v2.2 ™ SX-A Automotive Family FPGAs Specifications • 12,000 to 108,000 Available System Gates • Up to 360 User-Programmable I/O Pins • Up to 2,012 Dedicated Flip-Flops • 0.22µ CMOS Process Technology Features u e • Nonvolatile • Configurable I/O Support for 3.3V PCI, 3.3V LVTTL, 2.5V LVCMOS2 • Configurable Weak-Resistor Pull-up or Pull-down for Outputs at Power-up • Individual Output Slew Rate Control • Up to 100% Resource Utilization and 100% Pin Locking • Deterministic, User-Controllable Timing • Unique In-System Diagnostic Capability with Silicon Explorer II • 250 MHz Internal Performance • Hot-Swap Compliant I/Os • Power-up/down Friendly (No Sequencing Required for Supply Voltages) • Boundary Scan Testing in Compliance with IEEE Standard 1149.1 (JTAG) • 66 MHz PCI Compliant • • Single-Chip Solution Actel’s Secure Programming Technology with FuseLock™ Prevents Reverse Engineering and Design Theft and Verification SX-A Automotive-Grade Product Profile Device Capacity Typical Gates System Gates Logic Modules Combinatorial Cells Register Cells Dedicated Flip-Flops Maximum Flip-Flops Maximum User I/Os Global Clocks Quadrant Clocks Boundary Scan Testing 3.3V PCI Speed Grades Temperature Grades* Package (by pin count) PQFP TQFP FBGA A54SX08A A54SX16A A54SX32A A54SX72A 8,000 12,000 768 512 16,000 24,000 1,452 924 32,000 48,000 2,880 1,800 72,000 108,000 6,036 4,024 256 512 130 3 0 Yes Yes Std A 528 990 180 3 0 Yes Yes Std A 1,080 1,980 249 3 0 Yes Yes Std A 2,012 4,024 360 3 4 Yes Yes Std A 208 100, 144 144 208 100, 144 144, 256 208 100, 144 144, 256 208 – 256, 484 Note: *The SX-A family is also offered in commercial, industrial and military temperature grades with -F, -1, -2 and -3 speed grades, in addition to the Std speed grade. Refer to the SX-A Family FPGAs datasheet and HiRel SX-A Family FPGAs datasheet for more details. June 2006 © 2006 Actel Corporation i SX-A Automotive Family FPGAs Ordering Information A54SX16A PQ 208 G A Application (Temperature Range) A= Automotive (-40˚C to 125˚C) Package Lead Count Lead-Free Packaging Blank = Standard Packaging G = RoHS Compliant Packaging Package Type FG = Fine Pitch Ball Grid Array (1.0mm pitch) PQ = Plastic Quad Flat Pack TQ = Thin Quad Flat Pack (1.4mm pitch) Part Number A54SX08A = 12,000 System Gates A54SX16A = 24,000 System Gates A54SX32A = 48,000 System Gates A54SX72A = 108,000 System Gates Note: Automotive grade parts (A grade) devices are tested at room temperature to specifications that have been guard banded based on characterization across the recommended operating conditions. A-grade parts are not tested at extended temperatures. If testing to ensure guaranteed operation at extended temperatures is required, please contact your local Actel Sales office to discuss testing options available. Plastic Device Resources User I/Os (including clock buffers) PQFP 208-Pin TQFP 100-Pin TQFP 144-Pin FBGA 144-Pin FBGA 256-Pin FBGA 484-Pin A54SX08A 130 81 113 111 – – A54SX16A 175 81 113 111 180 – A54SX32A 174 81 113 111 203 – A54SX72A 171 – – – 203 360 Device Note: Contact your Actel sales representative for product availability. Package Definitions: PQFP = Plastic Quad Flat Pack, TQFP = Thin Quad Flat Pack, FBGA = 1.0mm Fine Pitch Ball Grid Array ii v2.2 Table of Contents General Description SX-A Family Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 Clock Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5 Other Architectural Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7 Development Tool Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-11 Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-11 Related Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-12 Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-13 3.3V LVTTL Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-13 2.5V LVCMOS2 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-14 PCI Compliance for the Automotive-Grade SX-A Family . . . . . . . . . . . . . . . . . 1-14 SX-A Timing Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-18 Sample Path Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-18 Output Buffer Delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-19 Cell Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-20 Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-20 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-38 Package Pin Assignments 208-Pin PQFP (Top View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 100-Pin TQFP (Top View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5 144-Pin TQFP (Top View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8 144-Pin FBGA (Top View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11 256-Pin FBGA (Top View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14 484-Pin FBGA (Top View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-19 Datasheet Information List of Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 Datasheet Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 Export Administration Regulations (EAR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 v2.2 iii General Description SX-A Family Architecture Actel's SX-A family of FPGAs features a sea-of-modules architecture. SX-A devices simplify design time, enable dramatic reductions in design costs and power consumption, and further decrease time-to-market for performance-intensive applications. With the automotive temperature grade support (-40°C to 125°C), the SX-A devices can address many in-cabin telematics and automobile interconnect applications. Programmable Interconnect Element The SX-A family provides efficient use of silicon by locating the routing interconnect resources between the top two metal layers (Figure 1-1). This completely eliminates the channels of routing and interconnect resources between logic modules (as implemented on SRAM FPGAs and previous generations of antifuse FPGAs), and enables the entire floor of the device to be spanned with an uninterrupted grid of logic modules. Actel’s SX-A architecture features two types of logic modules, the combinatorial cell (C-cell) and the register cell (R-cell), each optimized for fast and efficient mapping of synthesized logic functions. The routing and interconnect resources are in the metal layers above the logic modules, providing optimal use of silicon. This enables the entire floor of the device to be spanned with an uninterrupted grid of fine-grained, synthesis-friendly logic modules (or “sea-of-modules”), which reduces the distance signals have to travel between logic modules. To minimize signal propagation delay, SX-A devices employ both local and general routing resources. The high-speed local routing resources (DirectConnect and FastConnect) enable very fast local signal propagation that is optimal for fast counters, state machines, and datapath logic. The general system of segmented routing tracks allows any logic module in the array to be connected to any other logic or I/O module. Within this system, propagation delay is minimized by limiting the number of antifuse interconnect elements to five (90 percent of connections typically use only three or fewer antifuses). The unique local and general routing structure featured in SX-A devices gives fast and predictable performance, allows 100% pin-locking with full logic utilization, enables concurrent PCB development, reduces design time, and allows designers to achieve performance goals with minimum effort. Interconnection between these logic modules is achieved using Actel’s patented metal-to-metal programmable antifuse interconnect elements. The antifuses are normally open circuit and, when programmed, form a permanent low-impedance connection. The extremely small size of these interconnect elements gives the automotive-grade SX-A devices abundant routing resources and provides excellent protection against design pirating. Reverse engineering is virtually impossible because it is extremely difficult to distinguish between programmed and unprogrammed antifuses, and since SX-A is a nonvolatile, single-chip solution, there is no configuration bitstream to intercept. Additionally, the interconnect (i.e., the antifuses and metal tracks) have lower capacitance and lower resistance than any other device of similar capacity, leading to the fastest signal propagation in the industry. Logic Module Design The SX-A family architecture is described as a “sea-ofmodules” architecture because the entire floor of the device is covered with a grid of logic modules with virtually no chip area lost to interconnect elements or routing. Actel’s SX-A family provides two types of logic modules, the register cell (R-cell) and the combinatorial cell (C-cell). Further complementing SX-A’s flexible routing structure is a hardwired, constantly loaded clock network that has been tuned to provide fast clock propagation with minimal clock skew. Additionally, the high performance of the internal logic has eliminated the need to embed latches or flip-flops in the I/O cells to achieve fast clockto-out or fast input set-up times. SX-A devices have easyto-use I/O cells that do not require HDL instantiation, facilitating design re-use and reducing design and verification time. The R-cell contains a flip-flop featuring asynchronous clear, asynchronous preset, and clock enable (using the S0 and S1 lines) control signals (Figure 1-2 on page 1-3). The R-cell registers feature programmable clock polarity selectable on a register-by-register basis. This provides additional flexibility while allowing mapping of synthesized functions into the SX-A FPGA. The clock source for the R-cell can be chosen from either the hardwired clock, the routed clocks, or internal logic. v2.2 1-1 Routing Tracks Amorphous Silicon/ Dielectric Antifuse Tungsten Plug Via Metal 4 Metal 3 Tungsten Plug Via Metal 2 Metal 1 Tungsten Plug Contact Silicon Substrate Note: A54SX72A has four layers of metal with the antifuse between Metal 3 and Metal 4. A54SX08A, A54SX16A, and A54SX32A have three layers of metal with antifuse between Metal 2 and Metal 3. Figure 1-1 • SX-A Family Interconnect Elements The C-cell implements a range of combinatorial functions of up to five inputs (Figure 1-3 on page 1-3). Inclusion of the DB input and its associated inverter function allows more than 4,000 combinatorial functions to be implemented in a single module in the SX-A architecture. The inverter function improves flexibility in the architecture; for instance a 3-input exclusive-OR function can be integrated into a single C-cell. At the same time, the C-cell structure is extremely synthesis friendly, simplifying the overall design and reducing synthesis time. Two C cells can be combined together to create a flipflop to imitate an R-cell via the user of the CC macro. This is particularly useful when implementing paths which are not timing-critical or if the designer needs more R-cells. More information about CC macro can be found in Actel's Maximizing Logic Utilization in eX, SX and SX-A FPGA Devices Using CC Macros Application Note. 1 -2 v2.2 Chip Architecture The SX-A family’s chip architecture provides a unique approach to module organization and chip routing that delivers the best register/logic mix for a wide variety of new and emerging applications. Module Organization The C-cell and R-cell logic modules are arranged into horizontal groups called Clusters. There are two types of Clusters: Type 1 contains two C-cells and one R-cell, while Type 2 contains one C-cell and two R-cells. Clusters are further organized into SuperClusters for even better design efficiency and device performance (Figure 1-4 on page 1-4). SuperCluster 1 is a two-wide grouping of Type 1 Clusters. SuperCluster 2 is a two-wide group containing one Type 1 Cluster and one Type 2 Cluster. SX-A devices feature more SuperCluster 1 modules than SuperCluster 2 modules because designers typically require significantly more combinatorial logic than flip-flops. S0 Routed Data Input S1 PRE DirectConnect Input D Q Y HCLK CLKA, CLKB, Internal Logic CLR CKS CKP Figure 1-2 • R-Cell D0 D1 Y D2 D3 Sa Sb DB A0 B0 A1 B1 Figure 1-3 • C-Cell Routing Resources DirectConnect is a horizontal routing resource that provides connections from a C-cell to its neighboring Rcell in a given SuperCluster. DirectConnect uses a hardwired signal path requiring no programmable interconnection to achieve its fast signal propagation time of less than 0.1 ns. Clusters and SuperClusters can be connected through the use of two innovative local routing resources called FastConnect and DirectConnect, which enable extremely fast and predictable interconnection of modules within Clusters and SuperClusters (Figure 1-5 on page 1-4 and Figure 1-6 on page 1-5). This routing architecture also dramatically reduces the number of antifuses required to complete a circuit, ensuring the highest possible performance. FastConnect enables horizontal routing between any two logic modules within a given SuperCluster and vertical routing with the SuperCluster immediately below it. Only one programmable connection is used in a FastConnect path, delivering a maximum pin-to-pin propagation time of 0.5 ns. v2.2 1-3 R-Cell Routed S0 Data Input C-Cell D0 D1 S1 PRE Y D2 DirectConnect Input D Q D3 Y Sb Sa HCLK CLKA, CLKB, Internal Logic CLR DB CKS CKP Cluster 1 A0 Cluster 1 Cluster 2 Type 1 SuperCluster B0 A1 B1 Cluster 1 Type 2 SuperCluster Figure 1-4 • Cluster Organization DirectConnect • No antifuses • 0.1 ns maximum routing delay FastConnect • One antifuse • 0.3 ns maximum routing delay Routing Segments • Typically 2 antifuses • Max. 5 antifuses Type 1 SuperClusters Figure 1-5 • DirectConnect and FastConnect for Type 1 SuperClusters 1 -4 v2.2 DirectConnect • No antifuses • 0.1 ns maximum routing delay FastConnect • One antifuse • 0.3 ns maximum routing delay Routing Segments • Typically 2 antifuses • Max. 5 antifuses Type 2 SuperClusters Figure 1-6 • DirectConnect and FastConnect for Type 2 SuperClusters In addition to DirectConnect and FastConnect, the architecture makes use of two globally oriented routing resources known as segmented routing and high-drive routing. Actel’s segmented routing structure provides a variety of track lengths for extremely fast routing between SuperClusters. The exact combination of track lengths and antifuses within each path is chosen by the fully automatic place-and-route software to minimize signal propagation delays. Two additional clocks (CLKA, CLKB) are global clocks that can be sourced from external pins or from internal logic signals within the automotive-grade SX-A device. CLKA and CLKB may be connected to sequential cells or to combinational logic. If CLKA or CLKB pins are not used or sourced from signals, then these pins must be set as LOW or HIGH on the board. They must not be left floating (except in the A54SX72A where these clocks can be configured as regular I/Os and can float). Figure 1-8 on page 1-6 describes the CLKA and CLKB circuit used in SXA devices with the exception of A54SX72A. Clock Resources In addition to CLKA and CLKB, the A54SX72A device provides four quadrant clocks (QCLKA, QCLKB, QCLKC, QCLKD – corresponding to bottom-left, bottom-right, top-left, and top-right locations on the die, respectively), which can be sourced from external pins or from internal logic signals within the device. Each of these clocks can individually drive up to a quarter of the chip, or they can be grouped together to drive multiple quadrants. If QCLKs are not used as quadrant clocks, they will behave as regular I/Os. Bidirectional clock buffers are also available on the A54SX72A. The CLKA, CLKB, and QCLK circuits for A54SX72A are shown in Figure 1-9 on page 16. Note that bidirectional clock buffers are only available in A54SX72A. For more information, refer to the “Pin Description” on page 1-38. Actel’s high-drive routing structure provides three clock networks (Table 1-1). The first clock, called HCLK, is hardwired from the HCLK buffer to the clock select MUX in each R-cell. HCLK cannot be connected to combinatorial logic. This provides a fast propagation path for the clock signal, enabling the 5.6 ns clock-to-out (pad-to-pad) performance of the auotmotive-grade SX-A devices. The hardwired clock is tuned to provide clock skew less than 0.3 ns worst case. If not used, this pin must be set as LOW or HIGH on the board. It must not be left floating. Figure 1-7 on page 1-6 describes the clock circuit used for the constant load HCLK. When the device is powered up and TRST is not grounded, HCLK does not function until the fourth clock cycle. This prevents possible false outputs due to a slow power-on-reset signal and fast start-up clock circuit. To activate HCLK from the first cycle, TRST pin must be reserved in the Designer software and the pin must be tied to GND on the board. For more information on how to use quadrant clocks in the A54SX72A device, refer to the Global Clock Networks in Actel’s Antifuse Devices and Using A54SX72A and RT54SX72S Quadrant Clocks application notes. v2.2 1-5 Table 1-1 • SX-A Clock Resources A54SX08A A54SX16A A54SX32A A54SX72A Routed Clocks (CLKA, CLKB) 2 2 2 2 Hardwired Clocks (HCLK) 1 1 1 1 Quadrant Clocks (QCLKA, QCLKB, QCLKC, QCLKD) 0 0 0 4 Constant Load Clock Network HCLKBUF Figure 1-7 • SX-A HCLK Clock Pad Clock Network From Internal Logic CLKBUF CLKBUFI CLKINT CLKINTI Figure 1-8 • SX-A Routed Clock Structure Except for A54SX72A OE From Internal Logic To Internal Logic Clock Network From Internal Logic CLKBUF CLKBUFI CLKINT CLKINTI CLKBIBUF CLKBIBUFI QCLKBUF QCLKBUFI QCLKINT QCLKINTI QCLKBIBUF QCLKBIBUFI Figure 1-9 • A54SX72A Routed Clock and QClock Structure 1 -6 v2.2 Other Architectural Features I/O Modules Each user I/O on an automotive-grade SX-A device can be configured as an input, an output, a tristate output, or a bidirectional pin. I/O pins can be set for 2.5 V or 3.3 V operation through VCCI. SX-A I/Os, combined with array registers, can achieve clock-to-output-pad timing of 5.6 ns even without the dedicated I/O registers. In most FPGAs, I/O cells that have embedded latches and flipflops require instantiation in HDL code; this is a design complication not encountered in SX-A FPGAs. Fast pinto-pin timing ensures that the device is able to interface with any other device in the system, which in turn enables parallel design of system components and reduces overall design time. All unused I/Os are configured as tristate outputs by Actel’s Designer software, for maximum flexibility when designing new boards or migrating existing designs. Technology The automotive-grade SX-A devices are implemented on a high-voltage, twin-well CMOS process using 0.22 µ design rules. The metal-to-metal antifuse is comprised of a combination of amorphous silicon and dielectric material with barrier metals and has a programmed (“on” state) resistance of 25 Ω with capacitance of 1.0 fF for low signal impedance. Performance The combination of architectural features described above enables automotive-grade SX-A devices to operate with internal clock frequencies of 250 MHz, enabling fast execution of even complex logic functions at extended tempetature ranges. Thus, the automotivegrade SX-A devices are an optimal platform upon which to integrate the functionality previously contained in multiple CPLDs. In addition, designs that previously would have required a gate array to meet performance goals can be integrated into an SX-A device with dramatic improvements in cost and time-to-market. Using timing-driven place-and-route tools, designers can achieve highly deterministic device performance. SX-A inputs should be driven by high-speed push-pull devices with a low-resistance pull-up device. If the input voltage is greater than VCCI and a fast push-pull device is NOT used, the high-resistance pull-up of the driver and the internal circuitry of the SX-A I/O may create a voltage divider. This voltage divider could pull the input voltage below specification for some devices connected to the driver. A logic '1' may not be correctly presented in this case. For example, if an open drain driver is used with a pull-up resistor to 3.3V to provide the logic '1' input, and VCCI is set to 2.5 V on the SX-A device, the input signal may be pulled down by the SX-A input. User Security Each I/O module has an available power-up resistor of approximately 50 kΩ that can configure the I/O in a known state during power-up. Just slightly before VCCA reaches 2.5 V, the resistors are disabled, so the I/Os will be controlled by user logic. See Table 1-2 on page 1-8 and Table 1-3 on page 1-8 for more information concerning available I/O features. The Actel FuseLock advantage ensures that unauthorized users will not be able to read back the contents of an Actel antifuse FPGA. In addition to the inherent strengths of the architecture, special security fuses that prevent internal probing and overwriting are hidden throughout the fabric of the device. They are located such that they cannot be accessed or bypassed without destroying the rest of the device, making both invasive and more-subtle noninvasive attacks ineffective against Actel antifuse FPGAs. Hot Swapping During power-up/down (or partial up/down), all I/Os are tristated. VCCA and VCCI do not have to be stable during power-up/down. After the SX-A device is plugged into an electrically active system, the device will not degrade the reliability of or cause damage to the host system. The device’s output pins are driven to a high impedance state until normal chip operating conditions are reached. Table 1-4 on page 1-8 summarizes the VCCA voltage at which the I/Os behave according to the user’s design for an SX-A device at room temperature for various ramp-up rates. The data reported assumes a linear ramp-up profile to 2.5V. For more information on power-up and hot-swapping, refer to the application note, Actel SX-A and RT54SX-S Devices in Hot-Swap and Cold-Sparing Applications. Look for this symbol to ensure your valuable IP is secure. ™ u e For more information, refer to Actel’s Implementation of Security in Actel Antifuse FPGAs application note. v2.2 1-7 Table 1-2 • I/O Features Function Description Input Buffer Threshold Selections • 3.3V PCI, LVTTL • 2.5V LVCMOS2 • 3.3V PCI, LVTTL • 2.5V LVCMOS2 Flexible Output Driver Output Buffer "Hot-Swap" Capability (except 3.3V PCI) • I/O on an unpowered device does not sink current • Can be used for “cold-sparing” Selectable on an individual I/O basis Individually selectable slew rate, high slew or low slew (The default is high slew rate). The slew is only affected on the falling edge of an output. Rising edges of outputs are not affected. Power-Up Individually selectable pull-ups and pull-downs during power-up (default is to power-up in tristate) Enables deterministic power-up of device VCCA and VCCI can be powered in any order Table 1-3 • I/O Characteristics for All I/O Configurations Hot Swappable Slew Rate Control Power-Up Resistor LVTTL, LVCMOS2 Yes Yes. Only affects falling edges of outputs Pull-up or pull-down 3.3V PCI No No. High slew rate only Pull-up or pull-down Table 1-4 • Power-up Time at which I/Os Become Active Supply Ramp Rate 0.25V/µs 0.025V/µs 5V/ms 2.5V/ms 0.5V/ms 0.25V/ms 0.1V/ms 0.025V/ms Units µs µs ms ms ms ms ms ms A54SX08A 10 96 0.34 0.65 2.7 5.4 12.9 50.8 A54SX16A 10 100 0.36 0.62 2.5 4.7 11.0 41.6 A54SX32A 10 100 0.46 0.74 2.8 5.2 12.1 47.2 A54SX72A 10 100 0.41 0.67 2.6 5.0 12.1 47.2 Boundary-Scan Testing (BST) Automotive-grade SX-A devices are IEEE 1149.1 compliant and offer superior diagnostic and testing capabilities by providing Boundary Scan Testing (BST) and probing capabilities. The BST function is controlled through the special JTAG pins (TMS, TDI, TCK, TDO, and TRST). The functionality of the JTAG pins is defined by two available modes: Dedicated and Flexible. TMS cannot be employed as user I/O in either mode. Dedicated Mode In Dedicated mode, all JTAG pins are reserved for BST; designers cannot use them as regular I/Os. An internal pull-up resistor is automatically enabled on both TMS and TDI pins, and the TMS pin will function as defined in the IEEE 1149.1 (JTAG) specification. 1 -8 v2.2 To select Dedicated mode, users need to reserve the JTAG pins in Actel’s Designer software. To reserve the JTAG pins, users can check the "Reserve JTAG" box in "Device Selection Wizard" (Figure 1-10 on page 1-9). To select Dedicated mode, users need to reserve the JTAG pins in Actel's Designer software by checking the "Reserve JTAG" box in "Device Selection Wizard" (Figure 1-10 on page 1-9). JTAG pins comply with LVTTL/ TTL I/O specification regardless of whether they are used as a user I/O or a JTAG I/O. Refer to the “3.3V LVTTL Electrical Specifications” on page 1-13 and “2.5V LVCMOS2 Electrical Specifications” on page 1-14 for detailed specifications. Upon power-up, the TAP controller enters the Test-LogicReset state. In this state, TDI, TCK and TDO function as user I/Os. The TDI, TCK, and TDO are transformed from user I/Os into BST pins when a rising edge on TCK is detected while TMS is at logic low. To return to TestLogic Reset state, TMS must be high for at least five TCK cycles. An external 10KΩ pull-up resistor to VCCI should be placed on the TMS pin to pull it HIGH by default. Table 1-5 describes the different configuration requirements of BST pins and their functionality in different modes. TRST Pin Figure 1-10 • Device Selection Wizard The TRST pin functions as a dedicated Boundary-Scan Reset pin when the "Reserve JTAG Test Reset" option is selected as shown in Figure 1-10 on page 1-9. An internal pull-up resistor is permanently enabled on the TRST pin in this mode. Actel recommends connecting this pin to ground in normal operation to keep the JTAG state controller in the Test-Logic-Reset state. When JTAG is being used, it can be left floating or be driven high. Flexible Mode In Flexible mode, TDI, TCK, and TDO may be employed as either user I/Os or as JTAG input pins. The internal resistors on the TMS and TDI pins are not present in flexible JTAG mode. To select the Flexible mode, users need to uncheck the "Reserve JTAG" box in "Device Selection Wizard" in Actel’s Designer software. In Flexible mode, TDI, TCK and TDO pins may function as user I/Os or BST pins. The functionality is controlled by the BST TAP controller. The TAP controller receives two control inputs, TMS and TCK. When the "Reserve JTAG Test Reset" option is not selected, this pin will function as a regular I/O. If unused as an I/O in the design, it will be configured as a tristated output. Table 1-5 • Boundary-Scan Pin Configurations and Functions Mode Designer "Reserve JTAG" Selection TAP Controller State Dedicated (JTAG) Checked Any Flexible (User I/O) Unchecked Test-Logic-Reset Flexible (JTAG) Unchecked Any EXCEPT Test-Logic-Reset Probing Capabilities Automotive-grade SX-A devices also provide an internal probing capability that is accessed with the JTAG pins. The Silicon Explorer II Diagnostic Hardware is used to control the TDI, TCK, TMS and TDO pins to select the desired nets for debugging. The user assigns the selected internal nets in Actel's Silicon Explorer II software to the PRA/PRB output pins for observation. Silicon Explorer II automatically places the device into JTAG mode. However, probing functionality is only activated when the TRST pin is driven high or left floating, allowing the internal pull-up resistor to pull TRST to HIGH. If the TRST pin is held LOW, the TAP controller remains in the TestLogic-Reset state so no probing can be performed. However, the user must drive the TRST pin HIGH or allow the internal pull-up resistor to pull TRST HIGH. When selecting the "Reserve Probe Pin" box as shown in Figure 1-10 on page 1-9, direct the layout tool to reserve the PRA and PRB pins as dedicated outputs for probing. This "reserve" option is merely a guideline. If the designer assigns user I/Os to the PRA and PRB pins and selects the "Reserve Probe Pin" option, Designer Layout will override the "Reserve Probe Pin" option and place the user I/Os on those pins. To allow probing capabilities, the security fuse must not be programmed. Programming the security fuse disables the probe circuitry. Table 1-6 on page 1-10 summarizes the possible device configurations for probing once the device leaves the "Test-Logic-Reset" JTAG state. v2.2 1-9 Table 1-6 • Device Configuration Options for Probe Capability (TRST pin reserved) JTAG Mode Dedicated TRST1 Security Fuse Programmed PRA, PRB2 TDI, TCK, TDO2 LOW No User I/O3 Probing Unavailable I/O3 LOW No Dedicated HIGH No Probe Circuit Outputs Probe Circuit Inputs Flexible HIGH No Probe Circuit Outputs Probe Circuit Inputs – Yes Probe Circuit Secured Probe Circuit Secured – User User I/O3 Flexible Note: 1. If the TRST pin is not reserved, the device behaves according to TRST=HIGH as described in the table. 2. Avoid using the TDI, TCK, TDO, PRA, and PRB pins as input or bidirectional ports. Since these pins are active during probing, input signals will not pass through these pins and may cause contention. 3. If no user signal is assigned to these pins, they will behave as unused I/Os in this mode. Unused pins are automatically tristated by the Designer software. SX-A Probe Circuit Control Pins Automotive-grade SX-A devices contain internal probing circuitry that provides built-in access to every node in a design, enabling 100% real-time observation and analysis of a device's internal logic nodes without design iteration. The probe circuitry is accessed by Silicon Explorer II, an easy-to-use integrated verification and logic analysis tool that can sample data at 100 MHz (asynchronous) or 66 MHz (synchronous). Silicon Explorer II attaches to a PC's standard COM port, turning the PC into a fully functional 18 channel logic analyzer. Silicon Explorer II allows designers to complete the design verification process at their desks and reduces verification time from several hours per cycle to a few seconds. The Silicon Explorer II tool uses the boundary-scan ports (TDI, TCK, TMS, and TDO) to select the desired nets for verification. The selected internal nets are assigned to the PRA/PRB pins for observation. Figure 1-11 illustrates the interconnection between Silicon Explorer II and the FPGA to perform in-circuit verification 16 Pin Connection SX-A FPGAs TDI TCK Serial Connection Silicon Explorer II TMS TDO PRA PRB 22 Pin Connection Additional 16 Channels (Logic Analyzer) Figure 1-11 • Probe Setup 1 -1 0 v2.2 Design Considerations Programming Avoid using the TDI, TCK, TDO, PRA, and PRB pins as input or bidirectional ports. Since these pins are active during probing, critical input signals through these pins are not available. In addition, do not program the Security Fuse. Programming the Security Fuse disables the Probe Circuit. Actel recommends that you use a 70Ω series termination resistor on every probe connector (TDI, TCK, TMS, TDO, PRA, PRB). The 70Ω series termination, effective for traces of fewer than 8 inches, is used to prevent data transmission corruption during probing and reading back the checksum. Device programming is supported through Silicon Sculptor series of programmers. In particular, Silicon Sculptor is compact, robust, single-site and multi-site device programmer for the PC. Development Tool Support The procedure for programming an SX-A Automotive device using Silicon Sculptor is as follows: With standalone software, Silicon Sculptor allows concurrent programming of multiple units from the same PC, ensuring the fastest programming times possible. Each fuse is subsequently verified by Silicon Sculptor II to insure correct programming. In addition, integrity tests ensure that no extra fuses are programmed. Silicon Sculptor also provides extensive hardware self-testing capability. The SX-A Automotive family of FPGAs is fully supported by both Actel's Libero® Integrated Design Environment and Designer FPGA Development software. Actel Libero IDE is a design management environment that streamlines the design flow. Libero IDE provides an integrated design manager that seamlessly integrates design tools while guiding the user through the design flow, managing all design and log files, and passing necessary design data among tools. Additionally, Libero IDE allows users to integrate both schematic and HDL synthesis into a single flow and verify the entire design in a single environment. Libero IDE includes Synplify® for Actel from Synplicity®, ViewDraw® for Actel from Mentor Graphics®, ModelSim™ HDL Simulator from Mentor Graphics, WaveFormer Lite™ from SynaptiCAD™, and Designer software from Actel. Refer to the Libero IDE flow (located on Actel’s website) diagram for more information. 1. Load the .AFM file 2. Select the device to be programmed 3. Begin programming When the design is ready to go to production, Actel offers device volume-programming services either through distribution partners or via in-house programming from the factory. For detailed information on programming, read the following documents Programming Antifuse Devices and Silicon Sculptor User’s Guide. Actel's Designer software is a place-and-route tool and provides a comprehensive suite of backend support tools for FPGA development. The Designer software includes timing-driven place-and-route, and a world-class integrated static timing analyzer and constraints editor. With the Designer software, a user can lock his/her design pins before layout while minimally impacting the results of place-and-route. Additionally, the backannotation flow is compatible with all the major simulators and the simulation results can be cross-probed with Silicon Explorer II, Actel’s integrated verification and logic analysis tool. Another tool included in the Designer software is the SmartGen core generator, which easily creates popular and commonly used logic functions for implementation into your schematic or HDL design. Actel's Designer software is compatible with the most popular FPGA design entry and verification tools from companies such as Mentor Graphics, Synplicity, Synopsys, and Cadence Design Systems. The Designer software is available for both the Windows and UNIX operating systems. v2.2 1-11 Related Documents Application Notes Global Clock Networks in Actel’s Antifuse Devices http://www.actel.com/documents/GlobalClk_AN.pdf Using A54SX72A and RT54SX72S Quadrant Clocks http://www.actel.com/documents/QCLK_AN.pdf Implementation of Security in Actel Antifuse FPGAs http://www.actel.com/documents/ Antifuse_Security_AN.pdf Actel eX, SX-A, and RTSX-S I/Os http://www.actel.com/documents/AntifuseIO_AN.pdf Actel SX-A and RT54SX-S Devices in Hot-Swap and ColdSparing Applications http://www.actel.com/documents/ HotSwapColdSparing_AN.pdf Programming Antifuse Devices http://www.actel.com/documents/ AntifuseProgram_AN.pdf Datasheets SX-A Family FPGAs http://www.actel.com/documents/SXA_DS.pdf HiRel SX-A Family FPGAs http://www.actel.com/documents/HRSXA_DS.pdf User’s Guides Silicon Sculptor User’s Guide http://www.actel.com/documents/SiliSculptII_WIN_ug.pdf 1 -1 2 v2.2 Operating Conditions Table 1-7 • Absolute Maximum Ratings1 Symbol Parameter Limits Units VCCI DC Supply Voltage for I/Os –0.3 to +4.0 V VCCA DC Supply Voltage for Array –0.3 to +3.0 V VI Input Voltage –0.5 to VCCI +0.5 V VO Output Voltage –0.5 to +VCCI V TSTG Storage Temperature –65 to +150 °C Notes: 1. Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Devices should not be operated outside the Recommended Operating Conditions. 2. SX-A Automotive devices are not 5 V tolerant. Table 1-8 • Recommended Operating Conditions Automotive1 Units –40 to +125 °C 2.5V Power Supply Range 2.375 to 2.625 V 3.3V Power Supply Range 3.135 to 3.465 V Parameter Temperature Range2 Notes: 1. Automotive grade parts (A grade) devices are tested at room temperature to specifications that have been guard banded based on characterization across the recommended operating conditions. A-grade parts are not tested at extended temperatures. If testing to ensure guaranteed operation at extended temperatures is required, please contact your local Actel Sales office to discuss testing options available. 2. Ambient temperature (TA). 3.3V LVTTL Electrical Specifications Automotive Symbol Parameter Min Units Max VOH VCCI = MIN, VI = VIH or VIL IOH = –2mA 2.4 V VOL VCCI = MIN, VI = VIH or VIL IOL = 2mA VIL Input Low Voltage VIH Input High Voltage 2.1 IIL / IIH Input Leakage Current, VIN = VCCI or GND –20 20 µA –20 0.4 V 0.7 V V IOZ 3-State Output Leakage Current 20 µA tR, tF1,2 Input Transition Time tR, tF 10 ns CIO I/O Capacitance 10 pF ICC3 Standby Current 45 mA IV Curve Can be derived from the IBIS model at http://www.actel.com/techdocs/models/ibis.html. Note: 1. 2. 3. tR is the transition time from 0.7V to 2.1V. tF is he transition time from 2.1V to 0.7V. ICC = ICCI + ICCA v2.2 1-13 2.5V LVCMOS2 Electrical Specifications Automotive Symbol Parameter Min. Max. VOH VCCI = MIN, VI = VIH or VIL IOH = -1mA VOL VCCI = MIN, VI = VIH or VIL IOL = 1mA VIL Input Low Voltage, VOUT =< VVOL (max) VIH Input High Voltage, VOUT >= VVOH (min) 1.7 IIL / IIH Input Leakage Current, VIN = VCCI or GND –20 20 µA IOZ 3-State Output Leakage Current –20 20 µA Input Transition Time tR, tF 10 ns CIO I/O Capacitance 10 pF ICC3 Standby Current 35 mA IV Curve Can be derived from the IBIS model at http://www.actel.com/techdocs/models/ibis.html. tR, tF 1,2 1.8 Units V 0.5 V 0.6 V V Note: 1. 2. 3. tR is the transition time from 0.6V to 1.7V. tF is he transition time from 1.7V to 0.6V. ICC = ICCI + ICCA PCI Compliance for the Automotive-Grade SX-A Family The automotive-grade SX-A devices support 3.3V PCI and are compliant with the PCI Local Bus Specification Rev. 2.1. Table 1-9 • DC Specifications (3.3V PCI Operation) Symbol Parameter VCCA Condition Min. Max. Units Supply Voltage for Array 2.375 2.625 V VCCI Supply Voltage for I/Os 3.135 3.465 V VIH Input High Voltage 0.5VCCI VCCI + 0.5 V VIL Input Low Voltage –0.5 0.3VCCI V IIPU Input Pull-up Voltage1 0.7VCCI 2 IIL Input Leakage Current 0 < VIN < VCCI –20 VOH Output High Voltage IOUT = –500 µA 0.9VCCI VOL Output Low Voltage IOUT = 1500 µA CIN Input Pin Capacitance3 CCLK CLK Pin Capacitance 5 V +20 µA V 0.1VCCI V 10 pF 12 pF Note: 1. This specification should be guaranteed by design. It is the minimum voltage to which pull-up resistors are calculated to pull a floated network. Designers should ensure that the input buffer is conducting minimum current at this input voltage in applications sensitive to static power utilization. 2. Input leakage currents include hi-Z output leakage for all bidirectional buffers with tristate outputs. 3. Absolute maximum pin capacitance for a PCI input is 10 pF (except for CLK). 1 -1 4 v2.2 Table 1-10 • AC Specifications (3.3V PCI Operation) Symbol IOH(AC) Parameter Condition Min. Switching Current High 0 < VOUT ≤ 0.3VCCI 1 0.3VCCI ≤ VOUT < 0.9VCCI 1 0.7VCCI < VOUT < VCCI IOL(AC) (Test Point) VOUT = 0.7VCC 2 Switching Current Low VCCI > VOUT ≥ 0.6VCCI Max. –12VCCI mA (–17.1(VCCI – VOUT)) mA 1, 2 EQ 1-1 on page 1-17 –32VCCI 1 0.6VCCI > VOUT > 0.1VCCI 1 VOUT = 0.18VCC 2 ICL Low Clamp Current –3 < VIN ≤ –1 ICH High Clamp Current VCCI + 4 > VIN ≥ VCCI + 1 mA 16VCCI mA (26.7VOUT) mA 0.18VCCI > VOUT > 0 1, 2 (Test Point) Units EQ 1-2 on page 1-17 38VCCI mA –25 + (VIN + 1)/0.015 mA 25 + (VIN – VCCI – 1)/0.015 mA 3 1 4 V/ns 1 4 V/ns slewR Output Rise Slew Rate 0.2VCCI - 0.6VCCI load slewF Output Fall Slew Rate 0.6VCCI - 0.2VCCI load 3 Note: 1. Refer to the V/I curves in Figure 1-12 on page 1-16. Switching current characteristics for REQ# and GNT# are permitted to be one half of that specified here; i.e., half size output drivers may be used on these signals. This specification does not apply to CLK and RST#, which are system outputs. “Switching Current High” specifications are not relevant to SERR#, INTA#, INTB#, INTC#, and INTD#, which are open drain outputs. 2. Maximum current requirements must be met as drivers pull beyond the last step voltage. Equations defining these maximums (C and D) are provided with the respective diagrams in Figure 1-12 on page 1-16. The equation defined maximum should be met by design. In order to facilitate component testing, a maximum current test point is defined for each side of the output driver. 3. This parameter is to be interpreted as the cumulative edge rate across the specified range, rather than the instantaneous rate at any point within the transition range. The specified load (diagram below) is optional; i.e., the designer may elect to meet this parameter with an unloaded output per the latest revision of the PCI Local Bus Specification. However, adherence to both maximum and minimum parameters is required (the maximum is no longer simply a guideline). Rise slew rate does not apply to open drain outputs. pin 1/2 in. max. output buffer 10 pF 1k/25Ω pin output buffer 1k/25Ω 10 pF v2.2 1-15 Figure 1-12 shows the 3.3V PCI V/I curve and the minimum and maximum PCI drive characteristics of the automotivegrade SX-A devices. 150.0 IOL MAX Spec IOL Current (mA) 100.0 50.0 IOL MIN Spec 0.0 0 –50.0 0.5 1 1.5 2 3 IOH MIN Spec –100.0 IOH MAX Spec IOH –150.0 Voltage Out (V) Figure 1-12 • 3.3V PCI V/I Curve for Automotive-Grade SX-A Devices Equation C IOH = (98.0/VCCI ) ∗ (VOUT – VCCI ) ∗ (VOUT + 0.4VCCI ) for 0.7 VCCI < VOUT < VCCI Equation D IOL = (256/VCCI ) ∗ VOUT ∗ (VCCI – VOUT ) for 0V < VOUT < 0.18 VCCI 1 -1 6 2.5 v2.2 3.5 4 Junction Temperature (TJ) Where: Ta = Ambient Temperature The temperature variable in the Designer Series software refers to the junction temperature, not the ambient temperature. This is an important distinction because the heat generated from dynamic power consumption is usually hotter than the ambient temperature. Equation 1, shown below, can be used to calculate junction temperature. ∆T = Temperature gradient between junction (silicon) and ambient ∆T = θja * P EQ 1-2 P = Power θja = Junction to ambient of package. θja numbers are Junction Temperature = ∆T + Ta + located in the Package Thermal Characteristics table below. EQ 1-1 Package Thermal Characteristics The device junction-to-case thermal characteristic is θjc, and the junction-to-ambient air characteristic is θja. The thermal characteristics for θja are shown with two different air flow rates. The maximum junction temperature is 150°C. A sample calculation of the absolute maximum power dissipation allowed for a TQFP 144-pin package at automotive temperature and still air is as follows: Max. junction temp. (°C) – Max. ambient temp. (°C) 150°C – 125°C Maximum Power Allowed = --------------------------------------------------------------------------------------------------------------------------------------- = ---------------------------------------- = 0.78W θ ja (°C/W) 32°C/W Table 1-11 • Package Thermal Characteristics Pin Count θjc θja Still Air θja 300 ft/min Units 100 12 37.5 30 °C/W 144 11 32 24 °C/W 208 8 30 23 °C/W Plastic Quad Flat Pack (PQFP) with Heat Spreader 208 3.8 20 17 °C/W Fine Pitch Ball Grid Array (FBGA) 144 3.8 38.8 26.7 °C/W Fine Pitch Ball Grid Array (FBGA) 256 3.3 30 25 °C/W Fine Pitch Ball Grid Array (FBGA) 484 3 20 15 °C/W Package Type Thin Quad Flat Pack (TQFP) Thin Quad Flat Pack (TQFP) 1 Plastic Quad Flat Pack (PQFP) 2 Note: 1. The A54SX08A PQ208 has no heat spreader. 2. The SX-A PQ208 package has a heat spreader for A54SX16A, A54SX32A, and A54SX72A. For Power Estimator information, please go to http://www.actel.com/products/tools/index.html. v2.2 1-17 SX-A Timing Model* Input Delays I/O Module tINYH = 1.0 ns Internal Delays tIRD1 = 0.5 ns tIRD2 = 0.7 ns Combinatorial Cell tPD = 1.5 ns Predicted Routing Delays I/O Module tRD1 = 0.6 ns tRD4 = 1.1 ns tRD8 = 2.0 ns Routed Clock tRCKH = 2.2 ns Q tRD1 = 0.6 ns tENZL = 2.8 ns tRCO = 1.0 ns (100% Load) I/O Module tDHL = 3.8 ns Register Cell I/O Module tINYH = 1.0 ns tSUD = 1.2 ns tHD = 0.0 ns Hard-Wired Clock D tHCKH = 1.8 ns tDHL = 3.8 ns I/O Module tDHL = 3.8 ns Register Cell tSUD = 1.2 ns tHD = 0.0 ns Output Delays D Q tRD1 = 0.6 ns tENZL = 2.8 ns tRCO = 1.0 ns Note: *Values shown for A54SX08A, worst-case automotive conditions at 3.3V PCI with standard place-and-route. Figure 1-13 • Timing Model Sample Path Calculations Hardwired Clock External Setup =(tINYH + tIRD2 + tSUD) – tHCKH =1.0+0.7+1.2-1.8=1.1ns Clock-to-Out (Pad-to-Pad) =tHCKH + tRCO + tRD1 + tDHL =1.8+1.0+0.6+3.8=7.2ns 1 -1 8 Routed Clock External Setup = (tINYH + tIRD2 + tSUD) – tRCKH = 1.0+0.7+1.2-1.8=1.1ns Clock-to-Out (Pad-to-Pad) = tRCKH + tRCO + tRD1 + tDHL = 1.8+1.0+0.6+3.8=7.2ns v2.2 Output Buffer Delays E D VCC In To AC test loads (shown below) VCC GND 50% 50% VOH Out VOL PAD TRIBUFF En 1.5V 1.5V Out VCC GND 50% 50% VCC 1.5V E Out GND 10% VOL tDLH tDHL t ENZL GND 50% 50% VOH tENZH tENLZ 90% 1.5V tENHZ Figure 1-14 • Output Buffer Delay Load 2 (Used to measure enable delays) Load 1 (Used to measure propagation delay) VCC To the output under test 35 pF To the output under test Load 3 (Used to measure disable delays) VCC GND R to VCC for t PZL R to GND for t PZH R = 1 kΩ GND R to VCC for t PLZ R to GND for t PHZ R = 1 kΩ To the output under test 35 pF 5 pF Figure 1-15 • AC Test Loads PAD INBUF S A B Y Y VCC S, A or B In Out GND 3V 1.5V 1.5V VCC 50% Out GND 0V 50% Out 50% 50% tPD 50% t PD Figure 1-16 • Input Buffer Delays GND 50% 50% VCC t PD GND tPD VCC 50% Figure 1-17 • C-Cell Delays v2.2 1-19 Cell Timing Characteristics D CLK PRESET Q CLR (Positive Edge-Triggered) t HD D t SUD CLK tHP t HPWH t RPWH t RCO t t HPWL RPWL Q t CLR t PRESET CLR t WASYN PRESET Figure 1-18 • Cell Timing Characteristics Timing Characteristics Long Tracks Timing characteristics for SX-A devices fall into three categories: family-dependent, device-dependent, and design-dependent. The input and output buffer characteristics are common to all SX-A family members. Internal routing delays are device-dependent. Design dependency means actual delays are not determined until after placement and routing of the user’s design are complete. Delay values may then be determined by using the Timer utility or performing simulation with postlayout delays. Some nets in the design use long tracks. Long tracks are special routing resources that span multiple rows, columns, or modules. Long tracks employ three to five antifuse connections. This increases capacitance and resistance, resulting in longer net delays for macros connected to long tracks. Typically, up to 6 percent of nets in a fully utilized device require long tracks. Long tracks contribute approximately 4 ns to 8.4 ns delay. This additional delay is represented statistically in higher fanout routing delays. Critical Nets and Typical Nets Timing Derating Propagation delays are expressed only for typical nets, which are used for initial design performance evaluation. Critical net delays can then be applied to the most timing critical paths. Critical nets are determined by net property assignment prior to placement and routing. Up to 6 percent of the nets in a design may be designated as critical, while 90 percent of the nets in a design are typical. SX-A devices are manufactured with a CMOS process. Therefore, device performance varies according to temperature, voltage, and process changes. Minimum timing parameters reflect maximum operating voltage, minimum operating temperature, and best-case processing. Maximum timing parameters reflect minimum operating voltage, maximum operating temperature, and worst-case processing. 1 -2 0 v2.2 Table 1-12 • Temperature and Voltage Derating Factors (Normalized to TJ = 125°C, VCCA = 2.3 V) Junction Temperature (TJ) VCCA –55° C –40° C 0° C 25° C 70° C 85° C 125° C 2.3 V 0.7 0.70 0.77 0.78 0.88 0.91 1.00 2.5 V 0.65 0.66 0.72 0.73 0.83 0.85 0.93 2.7 V 0.66 0.62 0.67 0.69 0.78 0.80 0.88 Table 1-13 • A54SX08A Timing Characteristics (Worst-Case Automotive Conditions, VCCA = 2.3 V, VCCI = 3.0 V, TJ = 125°C) ‘Std’ Speed Parameter Description Min. Max. Units 1.5 ns 0.1 ns 1 C-Cell Propagation Delays tPD Internal Array Module Predicted Routing Delays 2 tDC FO=1 Routing Delay, Direct Connect tFC FO=1 Routing Delay, Fast Connect 0.5 ns tRD1 FO=1 Routing Delay 0.6 ns tRD2 FO=2 Routing Delay 0.7 ns tRD3 FO=3 Routing Delay 0.9 ns tRD4 FO=4 Routing Delay 1.1 ns tRD8 FO=8 Routing Delay 2.0 ns tRD12 FO=12 Routing Delay 2.9 ns R-Cell Timing tRCO Sequential Clock-to-Q 1.0 ns tCLR Asynchronous Clear-to-Q 1.2 ns tPRESET Asynchronous Preset-to-Q 1.2 ns tSUD Flip-Flop Data Input Set-Up tHD Flip-Flop Data Input Hold 0.0 ns tWASYN Asynchronous Pulse Width 2.3 ns tRECASYN Asynchronous Recovery Time 0.6 ns tHASYN Asynchronous Hold Time 0.5 ns 1.2 ns Input Module Propagation Delays tINYH Input Data Pad-to-Y HIGH 1.0 ns tINYL Input Data Pad-to-Y LOW 1.6 ns Notes: 1. For dual-module macros, use tPD + tRD1 + tPDn , tRCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD , whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 3. Delays based on 35 pF loading. 4. Delays based on 10 pF loading and 25 Ω resistance. v2.2 1-21 Table 1-13 • A54SX08A Timing Characteristics (Worst-Case Automotive Conditions, VCCA = 2.3 V, VCCI = 3.0 V, TJ = 125°C) (Continued) ‘Std’ Speed Parameter Description Input Module Predicted Routing Delays Min. Max. Units 2 tIRD1 FO=1 Routing Delay 0.5 ns tIRD2 FO=2 Routing Delay 0.7 ns tIRD3 FO=3 Routing Delay 0.9 ns tIRD4 FO=4 Routing Delay 1.1 ns tIRD8 FO=8 Routing Delay 2.0 ns tIRD12 FO=12 Routing Delay 2.9 ns Dedicated (Hardwired) Array Clock Networks tHCKH tHCKL Input LOW to HIGH (Pad to R-Cell Input) 2.1 Input HIGH to LOW (Pad to R-Cell Input) 1.8 ns ns tHPWH Minimum Pulse Width HIGH 2.4 ns tHPWL Minimum Pulse Width LOW 2.4 ns tHCKSW Maximum Skew tHP Minimum Period fHMAX Maximum Frequency 0.3 4.8 ns ns 208 MHz Routed Array Clock Networks tRCKH tRCKL tRCKH tRCKL tRCKH tRCKL Input LOW to HIGH (Light Load) (Pad to R-Cell Input) 1.8 Input HIGH to LOW (Light Load) (Pad to R-Cell Input) 2.2 Input LOW to HIGH (50% Load) (Pad to R-Cell Input) 2.2 Input HIGH to LOW (50% Load) (Pad to R-Cell Input) 2.5 Input LOW to HIGH (100% Load) (Pad to R-Cell Input) 2.3 Input HIGH to LOW (100% Load) (Pad to R-Cell Input) 2.6 ns ns ns ns ns ns tRPWH Min. Pulse Width HIGH 2.4 ns tRPWL Min. Pulse Width LOW 2.4 ns tRCKSW Maximum Skew (Light Load) 0.3 ns tRCKSW Maximum Skew (50% Load) 0.5 ns tRCKSW Maximum Skew (100% Load) 0.5 ns Notes: 1. For dual-module macros, use tPD + tRD1 + tPDn , tRCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD , whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 3. Delays based on 35 pF loading. 4. Delays based on 10 pF loading and 25 Ω resistance. 1 -2 2 v2.2 Table 1-13 • A54SX08A Timing Characteristics (Worst-Case Automotive Conditions, VCCA = 2.3 V, VCCI = 3.0 V, TJ = 125°C) (Continued) ‘Std’ Speed Parameter Description Min. Max. Units Dedicated (Hardwired) Array Clock Networks tHCKH Input LOW to HIGH (Pad to R-Cell Input) tHCKL Input HIGH to LOW (Pad to R-Cell Input) 1.8 ns 1.7 ns tHPWH Minimum Pulse Width HIGH 2.4 tHPWL Minimum Pulse Width LOW 2.4 tHCKSW Maximum Skew tHP Minimum Period fHMAX Maximum Frequency ns ns 0.3 4.8 ns ns 208 MHz Routed Array Clock Networks Input LOW to HIGH (Light Load) (Pad to R-Cell Input) 1.8 tRCKL Input HIGH to LOW (Light Load) (Pad to R-Cell Input) 2.3 tRCKH Input LOW to HIGH (50% Load) (Pad to R-Cell Input) 2.1 tRCKL Input HIGH to LOW (50% Load) (Pad to R-Cell Input) 2.5 tRCKH Input LOW to HIGH (100% Load) (Pad to R-Cell Input) 2.2 tRCKL Input HIGH to LOW (100% Load) (Pad to R-Cell Input) 2.6 tRPWH Min. Pulse Width HIGH 2.4 ns tRPWL Min. Pulse Width LOW 2.4 ns tRCKSW Maximum Skew (Light Load) 0.5 ns tRCKSW Maximum Skew (50% Load) 0.5 ns tRCKSW Maximum Skew (100% Load) 0.5 ns ns tRCKH 2.5 V LVTTL Output Module Timing ns ns ns ns ns ns 3 tDLH Data-to-Pad LOW to HIGH 5.0 tDHL Data-to-Pad HIGH to LOW 21.8 ns tDHLS Data-to-Pad HIGH to LOW—low slew 4.6 ns tENZL Enable-to-Pad, Z to L 22.8 ns tENZLS Data-to-Pad, Z to L—low slew 6.7 ns Notes: 1. For dual-module macros, use tPD + tRD1 + tPDn , tRCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD , whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 3. Delays based on 35 pF loading. 4. Delays based on 10 pF loading and 25 Ω resistance. v2.2 1-23 Table 1-13 • A54SX08A Timing Characteristics (Worst-Case Automotive Conditions, VCCA = 2.3 V, VCCI = 3.0 V, TJ = 125°C) (Continued) ‘Std’ Speed Parameter Description tENZH Min. Max. Units Enable-to-Pad, Z to H 4.1 ns tENLZ Enable-to-Pad, L to Z 6.7 ns tENHZ Enable-to-Pad, H to Z 0.064 ns dTLH Delta LOW to HIGH 0.029 ns/pF dTHL Delta HIGH to LOW 0.108 ns/pF dTHLS Delta HIGH to LOW—low slew 5.0 ns/pF 4 3.3 V PCI Output Module Timing tDLH Data-to-Pad LOW to HIGH 3.8 ns tDHL Data-to-Pad HIGH to LOW 3.8 ns tENZL Enable-to-Pad, Z to L 2.8 ns tENZH Enable-to-Pad, Z to H 2.8 ns tENLZ Enable-to-Pad, L to Z 4.8 ns tENHZ Enable-to-Pad, H to Z 4.8 ns dTLH Delta LOW to HIGH 0.050 ns/pF dTHL Delta HIGH to LOW 0.019 ns/pF 3.3 V LVTTL Output Module Timing3 tDLH Data-to-Pad LOW to HIGH 5.3 ns tDHL Data-to-Pad HIGH to LOW 4.8 ns tDHLS Data-to-Pad HIGH to LOW—low slew 17.3 ns tENZL Enable-to-Pad, Z to L 4.3 ns tENZLS Enable-to-Pad, Z to L—low slew 31.9 ns tENZH Enable-to-Pad, Z to H 5.5 ns tENLZ Enable-to-Pad, L to Z 5.5 ns tENHZ Enable-to-Pad, H to Z 4.8 ns dTLH Delta LOW to HIGH 0.050 ns/pF dTHL Delta HIGH to LOW 0.019 ns/pF dTHLS Delta HIGH to LOW—low slew 0.092 ns/pF Notes: 1. For dual-module macros, use tPD + tRD1 + tPDn , tRCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD , whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 3. Delays based on 35 pF loading. 4. Delays based on 10 pF loading and 25 Ω resistance. 1 -2 4 v2.2 Table 1-14 • A54SX16A Timing Characteristics (Worst-Case Automotive Conditions, VCCA = 2.3 V, VCCI = 3.0 V , TJ = 125°C) ‘Std’ Speed Parameter Description C-Cell Propagation tPD Predicted Routing Min Max. Units Delays1 Internal Array Module 1.5 ns Delays2 tDC FO=1 Routing Delay, Direct Connect 0.1 ns tFC FO=1 Routing Delay, Fast Connect 0.5 ns tRD1 FO=1 Routing Delay 0.6 ns tRD2 FO=2 Routing Delay 0.7 ns tRD3 FO=3 Routing Delay 0.9 ns tRD4 FO=4 Routing Delay 1.1 ns tRD8 FO=8 Routing Delay 2.0 ns tRD12 FO=12 Routing Delay 2.9 ns tRCO Sequential Clock-to-Q 1.0 ns tCLR Asynchronous Clear-to-Q 1.2 ns tPRESET Asynchronous Preset-to-Q 1.2 ns tSUD Flip-Flop Data Input Set-Up 1.2 ns tHD Flip-Flop Data Input Hold 0.0 ns tWASYN Asynchronous Pulse Width 2.3 ns tRECASYN Asynchronous Recovery Time 0.6 ns tHASYN Asynchronous Removal Time 0.5 ns R-Cell Timing Input Module Propagation Delays tINYH Input Data Pad-to-Y HIGH 1.0 ns tINYL Input Data Pad-to-Y LOW 1.6 ns Input Module Predicted Routing Delays2 tIRD1 FO=1 Routing Delay 0.5 ns tIRD2 FO=2 Routing Delay 0.7 ns tIRD3 FO=3 Routing Delay 0.9 ns tIRD4 FO=4 Routing Delay 1.1 ns tIRD8 FO=8 Routing Delay 0.9 ns tIRD12 FO=12 Routing Delay 2.9 ns Notes: 1. For dual-module macros, use tPD + tRD1 + tPDn , tRCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD , whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 3. Delays based on 35 pF loading. 4. Delays based on 10 pF loading and 25 Ω resistance. v2.2 1-25 Table 1-14 • A54SX16A Timing Characteristics (Worst-Case Automotive Conditions, VCCA = 2.3 V, VCCI = 3.0 V , TJ = 125°C) (Continued) ‘Std’ Speed Parameter Description Min Max. Units Dedicated (Hardwired) Array Clock Networks tHCKH tHCKL Input LOW to HIGH (Pad to R-Cell Input) 2.2 Input HIGH to LOW (Pad to R-Cell Input) 2.1 ns ns tHPWH Minimum Pulse Width HIGH 2.4 ns tHPWL Minimum Pulse Width LOW 2.4 ns tHCKSW Maximum Skew tHP Minimum Period fHMAX Maximum Frequency 0.1 4.8 ns ns 208 MHz Routed Array Clock Networks tRCKH tRCKL tRCKH tRCKL tRCKH tRCKL Input LOW to HIGH (Light Load) (Pad to R-Cell Input) 2.1 Input HIGH to LOW (Light Load) (Pad to R-Cell Input) 2.2 Input LOW to HIGH (50% Load) (Pad to R-Cell Input) 2.6 Input HIGH to LOW (50% Load) (Pad to R-Cell Input) 2.4 Input LOW to HIGH (100% Load) (Pad to R-Cell Input) 2.6 Input HIGH to LOW (100% Load) (Pad to R-Cell Input) 3.1 ns ns ns ns ns ns tRPWH Min. Pulse Width HIGH 2.4 ns tRPWL Min. Pulse Width LOW 2.4 ns tRCKSW Maximum Skew (Light Load) 0.5 ns tRCKSW Maximum Skew (50% Load) 0.9 ns tRCKSW Maximum Skew (100% Load) 0.9 ns Dedicated (Hardwired) Array Clock Networks tHCKH tHCKL Input LOW to HIGH (Pad to R-Cell Input) 2.2 Input HIGH to LOW (Pad to R-Cell Input) 2.1 ns ns Notes: 1. For dual-module macros, use tPD + tRD1 + tPDn , tRCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD , whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 3. Delays based on 35 pF loading. 4. Delays based on 10 pF loading and 25 Ω resistance. 1 -2 6 v2.2 Table 1-14 • A54SX16A Timing Characteristics (Worst-Case Automotive Conditions, VCCA = 2.3 V, VCCI = 3.0 V , TJ = 125°C) (Continued) ‘Std’ Speed Parameter Description Min Max. tHPWH Minimum Pulse Width HIGH 2.4 ns tHPWL Minimum Pulse Width LOW 2.4 ns tHCKSW Maximum Skew tHP Minimum Period fHMAX Maximum Frequency 0.1 4.8 Units ns ns 208 MHz Routed Array Clock Networks tRCKH tRCKL tRCKH tRCKL tRCKH tRCKL Input LOW to HIGH (Light Load) (Pad to R-Cell Input) 2.1 Input HIGH to LOW (Light Load) (Pad to R-Cell Input) 2.3 Input LOW to HIGH (50% Load) (Pad to R-Cell Input) 2.6 Input HIGH to LOW (50% Load) (Pad to R-Cell Input) 2.7 Input LOW to HIGH (100% Load) (Pad to R-Cell Input) 3.0 Input HIGH to LOW (100% Load) (Pad to R-Cell Input) 3.1 ns ns ns ns ns ns tRPWH Min. Pulse Width HIGH 2.4 ns tRPWL Min. Pulse Width LOW 2.4 ns tRCKSW Maximum Skew (Light Load) 0.5 ns tRCKSW Maximum Skew (50% Load) 0.9 ns tRCKSW Maximum Skew (100% Load) 0.9 ns 2.5 V LVTTL Output Module Timing3 tDLH Data-to-Pad LOW to HIGH 6.3 ns tDHL Data-to-Pad HIGH to LOW 5.0 ns tDHLS Data-to-Pad HIGH to LOW—low slew 21.8 ns tENZL Enable-to-Pad, Z to L 4.6 ns tENZLS Data-to-Pad, Z to L—low slew 22.8 ns tENZH Enable-to-Pad, Z to H 6.7 ns tENLZ Enable-to-Pad, L to Z 4.1 ns tENHZ Enable-to-Pad, H to Z 6.7 ns Notes: 1. For dual-module macros, use tPD + tRD1 + tPDn , tRCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD , whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 3. Delays based on 35 pF loading. 4. Delays based on 10 pF loading and 25 Ω resistance. v2.2 1-27 Table 1-14 • A54SX16A Timing Characteristics (Worst-Case Automotive Conditions, VCCA = 2.3 V, VCCI = 3.0 V , TJ = 125°C) (Continued) ‘Std’ Speed Parameter Description dTLH Min Max. Units Delta LOW to HIGH 0.064 ns/pF dTHL Delta HIGH to LOW 0.029 ns/pF dTHLS Delta HIGH to LOW—low slew 0.108 ns/pF 4 3.3 V PCI Output Module Timing tDLH Data-to-Pad LOW to HIGH 3.8 ns tDHL Data-to-Pad HIGH to LOW 3.8 ns tENZL Enable-to-Pad, Z to L 2.8 ns tENZH Enable-to-Pad, Z to H 2.8 ns tENLZ Enable-to-Pad, L to Z 4.8 ns tENHZ Enable-to-Pad, H to Z 4.8 ns dTLH Delta LOW to HIGH 0.050 ns/pF dTHL Delta HIGH to LOW 0.019 ns/pF 3.3 V LVTTL Output Module Timing 3 tDLH Data-to-Pad LOW to HIGH 5.3 ns tDHL Data-to-Pad HIGH to LOW 4.8 ns tDHLS Data-to-Pad HIGH to LOW—low slew 17.3 ns tENZL Enable-to-Pad, Z to L 4.3 ns tENZLS Enable-to-Pad, Z to L—low slew 31.9 ns tENZH Enable-to-Pad, Z to H 5.5 ns tENLZ Enable-to-Pad, L to Z 5.5 ns tENHZ Enable-to-Pad, H to Z 4.8 ns dTLH Delta LOW to HIGH 0.050 ns/pF dTHL Delta HIGH to LOW 0.019 ns/pF dTHLS Delta HIGH to LOW—low slew 0.092 ns/pF Notes: 1. For dual-module macros, use tPD + tRD1 + tPDn , tRCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD , whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 3. Delays based on 35 pF loading. 4. Delays based on 10 pF loading and 25 Ω resistance. 1 -2 8 v2.2 Table 1-15 • A54SX32A Timing Characteristics (Worst-Case Automotive Conditions, VCCA = 2.3 V, VCCI = 3.0 V, TJ = 125°C ‘Std’ Speed Parameter Description C-Cell Propagation tPD Predicted Routing Min. Max. Units 1.5 ns Delays1 Internal Array Module Delays2 tDC FO=1 Routing Delay, Direct Connect 0.1 ns tFC FO=1 Routing Delay, Fast Connect 0.5 ns tRD1 FO=1 Routing Delay 0.6 ns tRD2 FO=2 Routing Delay 0.7 ns tRD3 FO=3 Routing Delay 0.9 ns tRD4 FO=4 Routing Delay 1.1 ns tRD8 FO=8 Routing Delay 2.0 ns tRD12 FO=12 Routing Delay 2.9 ns tRCO Sequential Clock-to-Q 1.0 ns tCLR Asynchronous Clear-to-Q 1.2 ns tPRESET Asynchronous Preset-to-Q 1.2 ns tSUD Flip-Flop Data Input Set-Up 1.2 ns tHD Flip-Flop Data Input Hold 0.0 ns tWASYN Asynchronous Pulse Width 2.3 ns tRECASYN Asynchronous Recovery Time 0.6 ns tHASYN Asynchronous Removal Time 0.5 ns R-Cell Timing Input Module Propagation Delays tINYH Input Data Pad-to-Y HIGH 1.0 ns tINYL Input Data Pad-to-Y LOW 1.6 ns Input Module Predicted Routing Delays2 tIRD1 FO=1 Routing Delay 0.5 ns tIRD2 FO=2 Routing Delay 0.7 ns Notes: 1. For dual-module macros, use tPD + tRD1 + tPDn , tRCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD , whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 3. Delays based on 35 pF loading. 4. Delays based on 10 pF loading and 25 Ω resistance. v2.2 1-29 Table 1-15 • A54SX32A Timing Characteristics (Worst-Case Automotive Conditions, VCCA = 2.3 V, VCCI = 3.0 V, TJ = 125°C (Continued) ‘Std’ Speed Parameter Description tIRD3 Min. Max. Units FO=3 Routing Delay 0.9 ns tIRD4 FO=4 Routing Delay 1.1 ns tIRD8 FO=8 Routing Delay 2.0 ns tIRD12 FO=12 Routing Delay 2.9 ns Dedicated (Hardwired) Array Clock Networks tHCKH Input LOW to HIGH (Pad to R-Cell Input) 3.1 ns tHCKL Input HIGH to LOW (Pad to R-Cell Input) tHPWH Minimum Pulse Width HIGH 2.5 ns tHPWL Minimum Pulse Width LOW 2.5 ns tHCKSW Maximum Skew tHP Minimum Period fHMAX Maximum Frequency 2.6 0.6 5.0 ns ns ns 199 MHz Routed Array Clock Networks tRCKH Input LOW to HIGH (Light Load) (Pad to R-Cell Input) 3.0 ns tRCKL Input HIGH to LOW (Light Load) (Pad to R-Cell Input) 3.7 ns tRCKH Input LOW to HIGH (50% Load) (Pad to R-Cell Input) 3.7 ns tRCKL Input HIGH to LOW (50% Load) (Pad to R-Cell Input) 3.9 ns tRCKH Input LOW to HIGH (100% Load) (Pad to R-Cell Input) 4.3 ns tRCKL Input HIGH to LOW (100% Load) (Pad to R-Cell Input) 4.3 ns tRPWH Min. Pulse Width HIGH 2.5 ns tRPWL Min. Pulse Width LOW 2.5 ns tRCKSW Maximum Skew (Light Load) 1.5 ns tRCKSW Maximum Skew (50% Load) 2.2 ns tRCKSW Maximum Skew (100% Load) 2.3 ns Notes: 1. For dual-module macros, use tPD + tRD1 + tPDn , tRCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD , whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 3. Delays based on 35 pF loading. 4. Delays based on 10 pF loading and 25 Ω resistance. 1 -3 0 v2.2 Table 1-15 • A54SX32A Timing Characteristics (Worst-Case Automotive Conditions, VCCA = 2.3 V, VCCI = 3.0 V, TJ = 125°C (Continued) ‘Std’ Speed Parameter Description Min. Max. Units Dedicated (Hardwired) Array Clock Networks tHCKH Input LOW to HIGH (Pad to R-Cell Input) 3.1 ns tHCKL Input HIGH to LOW (Pad to R-Cell Input) tHPWH Minimum Pulse Width HIGH 2.5 ns tHPWL Minimum Pulse Width LOW 2.5 ns tHCKSW Maximum Skew tHP Minimum Period fHMAX Maximum Frequency 2.6 0.6 5.0 ns ns ns 199 MHz Routed Array Clock Networks tRCKH Input LOW to HIGH (Light Load) (Pad to R-Cell Input) 3.0 ns tRCKL Input HIGH to LOW (Light Load) (Pad to R-Cell Input) 3.7 ns tRCKH Input LOW to HIGH (50% Load) (Pad to R-Cell Input) 3.7 ns tRCKL Input HIGH to LOW (50% Load) (Pad to R-Cell Input) 3.9 ns tRCKH Input LOW to HIGH (100% Load) (Pad to R-Cell Input) 4.3 ns tRCKL Input HIGH to LOW (100% Load) (Pad to R-Cell Input) 4.3 ns tRPWH Min. Pulse Width HIGH 2.5 ns tRPWL Min. Pulse Width LOW 2.5 ns tRCKSW Maximum Skew (Light Load) 1.5 ns tRCKSW Maximum Skew (50% Load) 2.2 ns tRCKSW Maximum Skew (100% Load) 2.3 ns Dedicated (Hardwired) Array Clock Networks tHCKH Input LOW to HIGH (Pad to R-Cell Input) 3.1 ns tHCKL Input HIGH to LOW (Pad to R-Cell Input) 2.6 ns Notes: 1. For dual-module macros, use tPD + tRD1 + tPDn , tRCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD , whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 3. Delays based on 35 pF loading. 4. Delays based on 10 pF loading and 25 Ω resistance. v2.2 1-31 Table 1-15 • A54SX32A Timing Characteristics (Worst-Case Automotive Conditions, VCCA = 2.3 V, VCCI = 3.0 V, TJ = 125°C (Continued) ‘Std’ Speed Parameter Description Min. Max. Units tHPWH Minimum Pulse Width HIGH 2.5 0.0 ns tHPWL Minimum Pulse Width LOW 2.5 tHCKSW Maximum Skew tHP Minimum Period fHMAX Maximum Frequency ns 0.6 5.0 ns ns 199 MHz Routed Array Clock Networks tRCKH Input LOW to HIGH (Light Load) (Pad to R-Cell Input) 3.0 ns tRCKL Input HIGH to LOW (Light Load) (Pad to R-Cell Input) 3.8 ns tRCKH Input LOW to HIGH (50% Load) (Pad to R-Cell Input) 3.7 ns tRCKL Input HIGH to LOW (50% Load) (Pad to R-Cell Input) 3.9 ns tRCKH Input LOW to HIGH (100% Load) (Pad to R-Cell Input) 4.3 ns tRCKL Input HIGH to LOW (100% Load) (Pad to R-Cell Input) 4.3 ns tRPWH Min. Pulse Width HIGH 2.5 ns tRPWL Min. Pulse Width LOW 2.5 ns tRCKSW Maximum Skew (Light Load) 1.5 ns tRCKSW Maximum Skew (50% Load) 2.2 ns tRCKSW Maximum Skew (100% Load) 2.3 ns 2.5 V LVTTL Output Module Timing3 tDLH Data-to-Pad LOW to HIGH 6.3 ns tDHL Data-to-Pad HIGH to LOW 5.0 ns tDHLS Data-to-Pad HIGH to LOW—low slew 21.8 ns tENZL Enable-to-Pad, Z to L 4.6 ns tENZLS Data-to-Pad, Z to L—low slew 22.8 ns tENZH Enable-to-Pad, Z to H 6.7 ns tENLZ Enable-to-Pad, L to Z 4.1 ns tENHZ Enable-to-Pad, H to Z 6.7 ns Notes: 1. For dual-module macros, use tPD + tRD1 + tPDn , tRCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD , whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 3. Delays based on 35 pF loading. 4. Delays based on 10 pF loading and 25 Ω resistance. 1 -3 2 v2.2 Table 1-15 • A54SX32A Timing Characteristics (Worst-Case Automotive Conditions, VCCA = 2.3 V, VCCI = 3.0 V, TJ = 125°C (Continued) ‘Std’ Speed Parameter Description dTLH Min. Max. Units Delta LOW to HIGH 0.064 ns/pF dTHL Delta HIGH to LOW 0.029 ns/pF dTHLS Delta HIGH to LOW—low slew 0.108 ns/pF 4 3.3 V PCI Output Module Timing tDLH Data-to-Pad LOW to HIGH 3.8 ns tDHL Data-to-Pad HIGH to LOW 3.8 ns tENZL Enable-to-Pad, Z to L 2.8 ns tENZH Enable-to-Pad, Z to H 2.8 ns tENLZ Enable-to-Pad, L to Z 4.8 ns tENHZ Enable-to-Pad, H to Z 4.8 ns dTLH Delta LOW to HIGH 0.050 ns/pF dTHL Delta HIGH to LOW 0.019 ns/pF 3.3 V LVTTL Output Module Timing 3 tDLH Data-to-Pad LOW to HIGH 5.3 ns tDHL Data-to-Pad HIGH to LOW 4.8 ns tDHLS Data-to-Pad HIGH to LOW—low slew 17.3 ns tENZL Enable-to-Pad, Z to L 4.3 ns tENZLS Enable-to-Pad, Z to L—low slew 31.9 ns tENZH Enable-to-Pad, Z to H 5.5 ns tENLZ Enable-to-Pad, L to Z 5.5 ns tENHZ Enable-to-Pad, H to Z 4.8 ns dTLH Delta LOW to HIGH 0.050 ns/pF dTHL Delta HIGH to LOW 0.019 ns/pF dTHLS Delta HIGH to LOW—low slew ns/pF Notes: 1. For dual-module macros, use tPD + tRD1 + tPDn , tRCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD , whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 3. Delays based on 35 pF loading. 4. Delays based on 10 pF loading and 25 Ω resistance. v2.2 1-33 Table 1-16 • A54SX72A Timing Characteristics (Worst-Case Automotive Conditions, VCCA = 2.3 V, VCCI = 3.0 V, TJ = 125°C) ‘Std’ Speed Parameter Description C-Cell Propagation Delays1 tPD Internal Array Module Predicted Routing Min. Max. Units 1.5 ns Delays2 tDC FO=1 Routing Delay, Direct Connect 0.1 ns tFC FO=1 Routing Delay, Fast Connect 0.5 ns tRD1 FO=1 Routing Delay 0.6 ns tRD2 FO=2 Routing Delay 0.8 ns tRD3 FO=3 Routing Delay 1.0 ns tRD4 FO=4 Routing Delay 1.2 ns tRD8 FO=8 Routing Delay 2.4 ns tRD12 FO=12 Routing Delay 3.4 ns tRCO Sequential Clock-to-Q 1.0 ns tCLR Asynchronous Clear-to-Q 1.2 ns tPRESET Asynchronous Preset-to-Q 1.2 ns tSUD Flip-Flop Data Input Set-Up 1.2 ns tHD Flip-Flop Data Input Hold 0.0 ns tWASYN Asynchronous Pulse Width 2.3 ns tRECASYN Asynchronous Recovery Time 0.6 ns tHASYN Asynchronous Hold Time 0.5 ns R-Cell Timing Input Module Propagation Delays tINYH Input Data Pad-to-Y HIGH 1.0 ns tINYL Input Data Pad-to-Y LOW 1.6 ns Input Module Predicted Routing Delays2 tIRD1 FO=1 Routing Delay 0.6 ns tIRD2 FO=2 Routing Delay 0.8 ns tIRD3 FO=3 Routing Delay 1.0 ns tIRD4 FO=4 Routing Delay 1.2 ns tIRD8 FO=8 Routing Delay 2.4 ns tIRD12 FO=12 Routing Delay 3.4 ns Notes: 1. For dual-module macros, use tPD + tRD1 + tPDn , tRCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD , whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 3. Delays based on 35 pF loading. 4. Delays based on 10 pF loading and 25 Ω resistance. 1 -3 4 v2.2 Table 1-16 • A54SX72A Timing Characteristics (Worst-Case Automotive Conditions, VCCA = 2.3 V, VCCI = 3.0 V, TJ = 125°C) (Continued) ‘Std’ Speed Parameter Description Min. Max. Units Dedicated (Hardwired) Array Clock Networks tHCKH Input LOW to HIGH (Pad to R-Cell Input) 2.4 ns tHCKL Input HIGH to LOW (Pad to R-Cell Input) 2.2 ns tHPWH Minimum Pulse Width HIGH 2.5 ns tHPWL Minimum Pulse Width LOW 2.5 ns tHCKSW Maximum Skew tHP Minimum Period fHMAX Maximum Frequency 1.1 5.0 ns ns 199 MHz 4.0 ns Routed Array Clock Networks tRCKH Input LOW to HIGH (Light Load) (Pad to R-Cell Input) tRCKL Input HIGH to LOW (Light Load) (Pad to R-Cell Input) tRCKH Input LOW to HIGH (50% Load) (Pad to R-Cell Input) tRCKL Input HIGH to LOW (50% Load) (Pad to R-Cell Input) tRCKH Input LOW to HIGH (100% Load) (Pad to R-Cell Input) tRCKL Input HIGH to LOW (100% Load) (Pad to R-Cell Input) tRPWH Min. Pulse Width HIGH tRPWL Min. Pulse Width LOW tRCKSW Maximum Skew (Light Load) tRCKSW Maximum Skew (50% Load) tRCKSW Maximum Skew (100% Load) ns 4.6 ns ns 5.3 ns ns 5.6 ns ns 6.5 ns ns 6.9 ns Dedicated (Hardwired) Array Clock Networks tHCKH Input LOW to HIGH (Pad to R-Cell Input) 2.4 ns tHCKL Input HIGH to LOW (Pad to R-Cell Input) 2.2 ns Notes: 1. For dual-module macros, use tPD + tRD1 + tPDn , tRCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD , whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 3. Delays based on 35 pF loading. 4. Delays based on 10 pF loading and 25 Ω resistance. v2.2 1-35 Table 1-16 • A54SX72A Timing Characteristics (Worst-Case Automotive Conditions, VCCA = 2.3 V, VCCI = 3.0 V, TJ = 125°C) (Continued) ‘Std’ Speed Parameter Description Min. Max. tHPWH Minimum Pulse Width HIGH 2.5 ns tHPWL Minimum Pulse Width LOW 2.5 ns tHCKSW Maximum Skew tHP Minimum Period fHMAX Maximum Frequency 1.1 5.0 Units ns ns 199 MHz 4.0 ns Routed Array Clock Networks tRCKH Input LOW to HIGH (Light Load) (Pad to R-Cell Input) tRCKL Input HIGH to LOW (Light Load) (Pad to R-Cell Input) tRCKH Input LOW to HIGH (50% Load) (Pad to R-Cell Input) tRCKL Input HIGH to LOW (50% Load) (Pad to R-Cell Input) tRCKH Input LOW to HIGH (100% Load) (Pad to R-Cell Input) tRCKL Input HIGH to LOW (100% Load) (Pad to R-Cell Input) tRPWH Min. Pulse Width HIGH tRPWL Min. Pulse Width LOW tRCKSW Maximum Skew (Light Load) tRCKSW Maximum Skew (50% Load) tRCKSW Maximum Skew (100% Load) 2.5 V LVTTL Output Module ns 4.7 ns ns 5.3 ns ns 5.6 ns ns 6.5 ns ns 6.9 ns Timing3 tDLH Data-to-Pad LOW to HIGH 6.5 ns tDHL Data-to-Pad HIGH to LOW 5.0 ns tDHLS Data-to-Pad HIGH to LOW—low slew 22.6 ns tENZL Enable-to-Pad, Z to L 4.6 ns tENZLS Data-to-Pad, Z to L—low slew 22.8 ns tENZH Enable-to-Pad, Z to H 6.7 ns tENLZ Enable-to-Pad, L to Z 4.1 ns tENHZ Enable-to-Pad, H to Z 6.7 ns Notes: 1. For dual-module macros, use tPD + tRD1 + tPDn , tRCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD , whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 3. Delays based on 35 pF loading. 4. Delays based on 10 pF loading and 25 Ω resistance. 1 -3 6 v2.2 Table 1-16 • A54SX72A Timing Characteristics (Worst-Case Automotive Conditions, VCCA = 2.3 V, VCCI = 3.0 V, TJ = 125°C) (Continued) ‘Std’ Speed Parameter Description dTLH Min. Max. Units Delta LOW to HIGH 0.064 ns/pF dTHL Delta HIGH to LOW 0.029 ns/pF dTHLS Delta HIGH to LOW—low slew 0.108 ns/pF 4 3.3 V PCI Output Module Timing tDLH Data-to-Pad LOW to HIGH 3.8 ns tDHL Data-to-Pad HIGH to LOW 3.8 ns tENZL Enable-to-Pad, Z to L 2.8 ns tENZH Enable-to-Pad, Z to H 2.8 ns tENLZ Enable-to-Pad, L to Z 4.8 ns tENHZ Enable-to-Pad, H to Z 4.8 ns dTLH Delta LOW to HIGH 0.050 ns/pF dTHL Delta HIGH to LOW 0.019 ns/pF 3.3 V LVTTL Output Module Timing 3 tDLH Data-to-Pad LOW to HIGH 5.3 ns tDHL Data-to-Pad HIGH to LOW 4.8 ns tDHLS Data-to-Pad HIGH to LOW—low slew 17.3 ns tENZL Enable-to-Pad, Z to L 4.3 ns tENZLS Enable-to-Pad, Z to L—low slew 31.9 ns tENZH Enable-to-Pad, Z to H 5.5 ns tENLZ Enable-to-Pad, L to Z 5.5 ns tENHZ Enable-to-Pad, H to Z 4.8 ns dTLH Delta LOW to HIGH 0.050 ns/pF dTHL Delta HIGH to LOW 0.019 ns/pF dTHLS Delta HIGH to LOW—low slew 0.092 ns/pF Notes: 1. For dual-module macros, use tPD + tRD1 + tPDn , tRCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD , whichever is appropriate. 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance. 3. Delays based on 35 pF loading. 4. Delays based on 10 pF loading and 25 Ω resistance. v2.2 1-37 Pin Description CLKA/B TCK, I/O Clock A and B These pins are clock inputs for clock distribution networks. Input levels are compatible with standard LVTTL or 3.3 V PCI specifications. The clock input is buffered prior to clocking the R-cells. If not used, these pins must be set LOW or HIGH on the board except A54SX72A. In A54SX72A these clocks can be configured as user I/O. QCLKA/B/C/D, Quadrant Clock A, B, C, and D I/O These four pins are the quadrant clock inputs and are only for A54SX72A with A, B, C and D corresponding to bottom-left, bottom-right, top-left and top-right quadrants, respectively. They are clock inputs for clock distribution networks. Input levels are compatible with standard LVTTL and 3.3 V PCI specifications. Each of these clock inputs can drive up to a quarter of the chip, or they can be grouped together to drive multiple quadrants. The clock input is buffered prior to clocking the R-cells. If not used as a clock it will behave as a regular I/O. GND Ground HCLK Dedicated (Hardwired) Array Clock This pin is the clock input for sequential modules. Input levels are compatible with LVTTL or 3.3 V PCI specifications. This input is directly wired to each R-cell and offers clock speeds independent of the number of Rcells being driven. If not used, this pin must be set LOW or HIGH on the board and must not be left floating. I/O Input/Output The I/O pin functions as an input, output, tristate or bidirectional buffer. Based on certain configurations, input and output levels are compatible with LVTTL or 3.3 V PCI specifications. Unused I/O pins are automatically tristated by the Designer software. NC No Connection This pin is not connected to circuitry within the device. These pins can be driven to any voltage or can be left floating with no effect on the operation of the device. PRA, I/O Probe A/B PRB, I/O The Probe pin is used to output data from any userdefined design node within the device. This independent diagnostic pin can be used in conjunction with the other probe pin to allow real-time diagnostic output of any signal path within the device. The Probe pin can be used as a user-defined I/O when verification has been completed. The pin’s probe capabilities can be permanently disabled to protect programmed design confidentiality. 1 -3 8 Test clock input for diagnostic probe and device programming. In flexible mode, TCK becomes active when the TMS pin is set LOW (refer to Table 1-5 on page 1-9). This pin functions as an I/O when the boundary scan state machine reaches the “logic reset” state. TDI, I/O v2.2 Test Data Input Serial input for boundary scan testing and diagnostic probe. In flexible mode, TDI is active when the TMS pin is set LOW (refer to Table 1-5 on page 1-9). This pin functions as an I/O when the boundary scan state machine reaches the “logic reset” state. TDO, I/O Test Data Output Serial output for boundary scan testing. In flexible mode, TDO is active when the TMS pin is set LOW (refer to Table 1-5 on page 1-9). This pin functions as an I/O when the boundary scan state machine reaches the "logic reset" state. When Silicon Explorer II is being used, TDO will act as an output when the "checksum" command is run. It will return to user IO when "checksum" is complete. TMS LOW supply voltage. Test Clock Test Mode Select The TMS pin controls the use of the IEEE 1149.1 Boundary Scan pins (TCK, TDI, TDO, TRST). In flexible mode when the TMS pin is set LOW, the TCK, TDI, and TDO pins are boundary scan pins (refer to Table 1-5 on page 1-9). Once the boundary scan pins are in test mode, they will remain in that mode until the internal boundary scan state machine reaches the “logic reset” state. At this point, the boundary scan pins will be released and will function as regular I/O pins. The “logic reset” state is reached 5 TCK cycles after the TMS pin is set HIGH. In dedicated test mode, TMS functions as specified in the IEEE 1149.1 specifications. TRST, I/O Boundary Scan Reset Pin Once it is configured as the JTAG Reset pin, the TRST pin functions as an active-low input to asynchronously initialize or reset the boundary scan circuit. The TRST pin is equipped with an internal pull-up resistor. This pin functions as an I/O when the “Reserve JTAG Reset Pin” is not selected in Designer. VCCI Supply Voltage Supply voltage for I/Os. See “Recommended Operating Conditions” on page 1-13. All VCCI power pins in the device should be connected. VCCA Supply Voltage Supply voltage for Array. See “Recommended Operating Conditions” on page 1-13. All VCCA power pins in the device should be connected. Package Pin Assignments 208-Pin PQFP (Top View) 1 208 208-Pin PQFP Figure 2-1 • 208-Pin PQFP Note For Package Manufacturing and Environmental information, visit Resource center at http://www.actel.com/products/rescenter/package/index.html. v2.2 2-1 208-Pin PQFP 208-Pin PQFP Pin Number 2 -2 Pin Number A54SX08A A54SX16A A54SX32A A54SX72A Function Function Function Function A54SX08A A54SX16A A54SX32A A54SX72A Function Function Function Function 1 GND GND GND GND 36 I/O I/O I/O I/O 2 TDI, I/O TDI, I/O TDI, I/O TDI, I/O 37 I/O I/O I/O I/O 3 I/O I/O I/O I/O 38 I/O I/O I/O I/O 4 NC I/O I/O I/O 39 NC I/O I/O I/O 5 I/O I/O I/O I/O 40 VCCI VCCI VCCI VCCI 6 NC I/O I/O I/O 41 VCCA VCCA VCCA VCCA 7 I/O I/O I/O I/O 42 I/O I/O I/O I/O 8 I/O I/O I/O I/O 43 I/O I/O I/O I/O 9 I/O I/O I/O I/O 44 I/O I/O I/O I/O 10 I/O I/O I/O I/O 45 I/O I/O I/O I/O 11 TMS TMS TMS TMS 46 I/O I/O I/O I/O 12 VCCI VCCI VCCI VCCI 47 I/O I/O I/O I/O 13 I/O I/O I/O I/O 48 NC I/O I/O I/O 14 NC I/O I/O I/O 49 I/O I/O I/O I/O 15 I/O I/O I/O I/O 50 NC I/O I/O I/O 16 I/O I/O I/O I/O 51 I/O I/O I/O I/O 17 NC I/O I/O I/O 52 GND GND GND GND 18 I/O I/O I/O GND 53 I/O I/O I/O I/O 19 I/O I/O I/O VCCA 54 I/O I/O I/O I/O 20 NC I/O I/O I/O 55 I/O I/O I/O I/O 21 I/O I/O I/O I/O 56 I/O I/O I/O I/O 22 I/O I/O I/O I/O 57 I/O I/O I/O I/O 23 NC I/O I/O I/O 58 I/O I/O I/O I/O 24 I/O I/O I/O I/O 59 I/O I/O I/O I/O 25 NC NC NC I/O 60 VCCI VCCI VCCI VCCI 26 GND GND GND GND 61 NC I/O I/O I/O 27 VCCA VCCA VCCA VCCA 62 I/O I/O I/O I/O 28 GND GND GND GND 63 I/O I/O I/O I/O 29 I/O I/O I/O I/O 64 NC I/O I/O I/O 30 TRST, I/O TRST, I/O TRST, I/O TRST, I/O 65 I/O I/O NC I/O 31 NC I/O I/O I/O 66 I/O I/O I/O I/O 32 I/O I/O I/O I/O 67 NC I/O I/O I/O 33 I/O I/O I/O I/O 68 I/O I/O I/O I/O 34 I/O I/O I/O I/O 69 I/O I/O I/O I/O 35 NC I/O I/O I/O 70 NC I/O I/O I/O v2.2 208-Pin PQFP Pin Number 208-Pin PQFP A54SX08A A54SX16A A54SX32A A54SX72A Function Function Function Function Pin Number A54SX08A A54SX16A A54SX32A A54SX72A Function Function Function Function 71 I/O I/O I/O I/O 106 NC I/O I/O I/O 72 I/O I/O I/O I/O 107 I/O I/O I/O I/O 73 NC I/O I/O I/O 108 NC I/O I/O I/O 74 I/O I/O I/O QCLKA, I/O 109 I/O I/O I/O I/O 75 NC I/O I/O I/O 110 I/O I/O I/O I/O 76 PRB, I/O PRB, I/O PRB, I/O PRB,I/O 111 I/O I/O I/O I/O 77 GND GND GND GND 112 I/O I/O I/O I/O 78 VCCA VCCA VCCA VCCA 113 I/O I/O I/O I/O 79 GND GND GND GND 114 VCCA VCCA VCCA VCCA 80 NC NC NC NC 115 VCCI VCCI VCCI VCCI 81 I/O I/O I/O I/O 116 NC I/O I/O GND 82 HCLK HCLK HCLK HCLK 117 I/O I/O I/O VCCA 83 I/O I/O I/O VCCI 118 I/O I/O I/O I/O 84 I/O I/O I/O QCLKB, I/O 119 NC I/O I/O I/O 85 NC I/O I/O I/O 120 I/O I/O I/O I/O 86 I/O I/O I/O I/O 121 I/O I/O I/O I/O 87 I/O I/O I/O I/O 122 NC I/O I/O I/O 88 NC I/O I/O I/O 123 I/O I/O I/O I/O 89 I/O I/O I/O I/O 124 I/O I/O I/O I/O 90 I/O I/O I/O I/O 125 NC I/O I/O I/O 91 NC I/O I/O I/O 126 I/O I/O I/O I/O 92 I/O I/O I/O I/O 127 I/O I/O I/O I/O 93 I/O I/O I/O I/O 128 I/O I/O I/O I/O 94 NC I/O I/O I/O 129 GND GND GND GND 95 I/O I/O I/O I/O 130 VCCA VCCA VCCA VCCA 96 I/O I/O I/O I/O 131 GND GND GND GND 97 NC I/O I/O I/O 132 NC NC NC I/O 98 VCCI VCCI VCCI VCCI 133 I/O I/O I/O I/O 99 I/O I/O I/O I/O 134 I/O I/O I/O I/O 100 I/O I/O I/O I/O 135 NC I/O I/O I/O 101 I/O I/O I/O I/O 136 I/O I/O I/O I/O 102 I/O I/O I/O I/O 137 I/O I/O I/O I/O 103 TDO, I/O TDO, I/O TDO, I/O TDO, I/O 138 NC I/O I/O I/O 104 I/O I/O I/O I/O 139 I/O I/O I/O I/O 105 GND GND GND GND 140 I/O I/O I/O I/O v2.2 2-3 208-Pin PQFP 208-Pin PQFP Pin Number 2 -4 Pin Number A54SX08A A54SX16A A54SX32A A54SX72A Function Function Function Function A54SX08A A54SX16A A54SX32A A54SX72A Function Function Function Function 141 NC I/O I/O I/O 176 NC I/O I/O I/O 142 I/O I/O I/O I/O 177 I/O I/O I/O I/O 143 NC I/O I/O I/O 178 I/O I/O I/O QCLKD, I/O 144 I/O I/O I/O I/O 179 I/O I/O I/O I/O 145 VCCA VCCA VCCA VCCA 180 CLKA CLKA CLKA CLKA, I/O 146 GND GND GND GND 181 CLKB CLKB CLKB CLKB, I/O 147 I/O I/O I/O I/O 182 NC NC NC NC 148 VCCI VCCI VCCI VCCI 183 GND GND GND GND 149 I/O I/O I/O I/O 184 VCCA VCCA VCCA VCCA 150 I/O I/O I/O I/O 185 GND GND GND GND 151 I/O I/O I/O I/O 186 PRA, I/O PRA, I/O PRA, I/O PRA, I/O 152 I/O I/O I/O I/O 187 I/O I/O I/O VCCI 153 I/O I/O I/O I/O 188 I/O I/O I/O I/O 154 I/O I/O I/O I/O 189 NC I/O I/O I/O 155 NC I/O I/O I/O 190 I/O I/O I/O QCLKC, I/O 156 NC I/O I/O I/O 191 I/O I/O I/O I/O 157 GND GND GND GND 192 NC I/O I/O I/O 158 I/O I/O I/O I/O 193 I/O I/O I/O I/O 159 I/O I/O I/O I/O 194 I/O I/O I/O I/O 160 I/O I/O I/O I/O 195 NC I/O I/O I/O 161 I/O I/O I/O I/O 196 I/O I/O I/O I/O 162 I/O I/O I/O I/O 197 I/O I/O I/O I/O 163 I/O I/O I/O I/O 198 NC I/O I/O I/O 164 VCCI VCCI VCCI VCCI 199 I/O I/O I/O I/O 165 I/O I/O I/O I/O 200 I/O I/O I/O I/O 166 I/O I/O I/O I/O 201 VCCI VCCI VCCI VCCI 167 NC I/O I/O I/O 202 NC I/O I/O I/O 168 I/O I/O I/O I/O 203 NC I/O I/O I/O 169 I/O I/O I/O I/O 204 I/O I/O I/O I/O 170 NC I/O I/O I/O 205 NC I/O I/O I/O 171 I/O I/O I/O I/O 206 I/O I/O I/O I/O 172 I/O I/O I/O I/O 207 I/O I/O I/O I/O 173 NC I/O I/O I/O 208 TCK, I/O TCK, I/O TCK, I/O TCK, I/O 174 I/O I/O I/O I/O 175 I/O I/O I/O I/O v2.2 100-Pin TQFP (Top View) 100 1 100-Pin TQFP Figure 2-2 • 100-Pin TQFP Note For Package Manufacturing and Environmental information, visit Resource center at http://www.actel.com/products/rescenter/package/index.html. v2.2 2-5 100-TQFP 100-TQFP Pin Number A54SX08A Function A54SX16A Function A54SX32A Function Pin Number A54SX08A Function A54SX16A Function A54SX32A Function 1 GND GND GND 36 GND GND GND 2 TDI, I/O TDI, I/O TDI, I/O 37 NC NC NC 3 I/O I/O I/O 38 I/O I/O I/O 4 I/O I/O I/O 39 HCLK HCLK HCLK 5 I/O I/O I/O 40 I/O I/O I/O 6 I/O I/O I/O 41 I/O I/O I/O 7 TMS TMS TMS 42 I/O I/O I/O 8 VCCI VCCI VCCI 43 I/O I/O I/O 9 GND GND GND 44 VCCI VCCI VCCI 10 I/O I/O I/O 45 I/O I/O I/O 11 I/O I/O I/O 46 I/O I/O I/O 12 I/O I/O I/O 47 I/O I/O I/O 13 I/O I/O I/O 48 I/O I/O I/O 14 I/O I/O I/O 49 TDO, I/O TDO, I/O TDO, I/O 15 I/O I/O I/O 50 I/O I/O I/O 16 TRST, I/O TRST, I/O TRST, I/O 51 GND GND GND 17 I/O I/O I/O 52 I/O I/O I/O 18 I/O I/O I/O 53 I/O I/O I/O 19 I/O I/O I/O 54 I/O I/O I/O 20 VCCI VCCI VCCI 55 I/O I/O I/O 21 I/O I/O I/O 56 I/O I/O I/O 22 I/O I/O I/O 57 VCCA VCCA VCCA 23 I/O I/O I/O 58 VCCI VCCI VCCI 24 I/O I/O I/O 59 I/O I/O I/O 25 I/O I/O I/O 60 I/O I/O I/O 26 I/O I/O I/O 61 I/O I/O I/O 27 I/O I/O I/O 62 I/O I/O I/O 28 I/O I/O I/O 63 I/O I/O I/O 29 I/O I/O I/O 64 I/O I/O I/O 30 I/O I/O I/O 65 I/O I/O I/O 31 I/O I/O I/O 66 I/O I/O I/O 32 I/O I/O I/O 67 VCCA VCCA VCCA 33 I/O I/O I/O 68 GND GND GND 34 PRB, I/O PRB, I/O PRB, I/O 69 GND GND GND 35 VCCA VCCA VCCA 70 I/O I/O I/O 2 -6 v2.2 100-TQFP Pin Number A54SX08A Function A54SX16A Function A54SX32A Function 71 I/O I/O I/O 72 I/O I/O I/O 73 I/O I/O I/O 74 I/O I/O I/O 75 I/O I/O I/O 76 I/O I/O I/O 77 I/O I/O I/O 78 I/O I/O I/O 79 I/O I/O I/O 80 I/O I/O I/O 81 I/O I/O I/O 82 VCCI VCCI VCCI 83 I/O I/O I/O 84 I/O I/O I/O 85 I/O I/O I/O 86 I/O I/O I/O 87 CLKA CLKA CLKA 88 CLKB CLKB CLKB 89 NC NC NC 90 VCCA VCCA VCCA 91 GND GND GND 92 PRA, I/O PRA, I/O PRA, I/O 93 I/O I/O I/O 94 I/O I/O I/O 95 I/O I/O I/O 96 I/O I/O I/O 97 I/O I/O I/O 98 I/O I/O I/O 99 I/O I/O I/O 100 TCK, I/O TCK, I/O TCK, I/O v2.2 2-7 144-Pin TQFP (Top View) 144 1 144-Pin TQFP Figure 2-3 • 144-Pin TQFP Note For Package Manufacturing and Environmental information, visit Resource center at http://www.actel.com/products/rescenter/package/index.html. 2 -8 v2.2 144-Pin TQFP 144-Pin TQFP Pin Number A54SX08A Function A54SX16A Function A54SX32A Function Pin Number A54SX08A Function A54SX16A Function A54SX32A Function 1 GND GND GND 37 I/O I/O I/O 2 TDI, I/O TDI, I/O TDI, I/O 38 I/O I/O I/O 3 I/O I/O I/O 39 I/O I/O I/O 4 I/O I/O I/O 40 I/O I/O I/O 5 I/O I/O I/O 41 I/O I/O I/O 6 I/O I/O I/O 42 I/O I/O I/O 7 I/O I/O I/O 43 I/O I/O I/O 8 I/O I/O I/O 44 VCCI VCCI VCCI 9 TMS TMS TMS 45 I/O I/O I/O 10 VCCI VCCI VCCI 46 I/O I/O I/O 11 GND GND GND 47 I/O I/O I/O 12 I/O I/O I/O 48 I/O I/O I/O 13 I/O I/O I/O 49 I/O I/O I/O 14 I/O I/O I/O 50 I/O I/O I/O 15 I/O I/O I/O 51 I/O I/O I/O 16 I/O I/O I/O 52 I/O I/O I/O 17 I/O I/O I/O 53 I/O I/O I/O 18 I/O I/O I/O 54 PRB, I/O PRB, I/O PRB, I/O 19 NC NC NC 55 I/O I/O I/O 20 VCCA VCCA VCCA 56 VCCA VCCA VCCA 21 I/O I/O I/O 57 GND GND GND 22 TRST, I/O TRST, I/O TRST, I/O 58 NC NC NC 23 I/O I/O I/O 59 I/O I/O I/O 24 I/O I/O I/O 60 HCLK HCLK HCLK 25 I/O I/O I/O 61 I/O I/O I/O 26 I/O I/O I/O 62 I/O I/O I/O 27 I/O I/O I/O 63 I/O I/O I/O 28 GND GND GND 64 I/O I/O I/O 29 VCCI VCCI VCCI 65 I/O I/O I/O 30 VCCA VCCA VCCA 66 I/O I/O I/O 31 I/O I/O I/O 67 I/O I/O I/O 32 I/O I/O I/O 68 VCCI VCCI VCCI 33 I/O I/O I/O 69 I/O I/O I/O 34 I/O I/O I/O 70 I/O I/O I/O 35 I/O I/O I/O 71 TDO, I/O TDO, I/O TDO, I/O 36 GND GND GND 72 I/O I/O I/O v2.2 2-9 144-Pin TQFP 144-Pin TQFP Pin Number A54SX08A Function A54SX16A Function A54SX32A Function Pin Number A54SX08A Function A54SX16A Function A54SX32A Function 73 GND GND GND 109 GND GND GND 74 I/O I/O I/O 110 I/O I/O I/O 75 I/O I/O I/O 111 I/O I/O I/O 76 I/O I/O I/O 112 I/O I/O I/O 77 I/O I/O I/O 113 I/O I/O I/O 78 I/O I/O I/O 114 I/O I/O I/O 79 VCCA VCCA VCCA 115 VCCI VCCI VCCI 80 VCCI VCCI VCCI 116 I/O I/O I/O 81 GND GND GND 117 I/O I/O I/O 82 I/O I/O I/O 118 I/O I/O I/O 83 I/O I/O I/O 119 I/O I/O I/O 84 I/O I/O I/O 120 I/O I/O I/O 85 I/O I/O I/O 121 I/O I/O I/O 86 I/O I/O I/O 122 I/O I/O I/O 87 I/O I/O I/O 123 I/O I/O I/O 88 I/O I/O I/O 124 I/O I/O I/O 89 VCCA VCCA VCCA 125 CLKA CLKA CLKA 90 NC NC NC 126 CLKB CLKB CLKB 91 I/O I/O I/O 127 NC NC NC 92 I/O I/O I/O 128 GND GND GND 93 I/O I/O I/O 129 VCCA VCCA VCCA 94 I/O I/O I/O 130 I/O I/O I/O 95 I/O I/O I/O 131 PRA, I/O PRA, I/O PRA, I/O 96 I/O I/O I/O 132 I/O I/O I/O 97 I/O I/O I/O 133 I/O I/O I/O 98 VCCA VCCA VCCA 134 I/O I/O I/O 99 GND GND GND 135 I/O I/O I/O 100 I/O I/O I/O 136 I/O I/O I/O 101 GND GND GND 137 I/O I/O I/O 102 VCCI VCCI VCCI 138 I/O I/O I/O 103 I/O I/O I/O 139 I/O I/O I/O 104 I/O I/O I/O 140 VCCI VCCI VCCI 105 I/O I/O I/O 141 I/O I/O I/O 106 I/O I/O I/O 142 I/O I/O I/O 107 I/O I/O I/O 143 I/O I/O I/O 108 I/O I/O I/O 144 TCK, I/O TCK, I/O TCK, I/O 2 -1 0 v2.2 144-Pin FBGA (Top View) 1 2 3 4 5 6 7 8 9 10 11 12 A B C D E F G H J K L M Figure 2-4 • 144-Pin FBGA Note For Package Manufacturing and Environmental information, visit Resource center at http://www.actel.com/products/rescenter/package/index.html. v2.2 2-11 144-Pin FGBA 144-Pin FGBA Pin Number A54SX08A Function A54SX16A Function A54SX32A Function Pin Number A54SX08A Function A54SX16A Function A54SX32A Function A1 I/O I/O I/O D1 I/O I/O I/O A2 I/O I/O I/O D2 VCCI VCCI VCCI A3 I/O I/O I/O D3 TDI, I/O TDI, I/O TDI, I/O A4 I/O I/O I/O D4 I/O I/O I/O A5 VCCA VCCA VCCA D5 I/O I/O I/O A6 GND GND GND D6 I/O I/O I/O A7 CLKA CLKA CLKA D7 I/O I/O I/O A8 I/O I/O I/O D8 I/O I/O I/O A9 I/O I/O I/O D9 I/O I/O I/O A10 I/O I/O I/O D10 I/O I/O I/O A11 I/O I/O I/O D11 I/O I/O I/O A12 I/O I/O I/O D12 I/O I/O I/O B1 I/O I/O I/O E1 I/O I/O I/O B2 GND GND GND E2 I/O I/O I/O B3 I/O I/O I/O E3 I/O I/O I/O B4 I/O I/O I/O E4 I/O I/O I/O B5 I/O I/O I/O E5 TMS TMS TMS B6 I/O I/O I/O E6 VCCI VCCI VCCI B7 CLKB CLKB CLKB E7 VCCI VCCI VCCI B8 I/O I/O I/O E8 VCCI VCCI VCCI B9 I/O I/O I/O E9 VCCA VCCA VCCA B10 I/O I/O I/O E10 I/O I/O I/O B11 GND GND GND E11 GND GND GND B12 I/O I/O I/O E12 I/O I/O I/O C1 I/O I/O I/O F1 I/O I/O I/O C2 I/O I/O I/O F2 I/O I/O I/O C3 TCK, I/O TCK, I/O TCK, I/O F3 NC NC NC C4 I/O I/O I/O F4 I/O I/O I/O C5 I/O I/O I/O F5 GND GND GND C6 PRA, I/O PRA, I/O PRA, I/O F6 GND GND GND C7 I/O I/O I/O F7 GND GND GND C8 I/O I/O I/O F8 VCCI VCCI VCCI C9 I/O I/O I/O F9 I/O I/O I/O C10 I/O I/O I/O F10 GND GND GND C11 I/O I/O I/O F11 I/O I/O I/O C12 I/O I/O I/O F12 I/O I/O I/O 2 -1 2 v2.2 144-Pin FGBA 144-Pin FGBA Pin Number A54SX08A Function A54SX16A Function A54SX32A Function Pin Number A54SX08A Function A54SX16A Function A54SX32A Function G1 I/O I/O I/O K1 I/O I/O I/O G2 GND GND GND K2 I/O I/O I/O G3 I/O I/O I/O K3 I/O I/O I/O G4 I/O I/O I/O K4 I/O I/O I/O G5 GND GND GND K5 I/O I/O I/O G6 GND GND GND K6 I/O I/O I/O G7 GND GND GND K7 GND GND GND G8 VCCI VCCI VCCI K8 I/O I/O I/O G9 I/O I/O I/O K9 I/O I/O I/O G10 I/O I/O I/O K10 GND GND GND G11 I/O I/O I/O K11 I/O I/O I/O G12 I/O I/O I/O K12 I/O I/O I/O H1 TRST, I/O TRST, I/O TRST, I/O L1 GND GND GND H2 I/O I/O I/O L2 I/O I/O I/O H3 I/O I/O I/O L3 I/O I/O I/O H4 I/O I/O I/O L4 I/O I/O I/O H5 VCCA VCCA VCCA L5 I/O I/O I/O H6 VCCA VCCA VCCA L6 I/O I/O I/O H7 VCCI VCCI VCCI L7 HCLK HCLK HCLK H8 VCCI VCCI VCCI L8 I/O I/O I/O H9 VCCA VCCA VCCA L9 I/O I/O I/O H10 I/O I/O I/O L10 I/O I/O I/O H11 I/O I/O I/O L11 I/O I/O I/O H12 NC NC NC L12 I/O I/O I/O J1 I/O I/O I/O M1 I/O I/O I/O J2 I/O I/O I/O M2 I/O I/O I/O J3 I/O I/O I/O M3 I/O I/O I/O J4 I/O I/O I/O M4 I/O I/O I/O J5 I/O I/O I/O M5 I/O I/O I/O J6 PRB, I/O PRB, I/O PRB, I/O M6 I/O I/O I/O J7 I/O I/O I/O M7 VCCA VCCA VCCA J8 I/O I/O I/O M8 I/O I/O I/O J9 I/O I/O I/O M9 I/O I/O I/O J10 I/O I/O I/O M10 I/O I/O I/O J11 I/O I/O I/O M11 TDO, I/O TDO, I/O TDO, I/O J12 VCCA VCCA VCCA M12 I/O I/O I/O v2.2 2-13 256-Pin FBGA (Top View) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 A B C D E F G H J K L M N P R T Figure 2-5 • 256-Pin FBGA Note For Package Manufacturing and Environmental information, visit Resource center at http://www.actel.com/products/rescenter/package/index.html. 2 -1 4 v2.2 256-Pin FBGA 256-Pin FBGA Pin Number A54SX16A Function A54SX32A Function A54SX72A Function Pin Number A54SX16A Function A54SX32A Function A54SX72A Function A1 GND GND GND C4 I/O I/O I/O A2 TCK, I/O TCK, I/O TCK, I/O C5 NC I/O I/O A3 I/O I/O I/O C6 I/O I/O I/O A4 I/O I/O I/O C7 I/O I/O I/O A5 I/O I/O I/O C8 I/O I/O I/O A6 I/O I/O I/O C9 CLKA CLKA CLKA, I/O A7 I/O I/O I/O C10 I/O I/O I/O A8 I/O I/O I/O C11 I/O I/O I/O A9 CLKB CLKB CLKB, I/O C12 I/O I/O I/O A10 I/O I/O I/O C13 I/O I/O I/O A11 I/O I/O I/O C14 I/O I/O I/O A12 NC I/O I/O C15 I/O I/O I/O A13 I/O I/O I/O C16 I/O I/O I/O A14 I/O I/O I/O D1 I/O I/O I/O A15 GND GND GND D2 I/O I/O I/O A16 GND GND GND D3 I/O I/O I/O B1 I/O I/O I/O D4 I/O I/O I/O B2 GND GND GND D5 I/O I/O I/O B3 I/O I/O I/O D6 I/O I/O I/O B4 I/O I/O I/O D7 I/O I/O I/O B5 I/O I/O I/O D8 PRA, I/O PRA, I/O PRA, I/O B6 NC I/O I/O D9 I/O I/O QCLKD, I/O B7 I/O I/O I/O D10 I/O I/O I/O B8 VCCA VCCA VCCA D11 NC I/O I/O B9 I/O I/O I/O D12 I/O I/O I/O B10 I/O I/O I/O D13 I/O I/O I/O B11 NC I/O I/O D14 I/O I/O I/O B12 I/O I/O I/O D15 I/O I/O I/O B13 I/O I/O I/O D16 I/O I/O I/O B14 I/O I/O I/O E1 I/O I/O I/O B15 GND GND GND E2 I/O I/O I/O B16 I/O I/O I/O E3 I/O I/O I/O C1 I/O I/O I/O E4 I/O I/O I/O C2 TDI, I/O TDI, I/O TDI, I/O E5 I/O I/O I/O C3 GND GND GND E6 I/O I/O I/O v2.2 2-15 256-Pin FBGA 256-Pin FBGA Pin Number A54SX16A Function A54SX32A Function A54SX72A Function Pin Number A54SX16A Function A54SX32A Function A54SX72A Function E7 I/O I/O QCLKC, I/O G10 GND GND GND E8 I/O I/O I/O G11 VCCI VCCI VCCI E9 I/O I/O I/O G12 I/O I/O I/O E10 I/O I/O I/O G13 GND GND GND E11 I/O I/O I/O G14 NC I/O I/O E12 I/O I/O I/O G15 VCCA VCCA VCCA E13 NC I/O I/O G16 I/O I/O I/O E14 I/O I/O I/O H1 I/O I/O I/O E15 I/O I/O I/O H2 I/O I/O I/O E16 I/O I/O I/O H3 VCCA VCCA VCCA F1 I/O I/O I/O H4 TRST, I/O TRST, I/O TRST, I/O F2 I/O I/O I/O H5 I/O I/O I/O F3 I/O I/O I/O H6 VCCI VCCI VCCI F4 TMS TMS TMS H7 GND GND GND F5 I/O I/O I/O H8 GND GND GND F6 I/O I/O I/O H9 GND GND GND F7 VCCI VCCI VCCI H10 GND GND GND F8 VCCI VCCI VCCI H11 VCCI VCCI VCCI F9 VCCI VCCI VCCI H12 I/O I/O I/O F10 VCCI VCCI VCCI H13 I/O I/O I/O F11 I/O I/O I/O H14 I/O I/O I/O F12 VCCA VCCA VCCA H15 I/O I/O I/O F13 I/O I/O I/O H16 NC I/O I/O F14 I/O I/O I/O J1 NC I/O I/O F15 I/O I/O I/O J2 NC I/O I/O F16 I/O I/O I/O J3 NC I/O I/O G1 NC I/O I/O J4 I/O I/O I/O G2 I/O I/O I/O J5 I/O I/O I/O G3 NC I/O I/O J6 VCCI VCCI VCCI G4 I/O I/O I/O J7 GND GND GND G5 I/O I/O I/O J8 GND GND GND G6 VCCI VCCI VCCI J9 GND GND GND G7 GND GND GND J10 GND GND GND G8 GND GND GND J11 VCCI VCCI VCCI G9 GND GND GND J12 I/O I/O I/O 2 -1 6 v2.2 256-Pin FBGA 256-Pin FBGA Pin Number A54SX16A Function A54SX32A Function A54SX72A Function Pin Number A54SX16A Function A54SX32A Function A54SX72A Function J13 I/O I/O I/O L16 NC I/O I/O J14 I/O I/O I/O M1 I/O I/O I/O J15 I/O I/O I/O M2 I/O I/O I/O J16 I/O I/O I/O M3 I/O I/O I/O K1 I/O I/O I/O M4 I/O I/O I/O K2 I/O I/O I/O M5 I/O I/O I/O K3 NC I/O I/O M6 I/O I/O I/O K4 VCCA VCCA VCCA M7 I/O I/O QCLKA, I/O K5 I/O I/O I/O M8 PRB, I/O PRB, I/O PRB, I/O K6 VCCI VCCI VCCI M9 I/O I/O I/O K7 GND GND GND M10 I/O I/O I/O K8 GND GND GND M11 I/O I/O I/O K9 GND GND GND M12 NC I/O I/O K10 GND GND GND M13 I/O I/O I/O K11 VCCI VCCI VCCI M14 NC I/O I/O K12 I/O I/O I/O M15 I/O I/O I/O K13 I/O I/O I/O M16 I/O I/O I/O K14 I/O I/O I/O N1 I/O I/O I/O K15 NC I/O I/O N2 I/O I/O I/O K16 I/O I/O I/O N3 I/O I/O I/O L1 I/O I/O I/O N4 I/O I/O I/O L2 I/O I/O I/O N5 I/O I/O I/O L3 I/O I/O I/O N6 I/O I/O I/O L4 I/O I/O I/O N7 I/O I/O I/O L5 I/O I/O I/O N8 I/O I/O I/O L6 I/O I/O I/O N9 I/O I/O I/O L7 VCCI VCCI VCCI N10 I/O I/O I/O L8 VCCI VCCI VCCI N11 I/O I/O I/O L9 VCCI VCCI VCCI N12 I/O I/O I/O L10 VCCI VCCI VCCI N13 I/O I/O I/O L11 I/O I/O I/O N14 I/O I/O I/O L12 I/O I/O I/O N15 I/O I/O I/O L13 I/O I/O I/O N16 I/O I/O I/O L14 I/O I/O I/O P1 I/O I/O I/O L15 I/O I/O I/O P2 GND GND GND v2.2 2-17 256-Pin FBGA 256-Pin FBGA Pin Number A54SX16A Function A54SX32A Function A54SX72A Function Pin Number A54SX16A Function A54SX32A Function A54SX72A Function P3 I/O I/O I/O T6 I/O I/O I/O P4 I/O I/O I/O T7 I/O I/O I/O P5 NC I/O I/O T8 I/O I/O I/O P6 I/O I/O I/O T9 VCCA VCCA VCCA P7 I/O I/O I/O T10 I/O I/O I/O P8 I/O I/O I/O T11 I/O I/O I/O P9 I/O I/O I/O T12 NC I/O I/O P10 NC I/O I/O T13 I/O I/O I/O P11 I/O I/O I/O T14 I/O I/O I/O P12 I/O I/O I/O T15 TDO, I/O TDO, I/O TDO, I/O P13 VCCA VCCA VCCA T16 GND GND GND P14 I/O I/O I/O P15 I/O I/O I/O P16 I/O I/O I/O R1 I/O I/O I/O R2 GND GND GND R3 I/O I/O I/O R4 NC I/O I/O R5 I/O I/O I/O R6 I/O I/O I/O R7 I/O I/O I/O R8 I/O I/O I/O R9 HCLK HCLK HCLK R10 I/O I/O QCLKB, I/O R11 I/O I/O I/O R12 I/O I/O I/O R13 I/O I/O I/O R14 I/O I/O I/O R15 GND GND GND R16 GND GND GND T1 GND GND GND T2 I/O I/O I/O T3 I/O I/O I/O T4 NC I/O I/O T5 I/O I/O I/O 2 -1 8 v2.2 Package Pin Assignments 484-Pin FBGA (Top View) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 A B C D E F G H J K L M N P R T U V W Y AA AB AC AD AE AF Figure 2-6 • 484-Pin FBGA Note For Package Manufacturing and Environmental information, visit Resource center at http://www.actel.com/products/rescenter/package/index.html. v2.2 19 484-Pin FBGA 484-Pin FBGA 20 484-Pin FBGA Pin Number A54SX72A Function Pin Number A54SX72A Function Pin Number A54SX72A Function A1 NC AA26 I/O AC9 I/O A2 NC AB1 NC AC10 I/O A3 I/O AB2 VCCI AC11 I/O A4 I/O AB3 I/O AC12 QCLKA, I/O A5 I/O AB4 I/O AC13 I/O A6 I/O AB5 I/O AC14 I/O A7 I/O AB6 I/O AC15 I/O A8 I/O AB7 I/O AC16 I/O A9 I/O AB8 I/O AC17 I/O A10 I/O AB9 I/O AC18 I/O A11 I/O AB10 I/O AC19 I/O A12 I/O AB11 I/O AC20 VCCI A13 I/O AB12 PRB, I/O AC21 I/O A14 NC AB13 VCCA AC22 I/O A15 I/O AB14 I/O AC23 I/O A16 I/O AB15 I/O AC24 I/O A17 I/O AB16 I/O AC25 I/O A18 I/O AB17 I/O AC26 I/O A19 I/O AB18 I/O AD1 I/O A20 I/O AB19 I/O AD2 I/O A21 I/O AB20 TDO, I/O AD3 GND A22 I/O AB21 GND AD4 I/O A23 I/O AB22 I/O AD5 I/O A24 I/O AB23 I/O AD6 I/O A25 NC AB24 I/O AD7 I/O A26 NC AB25 I/O AD8 I/O AA1 I/O AB26 I/O AD9 VCCI AA2 I/O AC1 I/O AD10 I/O AA3 VCCA AC2 I/O AD11 I/O AA4 I/O AC3 I/O AD12 I/O AA5 I/O AC4 I/O AD13 VCCI AA22 I/O AC5 VCCI AD14 I/O AA23 I/O AC6 I/O AD15 I/O AA24 I/O AC7 VCCI AD16 I/O AA25 I/O AC8 I/O AD17 VCCI v2.2 Package Pin Assignments 484-Pin FBGA 484-Pin FBGA 484-Pin FBGA Pin Number A54SX72A Function Pin Number A54SX72A Function Pin Number A54SX72A Function AD18 I/O AF1 NC B10 I/O AD19 I/O AF2 NC B11 I/O AD20 I/O AF3 I/O B12 I/O AD21 I/O AF4 I/O B13 VCCI AD22 I/O AF5 I/O B14 CLKA, I/O AD23 VCCI AF6 I/O B15 I/O AD24 I/O AF7 I/O B16 I/O AD25 I/O AF8 I/O B17 I/O AD26 I/O AF9 I/O B18 VCCI AE1 NC AF10 I/O B19 I/O AE2 I/O AF11 I/O B20 I/O AE3 I/O AF12 NC B21 I/O AE4 I/O AF13 HCLK B22 I/O AE5 I/O AF14 QCLKB, I/O B23 I/O AE6 I/O AF15 I/O B24 I/O AE7 I/O AF16 I/O B25 I/O AE8 I/O AF17 I/O B26 NC AE9 I/O AF18 I/O C1 I/O AE10 I/O AF19 I/O C2 I/O AE11 I/O AF20 I/O C3 I/O AE12 I/O AF21 I/O C4 I/O AE13 I/O AF22 I/O C5 I/O AE14 I/O AF23 I/O C6 VCCI AE15 I/O AF24 I/O C7 I/O AE16 I/O AF25 NC C8 I/O AE17 I/O AF26 NC C9 VCCI AE18 I/O B1 NC C10 I/O AE19 I/O B2 NC C11 I/O AE20 I/O B3 I/O C12 I/O AE21 I/O B4 I/O C13 PRA, I/O AE22 I/O B5 I/O C14 I/O AE23 I/O B6 I/O C15 QCLKD, I/O AE24 I/O B7 I/O C16 I/O AE25 NC B8 I/O C17 I/O AE26 NC B9 I/O C18 I/O v2.2 21 484-Pin FBGA 22 484-Pin FBGA 484-Pin FBGA Pin Number A54SX72A Function Pin Number A54SX72A Function Pin Number A54SX72A Function C19 I/O E2 I/O G1 I/O C20 VCCI E3 I/O G2 I/O C21 I/O E4 I/O G3 I/O C22 I/O E5 GND G4 I/O C23 I/O E6 TDI, IO G5 I/O C24 I/O E7 I/O G22 I/O C25 I/O E8 I/O G23 VCCA C26 I/O E9 I/O G24 I/O D1 I/O E10 I/O G25 I/O D2 TMS E11 I/O G26 I/O D3 I/O E12 I/O H1 I/O D4 VCCI E13 VCCA H2 I/O D5 I/O E14 CLKB, I/O H3 I/O D6 TCK, I/O E15 I/O H4 I/O D7 I/O E16 I/O H5 I/O D8 I/O E17 I/O H22 I/O D9 I/O E18 I/O H23 I/O D10 I/O E19 I/O H24 I/O D11 I/O E20 I/O H25 I/O D12 QCLKC, I/O E21 I/O H26 I/O D13 I/O E22 I/O J1 I/O D14 I/O E23 I/O J2 I/O D15 I/O E24 I/O J3 I/O D16 I/O E25 VCCI J4 I/O D17 I/O E26 GND J5 I/O D18 I/O F1 VCCI J22 I/O D19 I/O F2 I/O J23 I/O D20 I/O F3 I/O J24 I/O D21 VCCI F4 I/O J25 VCCI D22 GND F5 I/O J26 I/O D23 I/O F22 I/O K1 I/O D24 I/O F23 I/O K2 VCCI D25 I/O F24 I/O K3 I/O D26 I/O F25 I/O K4 I/O E1 I/O F26 I/O K5 VCCA v2.2 Package Pin Assignments 484-Pin FBGA 484-Pin FBGA 484-Pin FBGA Pin Number A54SX72A Function Pin Number A54SX72A Function Pin Number A54SX72A Function K10 GND M5 I/O P4 I/O K11 GND M10 GND P5 VCCA K12 GND M11 GND P10 GND K13 GND M12 GND P11 GND K14 GND M13 GND P12 GND K15 GND M14 GND P13 GND K16 GND M15 GND P14 GND K17 GND M16 GND P15 GND K22 I/O M17 GND P16 GND K23 I/O M22 I/O P17 GND K24 NC M23 I/O P22 I/O K25 I/O M24 I/O P23 I/O K26 I/O M25 I/O P24 VCCI L1 I/O M26 I/O P25 I/O L2 I/O N1 I/O P26 I/O L3 I/O N2 VCCI R1 I/O L4 I/O N3 I/O R2 I/O L5 I/O N4 I/O R3 I/O L10 GND N5 I/O R4 I/O L11 GND N10 GND R5 TRST, I/O L12 GND N11 GND R10 GND L13 GND N12 GND R11 GND L14 GND N13 GND R12 GND L15 GND N14 GND R13 GND L16 GND N15 GND R14 GND L17 GND N16 GND R15 GND L22 I/O N17 GND R16 GND L23 I/O N22 VCCA R17 GND L24 I/O N23 I/O R22 I/O L25 I/O N24 I/O R23 I/O L26 I/O N25 I/O R24 I/O M1 NC N26 NC R25 I/O M2 I/O P1 I/O R26 I/O M3 I/O P2 I/O T1 I/O M4 I/O P3 I/O T2 I/O v2.2 23 484-Pin FBGA 24 484-Pin FBGA Pin Number A54SX72A Function Pin Number A54SX72A Function T3 I/O V2 I/O T4 I/O V3 I/O T5 I/O V4 I/O T10 GND V5 I/O T11 GND V22 VCCA T12 GND V23 I/O T13 GND V24 I/O T14 GND V25 I/O T15 GND V26 I/O T16 GND W1 I/O T17 GND W2 I/O T22 I/O W3 I/O T23 I/O W4 I/O T24 I/O W5 I/O T25 I/O W22 I/O T26 I/O W23 VCCA U1 I/O W24 I/O U2 VCCI W25 I/O U3 I/O W26 I/O U4 I/O Y1 I/O U5 I/O Y2 I/O U10 GND Y3 I/O U11 GND Y4 I/O U12 GND Y5 I/O U13 GND Y22 I/O U14 GND Y23 I/O U15 GND Y24 VCCI U16 GND Y25 I/O U17 GND Y26 I/O U22 I/O U23 I/O U24 I/O U25 VCCI U26 I/O V1 I/O v2.2 Datasheet Information List of Changes The following table lists critical changes that were made in the current version of the document. Previous version Changes in current version (v2.2) Page v2.1 RoHS information was added to the "Ordering Information". ii May 2006 The Product Plan was removed because all of the devices have been fully characterized. N/A The "Dedicated Mode" section was updated. 1-8 The "Development Tool Support" section was updated. 1-11 The "Programming" section was updated. 1-11 1. Note 2 was added to Table 1-7 • Absolute Maximum Ratings 1-13 v2.0 A note was added to the "Ordering Information". ii September 2003 Note 1 was added to Table 1-8 • Recommended Operating Conditions. 1-13 Datasheet Categories In order to provide the latest information to designers, some datasheets are published before data has been fully characterized. Datasheets are designated as “Product Brief,” “Advanced,” “Production,” and “Datasheet Supplement.” The definition of these categories are as follows: Product Brief The product brief is a summarized version of a datasheet (advanced or production) containing general product information. This brief gives an overview of specific device and family information. Advanced This datasheet version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production. Unmarked (production) This datasheet version contains information that is considered to be final. Datasheet Supplement The datasheet supplement gives specific device information for a derivative family that differs from the general family datasheet. The supplement is to be used in conjunction with the datasheet to obtain more detailed information and for specifications that do not differ between the two families. Export Administration Regulations (EAR) The product described in this datasheet is subject to the Export Administration Regulations (EAR). They could require an approved export license prior to export from the United States. An export includes release of product or disclosure of technology to a foreign national inside or outside the United States. v2.2 1 Actel and the Actel logo are registered trademarks of Actel Corporation. All other trademarks are the property of their owners. http://www.actel.com Actel Corporation Actel Europe Ltd. Actel Japan www.jp.actel.com Actel Hong Kong www.actel.com.cn 2061 Stierlin Court Mountain View, CA 94043-4655 USA Phone 650.318.4200 Fax 650.318.4600 Dunlop House, Riverside Way Camberley, Surrey GU15 3YL United Kingdom Phone +44 (0) 1276 401 450 Fax +44 (0) 1276 401 490 EXOS Ebisu Bldg. 4F 1-24-14 Ebisu Shibuya-ku Tokyo 150 Japan Phone +81.03.3445.7671 Fax +81.03.3445.7668 Suite 2114, Two Pacific Place 88 Queensway, Admiralty Hong Kong Phone +852 2185 6460 Fax +852 2185 6488 51700026-2/6.06