VS6624 1.3 Megapixel Mobile Camera Module PRELIMINARY DATA Features ■ 1280H x 1024V active pixels ■ 3.0 µm pixel size, 1/3 inch optical format ■ RGB Bayer color filter array ■ Integrated 10-bit ADC ■ Integrated digital image processing functions, including defect correction, lens shading correction, image scaling, demosaicing, sharpening, gamma correction and color space conversion ■ Embedded camera controller for automatic exposure control, automatic white balance control, black level compensation, 50/60 Hz flicker cancelling and flashgun support ■ ■ Fully programmable frame rate and output derating functions 20-wire FPC attachment with board-to-board connector, 22 mm total length ■ 24-pin (ITU) shielded socket options ■ Up to 15 fps SXGA progressive scan ■ Low power 30fps VGA progressive scan Description ■ ITU-R BT.656-4 YUV (YCbCr) 4:2:2 with embedded syncs, YUV (YCbCr) 4:0:0, RGB 565, RGB 444, Bayer 10-bit or Bayer 8-bit output formats ■ 8-bit parallel video interface, horizontal and vertical syncs, 54MHz (max) clock The VS6624 is an SXGA CMOS color digital camera featuring low size and low power consumption targeting mobile applications. This complete camera module is ready to connect to camera enabled baseband processors, back-end IC devices or PDA engines. ■ Two-wire serial control interface ■ On-chip PLL, 6.5 to 54 MHz clock input Applications ■ Analog power supply, from 2.4 to 3.0 V ■ Mobile phone ■ Separate I/O power supply, 1.8 or 2.8 V levels ■ PDA ■ Integrated power management with power switch, automatic power-on reset and powersafe pins Ordering codes ■ Low power consumption, ultra low standby current ■ Triple-element plastic lens, F# 3.2, 52° Horizontal field of view ■ 8.0 x 8.0 x 6.1mm fixed focus camera module with embedded passives February 2006 Part number Description VS6624P0LP SMOP2 VGA 8x8, flex VS6624Q0KP SMOP2 VGA 8x8, socket Rev 1 This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to change without notice. 1/100 www.st.com 1 Contents VS6624 Contents 1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 Electrical interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 System architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 4 5 3.1 Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.2 Video pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.3 Microprocessor functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Operational modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.1 Streaming modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.2 Mode transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Clock control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Input clock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 6 Frame control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Sensor mode control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Image size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Cropping module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Zoom. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Pan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Frame rate control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Horizontal mirror and vertical flip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Video pipe setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Context switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 ViewLive Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 7 Output data formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Line / Frame Blanking Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 YUV 4:2:2 data format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 YUV 4:0:0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2/100 Rev 1 VS6624 Contents RGB and Bayer 10 bit data formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Manipulation of RGB data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Dithering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Bayer 8-bit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 8 Data synchronization methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Embedded codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Prevention of false synchronization codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Mode 1 (ITU656 compatible) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Mode 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Mode 2 Logical DMA channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 VSYNC and HSYNC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Horizontal synchronization signal (HSYNC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Vertical synchronization (VSYNC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Pixel clock (PCLK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Master / Slave operation of PLCK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 9 Getting started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Initial power up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Minimum startup command sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 10 Host communication - I²C control interface . . . . . . . . . . . . . . . . . . . . . 35 10.1 Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 10.2 Detailed overview of the message format . . . . . . . . . . . . . . . . . . . . . . . . 36 10.3 Data valid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 10.4 Start (S) and Stop (P) conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 10.5 Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 10.6 Index space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 10.7 Types of messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 10.8 Random location, single data write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 10.9 Current location, single data read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 10.10 Random location, single data read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 10.11 Multiple location write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 10.12 Multiple location read stating from the current location . . . . . . . . . . . . . . 43 Rev 1 3/100 Contents VS6624 10.13 Multiple location read starting from a random location . . . . . . . . . . . . . . . 44 11 Register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Low level control registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 User interface map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 12 Optical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 13 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 13.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 13.2 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 13.3 DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 13.4 External clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 13.5 Chip enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 13.6 I²C slave interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 13.7 Parallel data interface timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 14 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 15 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 4/100 Rev 1 VS6624 List of tables List of tables Table 1. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Table 45. Table 46. Table 47. Table 48. Table 50. VS6624 signal description of 20-pin flex connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 ITU656 embedded synchronization code definition (even frames). . . . . . . . . . . . . . . . . . . 27 ITU656 embedded synchronization code definition (odd frames). . . . . . . . . . . . . . . . . . . . 27 Mode 2 - embedded synchronization code definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Data type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Low-level control registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Device parameters [read only] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Host interface manager control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Host interface manager status [Read only]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Run mode control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Mode setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Pipe setup bank0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Pipe setup bank1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 ViewLive control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Viewlive status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Video timing parameter host inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Video timing control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Frame dimension parameter host inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Static frame rate control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Automatic Frame Rate Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Exposure controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 White balance control parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Sensor setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Image stability [read only] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Flash control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Flash status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Scythe filter controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Jack filter controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Demosaic control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Colour matrix dampers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Peaking control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Pipe0 RGB to YUV matrix manual control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Pipe1 RGB To YUV matrix manual control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Pipe 0 gamma manual control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Pipe 1 Gamma manual control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Fade to black . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Output formatter control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 NoRA controls. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Optical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Supply specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Typical current consumption - Sensor mode VGA 30 fps . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Typical current consumption - Sensor mode SXGA 15 fps. . . . . . . . . . . . . . . . . . . . . . . . . 89 External clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Serial interface voltage levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Parallel data interface timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Rev 1 5/100 List of tables Table 51. 6/100 VS6624 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Rev 1 VS6624 List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. VS6624 simplified block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 State machine at power -up and user mode transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Power up sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Crop controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 ViewLive frame output format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Standard Y Cb Cr data order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Y Cb Cr data swapping options register 0x2294 bYuvSetup . . . . . . . . . . . . . . . . . . . . . . . 23 YUV 4:0:0 format encapsulated in ITU stream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 RGB and Bayer data formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Bayer 8 output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 ITU656 frame structure with even codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Mode 2 frame structure (VGA example) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Mode 2 frame structure (VGA example) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 HSYNC timing example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 VSYNC timing example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 QCLK options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Qualification clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Write message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Read message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Detailed overview of message format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Device addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 SDA data valid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 START and STOP conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Data acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Internal register index space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Random location, single write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Current location, single read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 16-bit index, 8-bit data random index, single data read . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 16-bit index, 8-bit data multiple location write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Multiple location read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Multiple location read starting from a random location . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Voltage level specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Timing specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 SDA/SCL rise and fall times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Parallel data output video timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Package outline socket module VS6624Q0KP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Package outline socket module VS6624Q0KP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Package outline FPC module VS6624P0LP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Package outline FPC module VS6624P0LP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Rev 1 7/100 Overview VS6624 1 Overview 1.1 Description The VS6624 is a SXGA resolution CMOS imaging device designed for low power systems, particularly mobile phone applications. Manufactured using ST 0.18 µm CMOS Imaging process, it integrates a high-sensitivity pixel array, a digital image processor and camera control functions. The VS6624 is capable of streaming SXGA video up to 15 fps, with ITU-R BT.656-4 YUV 4:2:2 frame format. It supports both 1.8 V and 2.8 V interface and requires a 2.4 to 3.0 V analog power supply. Typically, the VS6624 can operate as a 2.8 V single supply camera or as a 1.8 V interface / 2.8 V supply camera. The integrated PLL allows for low frequency system clock, and flexibility for successful EMC integration. The VS6624 camera module uses ST’s 2nd generation “SmOP2” packaging technology: the sensor, lens and passives are assembled, tested and focused in a fully automated process, allowing high volume and low cost production. The device contains an embedded video processor and delivers fully color processed images at up to 15 frames per second SXGA and up to 30 fps VGA. The video data is output over an 8-bit parallel bus in RGB, YCbCr or bayer formats. The VS6624 requires an analogue power supply of between 2.4 V to 3.0 V and a digital supply of either 1.8 V or 2.8 V (dependant on interface levels required). An input clock is required in the range 6.5 MHz to 54 MHz. The VS6624 is controlled via an I²C interface. It also includes a wide range of image enhancement functions, designed to ensure high image quality, these include: 8/100 ● Automatic exposure control ● Automatic white balance ● Lens shading compensation ● Defect correction algorithms ● Demosaic (Bayer to RGB conversion) ● Colour space conversion ● Sharpening ● Gamma correction ● Flicker cancellation ● NoRA Noise Reduction Algorithm ● Intelligent image scaling Rev 1 VS6624 2 Electrical interface Electrical interface The VS6624 FPC board to board connector has 20 electrical connections which are listed in Table 1. the package details of the flex connector are shown in Figure 38 andFigure 39. Table 1. VS6624 signal description of 20-pin flex connector Table 2: Pad Pad name I/O Description 1 GND PWR Analogue ground 2 HSYNC OUT Horizontal synchronization output 3 VSYNC OUT Vertical synchronization output 4 SCL IN I²C clock input 5 CLK IN Clock input - 6.5MHz to 54MHz 6 SDA I/O I²C data line 7 VDD PWR Digital supply 1.8 V OR 2.8 V 8 AVDD PWR Analogue supply 2.4 V to 3.0 V 9 PCLK OUT Pixel qualification clock 10 CE IN 11 D5 OUT Data output D5 12 D4 OUT Data output D4 13 GND PWR Digital ground 14 D3 OUT Data output D3 15 D2 OUT Data output D2 16 D1 OUT Data output D1 17 D0 OUT Data output D0 18 D6 OUT Data output D6 19 D7 OUT Data output D7 20 FSO OUT Flash output Chip enable signal active HIGH The package details and electrical connections of the 24pin socket device are shown in Figure 36 and Figure 37. Rev 1 9/100 System architecture 3 VS6624 System architecture The simplified block diagram of VS6624 is shown in Figure 1. VS6624 includes the following main blocks: Figure 1. ● SXGA-sized pixel array ● Video timing generator ● Video pipe ● Statistics gathering unit ● Clock generator ● Microprocessor VS6624 simplified block diagram CLK CE VDD GND I²C Interface I²C Clock Generator SDA SCL Microprocessor RESET VREG Video Timing Generator Statistics Gathering FSO AVDD GND SXGA Pixel Array Video Pipe VSYNC HSYNC PCLK D[0:7] 3.1 Operation A video timing generator controls a SXGA-sized pixel array to produce raw bayer images. The analogue pixel information is digitized and passed into the video pipe. The video pipe contains a number of different functions (explained in detail later). At the end of the video pipe data is output to the host system over an 8-bit parallel interface along with qualification signals. The whole system is controlled by an embedded microprocessor that is running firmware stored in an internal ROM. The external host communicates with this microprocessor over an I²C interface. The microprocessor does not handle the video data itself but is able to control all the functions within the video pipe. Real-time information about the video data is gathered by a statistics engine and is available to the microprocessor. The processor uses this information to perform real-time image control tasks such as automatic exposure control. 10/100 Rev 1 VS6624 3.2 System architecture Video pipe The main functions contained within the VS6624 video processing pipe are as follows. Gain and offset This function is used to apply gain and offset to data coming from the sensor array. The microprocessor applies gain and offset values are controlled by the automatic exposure and white balance algorithms. Anti-vignette This function is used to compensate for the radial roll-off in intensity caused by the lens. By default the anti-vignette setting matches the lens used in this module and does not need to be adjusted. Crop This function allows the user to select an arbitrary Window Of Interest (WOI) from the SXGA-sized pixel array, note that the crop size should not be smaller that the output size. It is fully accessible to the user. Scaler The scaler module performs real time downscaling, in both the horizontal and vertical domain, of the bayer image data this is achieved by sample-rate conversion. The scaler is capable of downscaling from 1.0x to 10x the input number of pixels and lines, in steps of 1/16. Derating The VS6624 contains an internal derating module. This is designed to reduce the peak output data rate of the device by spreading the data over the whole frame period and allowing a subsequent reduction in output clock frequency. The maximum achievable derating factor is x100 for an equivalent scale factor of x10 downscale. As a general rule the allowable derating factor is equal to the square of the scaling factor. Note: The interline period is not guaranteed consistent for all derating ratios. This means the host capture system must be able to cope with use of the sync signals or embedded codes rather than relying on fixed line counts. Defect correction This function runs a defect correction filter over the data in order to remove defects from the final output. This function has been optimized to attain the minimum level of defects from the system and does not need to be adjusted. NoRA The noise reduction module implements an algorithm based on the human-visual system and adaptive pixel filtering that reduces perceived noise in an image whilst maintaining areas of high definition. Demosaic This module performs an interpolation on the Bayer data from the sensor array to produce a sRGB data. At this point an anti-alias filter is applied. Anti-Zipper The demosaic process produces an RGB frame with a noise signal at pixel frequency. To remove this artefact an anti-zipper filter is employed. Sharpening This module increases the high frequency content of the image in order to compensate for the low-pass filtering effects of the previous modules. Gamma is user adjustable. This module applies a programmable gain curve to the output data. It YUV conversion This module performs color space conversion from RGB to YUV. It is used to control the contrast and color saturation of the output image as well as the fade to black feature. Dither This module is used to reduce the contouring effect seen in RGB images with truncated data. Rev 1 11/100 System architecture VS6624 Output formatter This module controls the embedded codes which are inserted into the data stream to allow the host system to synchronize with the output data. It also controls the optional HSYNC and VSYNC output signals. 3.3 Microprocessor functions The microprocessor inside the VS6624 performs the following tasks: Host communication handles the I²C communication with the host processor. Video pipe configuration configures the video pipe modules to produce the output required by the host. Automatic exposure control In normal operation the VS6624 determines the appropriate exposure settings for a particular scene and outputs correctly exposed images. Flicker cancellation The 50/60Hz flicker frequency present in the lighting (due to fluorescent lighting) can be cancelled by the system. Automatic white balance The microprocessor adjusts the gains applied to the individual color channels in order to achieve a correctly color balanced image. Frame rate control VS6624 contains a firmware based programmable timing generator. This automatically designs internal video timings, PLL multipliers, clock dividers etc. to achieve a target frame rate with a given input clock frequency. Optionally an automatic frame rate controller can be enabled. This system examines the current exposure status, integration time and gain and adapts the frame rate based on that. This function is typically useful in low-light scenarios where reducing the frame rate extends the useful integration period. This reduces the need for the application of analog and digital gain and results in better quality images. Dark calibration The microprocessor uses information from special dark lines within the pixel array to apply an offset to the video data and ensure a consistent ‘black’ level. Active noise management The microprocessor is able to modify certain video pipe functions according to the current exposure settings determined by the automatic exposure controller. The main purpose of this is to improve the noise level in the system under low lighting conditions. Functions which ‘strength’ is reduced under low lighting conditions (e.g. sharpening) are controlled by ‘dampers’. Functions which ‘strength’ is increased under low lighting conditions are controlled by ‘promoters’. The fade to black operation is also controlled by the microprocessor 12/100 Rev 1 VS6624 4 Operational modes Operational modes VS6624 has a number of operational modes. The power down mode is entered and exited by driving the hardware CE signal. Transitions between all other modes are initiated by I²C transactions from the host system or automatically after time-outs. Figure 2. State machine at power -up and user mode transitions Supplies turned-on & CE pin LOW Supplies Off Supplies turned-off CE pin LOW Supplies turned-off State Machine at power-up I2C controlled user mode transitions Power-Down Standby Uninitialised 1 CE pin HIGH It is possible to enter any of the user modes direct from the uninitialised state via an I2C command Stop Mode Snapshot Note; Depending on the snapshot exit transition settings the device will revert to RUN or PAUSE state automatically after snapshot Pause Mode Flashgun Run Mode Host initiated state changes System state changes Power Down/Up The power down state is entered from all other modes when CE is pulled low or the supplies are removed. During the power-down state (CE = logic 0) ● The internal digital supply of the VS6624 is shut down by an internal switch mechanism. This method allows a very low power-down current value. ● The device input / outputs are fail-safe, and consequently can be considered high impedance. Rev 1 13/100 Operational modes VS6624 During the power-up sequence (CE = logic 1) Figure 3. ● The digital supplies must be on and stable. ● The internal digital supply of the VS6624 is enabled by an internal switch mechanism. ● All internal registers are reset to default values by an internal power on reset cell. Power up sequence POWER DOWN VDD (1.8V/2.8V) AVDD (2.8V) uninitialised mode standby t1 t2 CE t3 CLK t4 SDA SCL t5 Constraints: t1 >= 0ns t2 >= 0ns low level command: enable clocks setup commands t3 >= 0ns t4 >= TBC ms t5 >= TBC ms STANDBY mode The VS6624 enters STANDBY mode when the CE pin on the device is pulled HIGH. Power consumption is very low, most clocks inside the device are switched off. In this state I²C communication is possible when CLK is present and when the microprocessor is enabled. All registers are reset to their default values. The device I/O pins have a very highimpedance. Uninitialised = RAW The initialize mode is defined as supplies present, the CE signal is logic 1 and the microcontroller clock has been activated. During initialize mode the device firmware may be patched. This state is provided as an intermediary configuration state and is not central to regular operation of the device. The analogue video block is powered down, leading to a lower global consumption STOP mode This is a low power mode. The analogue section of the VS6624 is switched off and all registers are accessed over the I²C interface. A run command received in this state automatically sets a transition through the Pause state to the run mode. Note: The device must be in Stop mode to adjust output size. The analogue video block is powered down, leading to a lower global consumption. 14/100 Rev 1 VS6624 Operational modes Pause mode In this mode all VS6624 clocks are running and all registers are accessible but no data is output from the device. The device is ready to start streaming but is halted. This mode is used to set up the required output format before outputting any data. The analogue video block is powered down, leading to a lower global consumption Note: The PowerManagement register can be adjusted in PAUSE mode but has no effect until the next RUN to PAUSE transition. 4.1 Streaming modes RUN mode This is the fully operational mode. In running mode the device outputs a continuous stream of images, according to the set image format parameters and frame rate control parameters. The image size is derived through downscaling of the SXGA image from the pixel array. ViewLive this feature allows different sizes, formats and reconstruction settings to be applied to alternate frames of data, while in run mode. Snapshot mode The device can be configured to output a single frame according to the size, format and reconstruction settings in the relevant pipe setup bank. In normal operation this frame will be output, once the exposure, white balance and dark-cal systems are stable. To reduce the latency to output, the user may manually override the stability flags. The snapshot mode command can be issued in either Run or Stop mode and the device will automatically return previous state after the snapshot is taken. The snapshot mode must not be entered into while viewlive is selected. FLASHGUN mode In flashgun mode, the array is configured for use with an external flashgun. A flash is triggered and a single frame of data is output and the device automatically switches to Pause Mode. VS6624 supports the following flashgun configurations: ● Torch Mode - user can manually switch on/off the FSO IO pin via a register setting. Independent of mode. ● Pulsed Mode - the flash output is synchronized to the image stream. There are two options available: – Pulsed flash with snapshot. Device outputs a single frame synchronized to flash. – Pulsed flash with viewfinder. Device outputs a flash pulse synchronized to a single frame in the image stream. – In the pulsed mode there are two possible pulse configurations: – Single pulse during the interframe period when all image lines are exposed. This is suitable for SCR and IGBT flash configurations. The falling edge of the pulse can be programmed to vary the width of the pulse. – Single pulse over entire integration period of frame. This is suitable for LED flash configurations. Rev 1 15/100 Operational modes 4.2 VS6624 Mode transitions Transitions between operating modes are normally controlled by the host by writing to the Host interface manager control register. Some transitions can occur automatically after a time out. If there is no activity in the Pause state then an automatic transition to the Stop state occurs. This functionality is controlled by the Power management register, writing 0xFF disables the automatic transition to Stop. The users control allows a transition between Stop and Run, at the state level the system will transition through a Pause state. 16/100 Rev 1 VS6624 5 Clock control Clock control Input clock The VS6624 requires provision of an external reference clock. The external clock should be a DC coupled square wave. The clock signal may have been RC filtered. The clock input is fail-safe in power down mode. The VS6624 contains an internal PLL allowing it to produce accurate frame rates from a wide range of input clock frequencies. The allowable input range is from 6.5MHz to 54MHz. The input clock frequency must be programmed in the registers. To program an input frequency of 6.5 MHz, the numerator can be set to 13 and the denominator to 2. The default input frequency is 12 MHz. The VS6624 may be configured as a master or slave device. In normal (master operation) the input clock can be a different frequency to the output PCLK and all output clock configuration is based on the internal PLL. In slave configuration, the input clock is the same frequency and phase as the output PCLK. i.e. parallel output data is synchronized to the input clock. Rev 1 17/100 Frame control 6 VS6624 Frame control Sensor mode control The VS6624 device can operate it’s sensor array in three modes controlled by register SensorMode within Mode setup. ● SensorMode_SXGA - the full array is readout and the max frame rate achievable is 15fps ● SensorMode_VGA_analogue binning - the full array operates and a technique of analogue binning is used to output VGA at up to 30fps ● SensorMode_VGA_subsampled - the array is sub-sampled to output VGA at up to 30fps Image size An output frame consists of a number of active lines and a number of interframe lines. Each line consists of embedded line codes (if selected), active pixel data and interline blank data. Note that by default the interline blanking data is not qualified by the PCLK and therefore is not captured by the host system. The image size can be either the full output from the sensor, depending on sensor mode, or a scaled output, The output image size can be chosen from one of 7 pre-selected sizes or a manual image size can be input. Cropping module The VS6624 contains a cropping module which can be used to define a window of interest within the full SXGA array size. The user can set a start location and the required output size. Figure 4 shows the example with pipe setup bank0. 18/100 Rev 1 VS6624 Figure 4. Frame control Crop controls Sensor array horizontal size uwManualCropHorizontalStart uwManualCropVerticalStart Cropped ROI Sensor array vertical size uwManualCropVerticalSize uwManualCropHorizontalSize FFOV Zoom It is possible to zoom between the sensor size selected and the output size (if the output size selected equals the sensor mode size then no zoom can take place). The zoom step size in both the horizontal and vertical directions are selectable and zoom controlled with the commands zoom_in, zoom_out and zoom_stop. Pan It is possible to pan left, right, up and down when the output size selected is smaller than the sensor size selected. (if the output size selected equals the sensor mode size then no pan can take place). The pan step size in both the horizontal and vertical directions are selectable. Frame rate control The VS6624 features an extremely flexible frame rate controller. Using registers uwDesiredFrameRate_Num, and uwDesiredFrameRate_Den any desired frame rate between 2 and 15 fps can be selected for the SXGA sensor mode and between 1 and 30fps for a VGA sensor mode. To program a required frame rate of 7.5 fps the numerator can be set to 15 and the denominator to 2. Rev 1 19/100 Frame control VS6624 Horizontal mirror and vertical flip The image data output from the VS6624 can be mirrored horizontally or flipped vertically (or both). Video pipe setup The VS6624 has a single video pipe, the control of this pipe can be loaded from either of two possible setups Pipesetupbank0 and Pipesetupbank1; Pipe setup bank0 and Pipe setup bank1, control the operations shown below, ● image size ● zoom control ● pan control ● Crop control ● Image format (YUV 4:2:2, RGB565, etc....) ● Image controls (Contrast, Color saturation, Horizontal and vertical flip) Pipe 0 RGB to YUV matrix manual control and Pipe 1 RGB to YUV matrix manual control, allow different RGB to YUV matrixes to be used for each pipe setup, Pipe 0 gamma manual control and Pipe 1 Gamma manual control, allow different gamma settings to be used for each pipe setup. Context switching In normal operation, it is possible to control which pipe setup bank is used and to switch between banks without the need to stop streaming, the change will occur at the next frame boundary after the change to the register has been made. For example this function allows the VS6624 to stream an output targeting a display (e.g. QQVGA RGB 444) then switch to capture an image (e.g. SXGA YUV 4:2:2) with no need to stop streaming or enter any other operating mode. It is important to note the output size selected for both pipe setups must be appropriate to the sensor mode used, i.e. to configure PipeSetupBank0 to QQVGA and PipeSetupBank1 to SXGA the sensor mode must be set to SXGA. The register Mode setup allows selection of the pipe setup bank, by default the Pipe setup bank 0 is used. 20/100 Rev 1 VS6624 Frame control ViewLive Operation ViewLive is an option which allows a different pipe setup bank to be applied to alternate frames of the output data. The controls for VIewLive function are found in the register bank where the fEnable register allows the host to enable or disable the function and the binitialPipeSetupBank register selects which pipe setup bank is output first. When ViewLive is enabled the output data switches between Pipe setup bank0 and Pipe setup bank1 on each alternate frame. Figure 5. ViewLive frame output format Frame output Active Video Pipe setup bank0 Interline Blanking Interframe Blanking Active Video Pipe setup bank1 Interline Blanking Interframe Blanking Rev 1 21/100 Output data formats 7 VS6624 Output data formats The VS6624 supports the following data formats: ● YUV4:2:2 ● YUV4:0:0 ● RGB565 ● RGB444 (encapsulated as 565) ● RGB444 (zero padded) ● Bayer 10-bit ● Bayer 8-bit The required data format is selected using the bdataFomat control found in the pipe setup bank registers. The various options available for each format are controlled using the bRgbsetup and bYuvSetup registers found in the Output formatter control registers. Line / Frame Blanking Data The values which are output during line and frame blanking are an alternating pattern of 0x10 and 0x80 by default. These values may be changed by writing to the BlankData_MSB and BlankData_LSB registers in the Output formatter control bank. YUV 4:2:2 data format YUV 422 data format requires 4 bytes of data to represent 2 adjacent pixels. ITU601-656 defines the order of the Y, Cb and Cr components as shown in Figure 6. Figure 6. Standard Y Cb Cr data order HSYNC SIGNAL EAV Code START OF DIGITAL ACTIVE LINE 8 1 F 0 0 X Cb 0 0 F 0 0 Y Y Cr Y Cb Y Cr Y Cb Y Cr Y 4-data packet The VS6624 bYuvSetup register can be programmed to change the order of the components as follows: 22/100 Rev 1 VS6624 Output data formats Y Cb Cr data swapping options register 0x2294 bYuvSetup Bit [0] Cb first DEFAULT Components order in 4-byte data packet 1st 2nd 3rd Bit [1] Y first Figure 7. 1 1 Y 0 1 Cb 1 0 0 0 4th Cb Y Cr Y Cr Y Y Cr Y Cb Cr Y Cb Y YUV 4:0:0 The ITU protocol allows the encapsulation of various data formats over the link. The following data formats are also proposed encapsulated in ITU601-656 protocol: ● YUV 4:0:0 - luminance data channel This is done as described in Figure 8. In this output mode the output data per pixel is a single byte. Therefore the output PCLK and data rate is halved. It is possible to reverse the overall bit order of the component through a register programming. False synchronization codes are avoided in the LSByte by adding or subtracting a value of one, dependent on detection of a 0 code or 255 code respectively. Figure 8. YUV 4:0:0 format encapsulated in ITU stream START OF DIGITAL ACTIVE LINE Pixel10 Pixel9 Pixel8 Pixel7 Pixel6 Pixel5 Pixel4 F 0 0 X F 0 0 Y Pixel3 YUV4:0:0 Pixel2 EAV Code F 0 0 X D D D D D D D D D D F 0 0 Y 0 1 2 3 4 5 6 7 8 9 .................. Pixel1 Note: .................. where: Pixeln = Yn[7:0] See Output formatter control for user interface control of output data formats. Rev 1 23/100 Output data formats VS6624 RGB and Bayer 10 bit data formats The VS6624 can output data in the following formats: Note: ● RGB565 ● RGB444 (encapsulated as RGB565) ● RGB444 (zero padded) ● Bayer 10-bit Pixels in Bayer 10-bit data output are defect corrected, correctly exposed and white balanced. Any or all of these functions can be disabled. In each of these modes 2 bytes of data are required for each output pixel. The encapsulation of the data is shown in Table 9. Figure 9. RGB and Bayer data formats (1) RGB565 data packing Bit 7 6 5 4 3 2 1 0 Bit R4 R3 R2 R1 R0 G5 G4 G3 7 6 5 4 3 2 1 0 G2 G1 G0 B4 B3 B2 B1 B0 first byte second byte (2) RGB 444 packed as RGB565 Bit 7 6 5 4 R 3 R2 R1 R0 3 1 2 1 0 Bit G3 G2 G1 7 6 5 4 3 2 1 0 G0 1 0 B3 B2 B1 B0 1 3 2 1 0 G3 G2 G1 G0 B3 B2 B1 B0 first byte second byte (3) RGB 444 zero padded Bit 7 6 5 4 0 0 0 0 3 2 1 0 Bit R3 R2 R1 R 0 7 6 5 4 first byte second byte (4) Bayer 10-bit Bit 7 6 5 4 3 2 1 0 1 0 1 0 1 0 b9 b8 Bit 6 5 4 3 2 1 0 b7 b6 b5 b4 b3 b2 b1 b0 first byte second byte 24/100 7 Rev 1 VS6624 Output data formats Manipulation of RGB data It is possible to modify the encapsulation of the RGB data in a number of ways: ● swap the location of the RED and BLUE data ● reverse the bit order of the individual color channel data ● reverse the order of the data bytes themselves Dithering An optional dithering function can be enabled for each RGB output mode to reduce the appearance of contours produced by RGB data truncation. This is enabled through the DitherControl register. Bayer 8-bit The ITU protocol allows the encapsulation of various data formats over the link. The following data formats are also proposed encapsulated in ITU601-656 protocol: ● RAW 8-bit bayer ● Truncated from 10-bit ● DPCM encoded from 10-bit This is done as described in Figure 10. In this output mode the output data per pixel is a single byte. Therefore the output PCLK and data rate is halved. It is possible to reverse the overall bit order of the individual bayer pixels through a register programming. Note: False synchronization codes are avoided in the LSByte by adding or subtracting a value of one, dependent on detection of a 0 code or 255 code respectively. Figure 10. Bayer 8 output START OF DIGITAL ACTIVE LINE 8-bit Bayer Pixel11 Pixel9 Pixel7 Pixel5 Pixel3 Pixel1 EAV Code F 0 0 X D D D D D D D D D D D D F 0 0 Y 0 1 2 3 0 1 2 3 0 1 2 3 F 0 0 X L L L L L L L L L L L L S S S S S S S S S S S F 0 0 Y S B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10B11 where: Rev 1 LSBn = Bayer n[7:0] 25/100 Data synchronization methods 8 VS6624 Data synchronization methods External capture systems can synchronize with the data output from VS6624 in one of two ways: 1. Synchronization codes are embedded in the output data 2. Via the use of two additional synchronization signals: VSYNC and HSYNC Both methods of synchronization can be programmed to meet the needs of the host system. Embedded codes The embedded code sequence can be inserted into the output data stream to enable the external host system to synchronize with the output frames. The code consists of a 4-byte sequence starting with 0xFF, 0x00, 0x00. The final byte in the sequence depends on the mode selected. Two types of embedded codes are supported by the VS6624: Mode 1 (ITU656) and Mode 2. The bSyncCodeSetup register is used to select whether codes are inserted or not and to select the type of code to insert. When embedded codes are selected each line of data output contains 8 additional clocks: 4 before the active video data and 4 after it. Prevention of false synchronization codes The VS6624 is able to prevent the output of 0xFF and/or 0x00 data from being misinterpreted by a host system as the start of synchronization data. This function is controlled the bCodeCheckEnable register. Mode 1 (ITU656 compatible) The structure of an image frame with ITU656 codes is shown in Figure 11. 26/100 Rev 1 VS6624 Data synchronization methods Figure 11. ITU656 frame structure with even codes SAV 80 Frame of image data EAV 9D Line blanking period Line 1 Line 480 SAV AB Frame blanking period EAV B6 The synchronization codes for odd and even frames are listed in Table 3 and Table 4. By default all frames output from the VS6624 are EVEN. It is possible to set all frames to be ODD or to alternate between ODD and EVEN using the SyncCodeSetup register in theOutput formatter control register bank. Table 3. ITU656 embedded synchronization code definition (even frames) Name Description 4-byte sequence SAV Line start - active FF 00 00 80 EAV Line end - active FF 00 00 9D SAV (blanking) Line start - blanking FF 00 00 AB EAV (blanking) Line end - blanking FF 00 00 B6 Table 4. ITU656 embedded synchronization code definition (odd frames) Name Description 4-byte sequence SAV Line start - active FF 00 00 C7 EAV Line end - active FF 00 00 DA SAV (blanking) Line start - blanking FF 00 00 EC EAV (blanking) Line end - blanking FF 00 00 F1 Rev 1 27/100 Data synchronization methods VS6624 Mode 2 The structure of a mode 2 image frame is shown Figure 12. FS Line 1 LS Frame of image data LE Line 480 FE Line blanking period Figure 12. Mode 2 frame structure (VGA example) Frame blanking period For mode 2, the synchronization codes are as listed in Table 5. Table 5. Mode 2 - embedded synchronization code definition Name 28/100 Description 4-byte sequence LS Line start FF 00 00 00 LE Line end FF 00 00 01 FS Frame Start FF 00 00 02 FE Frame End FF 00 00 03 Rev 1 VS6624 Data synchronization methods Mode 2 Logical DMA channels The purpose of logical channels is to separate different data flows which are interleaved in the data stream, in the case of the VS6624 this allows the identification of the pipe setup bank used for an image frame. The DMA channel identifier number is directly encoded in the 4-byte mode2 embedded sync codes. The receiver can then monitor the DMA channel identifier and de-multiplex the interleaved video streams to their appropriate DMA channel. The bChannelID register can have the value 0 to 6. The DMA channel identifier must be fully programmable to allow the host to configure which DMA channels the different video data stream use. ● Logical channel control The channel identifier is a part of Mode2 synchronization code, upper four bits of last byte of synchronization code. Figure 13. illustrates the synchronization code with logical channel identifiers. Figure 13. Mode 2 frame structure (VGA example) 32-bit embedded mode 2 sync code F F 0 0 0 0 DC LC DMA Channel Number Valid channels = 0 to 6 Line code 0x0 = Line Start 0x1 = Line End 0x2 = Frame Start 0x3 = Frame End VSYNC and HSYNC The VS6624 can provide two programmable hardware synchronization signals: VSYNC and HSYNC. The position of these signals within the output frame can be programmed by the user or an automatic setting can be used where the signals track the active video portion of the output frame regardless of its size. Horizontal synchronization signal (HSYNC) The HSYNC signal is controlled by the bHSyncSetup register. The following options are available: ● enable/disable ● select polarity ● all lines or active lines only ● manual or automatic Rev 1 29/100 Data synchronization methods VS6624 In automatic mode the HSYNC signal envelops all the active video data on every line in the output frame regardless of the programmed image size. Line codes (if selected) fall outside the HSYNC envelope as shown in Figure 14. Figure 14. HSYNC timing example hsync=0 hsync=1 BLANKING DATA EAV Code ACTIVE VIDEO DATA SAV Code FF 00 00 XY 80 10 80 10 80 10 80 10 FF 00 00 XY D0 D1 D2 D3 D0 D1 D2 D3 EAV Code D2 D3 FF 00 00 XY If manual mode is selected then the pixel positions for HSYNC rising edge and falling edge are programmable. The pixel position for the rising edge of HSYNC is programmed in the bHSyncRising registers. The pixel position for the falling edge of HSYNC is programmed in the bHSyncFalling registers. Vertical synchronization (VSYNC) The VSYNC signal is controlled by the bSyncSetup register. The following options are available: ● enable/disable ● select polarity ● manual or automatic In automatic mode the VSYNC signal envelops all the active video lines in the output frame regardless of the programmed image size as shown in Figure 15. 30/100 Rev 1 VS6624 Data synchronization methods Figure 15. VSYNC timing example V=0 BLANKING V=1 ACTIVE VIDEO vsync BLANKING V=0 V=1 ACTIVE VIDEO If manual mode is selected then the line number for VSYNC rising edge and falling edge is programmable. The rising edge of VSYNC is programmed in the bVsyncRisingLine registers, the pixel position for VSYNC rising edge is programmed in the bVsyncRisingPixel registers. Similarly the line count for the falling edge position is specified in the bVsyncFallingLine registers, and the pixel count is specified in the bVsyncFallingPixel registers. Pixel clock (PCLK) The PCLK signal is controlled by the Output formatter control register. The following options are available: ● enable/disable ● select polarity ● select starting phase ● qualify/don’t qualify embedded synchronization codes ● enable/disable during horizontal blanking Rev 1 31/100 Data synchronization methods VS6624 Figure 16. QCLK options data D0 D1 D2 Negative edge None-active level - High Positive edge PCLK Negative edge None-active level - Low Positive edge The YUV, RGB and bayer timings are represented on Figure 17, with the associated qualifying pclk clock. The output clock rate is effectively halved for the bayer 8-bit and YUV4:0:0 modes where only one byte of output data is required per pixel. Figure 17. Qualification clock 16-bit data output formats - 2 bytes per pixel Data[7:0] YCbCr Cbn,n+1 Yn Crn,n+1 Yn+1 Cbn+2,n+3 PCLK RGB565 RGB444 Bayer 10-Bit Data[7:0] Pix0_lsb Pix0_msb Pix1_lsb Pix1_msb Pix2_lsb Pix0_lsb Pix0_msb Pix1_lsb Pix1_msb Pix2_lsb PCLK Data[7:0] PCLK 8-bit data output formats- 1 byte per pixel Bayer 8-Bit Data[7:0] Pix0 Pix1 Pix2 Pix0 Pix1 Pix2 PCLK YUV 4:0:0 Data[7:0] PCLK 32/100 Rev 1 VS6624 Data synchronization methods Master / Slave operation of PLCK In normal operation VS6624 acts as a master. PCLK is independent of the input clock frequency and does not have a determined phase relation to the input clock. In SLAVE operation the input clock frequency is the same as the output clock frequency and the output data is guaranteed with a certain phase relationship to the input clock. Internally, the VS6624 uses clocks generated from the internal PLL, but a retiming stage is used to resync the output to the input clock. In this output mode, derating is not possible. Rev 1 33/100 Getting started 9 VS6624 Getting started Initial power up Before any communication is possible with the VS6624 the following steps must take place: 1. Apply VDD (1.8V or 2.8V) 2. Apply AVDD (2.8V) 3. Apply an external CLOCK (6.5MHz to 54MHz) 4. Assert CE line HIGH These steps can all take place simultaneously. After these steps are complete a delay of 200 µs is required before any I²C communication can take place, see Figure 3: Power up sequence. Minimum startup command sequence 1. Enable the microprocessor - before any commands can be sent to the VS6624, the internal microprocessor must be enabled by writing the value 0x02 to the MicroEnable register 0xC003 found in the Low level control registers Section. 2. Enable the digital I/O - after power up the digital I/O of the VS6624 is in a highimpedance state (‘tri-state’). The I/O are enabled by writing the value 0x01 to the DIO_Enable register 0xC044 found in the Low level control registers Section. 3. The user can then program the system clock frequency and setup the required output format before placing the VS6624 in RUN mode by writing 0x02 to the Host interface manager control register 0x0180. The above three commands represent the absolute minimum required to get video data output. The default configuration results in an output of SXGA, 15 fps, YUV data format with ITU embedded codes requiring a external clock frequency of 12MHz. In practice the user is likely to require to write some additional setup information prior to receive the required data output. 34/100 Rev 1 VS6624 10 Host communication - I²C control interface Host communication - I²C control interface The interface used on the VS6624 is a subset of the I²C standard. Higher level protocol adaptations have been made to allow for greater addressing flexibility. This extended interface is known as the V2W interface. 10.1 Protocol A message contains two or more bytes of data preceded by a START (S) condition and followed by either a STOP (P) or a repeated START (Sr) condition followed by another message. STOP and START conditions can only be generated by a V2W master. After every byte transferred the receiving device must output an acknowledge bit which tells the transmitter if the data byte has been successfully received or not. The first byte of the message is called the device address byte and contains the 7-bit address of the V2W slave to be addressed plus a read/write bit which defines the direction of the data flow between the master and the slave. The meaning of the data bytes that follow device address changes depending whether the master is writing to or reading from the slave. Figure 18. Write message S DEV ADDR R/W A DATA ‘0’ (Write) A DATA A DATA 2 Index Bytes A/A P N Data Byte From Master to Slave From Slave to Master For the master writing to the slave the device address byte is followed by 2 bytes which specify the 16-bit internal location (index) for the data write. The next byte of data contains the value to be written to that register index. If multiple data bytes are written then the internal register index is automatically incremented after each byte of data transferred. The master can send data bytes continuously to the slave until the slave fails to provide an acknowledge or the master terminates the write communication with a STOP condition or sends a repeated START (Sr). Figure 19. Read message S DEV ADDR R/W A ‘1’ (Read) DATA A DATA A P 1 or more Data Byte From Master to Slave From Slave to Master For the master reading from the slave the device address is followed by the contents of last register index that the previous read or write message accessed. If multiple data bytes are read then the internal register index is automatically incremented after each byte of data Rev 1 35/100 Host communication - I²C control interface VS6624 read. A read message is terminated by the bus master generating a negative acknowledge after reading a final byte of data. A message can only be terminated by the bus master, either by issuing a stop condition, a repeated start condition or by a negative acknowledge after reading a complete byte during a read operation. 10.2 Detailed overview of the message format Figure 20. Detailed overview of message format 1 2 S (Sr) 7-bit Device Address R/W 3 4 5 6 A 8-bit Data A (A) P (Sr) P SDA MSB SCL S or Sr START or repeated START condition 1 LSB 2 Device Address 7 8 R/W Bit 0 - Write 1 - Read MSB 9 ACK signal from slave 1 2 7 Data byte from transmitter R/W=0 - Master R/W=1 - Slave 8 9 ACK signal from receiver The V2W generic message format consists of the following sequence 36/100 Rev 1 Sr LSB Sr or P STOP or repeated Start condition VS6624 Host communication - I²C control interface 1. Master generates a START condition to signal the start of new message. 2. Master outputs, MS bit first, a 7-bit device address of the slave the master is trying to communicate with followed by a R/W bit. a) R/W = 0 then the master (transmitter) is writing to the slave (receiver). b) R/W = 1 the master (receiver) is reading from the slave (transmitter). 3. The addressed slave acknowledges the device address. 4. Data transmitted on the bus 5. a) When a write is performed then master outputs 8-bits of data on SDA (MS Bit first). b) When a read is performed then slave outputs 8-bits of data on SDA (MS Bit First). Data receive acknowledge a) When a write is performed slave acknowledges data. b) When a read is performed master acknowledges data. Repeat 4 and 5 until all the required data has been written or read. Minimum number of data bytes for a read =1 (Shortest Message length is 2-bytes). The master outputs a negative acknowledge for the data when reading the last byte of data. This causes the slave to stop the output of data and allows the master to generate a STOP condition. 6. Master generates a STOP condition or a repeated START. Figure 21. Device addresses Sensor address 0 0 1 0 0 0 0 R/W Sensor write address 20H 0 0 1 0 0 0 0 0 Sensor read address 21H 0 0 1 0 0 0 0 1 Rev 1 37/100 Host communication - I²C control interface 10.3 VS6624 Data valid The data on SDA is stable during the high period of SCL. The state of SDA is changed during the low phase of SCL. The only exceptions to this are the start (S) and stop (P) conditions as defined below. (See I²C slave interface for full timing specification). Figure 22. SDA data valid SDA SCL Data line stable Data valid 10.4 Data change Data line stable Data valid Start (S) and Stop (P) conditions A START (S) condition defines the start of a V2W message. It consists of a high to low transition on SDA while SCL is high. A STOP (P) condition defines the end of a V2W message. It consists of a low to high transition on SDA while SCL is high. After STOP condition the bus is considered free for use by other devices. If a repeated START (Sr) is used instead of a stop then the bus stays busy. A START (S) and a repeated START (Sr) are considered to be functionally equivalent. Figure 23. START and STOP conditions SDA SCL 38/100 S P START condition STOP condition Rev 1 VS6624 10.5 Host communication - I²C control interface Acknowledge After every byte transferred the receiver must output an acknowledge bit. To acknowledge the data byte receiver pulls SDA during the 9th SCL clock cycle generated by the master. If SDA is not pulled low then the transmitter stops the output of data and releases control of the bus back to the master so that it can either generate a STOP or a repeated START condition. Figure 24. Data acknowledge SDA data output by transmitter Negative Acknowledge (A) SDA data output by receiver Acknowledge (A) SCL clock from master S 1 2 9 Clock Pulse for Acknowledge START Condition 10.6 8 Index space Communication using the serial bus centres around a number of registers internal to the either the sensor or the co-processor. These registers store sensor status, set-up, exposure and system information. Most of the registers are read/write allowing the receiving equipment to change their contents. Others (such as the chip id) are read only. The internal register locations are organized in a 64k by 8-bit wide space. This space includes “real” registers, SRAM, ROM and/or micro controller values. Rev 1 39/100 Host communication - I²C control interface VS6624 Figure 25. Internal register index space 8 bits 65535 65534 65533 65532 130 129 128 127 16-bit Index / 8-bit Data Format 64k by 8-bit wide index space (Valid Addresses 0-65535) 126 125 4 3 2 1 0 10.7 Types of messages This section gives guidelines on the basic operations to read data from and write data to VS6624. The serial interface supports variable length messages. A message contains no data bytes or one data byte or many data bytes. This data can be written to or read from common or different locations within the sensor. The range of instructions available are detailed below. ● Single location, single byte data read or write. ● Write no data byte. Only sets the index for a subsequent read message. ● Multiple location, multiple data read or write for fast information transfers. Any messages formats other than those specified in the following section should be considered illegal. 40/100 Rev 1 VS6624 Host communication - I²C control interface 10.8 Random location, single data write For the master writing to the slave the R/W bit is set to zero. The register index value written is preserved and is used by a subsequent read. The write message is terminated with a stop condition from the master. Figure 26. Random location, single write 16-bit Index, 8-bit Data, Random Location, Single Data Write Previous Index Value, K S DEV ADDR R/W A DATA ‘0’ (Write) Index M A INDEX[15:8] DATA A DATA INDEX[7:0] DATA[7:0] Index[15:0] value, M From Master to Slave 10.9 DATA[7:0] S = START Condition Sr = repeated START P = STOP Condition From Slave to Master A/A P A = Acknowledge A = Negative Acknowledge Current location, single data read For the master reading from the slave the R/W bit is set to one. The register index of the data returned is that accessed by the previous read or write message. The first data byte returned by a read message is the contents of the internal index value and NOT the index value. This was the case in older V2W implementations. Note that the read message is terminated with a negative acknowledge (A) from the master: it is not guaranteed that the master will be able to issue a stop condition at any other time during a read message. This is because if the data sent by the slave is all zeros, the SDA line cannot rise, which is part of the stop condition. Figure 27. Current location, single read 16-bit index, 8-bit data current location, single data read Previous Index Value, K S DEV ADDR R/W A DATA A P ‘1’ (Read) DATA[7:0] DATA[7:0] From Master to Slave S = START Condition Sr = repeated START P = STOP Condition A = Acknowledge A = Negative Acknowledge From Slave to Master Rev 1 41/100 Host communication - I²C control interface 10.10 VS6624 Random location, single data read When a location is to be read, but the value of the stored index is not known, a write message with no data byte must be written first, specifying the index. The read message then completes the message sequence. To avoid relinquishing the serial to bus to another master a repeated start condition is asserted between the write and read messages. As mentioned in the previous example, the read message is terminated with a negative acknowledge (A) from the master. Figure 28. 16-bit index, 8-bit data random index, single data read Previous Index Value, K Index M No Data Write S DEV ADDR R/W A Data Read DATA A DATA A Sr DEV ADDR R/W A A P ‘1’ (Read) ‘0’ (Write) INDEX[15:8] INDEX[7:0] DATA[7:0] INDEX[15:0] value, M From Master to Slave DATA[7:0] A = Acknowledge A = Negative Acknowledge S = START Condition Sr = repeated START P = STOP Condition From Slave to Master 10.11 DATA Multiple location write For messages with more than 1 data byte the internal register index is automatically incremented for each byte of data output, making it possible to write data bytes to consecutive adjacent internal registers without having to send explicit indexes prior to sending each data byte. Figure 29. 16-bit index, 8-bit data multiple location write Previous Index Value, K S DEV ADDR R/W A DATA Index M A DATA A DATA Index (M + N - 1) A DATA ‘0’ (Write) INDEX[15:8] INDEX[7:0] INDEX[15:0] value, M DATA[7:0] DATA[7:0] DATA[7:0] DATA[7:0] N Bytes of Data From Master to Slave From Slave to Master 42/100 S = START Condition Sr = repeated START P = STOP Condition Rev 1 A = Acknowledge A = Negative Acknowledge A/A P VS6624 Host communication - I²C control interface 10.12 Multiple location read stating from the current location In the same manner to multiple location writes, multiple locations can be read with a single read message. Figure 30. Multiple location read 16-bit Index, 8-bit data multiple location read Previous Index Value, K S DEV ADDR R/W A DATA Index K+1 A DATA Index (K + N - 1) A DATA A P ‘1’ (Read) DATA[7:0] DATA[7:0] DATA[7:0] DATA[7:0] DATA[7:0] DATA[7:0] N Bytes of Data From Master to Slave From Slave to Master S = START Condition Sr = repeated START P = STOP Condition Rev 1 A = Acknowledge A = Negative Acknowledge 43/100 44/100 DEV ADDR R/W A Rev 1 From Slave to Master From Master to Slave ‘0’ (Write) S A DATA INDEX[7:0] S = START Condition Sr = repeated START P = STOP Condition INDEX[15:0] value, M INDEX[15:8] DATA No Data Write A DEV ADDR R/W A A = Acknowledge A = Negative Acknowledge ‘1’ (Read) Sr Index M DATA[7:0] DATA[7:0] DATA A DATA DATA[7:0] DATA[7:0] N Bytes of Data Data Read A Index (M + N - 1) P 10.13 Previous Index Value, K 16-bit Index, 8-bit Data Random Index, Multiple Data Read Host communication - I²C control interface VS6624 Multiple location read starting from a random location Figure 31. Multiple location read starting from a random location VS6624 11 Register map Register map The VS6624 I²C write address is 0x20. To read or write to registers other than those in Low level control registers section the device must be switched on, this is done by writing 0x02 to 0xC003. Information on initial power up for the device can be found in the Section 9: Getting started. All I²C locations contain an 8-bit byte. However, certain parameters require 16 bits to represent them and are therefore stored in more than 1 location. Note: For all 16 bit parameters the MSB register must be written before the LSB register. The data stored in each location can be interpreted in different ways as shown below. Register contents represent different data types as described in Table 6. Table 6. Data type Data Type Description BYTE Single field register 8 bit parameter UINT_16 Multiple field registers - 16 bit parameter FLAG_e Bit 0 of register must be set/cleared CODED Coded register - function depends on value written FLOAT Float Value Float number format Float 900 is used in ST co-processors to represent floating point numbers in 2 bytes of data. It conforms to the following structure: Bit[15] = Sign bit (1 represents negative) Bit[14:9] = 6 bits of exponent, biased at decimal 31 Bit[8:0] = 9 bits of mantissa To convert a floating point number to Float 900, use the following procedure: ● represent the number as a binary floating point number. Normalize the mantissa and calculate the exponent to give a binary scientific representation of 1.xxxxxxxxx * 2^y. ● The x symbols should represent 9 binary digits of the mantissa, round or pad with zeros to achieve 9 digits in total. Remove the leading 1 from the mantissa as it is redundant. ● To calculate the y value Bias the exponent by adding to 31 decimal then converting to binary. ● The data can then be placed in the structure above. Rev 1 45/100 Register map VS6624 Example Convert -0.41 to Float 900 Convert the fraction into binary by successive multiplication by 2 and removal of integer component 0.41 * 2 = 0.82 0.82 * 2 = 1.64 0.64 * 2 = 1.28 0.28 * 2 = 0.56 0.56 * 2 = 1.12 0.12 * 2 = 0.24 0.24 * 2 = 0.48 0.48 * 2 = 0.96 0.96 * 2 = 1.92 0.92 * 2 = 1.84 0.84 * 2 = 1.68 0.68 * 2 = 1.36 0.36 * 2 = 0.72 0 1 1 0 1 0 0 0 1 1 1 1 0 This gives us -0.0110100011110. We then normalize by moving the decimal point to give - 1.10100011110 * 2^-2. The mantissa is rounded and the leading zero removed to give 101001000. We add the exponent to the bias of 31 that gives us 29 or 11101. A leading zero is added to give 6 bits 011101. The sign bit is set at 1 as the number is negative. This gives us 1011 1011 0100 1000 as our Float 900 representation or BB48 in hex. To convert the encoded representation back to a decimal floating point, we can use the following formula. Real is = (-1)^sign * ((512+mantissae)>> 9) * 2^(exp-31) Thus to convert BB48 back to decimal, the following procedure is followed: Note that >>9 right shift is equal to division by 2^9. Sign = 1 Exponent = 11101 (29 decimal) Mantissa = 101001000 (328 decimal) This gives us: real = (-1)^1 * ((512+328)/2^9) * 2^(29-31) real = -1 * (840/512) * 2^(-2) real = -1 * 1.640625 * 0.25 real = -0.41015625 When compared to the original -0.41, we see that some rounding errors have been introduced. 46/100 Rev 1 VS6624 Register map Low level control registers Table 7. Low-level control registers LowLevelControlRegisters(1) Index MicroEnable 0xC003 Default value 0x1c Purpose Used to power up the device Type CODED Possible values <0x1c> initial state after low to high transition of CE pin <0x02> Power enable for all MCU Clock- start device DIO_Enable 0xC044 Default value 0x00 Purpose Enables the digital I/O of the device Type CODED Possible values <0> IO pins in a high impedance state ‘Tri-state’ <1> IO pins enabled 1. Can be controlled in all stable states. Note: The default values for the above registers are true when the device is powered on, Ext. Clk input is present and the CE pin is high. All other registers can be read when the MicroEnable register is set to 0x02. Rev 1 47/100 Register map VS6624 User interface map Device parameters [read only] Table 8. Device parameters [read only] DeviceParameters [read only](1) Index uwDeviceId 0x0001 (MSByte) 0x0002 (LSByte) Purpose device id e.g. 624 Type UINT bFirmwareVsnMajor 0x0004 Type BYTE bFirmwareVsnMinor 0x0006 Type BYTE bPatchVsnMajor 0x0008 Type BYTE bPatchVsnMinor 0x000a Type BYTE 1. Can be accessed in all stable state. Host interface manager control Table 9. Host interface manager control HostInterfaceManagerControl(1) Index bUserCommand Default value <0> UNINITIALISED Purpose User level control of operating states Type CODED Possible values <0> UNINITIALISED - powerup default <1> BOOT - the boot command will identify the sensor & setup low level handlers <2> RUN - stream video <3> PAUSE- stop video streaming <4> STOP - low power mode, analogue powered down <3> SNAPSHOT- grab one frame at correct exposure without flashgun <6> FLASHGUN - grab one frame at correct exposure for flashgun 0x0180 1. Can be controlled in all stable states 48/100 Rev 1 VS6624 Register map Host interface manager status Table 10. Host interface manager status [Read only] HostInterfaceManagerStatus [Read only](1) Index bState Default Value <16>_RAW Purpose The current state of the mode manager. Type CODED Possible values <16>_RAW - default powerup state. <33> WAITING_FOR_BOOT - Waiting for ModeManager to signal BOOT event. <34> PAUSED - Booted, the input pipe is idle. <38>WAITING_FOR_RUN - Waiting for ModeManager to complete RUN setup. <49> RUNNING - The pipe is active. <50> WAITING_FOR_PAUSE - The host has issued a PAUSE command. The HostInterfaceManager is waiting for the ModeManager to signal PAUSE processing complete. <64> FLASHGUN - Grabbing a single frame. <80> STOPPED - Low power 0x0202 1. Can be accessed in all stable states Run mode control Table 11. Run mode control RunModeControl(1) Index fMeteringOn 0x0280 Default Value: <1> TRUE Purpose If metering is off the Auto Exposure (AE) and Auto White Balance (AWB) tasks are disabled Type Flag_e Possible values <0> FALSE <1> TRUE 1. Can be controlled in all stable states Rev 1 49/100 Register map VS6624 Mode setup Table 12. Mode setup Index ModeSetup bNonViewLive_ActivePipeSetupBank (Can be controlled in all stable states) 0x0302 Default Value: <0> PipeSetupbank_0 Purpose Select the active bank for non view live mode Type CODED Possible values <0> PipeSetupbank_0 <1>PipeSetupbank_1 SensorMode (Must be configured in STOP mode) 0x0308 Default value <0>SensorMode_SXGA Purpose Select the different sensor mode Type CODED Possible values <0>SensorMode_SXGA <1>SensorMode_VGA <2>SensorMode_VGANormal Pipe setup bank0 Table 13. Pipe setup bank0 PipeSetupBank0(1) Index bImageSize0 # Default value <1> ImageSize_SXGA Purpose required output dimension. Type CODED Possible values <1> ImageSize_SXGA <2> ImageSize_VGA <3> ImageSize_CIF <4> ImageSize_QVGA <5> ImageSize_QCIF <6> ImageSize_QQVGA <7> ImageSize_QQCIF <8> ImageSize_Manual - to use ManualSubSample and ManualCrop controls select Manual mode. 0x0380 uwManualHSize0 # 0x0383(MSB) 0x0384(LSB) 50/100 Default value 0x00 Purpose if ImageSize_Manual selected, input required manual H size Type UINT16 Rev 1 VS6624 Table 13. Register map Pipe setup bank0 PipeSetupBank0(1) Index uwManualVSize0 # 0x0387(MSB) 0x0388(LSB) Default value 0x00 Purpose if ImageSize_Manual selected, input required manual V size Type UINT16 uwZoomStepHSize0 0x038b(MSB) 0x038c(LSB) Default value 0x01 Purpose Set the zoom H step Type UINT16 uwZoomStepVSize0 0x038f(MSB) 0x0390(LSB) Default value 0x01 Purpose Set the zoom V step Type UINT16 bZoomControl0 0x0392 Default value <0> ZoomStop Purpose control zoom in, zoom out and zoom stop Type C Possible values <0> ZoomStop <1> ZoomStart_In <2> ZoomStart_Out uwPanSteplHSize0 0x0395(MSB) 0x0396(LSB) Default value 0x00 Purpose Set the pan H step Type UINT16 uwPanStepVSize0 0x0399(MSB) 0x039a(LSB) Default value 0x00 Purpose Set the PanV step Type UINT16 Rev 1 51/100 Register map Table 13. VS6624 Pipe setup bank0 PipeSetupBank0(1) Index bPanControl0 0x039c Default value <0> Pan_Disable Purpose control pandisable, pan right, pan left, pan up, pan down Type C Possible values <0> Pan_Disable <1> Pan_Right <2> Pan_Left <3> Pan_Down <4> Pan_Up bCropControl0 0x039e Default value <1> Crop_auto Purpose Select cropping manual or auto Type C Possible values <0> Crop_manual <1> Crop_auto uwManualCropHorizontalStart0 0x03a1(MSB) 0x03a2(LSB) Default value 0x00 Purpose Set the cropping H start address Type UINT16 uwManualCropHorizontalSize0 0x03a5(MSB) 0x03a6(LSB) Default value 0x00 Purpose Set the cropping H size Type UINT16 uwManualCropVerticalStart0 0x03a9(MSB) 0x03aa(LSB) Default value 0x00 Purpose Set the cropping Vstart address Type UINT16 uwManualCropVerticalSize0 0x03ad(MSB) 0x03ae(LSB) 52/100 Default value 0x00 Purpose Set the cropping Vsize Type UINT16 Rev 1 VS6624 Table 13. Register map Pipe setup bank0 PipeSetupBank0(1) Index bImageFormat0 #(2) Default value <0> ImageFormat_YCbCr_JFIF Purpose select required output image format. Type CODED Possible values <0> ImageFormat_YCbCr_JFIF <1> ImageFormat_YCbCr_Rec601 <2> ImageFormat_YCbCr_Custom - to use custom output select required RgbToYuvOutputSignalRange from 'PipeSetupBank' page. <3> ImageFormat_YCbCr_400 <4> ImageFormat_RGB_565 <5> ImageFormat_RGB_565_Custom - to use custom output select required RgbToYuvOutputSignalRange from 'PipeSetupBank' page. <6> ImageFormat_RGB_444 <7> ImageFormat_RGB_444_Custom - to use custom output select required RgbToYuvOutputSignalRange from 'PipeSetupBank' page. <9> ImageFormat_Bayer10_ThroughVP <10> ImageFormat_Bayer8_CompThroughVP-- to compress bayer data to 8 bits data <11> ImageFormat_Bayer8_TranThroughVP-- to truncate bayer data to 8 bits data 0x03b0 bBayerOutputAlignment0 0x03b2 Default value <4> BayerOutputAlignment_RightShifted Purpose set bayer output alignment Type CODED Possible values <4> BayerOutputAlignment_RightShifted <5> BayerOutputAlignment_LeftShifted bContrast0 0x03b4 Default value 0x87 Purpose contrast control for both YCbCr and RGB output. Type BYTE bColourSaturation0 0x03b6 Default value 0x78 Purpose colour saturation control for both YCbCr and RGB output. Type BYTE bGamma0 0x03b8 Default value 0x0f Purpose gamma settings. Type BYTE Possible values 0 to 31 Rev 1 53/100 Register map Table 13. VS6624 Pipe setup bank0 PipeSetupBank0(1) Index fHorizontalMirror0 0x03ba Default Value: 0x00 Purpose Horizontal image orientation flip Type Flag_e Possible values <0> FALSE <1> TRUE fVerticalFlip0 0x03bc Default Value: 0x00 Purpose Vertical image orientation flip Type Flag_e Possible values <0> FALSE <1> TRUE bChannelD 0x03be Default value 0x00 Purpose Logical DMA Channel Number Type BYTE Possible values 0 to 6 1. Can be controlled in all stable state. # denotes registers where changes will only be consumed during the transition to a RUN state. 2. It is possible to switch between any YCrCb (422) mode, RGB mode and Bayer 10bit or move between YCrCb 400 and a bayer8 mode without a requiring a transition to STOP, it is not possible to move between these groups of modes without first a transition to STOP then a BOOT. 54/100 Rev 1 VS6624 Register map Pipe setup bank1 Table 14. Pipe setup bank1 PipeSetupBank1(1) Index bImageSize1 # Default value <1> ImageSize_SXGA Purpose required output dimension. Type CODED Possible values <1> ImageSize_SXGA <2> ImageSize_VGA <3> ImageSize_CIF <4> ImageSize_QVGA <5> ImageSize_QCIF <6> ImageSize_QQVGA <7> ImageSize_QQCIF <8> ImageSize_Manual - to use ManualSubSample and ManualCrop controls select Manual mode. 0x0400 uwManualHSize1 # 0x0403(MSB) 0x0404(LSB) Default value 0x00 Purpose if ImageSize_Manual selected, input required manual H size Type UINT16 uwManualVSize1 # 0x0407(MSB) 0x0408(LSB) Default value 0x00 Purpose if ImageSize_Manual selected, input required manual V size Type UINT16 uwZoomStepHSize1 0x040b(MSB) 0x040c(LSB) Default value 0x01 Purpose Set the zoom H step Type UINT16 uwZoomStepVSize1 0x040f(MSB) 0x0410(LSB) Default value 0x01 Purpose Set the zoom V step Type UINT16 Rev 1 55/100 Register map Table 14. VS6624 Pipe setup bank1 PipeSetupBank1(1) Index bZoomControl1 0x0412 Default value <0> ZoomStop Purpose control zoom in, zoom out, zoom stop Type CODED Possible values <0> ZoomStop <1> ZoomStart_In <2> ZoomStart_Out uwPanSteplHSize1 0x0415(MSB) 0x0416(LSB) Default value 0x00 Purpose Set the pan H step Type UINT16 uwPanStepVSize1 0x0419(MSB) 0x041a(LSB) Default value 0x00 Purpose Set the PanV step Type UINT16 bPanControl1 0x041c Default value <0> Pan_Disable Purpose control pandisable, pan right, pan left, pan up, pan down Type C Possible values <0> Pan_Disable <1> Pan_Right <2> Pan_Left <3> Pan_Down <4> Pan_Up bCropControl1 0x041e Default value <1> Crop_auto Purpose Select cropping manual or auto Type C Possible values <0> Crop_manual <1> Crop_auto uwManualCropHorizontalStart1 0x0421(MSB) 0x0422(LSB) 56/100 Default value 0x00 Purpose Set the cropping H start address Type UINT16 Rev 1 VS6624 Table 14. Register map Pipe setup bank1 PipeSetupBank1(1) Index uwManualCropHorizontalSize1 0x0425(MSB) 0x0426(LSB) Default value 0x00 Purpose Set the cropping H size Type UINT16 uwManualCropVerticalStart1 0x0429(MSB) 0x042a(LSB) Default value 0x00 Purpose Set the cropping Vstart address Type UINT16 uwManualCropVerticalSize1 0x042d(MSB) 0x042e(LSB) Default value 0x00 Purpose Set the cropping Vsize Type UINT16 bImageFormat1(2) Default value <0> ImageFormat_YCbCr_JFIF Purpose select required output image format. Type CODED Possible values <0> ImageFormat_YCbCr_JFIF <1> ImageFormat_YCbCr_Rec601 <2> ImageFormat_YCbCr_Custom - to use custom output select required RgbToYuvOutputSignalRange from 'PipeSetupBank' page. <3> ImageFormat_YCbCr_400 <4> ImageFormat_RGB_565 <5> ImageFormat_RGB_565_Custom - to use custom output select required RgbToYuvOutputSignalRange from 'PipeSetupBank' page. <6> ImageFormat_RGB_444 <7> ImageFormat_RGB_444_Custom - to use custom output select required RgbToYuvOutputSignalRange from 'PipeSetupBank' page. <9> ImageFormat_Bayer10ThroughVP <10> ImageFormat_Bayer8CompThroughVP-- to compress bayer data to 8 bits data <11> ImageFormat_Bayer8TranThroughVP-- to truncate bayer data to 8 bits data 0x0430 bBayerOutputAlignment1 0x0432 Default value <4> BayerOutputAlignment_RightShifted Purpose set bayer output alignment Type CODED Possible values <4> BayerOutputAlignment_RightShifted <5> BayerOutputAlignment_LeftShifted Rev 1 57/100 Register map Table 14. VS6624 Pipe setup bank1 PipeSetupBank1(1) Index bContrast1 0x0434 Default value 0x87 Purpose contrast control for both YCbCr and RGB output. Type BYTE bColourSaturation1 0x0436 Default value 0x78 Purpose colour saturation control for both YCbCr and RGB output. Type BYTE bGamma1 0x0438 Default value 0x0f Purpose gamma settings. Type BYTE Possible values 0 to 31 fHorizontalMirror1 0x043a Default value 0x00 Purpose Horizontal image orientation flip Type Flag_e Possible values <0> FALSE <1> TRUE fVerticalFlip1 0x043c Default value 0x00 Purpose Vertical image orientation flip Type Flag_e Possible values <0> FALSE <1> TRUE bChannelD 0x043e Default value 0x00 Purpose Logical DMA Channel Number Type BYTE Possible values 0 to 6 1. Can be controlled in all stable state. # denotes registers where changes will only be consumed during the transition to a RUN state. 2. It is possible to switch between any YCrCb (422) mode, RGB mode and Bayer 10bit or move between YCrCb 400 and a bayer8 mode without a requiring a transition to STOP, it is not possible to move between these groups of modes without first a transition to STOP then a BOOT. 58/100 Rev 1 VS6624 Register map Viewlive control Table 15. ViewLive control Index ViewLiveControl fEnable (Can be controlled in all stable states) 0x0480 Default value <0> FALSE Purpose set to enable the View Live mode. Type Flag_e Possible values <0> FALSE <1> TRUE bInitialPipeSetupBank (must be setup in PAUSE or STOP mode) 0x0482 Default value <0> PipeSetupBank_0 Purpose First frame output will be from PipeSetupBank selected by 'bInitialPipeSetupBank'. if ViewLive is enabled the next frame will be from the other PipeSetupBank, otherwise only one PipeSetupBank will be used. Type CODED Possible values <0> PipeSetupBank_0 <1> PipeSetupBank_1 Viewlive status [read only] Table 16. Viewlive status Index ViewLiveStatus [read only] CurrentPipeSetupBank 0x0500 Default value <0> PipeSetupBank_0 Purpose indicates the PipeSetupBank which has most recently been applied to the pixel pipe hardware. Type CODED Possible values <0> PipeSetupBank_0 <1> PipeSetupBank_1 Rev 1 59/100 Register map VS6624 Power management Table 17. Power management PowerManagement(1) Index 0x0580 bTimeToPowerdown Default value 0x0f Purpose Time (mSecs) from entering Pause mode until the system automatically transitions stop mode. 0xff disables the automatic transition. Type BYTE 1. Must be configured in STOP mode Video timing parameter host inputs Table 18. Video timing parameter host inputs VideoTimingParameterHostInputs(1) Index uwExternalClockFrequencyMhzNumerator 0x0605 (MSByte) 0x0606 (LSByte) Default value 0x0c Purpose specifies the External Clock Frequency... external clock frequency = uwExternalClockFrequencyMhzNumerator/bExternalClockFrequencyMh zDenominator Type UINT16 bExternalClockFrequencyMhzDenominator 0x0608 Default value 0x01 Type BYTE 1. Should be configured in the RAW state Video timing control Table 19. Video timing control VideoTimingControl(1) Index bSysClkMode 0x0880 Default value 0x00 Purpose Decides system centre clock frequency Type CODED Possible values <0>12MHz Mode <1>13MHz Mode <2>13.5MHz Mode <3>Slave Mode 1. Should be configured in the RAW state 60/100 Rev 1 VS6624 Register map Frame dimension parameter host inputs Table 20. Frame dimension parameter host inputs FrameDimensionParameterHostInputs(1) Index bLightingFrequencyHz Default value 0x00 Purpose AC Frequency - used for flicker free time period calculations this mains frequency determines the flicker free time period. Type BYTE 0x0c80 fFlickerCompatibleFrameLength 0x0c82 Default value <0> FALSE Purpose flicker_compatible_frame_length Type Flag_e Possible values <0> FALSE <1> TRUE 1. Can be controlled in all stable states Static frame rate control Table 21. Static frame rate control StaticFrameRateControl(1) Index uwDesiredFrameRate_Num 0x0d81 (MSByte) 0x0d82 (LSByte) Default value 0x0f Purpose Numerator for the Frame Rate Type UINT16 bDesiredFrameRate_Den 0x0d84 Default value 0x01 Purpose Denominator for the Frame Rate Type BYTE 1. Can be controlled in all stable states Rev 1 61/100 Register map VS6624 Automatic Frame rate control Table 22. Automatic Frame Rate Control AutomaticFrameRateControl(1) Index bDisableFrameRateDamper 0x0e80 Default value 0x00 Purpose Defines the mode in which the framerate of the system would work Type Possible values <0> Manual <1> Auto bMinimumDamperOutput 0x0e8c (MSByte) 0x0e8a (LSByte) Default value 0x00 Purpose Sets the minimum framerate employed when in automatic framerate mode. Type UINT16 1. Can be controlled in all stable states Exposure controls Table 23. Exposure controls ExposureControls(1) Index bMode Default value <0> AUTOMATIC_MODE Purpose Sets the mode for the Exposure Algorithm Type CODED possible values <0> AUTOMATIC_MODE - Automatic Mode of Exposure which includes computation of Relative Step <1> COMPILED_MANUAL_MODE - Compiled Manual Mode in which the desired exposure is given and not calculated by algorithm <2> DIRECT_MANUAL_MODE - Mode in which the exposure parameters are input directly and not calculated by compiler <3> FLASHGUN_MODE - Flash Gun Mode in which the exposure parameters are set to fixed values 0x1180 62/100 Rev 1 VS6624 Table 23. Register map Exposure controls ExposureControls(1) Index bMetering 0x1182 Default value <0> ExposureMetering_flat Purpose Weights to be associated with the zones for calculating the mean statistics Exposure Weight could Centered, Backlit or Flat Type C possible values <0> ExposureMetering_flat - Uniform gain associated with all pixels <1> ExposureMetering_backlit - more gain associated with centre pixels and bottom pixels <2> ExposureMetering_centred - more gain associated with centre pixels bManualExposureTime_Num Default value 0x01 Purpose Exposure Time for Compiled Manual Mode in seconds. Num/Den gives required exposure time Type BYTE 0x1184 bManualExposureTime_Den 0x1186 Default value 0x1e Type BYTE fpManualFloatExposureTime 0x1189 (MSByte) 0x118a (LSByte) Default value 0x59aa (15008) Purpose Exposure Time for the Manual Mode. This value is in uSecs Type FLOAT iExposureCompensation Default value 0x00 Purpose Exposure Compensation - a user choice for setting the runtime target. A unit of exposure compensation corresponds to 1/6 EV. Default value according to the Nominal Target of 30 is 0. Coded Value of Exposure compensation can take values from -25 to 12. Type INT8 0x1190 uwDirectModeCoarseIntegrationLines 0x1195 (MSByte) 0x1196 (LSByte) Default value 0x00 Purpose Coarse Integration Lines to be set for Direct Mode Type UINT16 Rev 1 63/100 Register map Table 23. VS6624 Exposure controls ExposureControls(1) Index uwDirectModeFineIntegrationPixels 0x1199 (MSByte) 0x119a (LSByte) Default value 0x00 Purpose Fine Integration Pixels to be set for Direct Mode Type UINT16 fpDirectModeAnalogGain 0x119d (MSByte) 0x119e (LSByte) Default value 0x00 Purpose Analog Gain to be set for Direct Mode Type FLOAT fpDirectModeDigitalGain 0x11a1 (MSByte) 0x11a2 (LSByte) Default value 0x00 Purpose Digital Gain to be set for Direct Mode Type FLOAT uwFlashGunModeCoarseIntLines 0x11a5 (MSByte) 0x11a6 (LSByte) Default value 0x00 Purpose Coarse Integration Lines to be set for Flash Gun Mode Type UINT16 uwFlashGunModeFineIntPixels 0x11a9 (MSByte) 0x11aa (LSByte) Default value 0x00 Purpose Fine Integration Pixels to be set for Flash Gun Mode Type UINT16 fpFlashGunModeAnalogGain 0x11ad (MSByte) 0x11ae (LSByte) Default value 0x00 Purpose Analog Gain to be set for Flash Gun Mode Type FLOAT fpFlashGunModeDigitalGain 0x11b1 (MSByte) 0x11b2 (LSByte) 64/100 Default value 0x00 Purpose Digital Gain to be set for Flash Gun Mode Type FLOAT Rev 1 VS6624 Table 23. Register map Exposure controls ExposureControls(1) Index fFreezeAutoExposure 0x11b4 Default value <0> FALSE Purpose Freeze auto exposure Type Flag_e possible values <0> FALSE <1> TRUE fpUserMaximumIntegrationTime 0x11b7 (MSByte) 0x11b8 (LSByte) Default value 0x647f (654336) Purpose User Maximum Integration Time in microseconds. This control takes in the maximum integration time that host would like to support. This would in turn give an idea of the degree of “wobbly pencil effect” acceptable to Host. Type FLOAT fpRecommendFlashGunAnalogGainThreshold 0x11bb (MSByte) 0x11bc (LSByte) Default value 0x4200 (4) Purpose Recommend flash gun analog gain threshold value Type FLOAT bAntiFlickerMode 0x11c0 Default value <0> AntiFlickerMode_Inhibit Purpose Anti flicker mode Type CODED Possible values <0> AntiFlickerMode_Inhibit <1> AntiFlickerMode_ManualEnable <2>AntiFlickerMode_AutomaticEnable 1. Can be controlled in all stable states Rev 1 65/100 Register map VS6624 White balance control Table 24. White balance control parameters WBControlParameters(1) Index bMode Default value <1> AUTOMATIC Purpose For setting Mode of the white balance Type CODED possible values <0> OFF - No White balance, all gains will be unity in this mode <1> AUTOMATIC - Automatic mode, relative step is computed here <3> MANUAL_RGB - User manual mode, gains are applied manually <4> DAYLIGHT_PRESET - DAYLIGHT and all the modes below, fixed value of gains are applied here. <5> TUNGSTEN_PRESET <6> FLUORESCENT_PRESET <7> HORIZON_PRESET <8> MANUAL_COLOUR_TEMP <9> FLASHGUN_PRESET 0x1480 bManualRedGain 0x1482 Default value 0x00 Purpose User setting for Red Channel gain Type BYTE bManualGreenGain 0x1484 Default value 0x00 Purpose User setting for Green Channel gain Type BYTE bManualBlueGain 0x1486 Default value 0x00 Purpose User setting for Blue Channel gain Type BYTE fpFlashRedGain 0x148b (MSByte) 0x148c (LSByte) Default value 0x3e80 (1.250) Purpose RedGain For FlashGun Type FLOAT fpFlashGreenGain 0x148f (MSByte) 0x1490 (LSByte) 66/100 Default value 0x3e00 (1.000) Purpose Green Gain For FlashGun Type FLOAT Rev 1 VS6624 Table 24. Register map White balance control parameters WBControlParameters(1) Index fpFlashBlueGain 0x1493 (MSByte) 0x1494 (LSByte) Default value 0x3e8a (1.269531) Purpose BlueGain For FlashGun Type FLOAT 1. Can be controlled in all stable states Sensor setup Table 25. Sensor setup SensorSetup(1) Index bBlackCorrectionOffset Default value 0x00 Purpose Black Correction Offset which would be added to the sensor pedestal to get the RE Offset. This is to improve the black level. Type BYTE 0x1990 1. Can be controlled in all stable states Image Stability [read only] Table 26. Image stability [read only] Index Image stability [read only] fWhiteBalanceStable 0x1900 Default value 0x00 Purpose Specifies that white balance system is stable/unstable Type CODED Possible values <0> Unstable <1>Stable fExposureStable 0x1902 Default value 0x00 Purpose Specifies that white balance system is stable/unstable Type CODED Possible values <0> Unstable <1>Stable Rev 1 67/100 Register map Table 26. VS6624 Image stability [read only] Index Image stability [read only] fStable 0x1906 Default value 0x00 Purpose Consolidated flag to indicate whether the system is stable/unstable Type CODED Possible values <0> Unstable <1>Stable Flash control Table 27. Flash control FlashControl(1) Index bFlashMode 0x1a80 Default value <0> FLASH_OFF Purpose Select the flash type and on/off Type CODED Possible values <0> FLASH_OFF <1>FLASH_TORCH <2>FLASH_PULSE uwFlashOffLine 0x1a83(MSB) 0x1a84(LSB) Default value 0x021c (540) Purpose At flash_pulse mode, used to control off line Type UINT16 1. Can be controlled in all stable states 68/100 Rev 1 VS6624 Register map Flash status [read only] Table 28. Flash status Index FlashStatus [read only] fFlashRecommend 0x1b00 Default value <0> FALSE Purpose This flag is set if the Exposure Control system reports that the image is underexposed and so the flashgun is recommended to the Host. It is at the discretion of Host to use it or not for the following still grab. Type Flag_e Possible values <0> FALSE <1> TRUE fFlashGrabComplete 0x1b02 Default value <0> FALSE Purpose This flag indicates that the FlashGun Image has been grabbed. Type Flag_e Possible values <0> FALSE <1> TRUE Scythe filter controls Table 29. Scythe filter controls ScytheFilterControls(1) Index fDisableFilter 0x1d80 Default value <0> FALSE Purpose Disable Scythe Defect Correction Type Flag_e Possible values <0> FALSE <1> TRUE 1. Can be controlled in all stable state Jack filter controls Table 30. Jack filter controls JackFilterControls(1) Index fDisableFilter 0x1e00 Default value <0> FALSE Purpose Disable Jack Defect Correction Type Flag_e Possible values <0> FALSE <1> TRUE 1. Can be controlled in all stable state Rev 1 69/100 Register map VS6624 Demosaic control Table 31. Demosaic control DemosaicControl(1) Index bAntiAliasFilterSuppress 0x1e80 Default value 0x08 Purpose Anti alias filter suppress Type BYTE 1. Can be controlled in all stable state Colour matrix dampers Table 32. Colour matrix dampers ColourMatrixDamper(1) Index fDisable 0x1f00 Default value <0> FALSE Purpose set to disable colour matrix damper and therefore ensure that all the Colour matrix coefficients remain constant under all conditions. Type Flag_e Possible values <0> FALSE <1> TRUE fpLowThreshold 0x1f03 (MSByte) 0x1f04 (LSByte) Default value 0x67d1 (2000896) Purpose Low Threshold for exposure for calculating the damper slope Type FLOAT fpHighThreshold 0x1f07 (MSByte) 0x1f08 (LSByte) Default value 0x6862 (2498560) Purpose High Threshold for exposure for calculating the damper slope Type FLOAT fpMinimumOutput 0x1f0b (MSByte) 0x1f0c (LSByte) Default value 0x3acd (0.350098) Purpose Minimum possible damper output for the ColourMatrix Type FLOAT 1. Can be controlled in all stable state 70/100 Rev 1 VS6624 Register map Peaking control Table 33. Peaking control Peaking control(1) Index bUserPeakGain 0x2000 Default value 0x0e Purpose controls peaking gain / sharpness applied to the image Type BYTE fDisableGainDamping 0x2002 Default value <0> FALSE Purpose set to disable damping and therefore ensure that the peaking gain applied remains constant under all conditions Type Flag_e Possible values <0> FALSE <1> TRUE fpDamperLowThreshold_Gain 0x2005 (MSByte) 0x2006 (LSByte) Default value 0x62ac (350208) Purpose Low Threshold for exposure for calculating the damper slope - for gain Type FLOAT fpDamperHighThreshold_Gain 0x2009 (MSByte) 0x200a (LSByte) Default value 0x65d1 (10004488) Purpose High Threshold for exposure for calculating the damper slope - for gain Type FLOAT fpMinimumDamperOutput_Gain 0x200d (MSByte) 0x200e (LSByte) Default value 0x3d33 (0.799805) Purpose Minimum possible damper output for the gain. Type FLOAT bUserPeakLoThresh 0x2010 Default value 0x1e Purpose Adjust degree of coring. range: 0 - 63 Type BYTE fDisableCoringDamping 0x2012 Default value <0> FALSE Purpose set to ensure that bUserPeakLoThresh is applied to gain block Type Flag_e Possible values <0> FALSE <1> TRUE Rev 1 71/100 Register map Table 33. VS6624 Peaking control Peaking control(1) Index bUserPeakHiThresh 0x2014 Default value 0x30 Purpose adjust maximum gain that can be applied. range: 0 - 63 Type BYTE fpDamperLowThreshold_Coring 0x2017 (MSByte) 0x2018 (LSByte) Default value 0x624a (300032) Purpose Low Threshold for exposure for calculating the damper slope - for coring Type FLOAT fpDamperHighThreshold_Coring 0x201b (MSByte) 0x201c (LSByte) Default value 0x656f (900096) Purpose High Threshold for exposure for calculating the damper slope - for coring Type FLOAT fpMinimumDamperOutput_Coring 0x201f (MSByte) 0x2020 (LSByte) Default value 0x3a00 (0.2500) Purpose Minimum possible damper output for the Coring. Type FLOAT 1. Can be controlled in all stable states 72/100 Rev 1 VS6624 Register map Pipe 0 RGB to YUV matrix manual control Table 34. Pipe0 RGB to YUV matrix manual control Pipe0RGB to YUV matrix (1) Index fRgbToYuvManuCtrl 0x2180 Default value <0> FALSE Purpose Enables manual RGB to YUV matrix for PipeSetupBank0 Type Flag_e Possible values <0> FALSE <1> TRUE w0_0 0x2183 (MSByte) 0x2184(LSByte) Default value 0x00 Purpose Row 0 Column 0 of YUV matrix Type UINT_16 w0_1 0x2187 (MSByte) 0x2188 (LSByte) Default value 0x00 Purpose Row 0 Column 1 of YUV matrix Type UINT_16 w0_2 0x218c (MSByte) 0x218d (LSByte) Default value 0x00 Purpose Row 0 Column 2 of YUV matrix Type UINT_16 w1_0 0x2190 (MSByte) 0x218f (LSByte) Default value 0x00 Purpose Row 1 Column 0 of YUV matrix Type UINT_16 w1_1 0x2193 (MSByte) 0x2194 (LSByte) Default value 0x00 Purpose Row 1 Column 1 of YUV matrix Type UINT_16 w1_2 0x2197 (MSByte) 0x2198 (LSByte) Default value 0x00 Purpose Row 1 Column 2 of YUV matrix Type UINT_16 Rev 1 73/100 Register map Table 34. VS6624 Pipe0 RGB to YUV matrix manual control Pipe0RGB to YUV matrix (1) Index w2_0 0x219b (MSByte) 0x219c (LSByte) Default value 0x00 Purpose Row 2 Column 0 of YUV matrix Type UINT_16 w2_1 0x21a0 (MSByte) 0x219f (LSByte) Default value 0x00 Purpose Row 2 Column 1 of YUV matrix Type UINT_16 w2_2 0x21a3 (MSByte) 0x21a4 (LSByte) Default value 0x00 Purpose Row 2 Column 2 of YUV matrix Type UINT_16 YinY 0x21a7 (MSByte) 0x21a8 (LSByte) Default value 0x00 Purpose Y in Y Type UINT_16 YinCb 0x21ab (MSByte) 0x21ac (LSByte) Default value 0x00 Purpose Y in Cb Type UINT_16 YinCr 0x21b0 (MSByte) 0x21af (LSByte) Default value 0x00 Purpose Y in Cr Type UINT_16 1. Can be controlled in all stable states 74/100 Rev 1 VS6624 Register map Pipe 1 RGB to YUV matrix manual control Table 35. Pipe1 RGB To YUV matrix manual control Pipe1RgbToYuv(1) Index fRgbToYuvManuCtrl 0x2200 Default value <0> FALSE Purpose Enables manual RGB to YUV matrix for PipeSetupBank1 Type Flag_e Possible values <0> FALSE <1> TRUE w0_0 0x2203 (MSByte) 0x2204(LSByte) Default value 0x00 Purpose Row 0 Column 0 of YUV matrix Type UINT_16 w0_1 0x2207 (MSByte) 0x2208 (LSByte) Default value 0x00 Purpose Row 0 Column 1 of YUV matrix Type UINT_16 w0_2 0x220c (MSByte) 0x220d (LSByte) Default value 0x00 Purpose Row 0 Column 2 of YUV matrix Type UINT_16 w1_0 0x2210 (MSByte) 0x220f (LSByte) Default value 0x00 Purpose Row 1 Column 0 of YUV matrix Type UINT_16 w1_1 0x2213 (MSByte) 0x2214 (LSByte) Default value 0x00 Purpose Row 1 Column 1 of YUV matrix Type UINT_16 w1_2 0x2217 (MSByte) 0x2218 (LSByte) Default value 0x00 Purpose Row 1 Column 2 of YUV matrix Type UINT_16 Rev 1 75/100 Register map Table 35. VS6624 Pipe1 RGB To YUV matrix manual control Pipe1RgbToYuv(1) Index w2_0 0x221b (MSByte) 0x221c (LSByte) Default value 0x00 Purpose Row 2 Column 0 of YUV matrix Type UINT_16 w2_1 0x2220 (MSByte) 0x221f (LSByte) Default value 0x00 Purpose Row 2 Column 1 of YUV matrix Type UINT_16 w2_2 0x2223 (MSByte) 0x2224 (LSByte) Default value 0x00 Purpose Row 2 Column 2 of YUV matrix Type UINT_16 YinY 0x2227 (MSByte) 0x2228 (LSByte) Default value 0x00 Purpose Y in Y Type UINT_16 YinCb 0x222b (MSByte) 0x222c (LSByte) Default value 0x00 Purpose Y in Cb Type UINT_16 YinCr 0x2220 (MSByte) 0x222f (LSByte) Default value 0x00 Purpose Y in Cr Type UINT_16 1. Can be controlled in all stable states 76/100 Rev 1 VS6624 Register map Pipe 0 gamma manual control Table 36. Pipe 0 gamma manual control Pipe0 GammaManuControl(1) Index fGammaManuCtrl 0x2280 Default value <0> FALSE Purpose Enables manual Gamma Setup for PipeSetupBank0 Type Flag_e Possible values <0> FALSE <1> TRUE bRPeakGamma 0x2282 Default value 0x00 Purpose Peaked Red channel gamma value Type BYTE bGPeakGamma 0x2284 Default value 0x00 Purpose Peaked Green channel gamma value Type BYTE bBPeakGamma 0x2286 Default value 0x00 Purpose Peaked Blue channel gamma value Type BYTE bRUnPeakGamma 0x2288 Default value 0x00 Purpose Unpeaked Red channel gamma value Type BYTE bGUnPeakGamma 0x228a Default value 0x00 Purpose Unpeaked Green channel gamma value Type BYTE bBUnPeakGamma 0x228c Default value 0x00 Purpose Unpeaked Blue channel gamma value Type BYTE 1. Can be controlled in all stable states Rev 1 77/100 Register map VS6624 Pipe 1 Gamma manual control Table 37. Pipe 1 Gamma manual control Pipe1GammaManuControl(1) Index fGammaManuCtrl 0x2300 Default value <0> FALSE Purpose Enables manual Gamma Setup for PipeSetupBank1 Type Flag_e Possible values <0> FALSE <1> TRUE bRPeakGamma 0x2302 Default value 0x00 Purpose Peaked Red channel gamma value Type BYTE bGPeakGamma 0x2304 Default value 0x00 Purpose Peaked Green channel gamma value Type BYTE bBPeakGamma 0x2306 Default value 0x00 Purpose Peaked Blue channel gamma value Type BYTE bRUnPeakGamma 0x2308 Default value 0x00 Purpose Unpeaked Red channel gamma value Type BYTE bGUnPeakGamma 0x230a Default value 0x00 Purpose Unpeaked Green channel gamma value Type BYTE bBUnPeakGamma 0x230c Default value 0x00 Purpose Unpeaked Blue channel gamma value Type BYTE 1. Can be controlled in all stable states 78/100 Rev 1 VS6624 Register map Fade to black Table 38. Fade to black FadeToBlack(1) Index 0x2480 0x2483 (MSByte) 0x2484(LSByte) 0x2487 (MSByte) 0x2488 (LSByte) 0x248b (MSByte) 0x248c (LSByte) 0x248f (MSByte) 0x2490 (LSByte) fDisable Default value <0> FALSE Purpose Flag_e Type <0> FALSE <1> TRUE fpBlackValue Default value 0x0000 (0.000) Purpose Black value Type FLOAT fpDamperLowThreshold Default value 0x6d56 (6995968) Purpose Low Threshold for exposure for calculating the damper slope Type FLOAT fpDamperHighThreshold Default value 0x6cdc (11993088) Purpose High Threshold for exposure for calculating the damper slope Type FLOAT fpDamperOutput Default value 0x0 (0.0000) Purpose Minimum possible damper output. Type FLOAT 1. Can be controlled in all stable states Rev 1 79/100 Register map VS6624 Output formatter control Table 39. Output formatter control OutputFormatterControl(1) Index bCodeCheckEn 0x2580 Default value 0x07 Type BYTE bBlankFormat 0x2582 Default value 0x00 Type BYTE bSyncCodeSetup Default value 0x01 Type CODED flag bits [0] SyncCodeSetup_ins_code_en - set for embedded sync codes. [1] SyncCodeSetup_frame_mode - 0 for ITU. 1 for mode2 [2] SyncCodeSetup_field_bit [3] SyncCodeSetup_field_tag [4] SyncCodeSetup_field_load 0x2584 bHSyncSetup 0x2586 Default value 0x0b Type CODED flag bits [0] HSyncSetup_sync_en [1] HSyncSetup_sync_pol [2] HSyncSetup_only_activelines [3] HSyncSetup_track_henv bVSyncSetup 0x2588 80/100 Default value 0x07 Type CODED flag bits [0] VSyncSetup_sync_en [1] VSyncSetup_pol [2] VSyncSetup_2_sel Rev 1 VS6624 Table 39. Register map Output formatter control OutputFormatterControl(1) Index bPClkSetup Default value 0x05 Type CODED flag bits [0] PClkSetup_prog_lo [1] PClkSetup_prog_hi [2] PClkSetup_sync_en [3] PClkSetup_hsync_en_n [4] PClkSetup_hsync_en_n_track_internal [5] PClkSetup_vsync_n [6] PClkSetup_vsync_n_track_internal [7] PClkSetup_freer 0x258a fPclkEn 0x258c Default value <1> TRUE Type Flag_e Possible values <0> FALSE <1> TRUE bOpfSpSetup 0x258e Default value 0x00 type BYTE bBlankData_MSB 0x2590 Default value 0x10 Type CODED Possible values <16> BlankingMSB_Default bBlankData_LSB 0x2592 Default value 0x80 Type CODED Possible values <128> BlankingLSB_Default bRgbSetup 0x2594 Default value 0x00 Type CODED flag bits [0] RgbSetup_rgb444_itu_zp [1] RgbSetup_rb_swap [2] RgbSetup_bit_reverse [3] RgbSetup_softreset Rev 1 81/100 Register map Table 39. VS6624 Output formatter control OutputFormatterControl(1) Index bYuvSetup 0x2596 Default value 0x00 Type CODED flag bits [0] YuvSetup_u_first [1] YuvSetup_y_first bVsyncRisingCoarseH 0x2598 Default value 0x00 Type BYTE bVsyncRisingCoarseL 0x259a Default value 0x00 Type BYTE bVsyncRisingFineH 0x259c Default value 0x00 Type BYTE bVsyncRisingFineL 0x259e Default value 0x01 Type BYTE bVsyncFallingCoarseH 0x25a0 Default value 0x01 Type BYTE bVsyncFallingCoarseL 0x25a2 Default value 0xf2 Type BYTE bVsyncFallingFineH 0x25a4 Default value 0x00 Type BYTE bVsyncFallingFineL 0x25a6 Default value 0x01 Type BYTE bHsyncRisingH 0x25a8 82/100 Default value 0x00 Type BYTE Rev 1 VS6624 Table 39. Register map Output formatter control OutputFormatterControl(1) Index bHsyncRisingL 0x25aa Default value 0x03 Type BYTE bHsyncFallingH 0x25ac Default value 0x00 Type BYTE bHsyncFallingL 0x25ae Default value 0x07 type BYTE bOutputInterface 0x25b0 Default value [0] OutputInterface_ITU Type CODED flag bits [0] OutputInterface_ITU [1] OutputInterface_CCP_DataStrobe [2] OutputInterface_CCP_DataClock bCCPExtraData 0x25b2 Default value 0x08 Type BYTE 1. Can be controlled in all stable states Rev 1 83/100 Register map VS6624 NoRA controls Table 40. NoRA controls NoRAControls(1) Index fDisable 0x2600 Default value <0> NoraCtrl_auto Type Flag_e Possible values <0> NoraCtrl_auto - switches off NoRA for scaled outputs <1> NoraCtrl_ManuDisable - Always off <2> NoraCtrl_ManuEnable - Always on bUsage 0x2602 Default value 0x04 Purpose Type BYTE bSplit_Kn 0x2604 Default value 0x01 Purpose Type BYTE bSplit_Nl 0x2606 Default value 0x01 Purpose Type BYTE bTight_Green 0x2608 Default value 0x01 Purpose Type BYTE fDisableNoroPromoting 0x260a Default value <0> FALSE Type Flag_e Possible values <0> FALSE <1> TRUE fpDamperLowThreshold 0x260d (MSByte) 0x260e (LSByte) 84/100 Default value 0x6862 (2498560) Purpose Low Threshold for exposure for calculating the damper slope Type FLOAT Rev 1 VS6624 Table 40. Register map NoRA controls NoRAControls(1) Index fpDamperHighThreshold 0x2611 (MSByte) 0x2612 (LSByte) Default value 0x6a62 (4997120) Purpose High Threshold for exposure for calculating the damper slope Type FLOAT MinimumDamperOutput 0x2615 (MSByte) 0x2616 (LSByte) Default value 0x3a00 (0.2500) Purpose Minimum possible damper output. Type FLOAT 1. Can be controlled in all stable states Rev 1 85/100 Optical specifications 12 VS6624 Optical specifications Table 41. Optical specifications(1) Parameter Min. Optical format Typ. Max. 1/5 inch Effective focal length mm Aperture (F number) 3.2 Horizontal field of view 52 Depth of field 60 TV distortion 1. All measurements made at 23°C ± 2°C 86/100 Unit Rev 1 deg. infinity cm 1 % VS6624 Electrical characteristics 13 Electrical characteristics 13.1 Absolute maximum ratings Table 42. Symbol Absolute maximum ratings Parameter Min. Max. Unit TSTO Storage temperature -40 85 °C VDD Digital power supplies -0.5 3.3 V AVDD Analog power supplies -0.5 3.3 V Caution: Stress above those listed under “Absolute Maximum Ratings” can cause permanent damage to the device. This is a stress rating only and functional operations of the device at these or other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. 13.2 Operating conditions Table 43. Symbol Supply specifications Parameter Min. Typ. Max. Unit TAF Operating temperature, functional (Camera is electrically functional) -30 25 70 °C TAN Operating temperature, nominal (Camera produces acceptable images) -25 25 55 °C TAO Operating temperature, optimal (Camera produces optimal optical performance) 5 25 30 °C Digital power supplies operating range (@ module pin(1)) 1.7 1.8 2.0 V VDD 2.4 2.8 3.0 V AVDD Analog power supplies operating range (@ module pin(1)) 2.4 2.8 3.0 V 1. Module can contain routing resistance up to 5 Ω. Rev 1 87/100 Electrical characteristics VS6624 13.3 DC electrical characteristics Note: Over operating conditions unless otherwise specified. Table 44. DC electrical characteristics Symbol Description Test conditions Min. Typ. Max. Unit VIL Input low voltage -0.3 0.3 VDD V VIH Input high voltage 0.7 VDD VDD + 0.3 V VOL Output low voltage IOL < 2 mA IOL < 4 mA 0.2 VDD 0.4 VDD V VOH Output high voltage IOH< 4 mA IIL Input leakage current Input pins I/O pins 0 < VIN < VDD CIN Input capacitance, SCL COUT CI/O Table 45. 0.8 VDD V +/- 10 +/- 1 µA µA TA = 25 °C, freq = 1 MHz 6 pF Output capacitance TA = 25 °C, freq = 1 MHz 6 pF I/O capacitance, SDA TA = 25 °C, freq = 1 MHz 8 pF Typical current consumption - Sensor mode VGA 30 fps IAVDD Symbol Description IVDD Test conditions Units VDD = 2.8V VDD = 1.8V VDD = 2.8V IPD supply current in power down mode CE=0, CLK = 12 MHz 1.4 0.05 0.07 µA Istanby supply current in Standby mode CE=1, CLK = 12 MHz 0.0014 1.3 8 mA IStop supply current in Stop mode CE=1, CLK = 12 MHz 0.0014 4.1 4.2 mA IPause supply current in Pause mode CE=1, CLK = 12 MHz 0.00175 43.8 43.3 mA Irun supply current in active streaming run mode CE=1, CLK = 12 MHz streaming VGA @30 fps 11.3 55.1 54.8 mA 88/100 Rev 1 VS6624 Table 46. Electrical characteristics Typical current consumption - Sensor mode SXGA 15 fps IVDD IAVDD Symbol Description Test conditions Units VDD = 2.8V VDD = 1.8V VDD = 2.8V IPD supply current in power down mode CE=0, CLK = 12 MHz 1.4 0.05 0.07 µA Istanby supply current in Standby mode CE=1, CLK = 12 MHz 0.0014 1.3 8 mA IStop supply current in Stop mode CE=1, CLK = 12 MHz 0.0014 4.1 4 mA IPause supply current in Pause mode CE=1, CLK = 12 MHz 0.0195 63.4 64.7 mA Irun supply current in active streaming run mode CE=1, CLK = 12 MHz streaming VGA @30 fps 11.5 84.5 87 mA 13.4 External clock The VS6624 requires an external clock. This clock is a CMOS digital input. The clock input is fail-safe in power down mode. Table 47. External clock Range CLK Unit Min. Typ. DC coupled square wave Clock frequency (normal operation) 13.5 Max. VDD 6.50 6.50, 8.40, 9.60, 9.72, 12.00, 13.00, 16.80, 19.20, 19.44 V 54 MHz Chip enable CE is a CMOS digital input. The module is powered down when a logic 0 is applied to CE. See Power up sequence for further information. Rev 1 89/100 Electrical characteristics 13.6 VS6624 I²C slave interface VS6624 contains an I²C-type interface using two signals: a bidirectional serial data line (SDA) and an input-only serial clock line (SCL). See Host communication - I²C control interface for detailed description of protocol. Table 48. Serial interface voltage levels(1) Symbol Parameter Standard Mode Fast Mode Unit Min. Max. Min. Max. Hysteresis of Schmitt Trigger Inputs VDD > 2 V VDD < 2V N/A N/A N/A N/A 0.05 VDD 0.1 VDD - V V VOL1 VOL3 LOW level output voltage (open drain) at 3mA sink current VDD > 2 V VDD < 2V 0 N/A 0.4 N/A 0 0 0.4 0.2 VDD V V VOH HIGH level output voltage N/A N/A 0.8 VDD tOF Output fall time from VIHmin to VILmax with a bus capacitance from 10 pF to 400 pF - 250 20+0.1Cb(2) 250 ns tSP Pulse width of spikes which must be suppressed by the input filter N/A N/A 0 50 ns VHYS V 1. Maximum VIH = VDDmax + 0.5 V 2. Cb = capacitance of one bus line in pF Figure 32. Voltage level specification Input voltage levels Output voltage levels VOH = 0.8 * VDD VIH = 0.7 * VDD VIL = 0.3 * VDD VOL = 0.2 * VDD 90/100 Rev 1 VS6624 Electrical characteristics Table 49. Timing specification(1) Standard mode Symbol Fast mode Parameter Unit Min. Max. Min. Max. 0 100 0 400 kHz fSCL SCL clock frequency tHD;STA Hold time for a repeated start 4.0 - 0.6 - µs tLOW LOW period of SCL 4.7 - 1.3 - µs tHIGH HIGH period of SCL 4.0 - 0.6 - µs tSU;STA Set-up time for a repeated start 4.7 - 0.6 - µs tHD;DAT Data hold time (1) 300 - 300 - ns tSU;DAT Data Set-up time (1) 250 - 100 - ns 1000 20+0.1Cb(2) 300 ns 300 ns tr Rise time of SCL, SDA - tf Fall time of SCL, SDA - 300 20+0.1Cb(2) tSU;STO Set-up time for a stop 4.0 - 0.6 - µs tBUF Bus free time between a stop and a start 4.7 - 1.3 - µs Cb Capacitive Load for each bus line - 400 - 400 pF VnL Noise Margin at the LOW level for each connected device (including hysteresis) 0.1 VDD - 0.1 VDD - V VnH Noise Margin at the HIGH level for each connected device (including hysteresis) 0.2 VDD - 0.2 VDD - V 1. All values are referred to a VIHmin = 0.9 VDD and VILmax = 0.1 VDD 2. Cb = capacitance of one bus line in pF Rev 1 91/100 Electrical characteristics VS6624 Figure 33. Timing specification SDA tSP tSU;STA tHD;STA tSU;STO tHD;DAT tBUF tHD;STA tSU;DAT SCL S tLOW tHIGH tr tf START P S STOP START All values are referred to a VIHmin = 0.9 VDD and VILmax = 0.1 VDD Figure 34. SDA/SCL rise and fall times 0.9 * VDD 0.9 * VDD 0.1 * VDD 0.1 * VDD tr 92/100 tf Rev 1 VS6624 13.7 Electrical characteristics Parallel data interface timing VS6624 contains a parallel data output port (D[7:0]) and associated qualification signals (HSYNC, VSYNC, PCLK and FSO). This port can be enabled and disabled (tri-stated) to facilitate multiple camera systems or bit-serial output configurations. The port is disabled (high impedance) upon reset. Figure 35. Parallel data output video timing 1/fPCLK tPCLKL tPCLKH PCLK polarity = 0 tDV D[0:7] Valid HSYNC, VSYNC Table 50. Symbol Parallel data interface timings Description Conditions Min. Typ. Max. 54 Unit fPCLK PCLK frequency tPCLKL PCLK low width ns tPCLKH PCLK high width ns tDV PCLK to output valid ns Rev 1 MHz 93/100 Package mechanical data 14 VS6624 Package mechanical data Figure 36 and Figure 37 present the package outline socket module VS6624Q0KP. Figure 38 and Figure 39 present the package outline FPC module VS6624P0LP. 94/100 Rev 1 Rev 1 F E D C B 1 Linear 0 Place Decimals 0 ±0.10 1 Place Decimals 0.0 ±0.07 2 Place Decimals 0.00 ±0.05 Angular ±0.25 degrees Diameter +0.10/-0.00 Position 0.10 Surface Finish 1.6 microns Tolerances, unless otherwise stated CH, 0.60X45 A C CH 0.40X45, 3 posns R0 2 3 This drawing is the property of STMicroelectronics and will not be copied or loaned without the written permission of STMicroelectronics. All dimensions in mm Finish Interpret drawing per BS308, 3RD Angle Projection Material 7.6 7.65 at A 7.88 8.00 ±0.05 7.0 4.0 . 10 C (32 : 1) 4.10 ±0.10 6.30 ±0.10 5 0.60 ±0.04 A 4 0.63 ±0.06 Drawn 0.03 Sig. 1.55 ±0.10 3 6 6 5° 2 1.57 Ref 1 Date ZONE 7899903 Part No. 7 Socket version 8 1 of 2 Home, Personal & Communications Sector Title 624 Camera Outline Sheet STMicroelectronics Scale 05/09/2005 Do Not Scale Sheet: 1.55 was 1.50 Sheet 2, Pin out info clarified 3 All dimensions in mm 31/08/2005 01/09/2005 1st release for comment Sheet 2 Added, scallop dimensions changed DATE 2 8 1 DESCRIPTION REV. REVISIONS 7 F E D C B A VS6624 Package mechanical data Figure 36. Package outline socket module VS6624Q0KP 95/100 1.13 F E D C Pin 18 1.00 1 Linear 0 Place Decimals 0 ±1.0 1 Place Decimals 0.0 ±0.10 2 Place Decimals 0.00 ±0.07 Angular ±0.25 degrees Diameter +0.10/-0.00 Position 0.10 Surface Finish 1.6 microns Tolerances, unless otherwise stated 0.50 0.90 Pin 24 2 3 This drawing is the property of STMicroelectronics and will not be copied or loaned without the written permission of STMicroelectronics. All dimensions in mm Finish Interpret drawing per BS308, 3RD Angle Projection Material 0.60 X 45 0.70 D (32 : 1) +0.02 0.55 0.00 Pin 7 Pad Layout (Partial section) 6.25 5.35 4.45 3.55 2.65 1.75 0.15 ±0.03 4 Pin 1 1.00 B 6.25 5.35 4.45 3.55 2.65 1.75 Rev 1 D 0.90 3 1.00 A 2 5 Drawn Sig. 6 Pin 1 6 44° Date 7899903 Part No. A 8 Do Not Scale 7 624 Camera Outline 2 of 2 8 Scale 4.40 Home, Personal & Communication Sector Title Sheet STMicroelectronics All dimensions in mm 3.52 68° 57° 7 Top Of Scene 2.64 96/100 2.30 1 F E D C B A Package mechanical data VS6624 Figure 37. Package outline socket module VS6624Q0KP Rev 1 F E D C B 4.0 ±0.10 4.0 ±0.10 1 Linear 0 Place Decimals 0 ±0.10 1 Place Decimals 0.0 ±0.07 2 Place Decimals 0.00 ±0.05 Angular ±0.25 degrees Diameter +0.10/-0.00 Position 0.10 Surface Finish 1.6 microns Tolerances, unless otherwise stated 6.14 ±0.15 A 1 20.12 ±0.30 22.5 ±0.25 3 2 3 This drawing is the property of STMicroelectronics and will not be copied or loaned without the written permission of STMicroelectronics. All dimensions in mm Finish Interpret drawing per BS308, 3RD Angle Projection Material 8.00 2 6.45 ref 4 5 Drawn Sig. 6 6 Date ZONE 7899934 Part No. 8 DATE 1 of 2 Scale 02/09/05 7 8 Generic Flex Version Home, Personal & Communications Sector Title 624 Camera Outline Sheet STMicroelectronics Do Not Scale 1 All dimensions in mm DESCRIPTION 1st release for comment REV. REVISIONS 7 F E D C B A VS6624 Package mechanical data Figure 38. Package outline FPC module VS6624P0LP 97/100 6.90 98/100 Rev 1 F E D C B 1 10 3 1 Linear 0 Place Decimals 0 ±1.0 1 Place Decimals 0.0 ±0.10 2 Place Decimals 0.00 ±0.07 Angular ±0.25 degrees Diameter +0.10/-0.00 Position 0.10 Surface Finish 1.6 microns Tolerances, unless otherwise stated 2 3 This drawing is the property of STMicroelectronics and will not be copied or loaned without the written permission of STMicroelectronics. All dimensions in mm Finish 20 11 Interpret drawing per BS308, 3RD Angle Projection Material Molex type 55560-0201, Board - Board conn http://www.molex.com/pdm_docs/sd/555600207_sd.pdf 2 4 5 Drawn Sig. 6 6 44° Date 7899934 Part No. A 8 Do Not Scale 2 of 2 Scale 4.40 7 Generic Flex Version 8 Home, Personal & Communication Sector Title 624 Camera Outline Sheet STMicroelectronics All dimensions in mm 3.52 68° 57° 7 2.64 A 1 F E D C B A Package mechanical data VS6624 Figure 39. Package outline FPC module VS6624P0LP VS6624 15 Revision history Revision history Table 51. Document revision history Date Revision 1-Feb-2006 1 Changes Initial release. Rev 1 99/100 VS6624 Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners © 2006 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 100/100 Rev 1