, VPLL, and VANA). The device can allow I2C communication, output power supply monitoring and application (USB,SD/MMC). OFF2: STw4810 is waiting for the 32 kHz multimedia processor signal. This state has an indeterminate duration. If 32kHz is present during the states describes above, it has no effect. The 32 kHz signal is taken into account by STw4810 only when the ‘VDDOK’ ball is high, that is at the end of START_PM state. RESET: STw4810 forces a reset during 10*32 kHz period before setting PORn high. INT_OSC: The STw4810 can work without MASTER_CLK via its internal oscillator. The device waits for an external clock detection before switching to the external clock. When receiving a rising edge on PWREN ball (coming from multimedia processor) or on TCXO_EN ball (coming from modem), STw4810 answers by asserting to “1” the REQUEST_MC ball. STw4810 remains in internal oscillator mode until it receives the external clock signal on MASTER_CLK ball. Rev3 11/72 STw4810 4 Functional description EXT_CLK: When MASTER_CLK is detected, the STw4810 uses this clock as reference and switches off its internal oscillator to save quiescent. MASTERCLK should remain connected up to SLEEP mode. SLEEP: SLEEP mode is required by multimedia processor by setting a PWREN at low level. Then VDDOK is forced to 0, regulators (VCORE, VIO_VMEM) switch to sleep mode and wait for PWREN at high level (Figure 4). WAKE-UP: From SLEEP mode, the multimedia processor requests to switch back to Normal mode. Thus the device restarts its internal oscillator and then switches regulators from sleep to normal mode and informs multimedia processor with VDDOK at high level (Figure 4). Note: By default VAUX is in stand by mode, pdn_vaux = 0 (Table 17). It can be programmed in normal mode only by asserted pdn_vaux bit to “1”. Figure 3. Start-up timing OFF VBAT PON ball 9.38mS (11mS wc) 300µs PDN__OSC START_BIAS START_PM 7.77ms (9.46ms wc) 1mS PDN_regulators VDDOK ball 10*(1/32KHz) CLK32K_IN ball (*) RESET PORn ball PWREN ball Internal_OSC MASTER_CLK ball TCXO_EN ball “or” REQUEST_MC ball OFF2 RESET VPLL / VIO_VMEM VCORE Voutput(s) ball CLK32K ball Delays are worst case maximum delays (*) If 32 Khz available before VDDOK signal rising edge, OFF2 state duration is null 12/72 Rev3 INT_OSC STw4810 4 Functional description All regulators are started with PDN_regulators but can be switched off from the beginning or during application by software (Table 26) . Figure 4. Switching POWER to sleep timing HPM HPM SLEEP ~100µs PWREN Sleep regulators VDDOK PDN_regulators CLK32K PDN_intOSC int_OSC _detect REQUEST_MC Internal_OSC MASTER_CLK Registers reset In the event of a hardware reset coming from the modem, PON ball set to “0”, all registers are reset at initial value when PON ball goes back to “1” level. A software reset from multimedia processor of STw4810, through SW_RESETn ball set to “0”, reset all registers except power control register (at address 1E & 1F). Main clock oscillator control REQUEST_MC is an OR output gate between PWREN (coming from multimedia processor) and TCXO_EN (coming from modem supply), it is synchronized on 32 kHz, except during power-up where PWREN is masked and considered as high. REQUEST_MC enabled or disabled the master clock oscillator device. Rev3 13/72 STw4810 4 Functional description 4.2.2 POWER OFF / VDDOK ● In case of VDDOK falling edge due to under voltage on VCORE or VIO_VMEM detected, or ‘it_twarn’ bit set to “1” (Table 17), then multimedia processor is reset (PORn low during a minimum time of 312.5 µs) and restarted with no time-out. (see Figure 5). In case of VDDOK falling edge because PWREN balls equals “0”, there is no reset (PORn still high). ● In case of PON falling edge (STw4810 switched off from modem) multimedia processor is also reset with no time-out. We consider that clean switch off between modem and multimedia processor is done by software directly. Figure 5. VDDOK block diagram PWREN vcore_monitor vio_monitor Digital block & & VDDOK it_twarn mask_twarn register reset after read operation or PON falling edge or PORN_VBAT. Reg status Under voltage detection VDDOK Operating voltage threshold value reached PORn 312.5 µs (10* 32 Khz) 4.2.3 SLEEP mode STw4810 goes into SLEEP mode by different ways. Whether VCORE, VIO_VMEM and VAUX are programmed to SLEEP mode or not is indicated in Table 26. Taking in account the bit programming from Table 26, SLEEP mode is summarized with the following formula: SLEEP = (Vxxx_SLEEP x PWREN) + (Vxxx_FORCE_SLEEP) = 1, (Vxxx = VCORE or VIO_VMEM or VAUX) 14/72 Rev3 STw4810 I2C Interface The device supports two I2C bus interfaces. One main interface (SDA,SCL) controls power management and all programmable functions, the second interface (USBSDA, USBSCL) is dedicated to USB control. STw4810 allows to work with only the main I2C interface to control all the functions, including the USB, via USB_I2C_CTRL bit of power control register (Table 26). I2C Interface is used to read status information from inside the device. Flags, interrupt and write registers are used to configure the device functions (threshold, clock division, output voltage, etc....). By default, the main I2C interface (SCL,SDA) controls the main registers and USB I2C interface (USBSCL, USBSDA) controls USB registers. Figure 6. I2C interface block diagram SCL SDA usb_i2c_ctrl Main registers SCL SDA USBSCL MUX 4.2.4 4 Functional description USBSDA SCL or USBSCL SDA or USBSDA USB registers Both I2C are configured as slave serial interface compatible with I2C registered trademark of Phillips Inc. (version 2.1). I2C interface description STw4810 I2C is a slave serial interface with a serial data line (SDA or USBSDA) and a serial clock line (SCL or USBSCL): – SCL / USBSCL: input clock used to shift data – SDA / USBSDA: input/output bidirectional data transfers It is composed of: – One filter to reject spikes on the bus data line and preserve data integrity – Bidirectional data transfers up to 400kbit/s (Fast-mode) via SDA or USBSDA signal The SDA or USBSDA signal contains the input/output control and data signals that are shifted in the device, MSB first. The first bit must be high (START) followed by the Device ID (7 bits) and Read/Write bit control (1 indicates read access, a logical 0 indicates a write access). – Device ID in write mode: 5Ah (01011010) – Device ID in read mode: 5Bh (01011011) Then STw4810 sends an acknowledge at the end of an 8 bits transfer. The next 8 bits correspond to the register address followed by another acknowledge. The 8 bits data field is sent last, followed by a last acknowledge. Rev3 15/72 STw4810 4 Functional description Table 3. Device ID b7 b6 b5 b4 b3 b2 b1 b0 AdrID6 AdrID5 AdrID4 AdrID3 AdrID2 AdrID1 AdrID0 R/W Table 4. Register address b7 b6 b5 b4 b3 b2 b1 b0 RegADR7 RegADR6 RegADR5 RegADR4 RegADR3 RegADR2 RegADR1 RegADR0 Table 5. Register data b7 b6 b5 b4 b3 b2 b1 b0 DATA7 DATA6 DATA5 DATA4 DATA3 DATA2 DATA1 DATA0 I2C interface modes Figure 7. Control interface: I2C format DEVICE ADDRESS WRITE SINGLE BYTE ACK ACK REGn ADDRESS REGn Data In ACK 01011010 START RANDOM ADDR READ SINGLE BYTE STOP DEVICE ADDRESS ACK ACK REGn ADDRESS 01011010 DEVICE ADDRESS ACK REGn Data Out NO ACK 01011011 START START RANDOM ADDR READ MULTI BYTE DEVICE ADDRESS ACK ACK REGn ADDRESS 01011010 ACK ACK ACK DEVICE ADDRESS Reg n Data Out 01011011 START NO ACK Reg n + m Data Out START STOP m+1 data bytes Figure 8. Control interface: I2C timing tbuf SDA USBSDA tsu_sta thd_sta tf SCL USBSCL tlow Stop 16/72 thd_dat tr tsu_dat thd_sta tsu_sto thigh Start Start repeated Rev3 Stop STw4810 4.2.5 4 Functional description Control registers Control registers have the following functions: – Select level of regulation for multimedia processor supply – Control the USB interface – Control the SD/MMC/SDIO interface – Control the state machine Table 6. Register general information Address Comment I2C control 00h to 10h USB Registers (Table 8 to Table 16) USBSDA / USBSCL or SDA / SCL (1) 11h SD MMC Control register (Table 17) SDA / SCL 12h to 1Dh Test registers 1Eh to 1Fh Power control registers (Table 18 to Table 26) SDA / SCL 20h twarning register (Table 27) SDA / SCL 1. Controlled by USB_I2C_CTRL bit of Power control register (Table 26) Table 7. Register summary Register Addr. 7 6 5 4 3 2 1 0 00h 1 0 0 0 0 0 1 1 01h 0 0 0 0 0 1 0 0 02h 0 0 0 1 0 0 0 0 03h 0 1 0 0 0 0 0 0 Vendor ID Product ID USB control register 1 04h 05h Not used uart_en oe_int_ en bdis_ not used dat_se0 acon_en USB control register 2 06h 07h vbus_ chrg vbus_ dischrg vbus_ drv id_gnd dn_ dp_ dn_ pulldown pulldown pullup USB interrupt source 08h cr_int bdis_ acon id_float dn_hi id_gnd_ forced dp_hi sess_vld vbus_vld USB interrupt latch 0Ah 0Bh cr_int bdis_ acon id_float dn_hi id_gnd_ forced dp_hi sess_vld vbus_vld USB interrupt mask 0Ch false 0Dh cr_int bdis_ acon id_float dn_hi id_gnd_ forced dp_hi sess_vld vbus_vld USB interrupt mask 0Eh true 0Fh cr_int bdis_ acon id_float dn_hi id_gnd_ forced dp_hi sess_vld vbus_vld USB EN 10h Not used SD MMC control 11h pdn_ vaux Twarning 20h Not used suspend speed usb_en it_warn monitori ng_vio_ vmem_ vcore gpo2 gpo1 sel_vmmc<1:0> dp_ pullup not used pdn_ vmmc mask_ twarn Rev3 17/72 STw4810 4 Functional description Register Addr. Power control 15 14 13 1Fh Register Addr. Power control 1 Eh 12 11 10 9 Not used 7 6 5 8 reg address 2 bits 4 reg address 3 bits 3 2 1 data din/dout 4 bits 0 ena write REGISTERS CONTROLLED BY I2C USB BUS The registers described in this chapter are controlled through the USB serial I2C interface, USBSCL and USBSDA balls. These registers could also be controlled through the main I2C interface, SCL and SDA balls by setting to “1” USB-I2C_CTRL bit in Power control register (Table 22). Table 8. USB register address Address Note: Register Type 00h - 01h Vendor ID R 02h - 03h Product ID R 04h set USB Control Register 1 R/W 05h clearh USB Control Register 1 R/W 06h set USB Control Register 2 R/W 07h clearh USB Control Register 2 R/W 08h USB Interrupt Source R 09h Not used 0Ah set USB Interrupt Latch R/W 0Bh clearh USB Interrupt Latch R/W 0Ch set USB Interrupt Mask False R/W 0Dh clearh USB Interrupt Mask False R/W 0Eh set USB Interrupt Mask True R/W 0Fh clearh USB Interrupt Mask True R/W 10h USB_EN R/W A bit of register 1 is set at “1” by writing a “1” at address 04h, is reset at “0” by writing a “1” at address 05h. This is also applicable for USB Control Register 2 (06h, 07h), USB Interrupt register (0Ah,0Bh), USB Interrupt Mask False register (0Ch, 0Dh) and USB Interrupt Mask True register (0Eh, 0Fh). Writing “0” at any address has not effect on the content of any register. Table 9. Vendor ID and Product ID: Read only Name Address Register Value 00h 83h 01h 04h 02h 10h 03h 40h Vendor ID Product ID 18/72 Rev3 STw4810 4 Functional description USB control register 1 Table 10. USB control register 1 (address = 04h set and 05h clearh) Register Bit name 7 6 5 Not used uart_en oe_int_ en - R/W R/W Type Bits Name 4 3 bdis_ not used acon_en R/W Value - 2 1 0 dat_se0 suspend speed R/W R/W R/W Settings Default 6 uart_en 0 1 Inactive UART logic buffers are enabled 0 5 oe_int_en 0 1 Inactive Allow to send interruption through USBOEn 0 4 bdis_acon_en 0 1 Inactive (default) Enable A-device to connect if B-device disconnect detected: 0 2 dat_se0 0 1 VP_VM USB mode DAT_SE0 USB mode 0 1 suspend 0 1 Inactive (default) Put transceiver in low power mode 0 0 speed 0 1 Set rise and fall times of transmit Low Speed Full Speed 0 Rev3 19/72 STw4810 4 Functional description USB control register 2 Table 11. USB Control Register 2 (Address = 06h set and 07h clearh) Register Bit name Type Bits 20/72 Name 7 6 5 4 vbus_ chrg vbus_ dischrg vbus_ drv id_gnd R/W R/W R/W R/W Value 3 2 dn_ dp_ pulldown pulldown R/W R/W Settings 1 0 dn_ pullup dp_ pullup R/W R/W Default 7 vbus_chrg 0 1 Inactive Charge VBUS through a resistor 0 6 vbus_dischrg 0 1 Inactive Discharge VBUS through a resistor to ground. 0 5 vbus_drv 0 1 Inactive Provide power to VBUS 0 4 id_gnd 0 1 Inactive Connect ID ball to ground 0 3 dn_pulldown 0 1 Inactive Connect DN pull-down 0 2 dp_pulldown 0 1 Inactive Connect DP pull-down 0 1 dn_pullup 0 1 Inactive Connect DN pull-up 0 0 dp_pullup 0 1 Inactive Connect DP pull-up 0 Rev3 STw4810 4 Functional description USB interrupt source register Table 12. USB Interrupt source register (address = 08h) Register Bit name 7 6 5 4 3 2 cr_int bdis_ acon id_float dn_hi id_gnd_ forced dp_hi R R R R R R Type Bits Name Value 1 0 sess_vld vbus_vld R Settings R Default 0 1 Inactive DP ball is above the carkit interrupt threshold 0 0 1 Inactive Set when bdis_acon_en is set, and transceiver asserts dp_pullup after detecting B-device disconnect. 0 id_float 0 1 Inactive ID ball floating 0 4 dn_hi 0 1 Inactive DN ball is high 0 3 id_gnd_forced 0 1 Inactive ID ball grounded 0 2 dp_hi 0 1 Inactive DP asserted during SRP, 0 1 sess_vld 0 1 Session valid comparator threshold <0.8V or >4.4V 0.8V < Session valid comparator threshold < 4.4V 0 0 vbus_vld 0 1 A-device VBUS valid comparator threshold <4.4V A-device VBUS valid comparator threshold >4.4V 0 7 cr_int 6 bdis_acon 5 USB latch register Table 13. USB interrupt latch registers (address = 0Ah set and 0Bh clearh) Register Bit name Default Type 7 6 5 4 3 2 1 0 cr_int bdis_ acon id_float dn_hi id_gnd_ forced dp_hi 0 0 0 0 0 0 0 0 R/W R/W R/W R/W R/W R/W R/W R/W sess_vld vbus_vld USB interrupt latch register bits indicate which sources have generate an interrupt. Rev3 21/72 STw4810 4 Functional description USB interrupt mask false register Table 14. USB interrupt mask false register (address = 0Ch and 0Dh) Register Bit name Default Type 7 6 5 4 3 2 1 0 cr_int bdis_ acon id_float dn_hi id_gnd_ forced dp_hi 0 0 0 0 0 0 0 0 R/W R/W R/W R/W R/W R/W R/W R/W 1 0 sess_vld vbus_vld USB interrupt mask false register bits enable transition from true to false. USB interrupt mask true register Table 15. USB interrupt mask true register (address = 0Eh and 0Fh) Register 7 6 5 4 3 2 Bit name cr_int bdis_ acon id_float dn_hi id_gnd_ forced dp_hi Type R/W R/W R/W R/W R/W R/W sess_vld vbus_vld R/W R/W USB interrupt mask true register bits enable interrupts on transition from false to true. USB EN register Table 16. USB EN register (address = 10h) Register 7 6 5 Bit name 1 22/72 3 2 Not used Type Bits 4 - Name usb_en - - Value 0 1 - - Settings Inactive Enable USB PHY Rev3 - 1 0 usb_en not used R/W - Default 0 STw4810 4 Functional description REGISTERS CONTROLLED BY MAIN I2C BUS I²C controlled registers are controlled through the main serial I2C interface, SCL and SDA balls. SD MMC control register Table 17. SD MMC control register (11h) Register 7 6 5 4 3 2 1 0 Bit name pdn_ vaux it_warn monitori ng_vio_ vmem_ vcore gpo2 gpo1 sel_vmmc<1:0> pdn_ vmmc Type R/W R(1) R(1) R/W R/W R/W R/W 1. These bits are reset (0) after reading Bits Name Value Settings Default 7 pdn_vaux 0 1 Inactive Enable LDO vaux 0 6 it_warn 0 1 Below temperature threshold Above temperature threshold 0 5 monitoring_vio_ vmem_vcore 0 1 Outputs in the good range Outputs lower than expected on vio_vmem or vcore 0 4 gpo2 0 1 Output GPO2 HZ Output GPO2 Low 0 3 gpo1 0 1 Output GPO1 HZ Output GPO1 low 0 00 01 10 11 1.8V selection 1.8V selection 2.85V selection 3V selection 00 0 1 Inactive Enable SD/MMC or SDIO function. 0 [2:1] sel_vmmc<1:0> 0 pdn_vmmc In Flash OTP two registers allow to program STw4810 energy management part. These two registers are at address 1E and 1F and must be programmed with 1F register first followed by 1E register. Rev3 23/72 STw4810 4 Functional description Power control register at address 1Eh Table 18. Power control register - General information (Address = 1Eh) Register Bit name 7 6 2 1 0 EN R/W R/W R/W Value Settings [7:5] reg address 3 bits data din/ dout 4 bits 0 1 EN 0 3 data din/dout 4 bits Name [4:1] 4 reg address 3 bits LSB’s Type Bits 5 Default See Table 20 “Address” column (LSB’s). 0 See Table 20 control register 0 Read enabled Write enabled 0 Power control register at address 1Fh Table 19. Power control register - General information (Address = 1Fh) Register 15 14 13 Bit name 12 11 10 9 8 reg address 2 bits MSB’s Not used Type R/W Bits Name [9:8] reg address 2 bits MSB’s Value Settings Default See Table 20 “Address” column (MSB’s). 0 Power control register mapping Table 20. Power control register mapping Address 1Fh Address 1Eh reg address Not used 15 14 13 12 11 10 2 bits MSB’s 9 8 Comment 3 bits LSB’s 7 6 data din/dout 4 bits 5 4 3 2 00h to 04h 0 Test purpose 05h to 0Ah Setting 0Bh to 1E 24/72 1 EN See Table 21 to Table 26 Test purpose Rev3 STw4810 4 Functional description Caution: Only the latest value written in register at address 1E/1F can be read. Power control register at address 05h Table 21. Power control register at address 05h Address 1Fh 15 Bits [4:1] 14 13 12 11 Address 1Eh 9 8 7 6 5 Not used 0 0 1 0 1 Name Value vcore_sel [3:0] 10 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 4 3 vcore_sel [3:0] Settings = 1.00V = 1.05V = 1.10V = 1.15V = 1.20V (default) = 1.22V = 1.24V = 1.26V = 1.28V = 1.30V = 1.32V = 1.34V = 1.36V = 1.38V = 1.40V = 1.50V Rev3 2 1 0 EN Default 0100 25/72 STw4810 4 Functional description Power control register at address 06h Table 22. Power control register at address 06h Address 1Fh 15 14 Bits 4 13 12 11 Address 1Eh 10 9 8 7 6 5 4 Not used 0 0 1 1 0 vpll_sel [0] Name Value vpll_sel[1:0] on 06h and 07h address [3:2] vaux_sel[1:0] 1 usb_i2c_ctrl 3 2 vaux_sel <1:0> 1 0 usb_ i2c_ctrl EN Settings Default 00 01 10 11 = 1.05V = 1.2V = 1.3V = 1.8V 11 00 01 10 11 = 1.5V = 1.8V = 2.5V = 2.8V 00 0 1 USB I2C interface controls USB registers Main I2C interface controls USB registers 0 Power control register at address 07h Table 23. Power control register at address 07h Address 1Fh 15 Bits 14 13 12 11 Address 1Eh 10 9 8 7 6 5 4 3 2 1 0 Not used 0 0 1 1 1 en_vpll not used en_ vcore vpll_sel [1] EN Name Value Settings 4 en_vpll 0 1 Disabled / VPLL = OFF 2 en_vcore 0 1 Disabled / VCORE = OFF 1 vpll_sel[1] - See Table 22 Enabled / VPLL = ON(1) Enabled / VCORE = ON(1) 1. No soft start feature at supply enabled after a disabled/enabled sequence 26/72 Rev3 Default 1 1 - STw4810 4 Functional description Power control register at address 08h Table 24. Power control register at address 08h Address 1Fh 15 14 13 12 11 Address 1Eh 10 9 8 7 6 5 4 3 Not used 0 1 0 0 0 Bits Name Value 4 en_clock_squarer 0 1 Disabled Enabled (sine wave signal input) 0 3 en_monitoring 0 1 Disabled / MONITORING = OFF Enabled / VCORE & VIO_VMEM monitoring = ON 1 2 en_vana 0 1 Disabled / VANA = OFF Enabled / VANA = ON 1 en_clk en_mo squarer nitoring 2 1 0 en_ vana not used EN Settings Default Power control register at address 09h Table 25. Power control register at address 09h Address 1Fh 15 Bits 14 13 12 11 Address 1Eh 10 9 8 7 6 5 4 3 Not used 0 1 0 0 1 vaux_ sleep not used Name Value Settings 2 1 vio_ vcore_ vmem_ sleep sleep 0 EN Default 4 vaux_sleep 0 1 When PWREN is low: VAUX stays in normal mode VAUX goes in sleep mode (default) 1 2 vio_vmem_sleep 0 1 When PWREN is low: VIO_VMEM stays in normal mode VIO_VMEM goes in sleep mode 1 1 vcore_sleep 0 1 When PWREN is low: VCORE stays in normal mode VCORE goes in sleep mode 1 Rev3 27/72 STw4810 4 Functional description Power control register at address 0Ah Table 26. Power control register at address 0Ah Address 1Fh 15 14 13 12 11 Address 1Eh 10 9 Not used 0 8 1 7 0 6 1 5 4 3 0 vaux_ force_ sleep not used 2 1 vio_ vcore_ vmem_ force_ force_ sleep sleep Settings 0 EN Bits Name Value Default 4 vaux_force_sleep 0 1 0: VAUX in normal mode 1: VAUX goes in sleep mode (for any PWREN level) 0 2 vio_vmem_force_ sleep 0 1 0: VIO_VMEM in normal mode 1: VIO_VMEM goes in sleep mode (for any PWREN level) 0 1 vcore_force_slee p 0 1 0: VCORE stays in normal mode 1: VCORE goes in sleep mode (for any PWREN level) 0 Twarning register Table 27. Twarning register (Address = 20h) Register 7 6 5 Bit name Type 28/72 Bits Name Value 0 mask_twarn 0 1 4 3 2 0 Not used mask_ twarn - R/W Settings Inactive Mask TWARN interruption (it_twarn bit) through VDDOK Rev3 1 Default 0 STw4810 4.2.6 4 Functional description IT generation STw4810 has three interrupt balls: IT_WAKE_UP: with only VBAT supply, no other supply available, when a USB cable is plugged this interrupt is activated to wake up the host or the modem, depends of application (active low). USBINTn: This interrupt ball is dedicated to USB protocol and sent to multimedia processor VDDOK: This ball has two functions: - When high, it indicates that VIO_VMEM and VCORE output voltages are within the right range and that the device internal temperature is below the maximum allowed temperature. - When low, it indicates that output regulators (VCORE or VIO_VMEM) are not regulated properly or PWREN = “0”, or that the temperature is above the allowed threshold (see Thermal shut-down section). The interruption source in the application register (address 11h) needs to be checked. 4.2.7 Clock switching and control This block generates the clock used by the DC/DC converter (USB charge pump, step-down VIO_VMEM and step-down VCORE). STw4810 is able to sustain the master clock frequencies of 26 MHz, 19.2MHz and 13 MHz. It can also sustain dedicated MASTER_CLK signal in the frequency range of 750KHz to 1MHz. If the clock is not detected the internal oscillator is automatically selected. Note: When present the Master clock should remain connected up to Sleep mode. Figure 9. Clock switching between master and internal clock (1) * Phase delay is less than 90 between int and ext clock internal clock transition external clock PON INT_OSC INT_OSC_OK MASTER_CLK_OK Third rising edge after switching PDN_INT_OSC CONTROL_SWITCH MASTER_DIV_CLK STEP_DOWN_CLK Rev3 29/72 STw4810 4 Functional description 4.3 Power management module STw4810 includes several regulators that supply the multimedia processor and its peripherals. All regulators can work in different modes depending on the processor needs. When the STw4810 is in ‘Low Current Mode’”, the output current is reduced to save energy via the lower quiescent current. The nominal mode is called high power mode (HPM). The mode is selected by PWREN signal according to both multimedia processor and STw4810 state. When PWREN = “0”, sleep mode is selected. HPM is selected as default when PWREN = “1”. Each regulator has a dedicated battery power supply. It can be powered down by a signal called PDN_regulator_name as shown in the Figure 2: STw4810 block diagram. In this mode, the regulator is switched off and only a leakage current is present (max. 1µA). VCORE, VAUX and VPLL output voltages are programmable, through main I2C interface, using the “Regulator”_SEL[x:0] bits of the POWER CONTROL registers (Table 21 to Table 26). In addition, an output current limitation prevents high current delivery in case of output short circuit. All multimedia processor power supplies have the same soft start to prevent leakage in the multimedia processor device during the start-up phase. There is an exception with VAUX which can be started independently. 4.3.1 Bandgap, biasing and references Figure 10. Block diagram of biasing and references of the device BG VREF_18 VOLTAGE REFERENCE CONTROL All internal references All internal biasing BIAS GENERATOR 4.3.2 VCORE regulator: DC/DC STEP- DOWN regulator This regulator drives the core of the multimedia processor. VCORE is a DC/DC step-down regulator that generates the regulated power supply with very high efficiency. The 15 voltage levels enable dynamic voltage and frequency scaling suitable for any supply voltage of CMOS process, they also follow the processor process roadmap. The regulated output voltage levels are adjustable by the power control registers (Table 21), via the main I2C interface (SDA, SCL). The master clock (13, 19.2 or 26 MHz) is automatically detected, squared and divided to generate the switching clock of the SMPS. When this clock is not available, regulators run the internal RC oscillator. 30/72 Rev3 STw4810 4 Functional description Main features: ● Programmable output voltage, 15 levels from 1.0 V to 1.5 V (VCORE_SEL [3:0] bits of Power control register - Table 21) ● 3 power domains: – ‘Normal mode’ when multimedia processor is in run mode, 600 mA full load – ‘Low current mode’ when multimedia processor is in sleep mode, 5 mA current capability. Fast switching from low current to normal mode. The regulator is in ‘low current mode’ when multimedia processor is in sleep mode. PWREN signal indicates that the multimedia processor is about to switch to run mode. VDDOK signal indicates to the multimedia processor that all supplies are in the specified range. Note: The definition of SLEEP mode is given in section 4.2.3: SLEEP mode. ● ‘Power Down mode’ or ‘Standby Mode’ when regulator is switched off, no consumption (EN_VCORE bit of Power control register - Table 27) ● Soft start circuitry at start up, from power off to normal mode, when PON ball changes from “0” to “1”. ● Default setting defined by start-up configuration. 4.3.3 VIO_VMEM regulator: DC/DC step- down regulator VIO_VMEM step-down regulator has the same structure than VCORE. The VIO_VMEM regulator supplies the IOs of the multimedia processor and its peripherals. This regulator can be used to supply the memories working with the multimedia processor, such as DDR-SDRAM. A switched mode power supply - voltage down converter is used to generate the 1.8 V regulated power supply with very high efficiency. The master clock (13, 19.2 or 26 MHz) is automatically detected, squared and divided to generate the SMPS switching clock. When this clock is not available, regulators can run the internal RC oscillator. Main features Note: ● Fixed 1.8 V output voltage ● Two power domains: – ‘Normal mode’ when multimedia processor is in run mode - 600 mA full load – ‘Low current mode’ when multimedia processor is in sleep mode, 5 mA current capability. Fast switching from low current to normal mode. The regulator is in ‘low current mode’ when multimedia processor is in sleep mode. PWREN signal indicates that the multimedia processor is about to switch to run mode. VDDOK signal indicates to the multimedia processor that all supplies are in the specified range. The definition of SLEEP mode is given in 4.2.3: SLEEP mode section. ● Soft start circuitry at start up, from power off to normal mode, when PON ball changes from “0” to “1”. ● Default setting defined by start-up configuration. Rev3 31/72 STw4810 4 Functional description 4.3.4 VPLL This LDO is dedicated to the multimedia processor PLL (1.05 V, 1.2 V, 1.3 V, 1.8 V) power supply with 10 mA max full load (Power Control Registers - Table 26 and Table 27). Main features 4.3.5 ● Programmable output voltage, (VPLL_SEL[1:0] bits of power control register - Table 26 and Table 27) ● Two power domains: – ‘Normal mode’ 10 mA full load – ‘Power Down mode’ or ‘Standby Mode’ when regulators are switched off and there is no power consumption (EN_VPLL bit of power control register - Table 27) ● Soft start circuitry at start up, from power off to normal mode, when PON ball changes from “0” to “1”. ● Default setting defined by start-up configuration. VANA This LDO is dedicated to the multimedia processor analogue function (2.5 V) power supply with 10 mA full load. Main features: ● 2.5 V output voltage, ● Two power domains ● 4.3.6 – ‘Normal mode’ 10 mA full load – ‘Power Down mode’ or ‘Standby Mode’ when regulators are switched off and there is no power consumption (EN_VANA bit of Power control register - Table 28), Default setting defined by start-up configuration. VAUX This LDO is dedicated either to the multimedia processor input/output signals or to the auxiliary devices. Power supply values are 1.5 V,1.8 V, 2.5 V, 2.8 V with 150 mA full load and 0.5 mA in SLEEP mode. In case of 1.5 V on the output, this LDO can be supplied by using VIO_VMEM DC/DC converter (1.8 V). One pad feed-back is used. Main features: Note: 32/72 ● Programmable output voltage, 4 levels (VAUX_SEL[1:0] bits of Power control register - Table 26) ● Three power domains: – ‘Normal mode’ when multimedia processor is in run mode, 150 mA full load – ‘Low current mode’ when multimedia processor is in sleep mode, 0.5 mA current capability. Fast switching from low current to normal mode. Definition of SLEEP mode is given in 4.2.3: SLEEP mode section. – ‘Power down mode’ or ‘standby mode’ when regulator is switched off, no power consumption (PDN_VAUX bit of SD MMC control register - Table 17) ● Default setting defined by start-up configuration Rev3 STw4810 4.3.7 4 Functional description Power supply monitoring This block monitors the VCORE and VIO_VMEM output voltage. If VCORE or VIO_VMEM drop below the threshold, the multimedia processor is reset. This feature can be desactivated by setting EN_MONITORING bit of Power control register (Table 28) to “0”. 4.3.8 Power supply domains Table 28 lists the register bits that control the different STw4810 supply domains for each supply. Table 28. Power supply domains Supply domains Supply name Description Normal Sleep Power down VCORE STEP-DOWN 15 values VCORE_SEL[3:0] VCORE_SLEEP VCORE_FORCE_SLEEP VIO_VMEM STEP-DOWN 1.8 V VIO_VMEM_SLEEP VIO_VMEM_FORCE_SLEEP VPLL LDO 4 values VPLL_SEL[1:0] EN_VPLL VANA LDO 2.5 V EN_VANA VAUX LDO 4 values VAUX_SEL[1:0] VMMC LDO 3 values SEL_VMMC[1:0] VAUX_SLEEP VAUX_FORCE_SLEEP Note: More details on VMMC supply are given in Section 4.5 4.3.9 Thermal shut-down EN_VCORE PDN_VAUX PDN_VMMC A thermal sensor is used to monitor the die temperature. ● As soon as the die temperature exceeds the thermal warning rising threshold 1, VDDOK ball goes to “0” and ‘it_warn’ bit is set to “1” (SD MMC control register - Table 17). The IC turns back VDDOK ball to “1” and ‘it_warn’ bit to “0” when the device temperature drops below the thermal warning falling threshold 1 of the thermal sensor. ● A second thermal detection level, thermal shutdown rising threshold 2, puts all STw4810 supplies OFF, the supplies goes back to ON state when the temperature reaches the thermal shutdown falling threshold 2. Table 29. Thermal threshold values Description Min Typ Max Unit Rising threshold 134 140 149 °C Falling threshold 117 123 131 °C Thermal Warning Threshold 1 Rev3 33/72 STw4810 4 Functional description Table 29. Thermal threshold values Description Min Typ Max Unit Rising threshold 149 155 164 °C Falling threshold 129 135 143 °C Thermal Shutdown Threshold 2 Figure 11. Thermal threshold temperatures for ‘it_warn’ bit and VDDOK ball ‘it_warn’ bit All supplies are turn “OFF” VDDOK ball Rising Warning Threshold 1 4.4 Rising Shutdown Temperature Threshold 2 USB OTG module This transceiver complies with the USB specification: ● Universal Serial Bus Specification Rev 2.0 ● On the Go supplement to the USB specification Rev 1.0-a ● Car kit Interface Specification (see: OTG transceiver specification rev0.92) The USB OTG Transceiver has two modes: USB mode and UART mode. It includes: 34/72 ● Full and low speed transceiver (12 Mbit/s and 1.5 Mbit/s data rate) ● Support data line and VBUS pulsing session request ● Contains Host Negotiation Protocol (HNP) command and status register ● Charge pump regulator (5 V at 100 mA) to supply VBUS line of the USB cable ● VBUS Pull-up and pull-down resistors as defined by Session Request Protocol (SRP) ● VBUS threshold comparators ● VUSB LDO internal regulator which provides power supply for the bus driver and receiver. ● ID line detector and interrupt generator ● Dedicated I²C serial control interface Rev3 STw4810 Block diagram Figure 12. USB OTG transceiver block diagram VBAT_USB CP CN VBAT_DIG USB_INTn vbus_vld sess_vld dn_hi Interrupt dp_hi Control bdis_acon Register id_gnd_forced id_float cr_int usb_en CHARGE PUMP 5V - 100mA REF vbus_drv VBUS VBUS_MONITOR VBUS > 4.4 V vbus_vld sess_vld USBSDA SCL SDA SW_RESETn vbus_chrg VBAT_USB VBUS < 0.8V Gnd VUSB_LDO vbus_dischrg vbus_drv bdis_acon_en dn_pullup dp_pullup Control dn_pulldown Registers dp_pulldown id_gnd vbus_chrg vbus_dischrg speed uart_en dat_se0 oe_int_en suspend RA_BUS_IN 2V < VBUS < 4.4 V usb_i2c_ctrl USBSCL 100 mA R_VBUS_SRP CLK VMINUS_DIG R_VBUS_PD vbus_session_end VUSB DP_MONITOR 5.7 R DP cr_int RXD TRANCEIVER RXD dp_pullup dn_pullup RPU_DP DAT_VP USBVP Diff Tx SEO_VM USBVM R DP < [0.4 to 0.6] V RPU_DN OE_TP_INT USBOEn DP out_diff_Rx Diff Rx DN USBRCV SINGLE ENDED RCV SE_DP RPD_DP suspend RPD_DN 4.4.1 4 Functional description VP dn_pulldown DECODER SE_DN VM dp_pulldown VBAT_DIG VBAT_USB R Plug detect Management IT_WAKE_UP id_float sess_vld ID 4.7 R id_gnd 0.15*ID OR ID Detector Rev3 RID_PU 0.85*ID id_gnd R 35/72 STw4810 4 Functional description VBUS monitoring These comparators monitor the VBUS voltage. They detect the current status of the VBUS line: ● VBUS > 4.4 V means VBUS_VALID ● 2 V<VBUS<4.4 V means SESSION_VALID ● VBUS<0.8 V means SESSION_END These three bits generate an interrupt when active (see USB interrupt registers). VUSB LDO: Internal regulator which provides power supply for the bus driver and receiver. ID detector: This block detects the status of the ID line. It is capable of detecting three different states of line: ball is floating ID_FLOAT high, ball is tied to ground ID_GND high and ball ID is grounded via resistor. This detection generates interrupts (see USB interrupt registers). Transceiver: The driver can operate in several different modes. It can act as a classical lowspeed and full-speed differential driver, as two independent single-ended drivers or as a singleended driver in UART mode. This block contains one differential receiver for the USB mode of operation and two single-ended receivers for USB signaling and UART mode. DP monitor: This block is used to detect car kit peripheral (0.6 V on DP). Pull up and pull down resistor: Configurable integrated pull-up and pull-down resistor of data line and VBUS. 4.4.2 Modes and operations Power modes The transceiver power modes are: ● Active power mode ● Suspended power mode ● Power down mode In suspended power mode the differential transmitter and receiver are turned off to save power but the USB interface is still active (pull-up and pull-down on, VBUS on). In power down mode, only the serial interface is active and the transceiver is able to detect SRP. In power down mode, ID ball sensing can be turned on/off via a control bit in the control registers. USB modes The two transceiver modes are: 36/72 ● DAT_SEO mode (dat_se0 = 1 in USB control register 1 - Table 10) ● VP_VM mode (dat_se0 = 0 in USB control register 1 - Table 10) Rev3 STw4810 4 Functional description Data transmission The transceiver transmits USB data in the following conditions for USB control register 1 (Table 30, Table 31): uart_en=0; oe_int_en=0 Table 30. Data transmission via USB control register 1 (DAT_SE0 mode) - Suspend = 0 USB mode (DAT_SE0) Inputs Outputs Comments USBVP USBVM DP DN 1 (DAT_SE0 mode) 0 0 0 1 Not used Single ended data (zero sent) 1 (DAT_SE0 mode) 1 0 1 0 Not used Single ended data (1 sent) 1 (DAT_SE0 mode) x 1 0 0 Not used Force single ended zero 0 (VP_VM mode) 0 0 0 0 DIFF_RX 0 (VP_VM mode) 1 0 1 0 DIFF_RX 0 (VP_VM mode) 0 1 0 1 DIFF_RX 0 (VP_VM mode) 1 1 1 1 DIFF_RX Table 31. USBRCV DAT_VP drives the level of DP SE0_VM drives the level of DN Data transmission via USB control register 1 (DAT_SE0 mode) - Suspend = 1 USB mode (dat_se0) Inputs Outputs Comments USBVP USBVM DP DN USBRCV 1 (DAT_SE0 mode) 0 0 0 1 not used single ended data (zero sent) 1 (DAT_SE0 mode) 1 0 1 0 not used single ended data (1 sent) 1 (DAT_SE0 mode) x 1 0 0 not used Force single ended zero 0 (VP_VM mode) 0 0 0 0 0 (off) 0 (VP_VM mode) 1 0 1 0 0 (off) 0 (VP_VM mode) 0 1 0 1 0 (off) 0 (VP_VM mode) 1 1 1 1 0 (off) Driver are suspended If oe_int_en = 1 and suspend=1 (USB control register 1 - Table 10), the USBOEn ball becomes an output used to generate an IT to multimedia processor. Rev3 37/72 STw4810 4 Functional description The transceiver receives USB data in the following conditions: uart_en = 0 (USB control register 1); oe_int_en = 1 Table 32. Data receiver via USB control register 1 Inputs USB mode (dat_se0) Suspend 1 (DAT_SE0 mode) Outputs Comments DP DN USBVP USBVM USBRCV 0 0 0 Diff rcv 1 1 not used 1 (DAT_SE0 mode) 0 1 0 1 0 not used 1 (DAT_SE0 mode) 0 0 1 0 0 not used 1 (DAT_SE0 mode) 0 1 1 Diff rcv 1 0 not used 1 (DAT_SE0 mode) 1 0 0 0 1 not used 1 (DAT_SE0 mode) 1 1 0 1 0 not used 1 (DAT_SE0 mode) 1 0 1 0 0 not used 1 (DAT_SE0 mode) 1 1 1 1 0 not used 0 (VP_VM mode) 0 0 0 0 0 diff rcv 1 0 (VP_VM mode) 0 1 0 1 0 1 0 (VP_VM mode) 0 0 1 0 1 0 0 (VP_VM mode) 0 1 1 1 1 diff rcv 1 0 (VP_VM mode) 1 0 0 0 0 not used 0 (VP_VM mode) 1 1 0 1 0 not used 0 (VP_VM mode) 1 0 1 0 1 not used 0 (VP_VM mode) 1 1 1 1 1 not used UART mode UART mode is entered by setting the ‘uart_en’ bit to 1 (USB control register 1 - Table 10). The transceiver contains two digital logic level translators between the following balls: ● TXD signal: from USBVM to DN ● RXD signal: from DP to USBVP When not in UART mode the level translators are disabled. 38/72 Rev3 STw4810 4 Functional description VBUS monitoring and control The monitoring is made of three comparators that determine if the VBUS voltage is at a valid level for operation: ● VBUS VALID: It corresponds to the minimum level on VBUS. Any voltage on VBUS below the threshold is considered to be a fault. During power-up, it is expected that this comparator output is ignored. ● VBUS SESSION VALID: This threshold is necessary for session request protocol to detect the VBUS pulsing. ● VBUS SESSION END: Session is ended. In this USB block, a B-device Session End threshold is defined within the range [0.2; 0.8] V. The reason for a low 0.2 V limit is that the leakage current could charge the VBUS up to 0.2 V (maximum). When the A-device (default master) is power supplied and does not supply VBUS, it presents an input impedance RA_BUS_IN on VBUS of no more than 100 kΩ. If the A-device responds to the VBUS pulsing method of SRP, then the input impedance RA_BUS_IN may not be lower than 40 kΩ. When the A-device supplies power, the rise time TA_VBUS_RISE on VBUS to go from 0 to 4.4 V is less than 100 ms when driving 100 mA and with an external load capacitance of 10 µF (in addition to VBUS decoupling capacitance). If VBUS does not reach this voltage within TA_VBUS_RISE maximum time, it indicates that the B-device is drawing more current that the A-device is capable of providing and an over-current condition exists. In this case, the A-device turns VBUS off and terminates the session. VBUS capacitance A dual-role device must have a VBUS capacitance CDRD_VBUS value comprised between 1 µF and 6.5 µF (see charge pump specification). The limit on the decoupling capacitance allows a B-device to differentiate between a powered-down dual-role device and a powereddown standard host. The capacitance on a host is higher than 96 µF. Data line pull-down resistance When an A-device is idle or acting as host, it activates the pull-down resistors RPD on both DP and DN lines. When an A-device is acting as peripheral, it disables RPD on DP, not DN. The A-device can disable both pull-down resistors during the interval of a packet transmission when acting as either host or peripheral. The two bits of USB control register, dn_pulldown and dp_pulldown (Table 11) are used to connect/disconnect the pull-down resistors. When the line is not used, the pull-down is activated and the maximum level on this ball should not exceed 0.342 V. Data line pull-up resistance Full-speed and low-speed devices are differentiated by the position of the pull-up resistor from the peripheral device. A pull-up resistor is connected to DP line for a full-speed device and a pull-up resistor is connected to DN line for a low-speed device. The pull-up resistor value is in the range of 900 Ω to 1600 Ω when the bus is idle and 1425 Ω to 3100 Ω when the upstream device is transmitting. Rev3 39/72 STw4810 4 Functional description The two bits of USB control register dp_pullup and dn_pullup (Table 11) are used to connect/ disconnect pull-up resistors. Session Request Protocol (SRP) To save power, the OTG supplement allows an A-device to leave the VBUS turned off when the bus is not being used. If the B-device wants to use the bus when VBUS is turned off, then it requires the A-device to supply power on VBUS using the Session Request Protocol (SRP). ● Initial conditions The B-device does not attempt to start a new session until it has determined if the A-device has detected the end of the previous session. The B-device must ensure that VBUS is below VBUS_SESSION_END before requesting a new session. Additionally, the B-device switches a pull-down resistor (R_VBUS_PD) from VBUS to ground in order to quicken the discharge process as long as the B-device does not draw more than 8 mA from VBUS. R_VBUS_PD is activated by bit ‘vbus_dischrg’ of USB control register 2, (Table 11). When the B-device detects that VBUS is below the VBUS_SESSION_END and that both DP and DN have been low (SEO) for at least 2 ms, then any previous session on the A-device is over and a new session can start. ● Data-line pulsing To indicate a request for a new session using the data line pulsing, the B-device turns on the DP pull-up resistor for 5 ms to 10 ms (only at full speed, no DN pulsing). The DP pull-up resistor is connected to VUSB (regulator output voltage). Timing is controlled by the USB digital control. ● VBUS pulsing To indicate a request for a new session using the VBUS pulsing method, the B-device waits for the initial conditions and then drives VBUS. VBUS is driven for a long enough period for a capacitance on VBUS that is smaller than 2x6.5 µF to be charged to 2.1 V while a capacitance on VBUS higher than 97 µF is not charged above 2.0 V. In this USB block, the VBUS_SESSION_VALID threshold is used to determine if an A-device is DRD (dual role device) or a standard host. The B-device VBUS pulsing block is designed so that the maximum drawn current does not exceed 8 mA. In this USB block, the pull-up is 600 Ω +/- 30%. If a B-device is attached to a standard device, the pull-up must be disconnected after the defined timing to prevent damage of standard hosts not designed to withstand a voltage externally applied to VBUS. ● Session Request Protocol (SRP) If the B-device is in correct condition to start a new session, it first performs data line pulsing, followed by VBUS pulsing. When VBUS next crosses the SESSION VALID threshold, the Bdevice considers a session to be in progress and asserts the DP or DN data line within 100 ms. After SRP initialization, the B- device is set up to wait for at least 5 seconds for the A-device to respond before informing the user that the consumption attempt has failed. ● Host Negotiation Protocol (HNP) At the start of a session, the A-device has the role of host as default. During a session, the host role can be transferred back and forth between the A-device and the B-device any number of times using the Host Negotiation Protocol (HNP). The process for this exchange of host role is described in the “On the Go Supplement to the USB 2.0 Specification” (rev 1.0). 40/72 Rev3 STw4810 4 Functional description ID detector In either active or suspended power mode, the ID detector detects the condition of the ID line and differentiates between the following three conditions: – ID ball floating: (e.g. with USB B-device connected) – ID ball shorted to ground: (e.g. with USB A-device connected) – ID ball connected to ground through resistor RACC_ID: (e.g.with an accessory). The transceiver pulls the ID ball to VID_HI (VBAT) through a resistance of RID_PU when an accessory is plugged in. In this case, the ID ball is externally connected to ground via Racc_ID resistor. Two comparators are used to detect the ID voltage: VID_GND and VID_FLOAT. The ID detector also has a switch that can be used to ground the ID ball. This switch is controlled by id_gnd bit of USB control register 2 (Table 11); This pull-down is used for CEA_KARKIT purposes. Car kit interrupt detector The transceiver is able to detect when the DP line is below the Carkit Interrupt threshold ‘cr_int’, (see USB interrupt register) (refer to OTG specifications, Rev 0.92, §2.7, p13). Charge pump From VBAT_USB, the charge pump supplies VBUS, ‘vbus_drv’ bit of USB control register 2 (Table 11) is used to enable/disable the charge pump. LDO USB From VBAT_USB, a LDO provides VUSB supply, ‘usb_en’ bit of USB_EN register (Table 16) is used to enable/disable the VUSB LDO. Rev3 41/72 STw4810 4 Functional description 4.4.3 USB enable control STw4810 OFF In this state, the overall system is able to detect USB connection through IT_WAKE_UP ball and with VBUS session valid comparator and ID detection ON. IT_WAKE_UP is activated (low level) in either of the two following cases: – When Mini A connector cable is connected and ID goes low – When activity on VBUS, i.e. a mini B is connected and is able to communicate. This mode is used to wake-up the modem platform. In this configuration, USBINTn ball is not enabled. STw4810 ON, USB driver not enabled The USBINTn is now enabled. If the USB cable is already connected while STw4810 is starting, the USB driver will be enabled when power management is ready. ● ● ● 42/72 Wake-up USB driver conditions – A plug-in on a mini A-device and active ID detector – B device is connected and ready to start data transfer, VBUS is driven high (session valid high) – Activity on USB registers (00h to 0Fh - Table 8 to Table 15). Multimedia processor ready to wake-up and set-up USB PHY. – Possibility to force PHY high (enable) when writing usb_en = 1 in USB EN register (Table 16) Set condition: one among the following possibilities – External it_wake_up =0 – usb_en = 1 by writing to I²C USB interface – Access to any other USB register (00h to 0Fh) Power down USB driver conditions in order to set the USB driver to power down mode: – it_wake_up = 1, and only then – Set usb_en bit of USB EN register (Table 16) to “0” Rev3 STw4810 4.5 4 Functional description SD/MMC/SDIO module This block provides the power supply (1.8 V, 2.85 V or 3 V) and signal shifting functions required to connect any of the following peripherals to the multimedia processor: – SD card – MMC cards, low and 52 MHz high speed – SDIO cards (except SDIO card version 1.0 / Vsupply range: [3.1; 3.6] V Cards detection is automatically done by the multimedia processor system. Following a card detection, the multimedia processor starts the SD/MMC application by writing in the SD MMC control register (Table 17) to start LDO VMMC and then starts the protocol initialization. The module includes: – 1.8 V, 2.85 V or 3 V voltage regulators (150 mA) – Five bidirectional level shifter channels compatible with 1.8 V, 2.85 V or 3 V – Two unidirectional lines for clock: multimedia processor to card and feedback clock to multimedia processor for synchronization. – Four control signals for channel direction Figure 13. SD MMC block diagram SD/ MMC/SDIO INTERFACE VBAT_VMMC MCCMDDIR MCDATA0DIR MCDATA2DIR MCDATA31DIR VMMC 1.8V,2.85V,3V 150mA CLKOUT MCCLK DRIVER 3 * RA SD, MMC SDIO OR CARDS Level 5 * RB Vsdc2 EMIF RC 3 * RA Rs Shifter CMDOUT MCCMD MCDATA0 MCDATA[3:1] MCFBCLK Dz Dz DATAOUT0 DATAOUT[3:1] LATCHCLK Rev3 43/72 STw4810 5 Electrical and timing characteristics 5 Electrical and timing characteristics Otherwise specified parameters are defined for T = 25°C. / VBAT = 3.6 V 5.1 Absolute maximum rating Table 33. Stw4810 absolute maximum ratings Symbol Description Min. Typ. Max. Units Maximum power supply -0.5 7 V Ta Maximum operating ambient temperature -30 85 °C Tj Maximum junction temperature -30 125 °C 0.92 W Maximum power dissipation ESD performance(1) 2 kV 1. : HBM Mil-Std-883 Method 3015 5.2 Package dissipation Table 34. Package dissipation Symbol Description Min. Typ. Max. Units TFBGA 84 6x6x1.2mm 0.5mm ball pitch RTHJ-A Thermal resistance Junction to Ambient 70 °C/W 76 °C/W VFBGA84 4.6x4.6x1.0mm 0.4mm ball pitch RTHJ-A Thermal resistance Junction to Ambient 5.3 Power supply Note: STw4810 has different ways to go in SLEEP mode. The different possibilities for VCORE, VIO_VMEM and VAUX to be programmed to SLEEP mode are given in Table 29 and Table 26. Taking into account the bit programming of Table 29 and Table 26 related to SLEEP mode, SLEEP mode is summarized with the following formula: SLEEP = (Vxxx_SLEEP x PWREN) + (Vxxx_FORCE_SLEEP) = 1 (Vxxx = VCORE or VIO_VMEM or VAUX) In all the following tables: – “Normal mode” is defined as “SLEEP = ‘0’” – “SLEEP mode” is defined as “SLEEP = ‘1’” Use Table 26 to refer to each Vxxx supply (VCORE or VIO_VMEM or VAUX). 44/72 Rev3 STw4810 5.3.1 5 Electrical and timing characteristics Operating conditions Table 35. Symbol VBAT IQSLEEP Operating conditions (Temp range: -30 to +85 °C) Description Power supply Min. Typ. 2.7 Sleep mode 170 Max. Units 5.5 V 250 µA 4 µA Max. Units 4.8 V 1.84 V Quiescent Current IQSTDBY 5.3.2 Test conditions Off mode VREF18 Table 36. Symbol VREF18 Description Test conditions Min. Typ. VBAT Supply voltage 2.7 VREF_18 Output voltage 1.78 PSRR Power supply rejection ratio Vpp = 0.3 V f ≤100 kHz 60 dB Noise 100 Hz ≤f ≤100 kHz 30 µV tS Settling time 1.8 7.77 Rev3 9.46 ms 45/72 STw4810 5 Electrical and timing characteristics 5.3.3 VCORE DC/DC step-down converter Table 37. Symbol VCORE DC/DC step-down converter Description Test conditions Min. Typ. Max. Units VCORE Regulator in Normal Mode (SLEEP = ‘0’) / Otherwise specified; VCORE = 1.2 V VBAT Input power supply VRIPPLE Output voltage ripple VOUT 46/72 Programmable output voltage Battery voltage 2.7 3.6 4.8 10 VCORE_SEL[3:0] 1111 1110 1101 1100 1011 1010 1001 1000 0111 0110 0101 0100 (default) 0011 0010 0001 0000 -3.7% -4.25% -5% 1.50 1.40 1.38 1.36 1.34 1.32 1.30 1.28 1.26 1.24 1.22 1.20 1.15 1.10 1.05 1.00 V mVpp +3.7% V +4.25% +5% IOUT Output current PEFF Power efficiency VBAT = 3.6 V IOUT = 200 mA LIR Line regulation VBAT: [2.7; 4.8]V 10 mV LDR(1) Load regulation IOUT: [0.1; 600] mA 10 mV ISHORT Short circuit current limitation 1.2 1.4 A IQ Quiescent current IOUT = 0 mA 130 250 µA ILKG Power-down current ‘en_vcore’ = 0 1 µA PSRR(1) Power supply rejection Vpp = 0.3 V [0; 20] kHz LIRT Transient line regulation ∆VBAT = 300 mV tR = tF = 10 µs 7 mV LDRT Transient load regulation IOUT = [1; 600] mA tR = tF = 100 ns 70 mV 600 86 0.9 Rev3 40 mA % dB STw4810 5 Electrical and timing characteristics Table 37. Symbol VCORE DC/DC step-down converter Description Test conditions Min. Typ. Max. Units 2.7 3.6 4.8 V VCORE Regulator in Sleep Mode (SLEEP= ‘1’) VBAT Input power supply VRIPPLE VCORE output voltage ripple LIR Line regulation VBAT: [2.7; 4.8]V 10 mV LDR Load regulation IOUT: [0.1; 5] mA 10 mV IOUT VCORE output current 5 mA PEFF Power efficiency IQ Quiescent current LIRT Transient line regulation Battery voltage 10 mVpp VBAT= 3.6 V IOUT: [0.1; 5] mA 85 IOUT = 0 mA 20 ∆ VBAT= 300 mV % 30 7 tR = tF = 10 µs µA mV 1. Guaranteed by design 5.3.4 VIO_VMEM DC/DC step-down converter Table 38. Symbol VIO_VMEM DC/DC step-down converter Description Test conditions Min. Typ. Max. Units 2.7 3.6 4.8 V -3% 1.8 +3% V VIO_VMEM Regulator in Normal Mode (SLEEP = ‘0’) VBAT Input power supply VOUT Output voltage (1) VRIPPLE Output ripple LIR Line regulation VBAT: [2.7; 4.8]V 10 mV LDR(2) Load regulation IOUT: [0.1; 600] mA 10 mV IOUT Output current 600 mA PEFF Power efficiency Battery voltage 10 VBAT = 3.6 V, VIO = 1.8 V IOUT= 100 mA ISHORT Short circuit current limitation IQ Quiescent current IOUT = 0 mA PSRR(2) Power supply rejection Vpp = 0.3 V [0; 20] kHz LIRT Transient line regulation ∆VBAT = 300 mV tR = tF = 10 µs 90 0.9 Rev3 mVpp % 1.2 1.4 A 130 250 µA 40 dB 7 mV 47/72 STw4810 5 Electrical and timing characteristics Table 38. Symbol LDRT VIO_VMEM DC/DC step-down converter Description Transient load regulation Test conditions Min. IOUT= [1; 600] mA tR = tF = 100 ns Typ. Max. Units 70 mV VIO_VMEM Regulator in Sleep Mode (SLEEP=’1’) VBAT Input power supply VRIPPLE Output ripple LIR Line regulation VBAT: [2.7; 4.8]V 10 mV LDR Load regulation IOUT: [0.1; 5] mA 10 mV IOUT Output current 5 mA PEFF Power efficiency IQ Quiescent current IOUT = 0 mA LIRT Transient line regulation ∆VBAT = 300 mV tR = tF = 10 µs Battery voltage 2.7 3.6 4.8 10 V mVpp VBAT = 3.6 V IOUT = [0.1; 5] mA 85 % 15 7 1. Including output voltage temperature coefficient, DC line and load regulations, voltage reference accuracy, industrial manufacturing tolerances and ripple voltage due to switching 2. Guaranteed by design 48/72 Rev3 µA mV STw4810 5.3.5 5 Electrical and timing characteristics LDO regulators VPLL Table 39. Symbol LDO regulators - VPLL Description Test conditions Min. Typ. Max. Units 4.8 V +3% V 3.5 10 mA 130 165 mA 30 40 µA 1 µA VPLL Regulator in Normal Mode / Otherwise specified, VPLL = 1.8 V VBAT Input power supply Battery voltage 2.7 VOUT Output voltage VPLL_SEL[1:0] 11 (default) 10 01 00 -3% IOUT Output current ISHORT Short-circuit limitation IQ Quiescent current IOUT = 0 mA ILKG Power-down current EN_VPLL = 0 PSRR(1) Power supply rejection Vpp = 0.3 V f < 10 kHz 10 kHz < f <100 kHz LIR Line regulation VBAT: [2.7; 4.8]V 5 mV LDR Load regulation IOUT: [0.1; 10] mA 10 mV LIRT Transient line regulation LDRT Transient load regulation IOUT = [0.1; 10] mA tR = tF = 1 µs En(1) Noise density at 1 KHz BW = 100 Hz 95 ∆VBAT = 300 mV tR = tF = 10 µs 3.6 1.8 1.3 1.2 1.05 55 45 dB dB 1 mV 1 mV nV 250 rms -----------Hz 1. Guaranteed by design Rev3 49/72 STw4810 5 Electrical and timing characteristics VANA Table 40. Symbol LDO regulators - VANA Description Test conditions Min. Typ. Max. Units 2.7 3.6 4.8 V -5% 2.5 +5% V 10 mA 64 mA VANA regulator in normal mode VBAT Input power supply VOUT Output voltage IOUT Output current ISHORT Short-circuit limitation IQ Quiescent current IOUT = 0 mA 30 µA ILKG Power-down current EN_VANA = 0 1 µA PSRR(1) Power supply rejection Vpp = 0.3 V f < 10 kHz LIR Line regulation VBAT: [2.7; 4.8] V 5 mV LDR Load regulation IOUT: [0.1; 10] mA 5 mV LIRT Transient line regulation LDRT Transient load regulation Battery voltage 39 51 45 ∆VBAT = 300 mV tR = tF = 10 µs IOUT = [0.1; 10] mA tR = tF = 1 µs dB 3 mV 15 mV 1. Guaranteed by design VAUX Table 41. Symbol LDO regulators - VAUX Description Test conditions Min. Typ. Max. Units 4.8 V V VAUX Regulator in Normal Mode (PDN_VAUX= 1, SLEEP= ‘0’) VBAT Input power supply VOUT = 1.5V 1.7 VOUT = 1.8/2.5 V 2.7 3.6 4.8 3 3.6 4.8 -3% 1.5 1.8 2.5 2.8 +3% VOUT = 2.8 V 50/72 VOUT Output voltage IOUT Output current ISHORT Short-circuit limitation IQ Quiescent current VAUX_SEL[1:0] 00 (default) 01 10 11 500 IOUT = 0 mA Rev3 700 V 150 mA 900 mA 30 µA STw4810 5 Electrical and timing characteristics Table 41. Symbol LDO regulators - VAUX Description Test conditions Min. Typ. Max. Units 1 µA Power-down current PDN_VAUX = 0 PSRR Power supply rejection VOUT=1.5 V Vpp = 0.3 V f < 10 kHz LIR Line regulation VOUT=1.5 V VBAT: [2.7; 4.8]V 5 mV LDR(1) Load regulation VOUT=1.5 V IOUT= [0.1; 150] mA 10 mV LIRT Transient line regulation ∆VBAT = 300 mV tR = tF = 10 µs 2 mV LDRT Transient load regulation IOUT = [10; 90%] mA tR = tF = 1 µs 35 mV tS Settling time 100 µs ILKG (1) 32 dB VAUX Regulator in Sleep Mode (PDN_VAUX= 1, SLEEP=’1’) VBAT Input power supply VOUT = 1.5V VIO_VMEM supply 1.7 VOUT = 1.8/2.5 V 2.7 VOUT = 2.8 V VAUX_SEL[1:0] 00 (default) 01 10 11 4.8 V 3.6 4.8 V 3 3.6 4.8 -3% 1.5 1.8 2.5 2.8 +3% VOUT Output voltage IOUT Output current IQ Quiescent current IOUT = 0 mA PSRR(1) Power supply rejection VOUT=1.5 V Vpp = 0.3 V f < 10 kHz LIR Line regulation VOUT=1.5 V VBAT: [2.7; 4.8]V 5 mV LDR Load regulation VOUT=1.5 V IOUT= [10; 90%] µA 10 mV LIRT Transient line regulation ∆VBAT = 300 mV tR = tF = 10 µs 2 mV LDRT Transient load regulation IOUT = [10; 90%] µA tR = tF = 1 µs 35 mV V 500 µA 15 µA 38 dB 1. Guaranteed by design Rev3 51/72 STw4810 5 Electrical and timing characteristics 5.3.6 Power supply monitoring This block monitors the VCORE and VIO_VMEM output voltage. If VCORE or VIO_VMEM drops below the threshold, the multimedia processor is reset. Table 42. Power supply monitoring Symbol Description Test conditions Min. Typ. Max. Units Threshold THCORE(1) Threshold VCORE -3% VCORE-150 +3% mV THVIO(1) Threshold VIO_VMEM -3% 1.65 +3% V 2.7 3.6 4.8 V Comparators VBAT Supply voltage tRES Response time 100 ns HYFALL Hysteresis (input voltage falling) 26 mV HYRIS Hysteresis (input voltage rising) +4 mV 1. Guaranteed by design 52/72 Rev3 STw4810 5 Electrical and timing characteristics 5.4 Digital specifications 5.4.1 CMOS input/output static characteristics: I2C interface Table 43. CMOS input/output static characteristics: I²C interface Symbol Description Test conditions Min. Typ. Max. Units 0.3*VIO V I²C interface(1) VIL Low level input voltage VIH High level input voltage 0.7*VIO IIL Low level input current -1.0 1.0 µA IIH High level input current -1.0 1.0 µA VOL Low level output voltage IOL = 3mA (with open drain or open collector) 0.2*VIO V VOH High level output voltage IOL = 3mA (with open drain or open collector) V 0.8*VIO V 1. Vio is for VIO_VMEM 5.4.2 CMOS input/output dynamic characteristics: I2C interface Table 44. CMOS input/output dynamic characteristics: I²C interface Symbol Description Min. Typ. Max. Units 400 Khz I²C interface (Figure 8) Fscl Clock frequency thigh Clock pulse width high 600 ns tlow Clock pulse width low 1300 ns tr SDA, SCL, USBSDA, USBSCL rise time 20+0.1*Cb (1) 300 ns tf SDA, SCL, USBSDA, USBSCL fall time 20+0.1*Cb 300 ns thd_sta Start condition hold time 600 ns tsu_sta Start condition set up time 600 ns thd_dat Data input hold time 0 ns tsu_dat Data input set up time 250 ns tsu_sto Stop condition set up time 600 ns tbuf Bus free time 1300 ns Cb Capacitive load for each bus line 1. 400 pF Cb = total capacitance of one bus line in pF Rev3 53/72 STw4810 5 Electrical and timing characteristics 5.4.3 CMOS input/output static characteristics: VIO level USB and control I/Os Table 45. Symbol VIO level: USB and control I/Os Description Test conditions Min. Typ. Max. Units SW_RESETn, VDDOK, PORN, PWREN, TCXO_EN, REQUEST_MC, CLK32K, CLK32K_IN, USBOEN, USBVP, USBVM, USBRCV, USBINTn, MASTER_CLK VIL(1) Low level input voltage VIH High level input voltage 0.7*Vio IIL Low level input current -1.0 1.5 µA IIH High level input current -1.0 1.5 µA CIN Input capacitance 10 pF VOL Low level output voltage IOL = TBD 0.2*Vio V VOH High level output voltage IOL = TBD tOF Output fall time Capacitance 10pF TBD ns tOR Output rise time Capacitance 10pF TBD ns CI/O Driving capability 100 pF 0.3*Vio 1. Vio for VIO_VMEM 54/72 Rev3 V V 0.8*Vio V STw4810 5 Electrical and timing characteristics MMC Interface Table 46. Symbol VIO level: MMC interface Description Test conditions Min. Typ. Max. Units MMC Interface: MCCLK, MCFBCLK, MCCMDDIR, MCCMD, MCDATA2DIR, MCDAT2, MCDATA0DIR, MCDAT0, MCDAT31DIR, MCDAT3, MCDAT1 VIL(1) Low level input voltage VIH High level input voltage 0.7*Vio IIL Low level input current -1.0 1.5 µA IIH High level input current -1.0 1.5 µA CIN Input capacitance 10 pF VOL Low level output voltage IOL = TBD 0.2*Vio V VOH High level output voltage IOL = TBD CI/O Driving capability at 52 MHz 0.3*Vio V V 0.8*Vio V 30 pF 1. Vio for VIO_VMEM Rev3 55/72 STw4810 5 Electrical and timing characteristics 5.4.4 CMOS input/output static characteristics: VBAT level Table 47. Symbol CMOS input/output static characteristics: VBAT level Description Test conditions Min. Typ. Max. Units 0.3*Vbat V IT_WAKE_UP, PON, GPO1, GPO2 56/72 VIL Low level input voltage PON VIH High level input voltage PON 0.7*Vbat IIL Low level input current PON -1.0 1.5 µA IIH High level input current PON -1.0 1.5 µA CIN Input capacitance 10 pF VOL Low level output voltage IT_WAKE_UP, GPO1, GPO2 IOL = TBD 0.2*Vbat V VOH High level output voltage IT_WAKE_UP, GPO1, GPO2 IOL = TBD tOF Output fall time Capacitance 10pF TBD ns tOR Output rise time Capacitance 10pF TBD ns CI/O Driving capability 100 pF Rev3 V 0.8*Vbat V STw4810 5.4.5 5 Electrical and timing characteristics CMOS input/output static characteristics: VMMC level Table 48. Symbol CMOS input/output static characteristics VMMC level Description Test conditions Min. Typ. Max. Units DATAOUT0, DATAOUT1, DATAOUT2, DATAOUT3, CMDOUT, LATCHCLK, CLKOUT VIL Low level input voltage VIH High level input voltage 0.7*VMMC IIL Low level input current -1.0 1.5 µA IIH High level input current -1.0 1.5 µA CIN Input capacitance 10 pF VOL Low level output voltage IOL = TBD VOH High level output voltage IOL = TBD CI/O Driving capability 0.3*VMMC 0.2*VMMC 0.8*VMMC 40 Rev3 pF 57/72 STw4810 5 Electrical and timing characteristics 5.5 USB OTG transceiver Table 49. Symbol USB OTG transceiver Description Test conditions Min. Typ. Max. Units UART Mode tR Rise time CLOAD= [50;100] pF [10; 90] % of VOH-VOL 100 ns tF Fall time CLOAD= [50;100] pF 10......90% of VOH-VOL 100 ns tPLH Drive propagation delay low => high CLOAD= [50;100] pF 50% of |VOH-VOL| 100 ns tPHL Drive propagation delay high => low CLOAD= [50;100] pF 50% of |VOH-VOL| 100 ns USB Full Speed Mode (DP & DN signals) tR Rise time 4 20 ns tF Fall time 4 20 ns DRFM Differential rise an fall time matching 90 111 % OSCV Output signal crossover voltage 1.3 2 V PDEL Propagation delay 18 ns USBVP & USBVM : - Trise & Tfall < 1 ns - Skew < 0.66 ns USB Low Speed Mode (DP & DN signals) tR Rise time 75 300 ns tF Fall time 75 300 ns DRFM Differential rise an fall time matching 80 125 % OSCV Output signal crossover voltage 1.3 2 V 4.8 V VBUS Comparators VBAT Input power supply tRR Rising reacting time 1.7 µs tFR Fall reacting time 2.1 µs Battery voltage 3.1 3.6 Threshold VBUS Monitoring VBval VBses 58/72 VBUS valid 4.4 VBUS session valid 1.8 Rev3 4.5 4.6 V 2 V STw4810 5 Electrical and timing characteristics Table 49. Symbol USB OTG transceiver Description Test conditions Min. Typ. Max. Units 100 KΩ 100 ms VBUS RA_BUS_ 40 IN VBUS = [0; 4.4] V ILOAD = 100mA External cap 10µF TA_VBUS_ RISE Data Line Pull-down Resistance RPD_DPDN 14 19 25 KΩ Data Line Pull-up Resistance RPU_DP Bus idle Bus driven 900 1425 1200 2300 1600 3100 Ω RPU_DN Bus idle Bus driven 900 1425 1200 2300 1600 3100 Ω 650 925 1200 Ω 420 600 780 Ω PULL-DOWN on VBUS RVBUS_PD PULL-UP on VBUS RVBUS_SRP ID VID_GND ID_GND comparator threshold VID_HI (VBAT) Battery level VID_FLOAT ID_FLOAT comparator threshold 2.7 V < VBAT < 4.8 V 0.15*VBAT 2.7 3.6 V 4.8 0.85*VBAT RPU_ID 70 RPD_ID Rev3 100 V V 130 KΩ 10 KΩ 59/72 STw4810 5 Electrical and timing characteristics Table 49. USB OTG transceiver Symbol Description Test conditions Min. Typ. Max. Units Carkit Threshold Detection Carkit interrupt threshold 0.4 0.6 V VOH_TXD_ DAT TXD output high on ISOURCE = 500 µA DN 2.4 3.6 V VOL_TXD_ DAT TXD output low on DN 0.4 V VIH_RXD RXD input high on DP cR_INT Transceiver _DAT VIL_RXD_ DAT ISINK = 2mA 2 V RXD input low on DP 0.8 V Charge Pump VBAT Input power supply Battery voltage VBUS Output voltage Current load up to 100 mA tS Settling time [0;4.8] V) Ext. load: 100 mA + External cap = 10µF 1.2 ms IQ Quiescent current No Load 2.7 mA VRipple Amplitude output ripple on VBUS Current load 8 mA Current load 100mA 25 40 mV mV IOUT Output current Eff Efficiency VUSB+0.1 3.6 4.8 V 4.75 5 5.25 V 100 mA VBAT = 3.0V IOUT =100mA 85 % VBAT= 3.6V. IOUT = 8 mA. 60 % VUSB regulator 60/72 VBAT(1) Input voltage Battery voltage: VBAT min = VOUT + 0.1V VOUT Output voltage VBAT min= VOUT + 0.1V ISHORT Short circuit current limitation IQ Quiescent current No load PSRR(2) Power supply rejection VBAT= VOUT+0.2V f < 20 kHz Rev3 VUSB+0.1 3.6 5.5 V 3.0 3.1 3.2 V 320 mA 70 µA 45 dB STw4810 5 Electrical and timing characteristics Table 49. Symbol USB OTG transceiver Description Test conditions NVOUT Output noise voltage VBAT= VOUT+0.2V 10Hz <f< 100kHz LIRT Transient line regulation tS tD Min. Typ. Max. Units 100 µVrms ∆VBAT = 300 mV tR = tF = 10µs. 5 mV Settling time OFF->ON IOUT = 0mA 25 µs Discharge time ON>OFF IOUT = 0mA 400 µs 1. From 4.8 V to 5.5 V, charge pump is “Off” and no OTG feature is provided 2. Guaranteed by design Rev3 61/72 STw4810 5 Electrical and timing characteristics 5.6 SD/MMC card interface Table 50. Symbol SD/MMC card interface Description Test conditions Min. Typ. Max. Units 3.25 3.1 2.7 3.6 4.8 V -3% 3 2.85 1.8 +3% V 150 mA 600 mA VMMC regulator specifications (PDN_VMMC = 1) VOUT = 3 V VOUT = 2.85 V VOUT = 1.8 V VBAT Input voltage VOUT Output voltage IOUT Output current ISHORT Short circuit current limitation IQ Quiescent current IOUT = 0 mA 30 µA ILKG Power-down current PDN_VMMC = 0 1 µA PSRR(1) Power supply rejection LIR(1) Line regulation VOUT=2.85 V VBAT: [3.1; 4.8]V 5 mV LDR(1) Load regulation VOUT=2.85 V IOUT= [1; 150] mA 10 mV LIRT Transient line regulation VOUT=2.85 V VBAT: 3.1 to 3.4V tR = tF = 10 µs. 2 mV LDRT Transient load regulation IOUT = [1; 150] mA tR = tF = 1 µs 25 mV tS Settling time OFF->ON IOUT = 0 mA 100 µs tD Discharge time ON>OFF IOUT = 0 mA 1 ms 240 360 IOUT = 150 mA Vpp = 0.3 V f < 20 kHz 45 dB Bus line specifications 62/72 RA(2) Pull-up resistor To prevent bus floating 1.5 MΩ RB Pull-down resistor To prevent bus floating 1.5 MΩ fDT Clock frequency With CL = 30pF data transfert mode 52 MHz fID Clock frequency identification mode 400 KHz With CL = 30pF Rev3 STw4810 5 Electrical and timing characteristics Table 50. Symbol SD/MMC card interface Description Test conditions Min. Typ. Max. Units TPHC Propagation time from Host to card Figure 14 7 ns TPCH Propagation time from card to host Figure 14 7 ns TSHC Clock /data skew time from host to card Figure 14 Reference is CLKOUT +/- 0.5 ns TSCH Clock /data skew time from card to host Figure 14 Reference is MMCLK +/- 0.5 ns TR Rise time 3 ns TF Fall time 3 ns C1LINE Between multimedia processor & STw4810 Bus line capacitance f < 52 Mhz 20(3) pF C2LINE Between STw4810 & MMC card Bus line capacitance f < 52 MHz 20 + 20(4) pF 1. Guaranteed by design 2. MMC interface pull up resistors are in EMIF06-HCM01F2 device (7 KΩ for CMD; 75 KΩ for Data wires) 3. 20 pF for equivalent board parasitic capacitance. 4. 20 pF for EMIF06 protection + 20 pF for board parasitic capacitance. Figure 14. Propagation and clock/data skew times 2 ns 2 ns 2 ns MCCLK MCCMD MCDATA[3:0] MCFBCLK 90% 90% 50% 10% 10% TPHC CLKOUT MCCLK 10% 50% DATAOUT[3:0] MCDATA[3:0] t TPHC 2 ns 2 ns MCCLK MCCMD MCDATA[3:0] MCFBCLK 50% t CLKOUT CMDOUT DATAOUT[3:0] LATCHCLK CLKOUT CMDOUT DATAOUT[3:0] LATCHCLK TSHC 90% 2 ns 90% 10% 90% 50% TSCH 90% 50% 10% TPCH t CLKOUT 10% MCCLK 50% DATAOUT[3:0] TPCH MCDATA[3:0] t Rev3 63/72 STw4810 6 Application information 6 Application information 6.1 Components list Table 51. Name Components list Typical value Comments Function VIO_VMEM output filter C1 22µF C4 VCORE output filter C2 VBAT_VIOVMEM decoupling C3 10µF C5 C6 C7 C8 1µF C10 C13 VBAT_ANA decoupling In the complete system application, the sum of the capacitors connected on each STw4810 ball must never be less than 30% of the value indicated in the typical value column of this table. This includes all capacitor parameters: – production dispersion – DC bias voltage applied – temperature range of the complete system application – aging VPLL output filter VANA output filter VREF output filter VUSB output filter VAUX output filter C9 470nF C11 4.7µF C12 2.2µF VSD_MMC output filter C13, C14, C15, C16, C17 1 µF Vbattery input voltage decoupling capacitors L1 Flying capacitor for charge pump VBUS output filter (tank charge pump capacitor) Coil VIOVMEM DC/DC 4.7µH See Table 52. for recommended coils L2 Coil VCORE DC/DC Table 52. Supplier TDK Coilcraft List of 4.7 µH coils DCR (Ω) Irms(1) (A) L x l x h (mm * mm * mm) VLF3010AT-4R7MR70 0.28 0.7 2.8 * 2.6 * 1.0 VLF3012AT-4R7MR74 0.16 0.74 2.8 * 2.6 * 1.2 VLF4012AT-4R7M1R1 0.14 1.1 3.7 * 3.5 * 1.2 DO1605T-472MX 0.15 1.1 5.5 * 4.2 * 1.8 DO3314-472ML 0.32 1.1 3.3 * 3.3 * 1.4 ME3320-472MX 0.19 1.1 3.2 * 2.5 * 2.0 Part Number 1. Irms: 30% decrease of initial value 64/72 VBAT_VCORE decoupling Rev3 STw4810 Table 53. 6 Application information Other ST components Name Order code Function EMIF02 EMIF02USB05 USB ESD/EMI Protection EMIF06 EMIF06-HMC01F2 MMC Interface ESD/EMI Protection Rev3 65/72 STw4810 6 Application information 6.2 Application schematics Figure 15. STw4810 application schematics C4 VLX_VCORE VBAT_VCORE VMINUS_ANA VBAT_ANA PON CLK32Kin MASTER_CLK VIOVMEM_FB VMINUS_DIG VLX_VIOVMEM VMINUS_VIOVMEM VBAT_DIG VBAT_VIOVMEM MODEM & SYSTEM CLOCK C13(*) L2 C5 C3 VCORE L1 C2 VMINUS_VCORE C1 C14(*) VBAT_VPLL_VANA C6 IT_WAKE_UP VPLL REQUEST_MC TCXO_EN C7 VANA C8 B9 VREF C15(*) VBAT_VAUX D3 C13 VAUX C16(*) VBAT_USB PWREN VDDOK PORn CLK32K SW_RESETn CN STw4810 Multimedia processor SDA C10 VUSB C11 VBUS USBVP USBOEn USBVM USBRCV ID ESD USBINTn DP USBSCL DN USBSDA R1 R1 EMI filter MCCLK MCFBCLK VBAT_MMC MCCMDDIR MCCMD 3 C9 CP EMIF02 C17(*) C12 VMMC MCDAT0DIR MCDAT0 MCDAT31DIR MCDAT[3,1] DATOUT[3:1] DATAOUT0 CMDOUT MCDAT2DIR MCDAT2 SD MMC 3 EMI Filter CLKOUT LATCHCLK EMIF06-HMC01F2 GPO1 GPO2 (*) The usefulness of these capacitors depend of PCB layout 66/72 USB SCL VMINUS_USB Rev3 SDIO CARD STw4810 7 Package mechanical data 7 Package mechanical data 7.1 TFBGA 84 balls See Figure 16: TFBGA 84 balls 6x6x1.2mm body size / 0.5 ball pitch drawing. Table 54. TFBGA 84 balls 6x6x1.2mm body size / 0.5 ball pitch drawing dimensions(1) Drawing dimensions (mm) Min. Typ. A A1 Max. 1.16 0.20 A2 0.25 0.30 0.82 b 0.25 0.30 0.35 D 5.90 6.00 6.10 D1 E 4.50 5.90 E1 6.00 6.10 4.50 e 0.45 0.50 0.55 f 0.65 0.75 0.85 ddd 0.08 1. These measurements conform to JEDEC standards Rev3 67/72 STw4810 7 Package mechanical data Figure 16. TFBGA 84 balls 6x6x1.2mm body size / 0.5 ball pitch drawing Note: 68/72 The terminal A1 corner must be identified on the top surface by using a corner chamfer, ink or metallized markings, or other feature of package body or integral heatslug. A distinguishing feature is allowable on the bottom surface of the package to identify the terminal A1 corner. Exact shape of each corner is optional. Rev3 STw4810 7.2 7 Package mechanical data VFBGA 84 balls See Figure 17: VFBGA 84 balls 4.6x4.6x1.0 mm body size / mm ball pitch drawing. Table 55. VFBGA 84 balls / 4.6x4.6x1.0 mm body size / 0.4 mm ball pitch(1) Drawing dimensions (mm) Min. Typ. A A1 Max. 0.864 0.15 0.19 A2 0.615 A3 0.18 A4 0.435 0.23 b 0.21 0.25 0.29 D 4.55 4.60 4.65 D1 E 3.60 4.55 4.60 E1 3.60 e 0.40 f 0.50 4.65 ddd 0.08 eee 0.13 fff 0.04 1. These measurements conform to JEDEC standards Rev3 69/72 STw4810 7 Package mechanical data Figure 17. VFBGA 84 balls 4.6x4.6x1.0 mm body size / mm ball pitch drawing Note: 70/72 The terminal A1 corner must be identified on the top surface by using a corner chamfer, ink or metallized markings, or other feature of package body or integral heatslug. A distinguishing feature is allowable on the bottom surface of the package to identify the terminal A1 corner. Exact shape of each corner is optional. Rev3 STw4810 8 8 Revision history Revision history Date Revision Changes 24-Jan-06 1 Initial release. 7-Feb-06 2 Modified document title. Reviewed list of applications on cover page. Replaced APE with multimedia processor. Replaced fuse with analogue function. Renamed VFUSE as VANA. Modified figure 6 - Control interface - I2C format 9-Feb-06 3 Correction of Figure 13: SD MMC block diagram. Correction of Figure 15: STw4810 application schematics. Rev3 71/72 STw4810 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZE REPRESENTATIVE OF ST, ST PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS, WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2006 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 72/72 Rev3