FREESCALE PCIMX515CJM6C

Freescale Semiconductor
Data Sheet: Advance Information
IMX51
Package Information
Plastic Package
Case 2058 13 x 13 mm, 0.5 mm pitch
Case 2017 19 x 19 mm, 0.8 mm pitch
i.MX51 Applications
Processors for Consumer and
Industrial Products
Ordering Information
See Table 1 on page 3 for ordering information.
1
Introduction
The i.MX51 multimedia applications processors
represent Freescale Semiconductor’s latest addition to a
growing family of multimedia-focused products offering
high performance processing optimized for lowest
power consumption.
The i.MX51 processors feature Freescale’s advanced
and power-efficient implementation of the ARM Cortex
A8™ core, which operates at speeds as high as
800 MHz. Up to 200 MHz DDR2 and mobile DDR
DRAM clock rates are supported. These devices are
suitable for applications such as the following:
• Netbooks (web tablets)
• Nettops (internet desktop devices)
• Mobile internet devices (MID)
• Portable media players (PMP)
• Portable navigation devices (PND)
• High-end PDAs
• Gaming consoles
• Automotive navigation and entertainment (see
automotive data sheet, IMX51AEC)
1
2
3
4
5
This document contains information on a new product. Specifications and information herein
are subject to change without notice.
© Freescale Semiconductor, Inc., 2009. All rights reserved.
Preliminary—Subject to Change Without Notice
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Special Signal Considerations. . . . . . . . . . . . . . . . 12
Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1 Chip-Level Conditions . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Supply Power-Up/Power-Down Requirements and
Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 I/O DC Parameters . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Output Buffer Impedance Characteristics . . . . . . . 28
3.5 I/O AC Parameters . . . . . . . . . . . . . . . . . . . . . . . . 31
3.6 Module Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.7 External Peripheral Interfaces . . . . . . . . . . . . . . . . 60
Package Information and Contact Assignments . . . . . . 137
4.1 13 × 13 mm Package Information . . . . . . . . . . . . 137
4.2 19 × 19 mm Package Information . . . . . . . . . . . . 156
4.3 13 × 13 mm, 0.5 Pitch Ball Map . . . . . . . . . . . . . 174
4.4 19 x 19 mm, 0.8 Pitch Ball Map. . . . . . . . . . . . . . 179
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Document Number: IMX51CEC
Rev. 1, 11/2009
Features include the following:
• Smart Speed Technology—The heart of the i.MX51 processors is a level of power management
throughout the device that enables the rich suite of multimedia features and peripherals to achieve
minimum system power consumption in both active and various low-power modes. Smart Speed
Technology enables the designer to deliver a feature-rich product that requires levels of power that
are far less than typical industry expectations.
• Applications Processor—i.MX51 processors boost the capabilities of high-tier portable
applications by providing for the ever-increasing MIPS needs of operating systems and games.
Freescale’s Dynamic Voltage and Frequency Scaling (DVFS) allows the device run at much lower
voltage and frequency with sufficient MIPS for tasks such as audio decode resulting in significant
power reduction.
• Multimedia Powerhouse—The multimedia performance of the i.MX51 processors is boosted by
a multi-level cache system and further enhanced by a Multi-Standard Hardware Video Codec,
autonomous Image Processing Unit, SD and HD720p Triple Video (TV) Encoder with triple video
DAC, Neon (including Advanced SIMD, 32-bit Single-Precision floating point support and Vector
Floating Point co-processor), and a programmable smart DMA (SDMA) controller.
• Powerful Graphics Acceleration—Graphics is the key to mobile game navigation, web
browsing, and other applications. The i.MX51 processors provide two independent, integrated
Graphics Processing Units: OpenGL ES 2.0 3D graphics accelerator (27 Mtri/s, 166 Mpix/s) and
OpenVG 1.1 2D graphics accelerator (166 Mpix/s).
• Interface Flexibility—The i.MX51 processor interface supports connection to all popular types of
external memories: DDR2, Mobile DDR, NOR Flash, PSRAM, Cellular RAM, NAND Flash
(MLC and SLC) and OneNAND. Designers seeking to provide products that deliver a rich
multimedia experience find a full suite of on-chip peripherals: LCD controller and CMOS sensor
interface, High-Speed USB On-The-Go with PHY, and three High-Speed USB hosts, multiple
expansion card ports (High-Speed MMC/SDIO Host and others), 10/100 Ethernet controller, and
a variety of other popular interfaces (PATA, UART, I2C, I2S serial audio, and SIM card, among
others).
• Increased Security—Because the need for advanced security for mobile devices continues to
increase, the i.MX51 processors deliver hardware-enabled security features that enable secure
e-commerce, digital rights management (DRM), information encryption, secure boot, and secure
software downloads. For detailed information about the MX51 security features contact your
Freescale representative.
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
2
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Introduction
Introduction
Ordering Information
Table 1 provides the ordering information.
Table 1. Ordering Information
Part Number1, 2
Mask Set
Features
Case
Temperature
Range (°C)
Package 3
PCIMX512CJM6C
M77X
No hardware video codecs
No hardware graphics accelerators
–40 to 105
19 x 19 mm, 0.8 mm pitch BGA
Case 2017
MCIMX512DJM8C
M77X
No hardware video codecs
No hardware graphics accelerators
–20 to 85
19 x 19 mm, 0.8 mm pitch BGA
Case 2017
PCIMX513CJM6C
M77X
No hardware graphics accelerators
–40 to 105
19 x 19 mm, 0.8 mm pitch BGA
Case 2017
MCIMX513DJM8C
M77X
No hardware graphics accelerators
–20 to 85
19 x 19 mm, 0.8 mm pitch BGA
Case 2017
PCIMX515CJM6C
M77X
Full specification
–40 to 105
19 x 19 mm, 0.8 mm pitch BGA
Case 2017
MCIMX515DJM8C
M77X
Full specification
–20 to 85
19 x 19 mm, 0.8 mm pitch BGA
Case 2017
MCIMX512DVK8C!
M77X
No hardware video codecs
No hardware graphics accelerators
–20 to 85
13 x 13 mm, 0.5 mm pitch BGA
Case 2058
MCIMX513DVK8C!
M77X
No hardware graphics accelerators
–20 to 85
13 x 13 mm, 0.5 mm pitch BGA
Case 2058
MCIMX515DVK8C!
M77X
Full specification
–20 to 85
13 x 13 mm, 0.5 mm pitch BGA
Case 2058
MCIMX511DVK8C!
M77X
Full specification plus Macrovision copy
protection
–20 to 85
13 x 13 mm, 0.5 mm pitch BGA
Case 2058
1
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers
indicated here currently are not available from Freescale for import or sale in the United States prior to September 2010:
Indicated by the icon (!)
2 Part numbers with a PC prefix indicate non-production engineering parts.
3 Case 2017 and Case 2058 are RoHS compliant, lead-free, MSL = 3.
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
3
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
1.1
Introduction
Block Diagram
NOR/Nand Battery Ctrl
Device
Flash
DDR
Memory
Digital
Audio
USB
Dev/Host
USB PHY
External
Memory I/F
Camera 1
Camera 2
LCD Display 1
LCD Display 2
TV-Out
Figure 1 shows the functional modules of the processor.
ATA HDD
Application Processor Domain (AP)
TV Encoder
Image Processing
Subsystem
USB OTG +
3 HS Ports
AP Peripherals
eCSPI (2)
CSPI
Ethernet
Smart DMA
(SDMA)
UART (3)
AUDMUX
GPS
Internal
RAM
(128 Kbytes)
SDMA Peripherals
eSDHC (4)
SSI
UART
eCSPI (1 of 2)
SPDIF Tx
SIM
FEC
P-ATA
Boot
ROM
RF/IF ICs
Security
SAHARA
Lite
RTIC
AXI and AHB Switch Fabric
SPBA
SCC
ARM Cortex A8
Platform
I2C(2),HSI 2C
ARM Cortex A8
PWM (2)
1-WIRE
Neon and VFP
IIM
L1 I/D cache
IOMUXC
L2 cache
KPP
ETM, CTI0,1
GPIOx32 (4)
SJC
SSI (3)
Video
Proc. Unit
(VPU)
FIRI
Debug
3D Graphics
Proc Unit
(GPU)
SRTC
CSU
DAP
TPIU
SIM
CTI (2)
TZIC
Fuse Box
Graphics
Memory
(128 Kbytes)
Timers
WDOG (2)
Clock and Reset
PLL (3)
CCM
Audio/Power
Management
GPC
GPT
2D Graphics
Proc Unit
(GPU2D)
EPIT (2)
JTAG
IrDA
XVR
Bluetooth
WLAN
USB-OTG
XVR
MMC/SDIO
SRC
XTALOSC
CAMP (2)
Keypad
Access.
Conn.
Figure 1. Functional Block Diagram
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
4
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
1.2
Features
Features
The i.MX51 processor contains a large number of digital and analog modules that are described in Table 2.
Table 2. i.MX51 Digital and Analog Modules
Block
Mnemonic
1-WIRE
Block Name
1-Wire
Interface
Subsystem
Connectivity
Peripherals
Brief Description
1-Wire support provided for interfacing with an on-board EEPROM, and smart
battery interfaces, for example: Dallas DS2502.
ARM Cortex
A8™
ARM Cortex ARM
A8™ Platform
The ARM Cortex A8™ Core Platform consists of the ARM Cortex A8™
processor version r2p5 (with TrustZone) and its essential sub-blocks. It contains
the Level 2 Cache Controller, 32-Kbyte L1 instruction cache, 32-Kbyte L1 data
cache, and a 256-Kbyte L2 cache. The platform also contains an Event Monitor
and Debug modules. It also has a NEON co-processor with SIMD media
processing architecture, register file with 32 × 64-bit general-purpose registers,
an Integer execute pipeline (ALU, Shift, MAC), dual, single-precision floating
point execute pipeline (FADD, FMUL), load/store and permute pipeline and a
Non-Pipelined Vector Floating Point (VFP) co-processor (VFPv3).
Audio
Subsystem
Audio
Subsystem
Multimedia
Peripherals
The elements of the audio subsystem are three Synchronous Serial Interfaces
(SSI1-3), a Digital Audio Mux (AUDMUX), and Digital Audio Out (SPDIF TX).
See the specific interface listings in this table.
Digital Audio
Mux
Multimedia
Peripherals
The AUDMUX is a programmable interconnect for voice, audio, and
synchronous data routing between host serial interfaces (for example, SSI1,
SSI2, and SSI3) and peripheral serial interfaces (audio and voice codecs). The
AUDMUX has seven ports (three internal and four external) with identical
functionality and programming models. A desired connectivity is achieved by
configuring two or more AUDMUX ports.
AUDMUX
CCM
GPC
SRC
These modules are responsible for clock and reset distribution in the system,
Clock Control Clocks,
and also for system power management. The modules include three PLLs and
Resets, and
Module
Global Power Power Control a Frequency Pre-Multiplier (FPM).
Controller
System Reset
Controller
CSPI-1,
eCSPI-2
eCSPI-3
Configurable
SPI,
Enhanced
CSPI
Connectivity
Peripherals
Full-duplex enhanced Synchronous Serial Interface, with data rate up to
66.5Mbit/s (for eCSPI, master mode). It is configurable to support Master/Slave
modes, four chip selects to support multiple peripherals.
CSU
Central
Security Unit
Security
The Central Security Unit (CSU) is responsible for setting comprehensive
security policy within the i.MX51A platform, and for sharing security information
between the various security modules. The Security Control Registers (SCR) of
the CSU are set during boot time by the High Assurance Boot (HAB) code and
are locked to prevent further writing.
Debug
System
System
Control
The Debug System provides real-time trace debug capability of both instructions
and data. It supports a trace protocol that is an integral part of the ARM Real
Time Debug solution (RealView). Real-time tracing is controlled by specifying a
set of triggering and filtering resources, which include address and data
comparators, cross-system triggers, counters, and sequencers.
Debug
System
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
5
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
2
Features
Block
Mnemonic
EMI
EPIT-1
EPIT-2
eSDHC-1
eSDHC-2
eSDHC-3
Block Name
Subsystem
Brief Description
External
Memory
Interface
Connectivity
Peripherals
The EMI is an external and internal memory interface. It performs arbitration
between multi-AXI masters to multi-memory controllers, divided into four major
channels: fast memories (Mobile DDR, DDR2) channel, slow memories
(NOR-FLASH/PSRAM/NAND-FLASH etc.) channel, internal memory (RAM,
ROM) channel and graphical memory (GMEM) Channel.
In order to increase the bandwidth performance, the EMI separates the buffering
and the arbitration between different channels so parallel accesses can occur.
By separating the channels, slow accesses do not interfere with fast accesses.
EMI features:
• 64-bit and 32-bit AXI ports
• Enhanced arbitration scheme for fast channel, including dynamic master
priority, and taking into account which pages are open or closed and what
type (Read or Write) was the last access
• Flexible bank interleaving
• Supports 16/32-bit Mobile DDR up to 200 MHz SDCLK (mDDR400)
• Supports 16/32-bit (Non-Mobile) DDR2 up to 200 MHz SDCLK (DDR2-400)
• Supports up to 2 Gbit Mobile DDR memories
• Supports 16-bit (in muxed mode only) PSRAM memories (sync and async
operating modes), at slow frequency, for debugging purposes
• Supports 32-bit NOR-Flash memories (only in muxed mode), at slow
frequencies for debugging purposes
• Supports 4/8-ECC, page sizes of 512 Bytes, 2 KBytes and 4 KBytes
• NAND-Flash (including MLC)
• Multiple chip selects
• Enhanced Mobile DDR memory controller, supporting access latency hiding
• Supports watermarking for security (Internal and external memories)
• Supports Samsung OneNAND™ (only in muxed I/O mode)
Enhanced
Periodic
Interrupt
Timer
Timer
Peripherals
Each EPIT is a 32-bit “set and forget” timer that starts counting after the EPIT is
enabled by software. It is capable of providing precise interrupts at regular
intervals with minimal processor intervention. It has a 12-bit prescaler for division
of input clock frequency to get the required time setting for the interrupts to occur,
and counter values can be programmed on the fly.
Connectivity
Enhanced
Peripherals
Multi-Media
Card/
Secure Digital
Host
Controller
The features of the eSDHC module, when serving as host, include the following:
• Conforms to SD Host Controller Standard Specification version 2.0
• Compatible with the MMC System Specification version 4.2
• Compatible with the SD Memory Card Specification version 2.0
• Compatible with the SDIO Card Specification version 1.2
• Designed to work with SD Memory, miniSD Memory, SDIO, miniSDIO, SD
Combo, MMC and MMC RS cards
• Configurable to work in one of the following modes:
—SD/SDIO 1-bit, 4-bit
—MMC 1-bit, 4-bit, 8-bit
• Full-/high-speed mode
• Host clock frequency variable between 32 kHz to 52 MHz
• Up to 200 Mbps data transfer for SD/SDIO cards using four parallel data lines
• Up to 416 Mbps data transfer for MMC cards using eight parallel data lines
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
6
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Table 2. i.MX51 Digital and Analog Modules (continued)
Features
Block
Mnemonic
Block Name
Subsystem
Brief Description
eSDHC-4
(muxed with
P-ATA)
Connectivity
Enhanced
Peripherals
Multi-Media
Card/
Secure Digital
Host
Controller
Can be configured as eSDHC (see above) and is muxed with the P-ATA
interface.
FEC
Fast Ethernet Connectivity
Controller
Peripherals
The Ethernet Media Access Controller (MAC) is designed to support both
10 Mbps and 100 Mbps ethernet/IEEE Std 802.3™ networks. An external
transceiver interface and transceiver function are required to complete the
interface to the media.
FIRI
Fast
Infra-Red
Interface
Connectivity
Peripherals
Fast Infra-Red Interface
General
Purpose I/O
Modules
System
Control
Peripherals
These modules are used for general purpose input/output to external ICs. Each
GPIO module supports up to 32 bits of I/O.
GPT
General
Purpose
Timer
Timer
Peripherals
Each GPT is a 32-bit “free-running” or “set and forget” mode timer with a
programmable prescaler and compare and capture register. A timer counter
value can be captured using an external event, and can be configured to trigger
a capture event on either the leading or trailing edges of an input pulse. When
the timer is configured to operate in “set and forget” mode, it is capable of
providing precise interrupts at regular intervals with minimal processor
intervention. The counter has output compare logic to provide the status and
interrupt at comparison. This timer can be configured to run either on an external
clock or on an internal clock.
GPU
Graphics
Processing
Unit
Multimedia
Peripherals
The GPU provides hardware acceleration for 2D and 3D graphics
algorithms with sufficient processor power to run desk-top quality
interactive graphics applications on displays up to HD720
resolution. It supports color representation up to 32 bits per pixel.
The GPU with its 128 KByte memory enables high performance mobile 3D and
2D vector graphics at rates up to 27 Mtriangles/sec, 166 M pixels/sec, 664
Mpixels/sec (Z).
GPIO-1
GPIO-2
GPIO-3
GPIO-4
GPU2D
Multimedia
Graphics
Peripherals
Processing
Unit-2D Ver. 1
The GPU2D provides hardware acceleration for 2D graphic
algorithms with sufficient processor power to run desk-top quality
interactive graphics applications on displays up to HD720 resolution.
I2C-1
I2C-2
HS-I2C
I2C Interface
I2C provides serial interface for controlling peripheral devices. Data rates of up
to 400 Kbps are supported by two of the I2C ports. Data rates of up to 3.4 Mbps
(I2C Specification v2.1) are supported by the HS-I2C.
Note: See the errata for the HS-I2C in the i.MX51 Chip Errata. The two standard
I2C modules have no errata.
Connectivity
Peripherals
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
7
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Table 2. i.MX51 Digital and Analog Modules (continued)
Features
Block
Mnemonic
IIM
IOMUXC
IPU
Block Name
Subsystem
Brief Description
IC
Identification
Module
Security
The IC Identification Module (IIM) provides an interface for reading,
programming, and/or overriding identification and control information stored in
on-chip fuse elements. The module supports electrically programmable poly
fuses (e-Fuses). The IIM also provides a set of volatile software-accessible
signals that can be used for software control of hardware elements not requiring
non-volatility. The IIM provides the primary user-visible mechanism for
interfacing with on-chip fuse elements. Among the uses for the fuses are unique
chip identifiers, mask revision numbers, cryptographic keys, JTAG secure mode,
boot characteristics, and various control signals requiring permanent
non-volatility. The IIM also provides up to 28 volatile control signals. The IIM
consists of a master controller, a software fuse value shadow cache, and a set
of registers to hold the values of signals visible outside the module.
IOMUX
Control
System
Control
Peripherals
This module enables flexible I/O multiplexing. Each I/O pad has default as well
as several alternate functions. The alternate functions are software configurable.
Image
Processing
Unit
Multimedia
Peripherals
IPU enables connectivity to displays and image sensors, relevant processing
and synchronization. It supports two display ports and two camera ports,
through the following interfaces.
• Legacy Interfaces
• Analog TV interfaces (through a TV encoder bridge)
The processing includes:
• Support for camera control
• Image enhancement: color adjustment and gamut mapping, gamma
correction and contrast enhancement, sharpening and noise reduction
• Video/graphics combining
• Support for display backlight reduction
• Image conversion—resizing, rotation, inversion and color space conversion
• Synchronization and control capabilities, allowing autonomous operation.
• Hardware de-interlacing support
Keypad Port
Connectivity
Peripherals
The KPP supports an 8 × 8 external keypad matrix. The KPP features are as
follows:
• Open drain design
• Glitch suppression circuit design
• Multiple keys detection
• Standby key press detection
P-ATA (Muxed Parallel ATA
with
eSDHC-4
Connectivity
Peripherals
The P-ATA block is an AT attachment host interface. Its main use is to interface
with hard disc drives and optical disc drives. It interfaces with the ATA-5
(UDMA-4) compliant device over a number of ATA signals. It is possible to
connect a bus buffer between the host side and the device side. This is muxed
with eSDHC-4 interfaces.
KPP
PWM-1
PWM-2
Pulse Width
Modulation
Connectivity
Peripherals
The pulse-width modulator (PWM) has a 16-bit counter and is optimized to
generate sound from stored sample audio images. It can also generate tones.
The PWM uses 16-bit resolution and a 4x16 data FIFO to generate sound.
RAM
128 Kbytes
Internal RAM
Internal
Memory
Unified RAM, can be split between Secure RAM and Non-Secure RAM
ROM
36 Kbytes
Boot ROM
Internal
Memory
Supports secure and regular Boot Modes
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
8
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Table 2. i.MX51 Digital and Analog Modules (continued)
Features
Block
Mnemonic
RTIC
Block Name
SDMA
SIM
Brief Description
Security
Protecting read-only data from modification is one of the basic elements in
trusted platforms. The Run-Time Integrity Checker v3 (RTICv3) module, is a data
monitoring device responsible for ensuring that memory content is not corrupted
during program execution. The RTICv3 mechanism periodically checks the
integrity of code or data sections during normal OS run-time execution without
interfering with normal operation. The RTICv3’s purpose is to ensure the integrity
of the peripheral memory contents, protect against unauthorized external
memory elements replacement, and assist with boot authentication.
Security
SAHARA (Symmetric/Asymmetric Hashing and Random Accelerator) is a
security co-processor. It implements symmetric encryption algorithms, (AES,
DES, 3DES, and RC4), public key algorithms, hashing algorithms (MD5, SHA-1,
SHA-224, and SHA-256), and a hardware random number generator. It has a
slave IP bus interface for the host to write configuration and command
information, and to read status information. It also has a DMA controller, with an
AHB bus interface, to reduce the burden on the host to move the required data
to and from memory.
Security
Controller
Security
The Security Controller is a security assurance hardware module designed to
safely hold sensitive data such as encryption keys, digital right management
(DRM) keys, passwords, and biometrics reference data. The SCC monitors the
system’s alert signal to determine if the data paths to and from it are
secure—that is, cannot be accessed from outside of the defined security
perimeter. If not, it erases all sensitive data on its internal RAM. The SCC also
features a Key Encryption Module (KEM) that allows non-volatile (external
memory) storage of any sensitive data that is temporarily not in use. The KEM
utilizes a device-specific hidden secret key and a symmetric cryptographic
algorithm to transform the sensitive data into encrypted data.
Smart Direct
Memory
Access
System
Control
Peripherals
The SDMA is multi-channel flexible DMA engine. It helps in maximizing system
performance by off loading various cores in dynamic data routing.
The SDMA features list is as follows:
• Powered by a 16-bit instruction-set micro-RISC engine
• Multi-channel DMA supports up to 32 time-division multiplexed DMA channels
• 48 events with total flexibility to trigger any combination of channels
• Memory accesses including linear, FIFO, and 2D addressing
• Shared peripherals between ARM Cortex A8™ and SDMA
• Very fast context-switching with two-level priority-based preemptive
multi-tasking
• DMA units with auto-flush and prefetch capability
• Flexible address management for DMA transfers (increment, decrement, and
no address changes on source and destination address)
• DMA ports can handle unit-directional and bi-directional flows (copy mode)
• Up to 8-word buffer for configurable burst transfers for EMI
• Support of byte-swapping and CRC calculations
• A library of scripts and API are available
Subscriber
Identity
Module
Interface
Connectivity
Peripherals
The SIM is an asynchronous interface with additional features for allowing
communication with Smart Cards conforming to the ISO 7816 specification. The
SIM is designed to facilitate communication to SIM cards or pre-paid phone
cards.
Real Time
Integrity
Checker
SAHARA Lite SAHARA
security
accelerator
Lite
SCC
Subsystem
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
9
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Table 2. i.MX51 Digital and Analog Modules (continued)
Features
Block
Mnemonic
SJC
Block Name
Secure JTAG
Interface
Subsystem
System
Control
Peripherals
Brief Description
JTAG manipulation is a known hacker’s method of executing unauthorized
program code, getting control over secure applications, and running code in
privileged modes. The JTAG port provides a debug access to several hardware
blocks including the ARM processor and the system bus.
The JTAG port must be accessible during platform initial laboratory bring-up,
manufacturing tests and troubleshooting, as well as for software debugging by
authorized entities. However, in order to properly secure the system,
unauthorized JTAG usage should be strictly forbidden.
In order to prevent JTAG manipulation while allowing access for manufacturing
tests and software debugging, the i.MX51 processor incorporates a mechanism
for regulating JTAG access. The i.MX51Secure JTAG Controller provides four
different JTAG security modes that can be selected via e-fuse configuration.
SPBA
Shared
Peripheral
Bus Arbiter
System
Control
Peripherals
SPBA (Shared Peripheral Bus Arbiter) is a two-to-one IP bus interface (IP bus)
arbiter.
SPDIF
Sony Philips
Digital
Interface
Multimedia
Peripherals
A standard digital audio transmission protocol developed jointly by the Sony and
Philips corporations. Only the transmitter functionality is supported.
SRTC
Secure Real
Time Clock
Security
The SRTC incorporates a special System State Retention Register (SSRR) that
stores system parameters during system shutdown modes. This register and all
SRTC counters are powered by dedicated supply rail NVCC_SRTC_POW. The
NVCC_SRTC_POW can be energized even if all other supply rails are shut
down. This register is helpful for storing warm boot parameters. The SSRR also
stores the system security state. In case of a security violation, the SSRR mark
the event (security violation indication).
SSI-1
I2S/SSI/AC97 Connectivity
Interface
Peripherals
The SSI is a full-duplex synchronous interface used on the i.MX51 processor to
provide connectivity with off-chip audio peripherals. The SSI supports a wide
variety of protocols (SSI normal, SSI network, I2S, and AC-97), bit depths (up to
24 bits per word), and clock/frame sync options.
Each SSI has two pairs of 8x24 FIFOs and hardware support for an external
DMA controller in order to minimize its impact on system performance. The
second pair of FIFOs provides hardware interleaving of a second audio stream,
which reduces CPU overhead in use cases where two timeslots are being used
simultaneously.
TVE
TV Encoder
Multimedia
The TVE is implemented in conjunction with the Image Processing Unit (IPU)
allowing handheld devices to display captured still images and
video directly on a TV or LCD projector. It supports the following analog video
outputs: composite, S-video, and component video up to HD720p/1080i.
TZIC
TrustZone
Aware
Interrupt
Controller
ARM/Control
The TrustZone Interrupt Controller (TZIC) collects interrupt requests from all
i.MX51A sources and routes them to the ARM core. Each interrupt can be
configured as a normal or a secure interrupt. Software Force Registers and
software Priority Masking are also supported.
SSI-2
SSI-3
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
10
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Table 2. i.MX51 Digital and Analog Modules (continued)
Features
Block
Mnemonic
Block Name
Subsystem
Brief Description
UART
Interface
Connectivity
Peripherals
Each of the UART modules supports the following serial data transmit/receive
protocols and configurations:
• 7 or 8 bit data words, 1 or 2 stop bits, programmable parity (even, odd, or
none)
• Programmable baud rates up to 4 MHz. This is a higher max baud rate relative
to the 1.875 MHz, which is stated by the TIA/EIA-232-F standard and previous
Freescale UART modules.
• 32-byte FIFO on Tx and 32 half-word FIFO on Rx supporting auto-baud
• IrDA 1.0 support (up to SIR speed of 115200 bps)
• Option to operate as 8-pins full UART, DCE, or DTE
USB
USB 2.0
High-Speed
OTG and 3x
Hosts
Connectivity
Peripherals
USB-OTG contains one high-speed OTG module, which is internally connected
to the on-chip HS USB PHY. There are an additional three high-speed host
modules that require external USB PHYs.
VPU
Video
Processing
Unit
Multimedia
Peripherals
A high-performing video processing unit (VPU), which covers many SD-level
video decoders and SD-level encoders as a multi-standard video codec engine
as well as several important video processing such as rotation and mirroring.
VPU Features:
• MPEG-4 decode: 720p, 30 fps, simple profile and advanced simple profile
• MPEG-4 encode: D1, 25/30 fps, simple profile
• H.263 decode: 720p, 30 fps, profile 3
• H.263 encode: D1, 25/30 fps, profile 3
• H.264 decode: 720p, 30 fps, baseline, main, and high profile
• H.264 encode: D1, 25/30 fps, baseline profile
• MPEG-2 decode: 720p, 30 fps, MP-ML
• MPEG-2 encode: D1, 25/30 fps, MP-ML (in software with partial acceleration
in hardware)
• VC-1 decode: 720p, 30 fps, simple, main, and advanced profile
• DivX decode: 720p, 30 fps versions 3, 4, and 5
• RV10 decode: 720p, 30 fps
• MJPEG decode: 32 Mpix/s
• MJPEG encode: 64 Mpix/s
WDOG-1
Watch Dog
Timer
Peripherals
The Watch Dog Timer supports two comparison points during each counting
period. Each of the comparison points is configurable to evoke an interrupt to the
ARM core, and a second point evokes an external event on the WDOG line.
WDOG-2
(TZ)
Watch Dog
(TrustZone)
Timer
Peripherals
The TrustZone Watchdog (TZ WDOG) timer module protects against TrustZone
starvation by providing a method of escaping normal mode and forcing a switch
to the TZ mode. TZ starvation is a situation where the normal OS prevents
switching to the TZ mode. This situation should be avoided, as it can
compromise the system’s security. Once the TZ WDOG module is activated, it
must be serviced by TZ software on a periodic basis. If servicing does not take
place, the timer times out. Upon a time-out, the TZ WDOG asserts a TZ mapped
interrupt that forces switching to the TZ mode. If it is still not served, the TZ
WDOG asserts a security violation signal to the CSU. The TZ WDOG module
cannot be programmed or deactivated by a normal mode SW.
XTALOSC
Crystal
Oscillator I/F
Clocking
The XTALOSC module allows connectivity to an external crystal.
UART-1
UART-2
UART-3
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
11
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Table 2. i.MX51 Digital and Analog Modules (continued)
Features
Special Signal Considerations
Table 3 lists special signal considerations for the i.MX51. The signal names are listed in alphabetical order.
The package contact assignments are found in Section 4, “Package Information and Contact
Assignments.” Signal descriptions are defined in the i.MX51 reference manual.
Table 3. Special Signal Considerations
Signal Name
Remarks
CKIH1, CKIH2
Inputs feeding CAMPs (Clock Amplifiers) that have on-chip ac coupling precluding the need for
external coupling capacitors. The CAMPs are enabled by default, but the main clocks feeding the
on-chip clock tree are sourced from XTAL/EXTAL by default. Optionally, the use of a low jitter
external oscillators to feed CKIH1 or CKIH2 (while not required) can be an advantage if low jitter
or special frequency clock sources are required by modules driven by CKIH1 or CKIH2. See CCM
chapter in the i.MX51 reference manual for details on the respective clock trees.
After initialization, the CAMPs could be disabled (if not used) by CCM registers (CCR CAMPx_EN
field). If disabled, the on-chip CAMP output is low; the input is irrelevant. If unused, the user should
tie CKIH1/CKIH2 to GND for best practice.
CLK_SS
Clock Source Select is the input that selects the default reference clock source providing input to
the DPLLs. To use a reference in the megahertz range per Table 8, tie CLK_SS to GND to select
EXTAL/XTAL. To use a reference in the kilohertz range per Table 59, tie CLK_SS to NVCC_PER3
to select CKIL. After initialization, the reference clock source can be changed (initial setting is
overwritten).
Note: Because this input has a keeper circuit, Freescale recommends tying this input to directly
to GND or NVCC_PER3. If a series resistor is used its value must be ≤ 4.7 kΩ.
COMP
The user should bypass this reference with an external 0.1 µ F capacitor tied to GND. If TV OUT is
not used, float the COMP contact and ensure the DACs are powered down.
Note: Previous engineering samples required this reference to be bypassed to a positive supply.
FASTR_ANA and
FASTR_DIG
These signals are reserved for Freescale manufacturing use only. User must tie both connections
to GND.
GPANAIO
This signal is reserved for Freescale manufacturing use only. Users should float this output.
GPIO_NAND
This is a general-purpose input/output (GPIO3_12) on the NVCC_NANDF_A power rail.
IOB, IOG, IOR, IOB_BACK, These signals are analog TV outputs that should be tied to GND when not being used.
IOG_BACK, and
IOR_BACK
JTAG_nnnn
The JTAG interface is summarized in Table 4. Use of external resistors is unnecessary. However,
if external resistors are used, the user must ensure that the on-chip pull-up/down configuration is
followed. For example, do not use an external pull down on an input that has on-chip pull-up.
JTAG_TDO is configured with a keeper circuit such that the floating condition is eliminated if an
external pull resistor is not present. An external pull resistor on JTAG_TDO is detrimental and
should be avoided.
JTAG_MOD is referenced as SJC_MOD in the i.MX51 Reference Manual. Both names refer to the
same signal. JTAG_MOD must be externally connected to GND for normal operation. Termination
to GND through an external pull-down resistor (such as 1 kΩ) is allowed.
NC
These signals are No Connect (NC) and should be floated by the user.
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
12
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
2.1
Features
Table 3. Special Signal Considerations (continued)
Remarks
PMIC_INT_REQ
When using the MC13892 power management IC, the PMIC_INT_REQ high-priority interrupt input
on i.MX51 should be either floated or tied to NVCC_SRTC_POW with a 4.7 kΩ to 68 kΩ resistor.
This avoids a continuous current drain on the real-time clock backup battery due to a 100 kΩ
on-chip pull-up resistor.
PMIC_INT_REQ is not used by the Freescale BSP (board support package) software. The BSP
requires that the general-purpose INT output from the MC13892 be connected to i.MX51 GPIO
input GPIO1_8 configured to cause an interrupt that is not high-priority.
The original intent was for PMIC_INT_REQ to be connected to a circuit that detects when the
battery is almost depleted. In this case, the I/O must be configured as alternate mode 0 (ALT0 =
power fail).
POR_B
This cold reset negative logic input resets all modules and logic in the IC.
Note: The POR_B input must be immediately asserted at power-up and remain asserted until
after the last power rail is at its working voltage.
RESET_IN_B
This warm reset negative logic input resets all modules and logic except for the following:
• Test logic (JTAG, IOMUXC, DAP)
• SRTC
• Memory repair – Configuration of memory repair per fuse settings
• Cold reset logic of WDOG – Some WDOG logic is only reset by POR_B. See WDOG chapter
in i.MX51 Reference Manual for details.
RREFEXT
Determines the reference current for the USB PHY bandgap reference. An external 6.04 kΩ 1%
resistor to GND is required.
SGND, SVCC, and
SVDDGP
These sense lines provide the ability to sense actual on-chip voltage levels on their respective
supplies. SGND monitors differentials of the on-chip ground versus an external power source.
SVCC monitors on-chip VCC, and SVDDGP monitors VDDGP. Freescale recommends connection
of the SVCC and SVDDGP signals to the feedback inputs of switching power-supplies or to test
points.
STR
This signal is reserved for Freescale manufacturing use. The user should float this signal.
TEST_MODE
TEST_MODE is for Freescale factory use only. This signal is internally connected to an on-chip
pull-down device. Users must either float this signal or tie it to GND.
VREF
When using VREF with DDR-2 I/O, the nominal 0.9 V reference voltage must be half of the
NVCC_EMI_DRAM supply. The user must tie VREF to a precision external resistor divider. Use a
1 kΩ 0.5% resistor to GND and a 1 kΩ 0.5% resistor to NVCC_EMI_DRAM. Shunt each resistor
with a closely-mounted 0.1 µF capacitor.
To reduce supply current, a pair of 1.5 kΩ 0.1% resistors can be used. Using resistors with
recommended tolerances ensures the ± 2% VREF tolerance (per the DDR-2 specification) is
maintained when four DDR-2 ICs plus the i.MX51 are drawing current on the resistor divider.
Note: When VREF is used with mDDR this signal must be tied to GND.
VREFOUT
This signal determines the Triple Video DAC (TVDAC) reference voltage. The user must tie
VREFOUT to an external 1.18 kΩ 1% resistor to GND.
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
13
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Signal Name
Electrical Characteristics
Table 3. Special Signal Considerations (continued)
Remarks
VREG
This regulator is no longer used and should be floated by the user.
XTAL/EXTAL
The user should tie a fundamental-mode crystal across XTAL and EXTAL. The crystal must be
rated for a maximum drive level of 100 μW or higher. An ESR (equivalent series resistance) of
80 Ω or less is recommended. Freescale BSP (Board Support Package) software requires 24 MHz
on EXTAL.
The crystal can be eliminated if an external 24 MHz oscillator is available. In this case, EXTAL must
be directly driven by the external oscillator and XTAL is floated. The EXTAL signal level must swing
from NVCC_OSC to GND. If the clock is used for USB, then there are strict jitter requirements: <
50 ps peak-to-peak below 1.2 MHz and < 100 ps peak-to-peak above 1.2 MHz for the USB PHY.
The COSC_EN bit in the CCM (Clock Control Module) must be cleared to put the on-chip oscillator
circuit in bypass mode which allows EXTAL to be externally driven. COSC_EN is bit 12 in the CCR
register of the CCM.
Table 4. JTAG Controller Interface Summary
JTAG
I/O Type
On-chip Termination
JTAG_TCK
Input
100 kΩ pull-down
JTAG_TMS
Input
47 kΩ pull-up
JTAG_TDI
Input
47 kΩ pull-up
JTAG_TDO
3-state output
Keeper
Input
47 kΩ pull-up
JTAG_DE_B
Input/open-drain output
47 kΩ pull-up
JTAG_MOD
Input
100 kΩ pull-down
JTAG_TRSTB
3
Electrical Characteristics
This section provides the device and module-level electrical characteristics for the i.MX51 processor.
3.1
Chip-Level Conditions
This section provides the device-level electrical characteristics for the IC. See Table 5 for a quick reference
to the individual tables and sections.
Table 5. i.MX51 Chip-Level Conditions
For these characteristics, …
Topic appears …
Table 6, “Absolute Maximum Ratings”
on page 15
Table 7, “Thermal Resistance Data”
on page 15
Table 8, “i.MX51 Operating Ranges”
on page 16
Table 9, “Interface Frequency”
on page 18
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
14
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Signal Name
CAUTION
Stresses beyond those listed under Table 6 may cause permanent damage to
the device. These are stress ratings only. Functional operation of the device
at these or any other conditions beyond those indicated under Table 8,
"i.MX51 Operating Ranges," on page 16 is not implied. Exposure to
absolute-maximum-rated conditions for extended periods may affect device
reliability.
Table 6. Absolute Maximum Ratings
Parameter Description
Symbol
Min
Max
Unit
VCC
–0.3
1.35
V
VDDGP
–0.3
1.15
V
Supply Voltage (UHVIO, I2C)
Supplies denoted as I/O Supply
–0.5
3.6
V
Supply Voltage (except UHVIO, I2C)
Supplies denoted as I/O Supply
–0.5
3.3
V
VBUS
—
5.25
V
Vin/Vout
–0.5
OVDD +0.31
V
Peripheral Core Supply Voltage
ARM Core Supply Voltage
USB VBUS
Input/Output Voltage Range
ESD Damage Immunity:
Vesd
V
Human Body Model (HBM)
Charge Device Model (CDM)
—
—
2000
500
TSTORAGE
–40
125
oC
Junction Temperature (MCIMX51xD - Consumer)
TJ
—
105
oC
Junction Temperature (MCIMX51xC - Industrial)
TJ
—
125
oC
Storage Temperature Range
1
The term OVDD in this section refers to the associated supply rail of an input or output. The association is described in
Table 111 on page 141 and Table 114 on page 160. The maximum range can be superseded by the DC tables.
Table 7 provides the thermal resistance data.
Table 7. Thermal Resistance Data
Rating
Junction to Case1, 19 x 19 mm package
Junction to
1
Case1,
13 x 13 mm package
Board
Symbol
Value
Unit
—
RθJC
6
°C/W
—
RθJC
6
°C/W
Rjc-x per JEDEC 51-12: The junction-to-case thermal resistance. The “x” indicates the case surface where Tcase is measured
and through which 100% of the junction power is forced to flow due to the cold plate heat sink fixture placed either at the top (T)
or bottom (B) of the package, with no board attached to the package.
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
15
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Electrical Characteristics
Electrical Characteristics
Minimum1
Nominal2
Maximum1
Unit
ARM core supply voltage
0 ≤ fARM ≤ 167 MHz
0.8
0.85
1.15
V
ARM core supply voltage
167 < fARM ≤ 800 MHz
1.05
1.1
1.15
V
ARM core supply voltage
Stop mode
0.83
0.85
1.15
V
ARM core supply voltage
0 < fARM ≤ 600 MHz
TBD
1.0
TBD
V
ARM core supply voltage
Stop mode
TBD
0.95
TBD
V
Peripheral supply voltage High Performance
Mode (HPM) The clock frequencies are derived
from AXI and AHB buses using 133 or 166 MHz
(as needed). The DDR clock rate is 200 MHz.
Note: For detailed information about the use of
133 or 166 MHz clocks, refer to the i.MX51
Reference Manual.
1.175
1.225
1.275
V
Peripheral supply voltage Low Performance
Mode (LPM) The clock frequencies are derived
from AXI and AHB buses at 44 MHz and a DDR
clock rate of DDR Clock/3. DDR2 does not
support frequencies below 125 MHz per
JEDEC.
1.00
1.05
1.275
V
Peripheral supply voltage—Stop mode
0.93
0.95
1.275
V
Peripheral supply voltage High Performance
Mode (HPM) The clock frequencies are derived
from AXI and AHB buses using 133 or 166 MHz
(as needed). The DDR clock rate is 200 MHz.
Note: For detailed information about the use of
133 or 166 MHz clocks, refer to the i.MX51
Reference Manual.
TBD
1.225
TBD
V
Peripheral supply voltage—Stop mode
TBD
0.95
TBD
V
Memory arrays voltage—Run Mode
1.15
1.20
1.275
V
Memory arrays voltage—Stop Mode
0.93
0.95
1.275
V
VDD_DIG_PLL_A
VDD_DIG_PLL_B
PLL Digital supplies
1.15
1.2
1.35
V
VDD_ANA_PLL_A
VDD_ANA_PLL_B
PLL Analog supplies
1.75
1.8
1.95
V
Symbol
Parameter
VDDGP
MCIMX51xD products
(Consumer)
VDDGP
MCIMX51xC products
(Industrial)
VCC
MCIMX51xD products
(Consumer)
VCC
MCIMX51xC products
(Industrial)
VDDA
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
16
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Table 8. i.MX51 Operating Ranges
Electrical Characteristics
Symbol
Parameter
Minimum1
Nominal2
Maximum1
Unit
NVCC_EMI
NVCC_PER5
NVCC_PER10
NVCC_PER11
NVCC_PER12
NVCC_PER13
NVCC_PER14
GPIO EMI Supply and additional digital power
supplies.
1.65
1.875 or
2.775
3.1
V
NVCC_IPUx4
NVCC_PER3
NVCC_PER8
NVCC_PER9
GPIO IPU Supply and additional digital power
supplies.
1.65
1.875 or
2.775
3.1
V
DDR and Fuse Read Supply
1.65
1.8
1.95
V
Fusebox Program Supply (Write Only)
3.0
—
3.3
V
NVCC_EMI_DRAM
VDD_FUSE5
NVCC_NANDF_x6
Ultra High voltage I/O (UHVIO) supplies
NVCC_PER15
NVCC_PER17
NVCC_USBPHY
NVCC_OSC
TVDAC_DHVDD,
NVCC_TV_BACK,
AHVDDRGB
NVCC_HS4_1
NVCC_HS4_2
NVCC_HS6
NVCC_HS10
NVCC_I2C
NVCC_SRTC_
POW
VDDA33
VBUS
TC
—
V
UHVIO_L
1.65
1.875
1.95
UHVIO_H
2.5
2.775
3.1
UHVIO_UH
3.0
3.3
3.6
USB_PHY analog supply, oscillator analog
supply7
2.25
2.5
2.75
V
TVE-to-DAC level shifter supply, cable detector
supply, analog power supply to RGB channel
2.69
2.75
2.91
V
HS-GPIO additional digital power supplies
1.65
—
3.1
V
I2C and HS-I2C I/O Supply8
1.65
1.875
1.95
V
2.7
3.0
3.3
SRTC Core and I/O Supply (LVIO)
1.1
1.2
1.3
V
USB PHY I/O analog supply
3.0
3.3
3.6
V
See Table 6 on page 15 and Table 109
on page 137 for details. This is not a power
supply.
—
—
—
—
–20
—
85
o
Case Temperature
C
1
Voltage at the package power supply contact must be maintained between the minimum and maximum voltages. The design
must allow for supply tolerances and system voltage drops.
2
The nominal values for the supplies indicate the target setpoint for a tolerance no tighter than ± 50 mV. Use of supplies with a
tighter tolerance allows reduction of the setpoint with commensurate power savings.
3
Voltage for STOP mode – final value to be determined by characterization. Higher voltage in STOP mode reduces amount of
power savings.
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
17
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Table 8. i.MX51 Operating Ranges (continued)
4
The NVCC_IPUx rails are isolated from one another. This allows the connection of different supply voltages for each one. For
example, NVCC_IPU2 can operate at 1.8 V while NVCC_IPU4 operates at 3.0 V.
In Read mode, Freescale recommends VDD_FUSE be floated or grounded. Tying VDD_FUSE to a positive supply (3.0 V–3.3
V) increases the possibility of inadvertently blowing fuses and is not recommended.
The NAND Flash supplies are composed of three groups: A, B, and C. Each group can be powered with a different supply
voltage. For example, NVCC_NANDF_A = 1.8 V, NVCC_NANDF_B = 3.0 V, NVCC_NANDF_C = 2.7 V.
The analog supplies should be isolated in the application design. Use of series inductors is recommended.
Operation of the HS-I2C and I2C is not guaranteed when operated between the supply voltages of 1.95 to 2.7 V.
5
6
7
8
Table 9. Interface Frequency
Parameter Description
Symbol
Min
Max
Unit
JTAG: TCK Operating Frequency
ftck
See Table 86, "JTAG Timing," on page 119
MHz
CKIL: Operating Frequency
fckil
See Table 61, "FPM Specifications," on page 69
kHz
CKIH: Operating Frequency
fckih
See Table 34, "CAMP Electrical Parameters (CKIH1,
CKIH2)," on page 37
MHz
XTAL Oscillator
fxtal
3.1.1
22
27
MHz
Supply Current
Table 10. Fuse Supply Current
Description
eFuse Program Current.1
Current to required to program one eFuse bit: The associated
VDD_FUSE supply per Table 8.
eFuse Read Current2
Current necessary to read an 8-bit eFuse word
1
2
Symbol
Min
Typ
Max
Unit
Iprogram
—
60
TBD
mA
Iread
—
TBD
TBD
mA
The current Iprogram is only required during program time (tprogram).
The current Iread is present for approximately TBD ns of the read access to the 8-bit word. The current is derived from the
DDR supply (NVCC_EMI_DRAM).
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
18
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Electrical Characteristics
Electrical Characteristics
Table 11 shows the current core consumption (not including I/O) of the i.MX51.
Mode
Condition
Stop Mode
• External reference clocks
gated
• Power gating for ARM and
processing units
• Stop mode voltage
Stop Mode
• External reference clocks
gated
• Power gating for ARM and
processing units
• HPM voltage
Stop Mode
• External reference clocks
enabled
• Power gating for ARM and
processing units
• HPM voltage
VDDGP = 0.85 V, VCC = 0.95 V, VDDA = 0.95 V
ARM CORE in SRPG mode
L1 and L2 caches power gated
IPU in S&RPG mode
VPU and GPU in PG mode
All PLLs off, all CCM-generated clocks off
CKIL input on with 32 kHz signal present
All modules disabled
USBPHY PLL off
External (MHz) crystal and on-chip oscillator
powered down (SBYOS bit asserted)
No external resistive loads that cause current flow
Standby voltage allowed (VSTBY bit is asserted)
TA = 25°C
VDDGP = 1.1 V, VCC = 1.225 V, VDDA = 1.2 V
ARM CORE in SRPG mode
L1 and L2 caches power gated
IPU in S&RPG mode
VPU and GPU in PG mode
All PLLs off, all CCM-generated clocks off
CKIL input on with 32 kHz signal present
All modules disabled.
USBPHY PLL off
External (MHz) crystal and on-chip oscillator
powered down (SBYOS bit asserted)
No external resistive loads that cause current flow
TA = 25°C
VDDGP = 1.1 V, VCC = 1.225 V, VDDA = 1.20 V
ARM CORE in SRPG mode
L1 and L2 caches power gated
IPU in S&RPG mode
VPU and GPU in PG mode
All PLLs off, all CCM-generated clocks off
Supply
Nominal
Unit
VDDGP
0.18
mA
VCC
0.35
VDDA
0.15
NVCC_OSC
0.012
Total
0.66
mW
VDDGP
0.24
mA
VCC
0.45
VDDA
0.2
NVCC_OSC
0.012
Total
1.09
mW
VDDGP
0.24
mA
VCC
0.45
VDDA
0.2
NVCC_OSC
1.5
Total
4.8
mW
CKIL input on with 32 kHz signal present
All modules disabled
USBPHY PLL off
External (MHz) crystal and on-chip oscillator powered and generating reference clock
No external resistive loads that cause current flow
TA = 25°C
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
19
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Table 11. i.MX51 Stop Mode Current and Power Consumption 1
Electrical Characteristics
Mode
Condition
Stop Mode
• External reference clocks
enabled
• No power gating for ARM and
processing units
• HPM voltage
1
VDDGP = 1.1 V, VCC = 1.225 V, VDDA = 1.2 V
All PLLs off, all CCM-generated clocks off
CKIL input on with 32 kHz signal present
All modules disabled
USBPHY PLL off
External (MHz) crystal and on-chip oscillator
powered and generating reference clock
No external resistive loads that cause current flow
TA = 25°C
Supply
Nominal
Unit
VDDGP
50
mA
VCC
2
VDDA
1.15
NVCC_OSC
1.5
Total
63
mW
The data in this table will be finalized after the complete characterization of the silicon.
3.1.2
USB PHY Current Consumption
Table 12. USB PHY Current Consumption
Parameter
Conditions
Full Speed
Analog Supply
VDDA33 (3.3 V)
High Speed
Full Speed
Analog Supply
NVCC_USBPHY (2.5 V)
High Speed
Full Speed
Digital Supply
VCC (1.2 V)
High Speed
VDDA33 + NVCC_USBPHY +VCC
3.2
Typical @ 25 °C
Max
RX
5.5
6
TX
7
8
RX
5
6
TX
5
6
RX
6.5
7
TX
6.5
7
RX
12
13
TX
21
22
RX
6
7
TX
6
7
RX
6
7
TX
6
7
50
100
Suspend
Unit
mA
mA
mA
μA
Supply Power-Up/Power-Down Requirements and Restrictions
The system design must comply with the power-up and power-down sequence guidelines as described in
this section to guarantee reliable operation of the device. Any deviation from these sequences may result
in the following situations:
• Excessive current during power-up phase
• Prevention of the device from booting
• Irreversible damage to the i.MX51 processor (worst-case scenario)
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
20
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Table 11. i.MX51 Stop Mode Current and Power Consumption (continued)1
Electrical Characteristics
3.2.1
Power-Up Sequence
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Figure 2 shows the power-up sequence.
NVCC_SRTC_POW
VCC
VDDGP4
NVCC_EMI_DRAM
NVCC_HS4_1
NVCC_HS4_2
NVCC_HS6
NVCC_HS10
VDDA
NVCC_PERx2
NVCC_EMI
NVCC_IPU
NVCC_I2C
NVCC_NANDF_x
NVCC_PER15
NVCC_PER17
AHVDDRGB
NVCC_TV_BACK
TVDAC_DHVDD
VDD_DIG_PLL_A/B
VDD_ANA_PLL_A/B
NVCC_OSC
NVCC_USBPHY
VDDA33
VDD_FUSE1
1. VDD_FUSE should only be powered when writing.
2. NVCC_PERx refers to NVCC_PER 3, 5, 8, 9, 10, 11, 12, 13, 14.
3. No power-up sequence dependencies exist between the supplies shown in the block diagram shaded in gray.
4. There is no requirement for VDDGP to be preceded by any other power supply other than NVCC_SRTC_POW.
Figure 2. Power-Up Sequence
NOTE
The POR_B input must be immediately asserted at power-up and remain
asserted until after the last power rail is at its working voltage.
3.2.2
Power-Down Sequence
The following power-down sequence is recommend for the i.MX51 processor:
• To be provided.
3.3
I/O DC Parameters
This section includes the DC parameters of the following I/O types:
• General Purpose I/O and High-Speed General Purpose I/O (GPIO/HSGPIO)
• Double Data Rate 2 (DDR2)
• Low Voltage I/O (LVIO)
• Ultra High Voltage I/O (UHVIO)
• High-Speed I2C and I2C
• Enhanced Secure Digital Host Controller (eSDHC)
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
21
Preliminary—Subject to Change Without Notice
NOTE
The term ‘OVDD’ in this section refers to the associated supply rail of an
input or output. The association is shown in Table 111 and Table 114.
3.3.1
GPIO/HSGPIO I/0 DC Parameters
The parameters in Table 13 are guaranteed per the operating ranges in Table 8, unless otherwise noted.
Table 13. GPIO/HSGPIO DC Electrical Characteristics
Parameter
Symbol
Test Conditions
Min
Typ
Max
Unit
High-level output voltage
Voh
Iout = -1 mA
OVDD –0.15
—
OVDD + 0.3
V
Low-level output voltage
Vol
Iout = 1mA
—
—
0.15
V
High-level output current
Ioh
—
—
Low-level output current
Iol
Vout = 0.8×OVDD
Low drive
Medium drive
High drive
Max drive
–1.9
–3.7
–5.2
–6.6
Vout = 0.2×OVDD
Low drive
Medium drive
High drive
Max drive
1.9
3.7
5.2
6.6
mA
—
—
mA
High-Level DC input voltage1
VIH
—
0.7 × OVDD
—
OVDD
V
Low-Level DC input voltage1
VIL
—
0
—
0.3×OVDD
V
VHYS
OVDD = 1.875
OVDD = 2.775
0.25
0.34
0.45
—
V
VT+
—
0.5OVDD
—
—
V
VT-
—
—
—
Input current (no pull-up/down)
IIN
VI = OVDD or 0
—
Input current (22 kΩ Pull-up)
IIN
VI = 0
VI = OVDD
Input current (47 kΩ Pull-up)
IIN
Input current (100 kΩ Pull-up)
Input current (100 kΩ Pull-down)
Input Hysteresis
Schmitt trigger VT+ 1, 2
Schmitt trigger VT-
1, 2
High-impedance I/O supply
current
Keeper Circuit Resistance
× OVDD
V
—
TBD
—
—
—
161
TBD
μA
VI = 0
VI = OVDD
—
—
76
TBD
μA
IIN
VI = 0
V I= OVDD
—
—
36
TBD
μA
IIN
VI = 0
VI = OVDD
—
—
TBD
36
μA
Icc-ovdd
VI = OVDD or 0
—
—
TBD
μA
OVDD = 1.875V
OVDD = 2.775V
—
—
22
17
—
—
kΩ
0.5
1
To maintain a valid level, the transition edge of the input must sustain a constant slew rate (monotonic) from the current DC
level through to the target DC level, VIL or VIH. Monotonic input transition time is from 0.1ns to 1s.
2
Hysteresis of 250 mV is guaranteed over all operating conditions when hysteresis is enabled.
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
22
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Electrical Characteristics
Electrical Characteristics
DDR2 I/O DC Parameters
The parameters in Table 14 are guaranteed per the operating ranges in Table 8, unless otherwise noted.
Table 14. DDR2 I/O DC Electrical Parameters
Parameters
Symbol
Test Conditions
Min
Max
OVDD – 0.28
High-level output voltage
Voh
—
Low-level output voltage
Vol
—
Output minimum Source Current
Ioh
OVDD=1.7V Vout=1.42V –13.4
—
mA
Output min Sink Current
Iol
OVDD=1.7V Vout=0.28V 13.4
—
mA
DC input Logic High
VIH
—
OVDD/2+0.125 OVDD+0.3
DC input Logic Low
VIL
—
–0.3
OVDD/2–0.125 V
Input voltage range of each differential input
Vin
—
–0.3
OVDD+0.3
V
Differential input voltage required for switching Vid
—
0.25
OVDD+0.6
V
—
—
Unit
0.28
V
V
V
Termination Voltage
Vtt
Vtt tracking OVDD/2
OVDD/2 – 0.04 OVDD/2 + 0.04 V
Input current (no pull-up/down)
Iin
VI = 0
VI=OVDD
—
—
3.3.3
TBD
TBD
µA
Low Voltage I/O (LVIO) DC Parameters
The parameters in Table 15 are guaranteed per the operating ranges in Table 8, unless otherwise noted.
Table 15. LVIO DC Electrical Characteristics
DC Electrical Characteristics
Symbol
Test Conditions
Min
Typ
Max
Unit
High-level output voltage
Voh
Iout = –1 mA
OVDD–0.15
—
—
V
Low-level output voltage
Vol
Iout = 1 mA
—
—
0.15
V
I
Vout = 0.8 × OVDD
Low Drive
Medium Drive
High Drive
Max Drive
—
—
–2.1
–4.2
–6.3
–8.4
Iol
Vout = 0.2 × OVDD
Low Drive
Medium Drive
High Drive
Max Drive
2.1
4.2
6.3
8.4
High-Level DC input voltage1
VIH
—
0.7 × OVDD
—
OVDD
V
Low-Level DC input voltage1
VIL
—
0
—
0.3 × OVDD
V
VHYS
OVDD = 1.875
OVDD = 2.775
0.35
0.62
1.27
—
V
Schmitt trigger VT+1, 2
VT+
—
0.5 × OVDD
—
—
V
VT–1, 2
VT–
—
—
—
0.5 × OVDD
V
High-level output current
Ioh
Low-level output current
Input Hysteresis
Schmitt trigger
I
mA
—
—
mA
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
23
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
3.3.2
Electrical Characteristics
DC Electrical Characteristics
Symbol
Test Conditions
Min
Typ
Max
Unit
Input current (no pull-up/down)
IIN
VI = 0 or OVDD
—
—
TBD
μA
Input current (22 kΩ Pull-up)
IIN
VI = 0
VI = OVDD
—
—
16
TBD
μA
Input current (47 kΩ Pull-up)
IIN
VI = 0
VI = OVDD
—
—
76
TBD
μA
Input current (100 kΩ Pull-up)
IIN
VI = 0
VI = OVDD
—
—
36
TBD
μA
Input current (100 kΩ Pull-down)
IIN
VI = 0
VI = OVDD
—
—
TBD
36
μA
Keeper Circuit Resistance
—
OVDD = 1.875V
OVDD = 2.775V
—
—
22
17
—
—
kΩ
1
To maintain a valid level, the transition edge of the input must sustain a constant slew rate (monotonic) from the current DC
level through to the target DC level, VIL or VIH. Monotonic input transition time is from 0.1 ns to 1 s.
2 Hysteresis of 250 mV is guaranteed over all operating conditions when hysteresis is enabled.
3.3.4
Ultra-High Voltage I/O (UHVIO) DC Parameters
The parameters in Table 16 are guaranteed per the operating ranges in Table 8, unless otherwise noted.
Table 16. UHVIO DC Electrical Characteristics1
DC Electrical Characteristics
Symbol
Test Conditions
Min
Typ
Max
Unit
High-level output voltage
Voh
Iout = –1mA
OVDD–0.15
—
—
V
Low-level output voltage
Vol
Iout = 1mA
—
—
0.15
V
Vout = 0.8 × OVDD
Low Drive
Medium Drive
High Drive
—
—
Ioh_lv
–2.2
–4.4
–6.6
Vout = 0.8 × OVDD
Low Drive
Medium Drive
High Drive
–5.1
–10.2
–15.3
Vout = 0.2 × OVDD
Low Drive
Medium Drive
High Drive
2.2
4.4
6.6
Vout = 0.2 × OVDD
Low Drive
Medium Drive
High Drive
5.1
10.2
15.3
VIH
—
0.7 × OVDD
—
OVDD
V
VIL
—
0
—
0.3 × OVDD
V
High-level output current, low voltage mode
High-level output current, high voltage mode
Ioh_hv
Low-level output current, low voltage mode
Iol_lv
Low-level output current, high voltage mode
Iol_hv
High-Level DC input voltage2,3
Low-Level DC input
voltage2,3
mA
—
—
mA
—
—
mA
—
—
mA
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
24
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Table 15. LVIO DC Electrical Characteristics (continued)
Electrical Characteristics
DC Electrical Characteristics
Symbol
Test Conditions
Min
Typ
Max
Unit
VHYS
low voltage mode
high voltage mode
0.38
0.95
—
0.43
1.33
V
Schmitt trigger VT+2,4
VT+
—
0.5OVDD
—
—
V
VT–2,4
VT–
—
—
—
0.5 × OVDD
V
Input current (no pull-up/down)
IIN
VI = 0
VI = OVDD
—
—
TBD
μA
Input current (22 kΩ Pull-up)
IIN
VI = 0
VI = OVDD
—
—
202
TBD
μA
Input current (47 kΩ Pull-up)
IIN
VI = 0
VI = OVDD
—
—
61
TBD
μA
Input current (100 kΩ Pull-up)
IIN
VI = 0
VI = OVDD
—
—
47
TBD
μA
Input current (360 kΩ Pull-down)
IIN
VI = 0
VI = OVDD
—
—
TBD
5.7
μA
Keeper Circuit Resistance
—
NA
—
17
—
kΩ
Input Hysteresis
Schmitt trigger
1
This table applies with VCC down to 0.9 V. UHVIO are functional down to 0.85 V with degraded performance.
To maintain a valid level, the transitioning edge of the input must sustain a constant slew rate (monotonic) from the current DC
level through to the target DC level, VIL or VIH. Monotonic input transition time is from 0.1 ns to 1 s.
3 Overshoot and undershoot conditions (transitions above OVDD and below OVSS) on switching pads must be held below 0.6 V,
and the duration of the overshoot/undershoot must not exceed 10% of the system clock cycle. Overshoot/undershoot must be
controlled through printed circuit board layout, transmission line impedance matching, signal line termination, or other methods.
Non-compliance to this specification may affect device reliability or cause permanent damage to the device.
4 Hysteresis of 250 mV is guaranteed over all operating conditions when hysteresis is enabled.
2
3.3.5
I2C I/O DC Parameters
NOTE: See the errata for HS-I2C in i.MX51 Chip Errata document. The two standard I2C modules have
no errata
The DC Electrical Characteristics listed below are guaranteed using operating ranges per Table 8, unless
otherwise noted.
Table 17. I2C Standard/Fast/High-Speed Mode Electrical Parameters for Low/Medium Drive Strength
Parameter
Low-level output voltage
High-Level DC input voltage
Low-Level DC input voltage1
Input Hysteresis
Schmitt trigger VT+1,2
1
Symbol
Test Conditions
Min
Typ
Max
Unit
Vol
Iol = 3mA
—
—
0.4
V
VIH
—
0.7 × OVDD
—
OVDD
V
VIL
—
0
—
0.3 × OVDD
V
VHYS
—
0.25
—
—
V
VT+
—
0.5 × OVDD
—
—
V
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
25
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Table 16. UHVIO DC Electrical Characteristics1 (continued)
Electrical Characteristics
Parameter
Schmitt trigger VT– 1,2
I/O leakage current (no pull-up)
Symbol
Test Conditions
Min
Typ
Max
Unit
VT–
—
—
—
0.5 × OVDD
V
Iin
VI = OVDD or 0
—
—
TBD
μA
1
To maintain a valid level, the transitioning edge of the input must sustain a constant slew rate (monotonic) from the current
DC level through to the target DC level, VIL or VIH. Monotonic input transition time is from 0.1ns to 1s.
2
Hysteresis of 250 mV is guaranteed over all operating conditions when hysteresis is enabled.
3.3.6
eSDHCv2 Electrical I/O DC Parameters
This module is designed to interface with both low and high-voltage cards. See Table 8 for UHVIO
supply ranges. Table 18 lists the Module Name electrical DC characteristics.
Table 18. MMC/SD Interface Electrical Specification
Parameter
Min
Max
Unit
Condition/Remark
μA
—
μA
—
All Inputs
Input Leakage Current
–10
10
All Outputs
Output Leakage Current
–10
10
Power Supply
Power Up Time
—
250
ms
—
Supply Current
100
200
mA
—
Bus Signal Line Load
Pull-up Resistance
10
100
kΩ
Internal Pull-up
Open Drain Resistance
NA
NA
kΩ
For MMC cards only
External Loading Drive
40
—
pF
CMD/CLK/DAT0–7 PADs must drive
external 40 pF loading in all working
conditions
Open Drain Signal Level
For MMC cards only
Output High Voltage
VDD –0.2
—
V
IOH = –100 µA
Output Low Voltage
—
0.3
V
IOL = 2 mA
Bus Signal Levels
Output HIGH Voltage
0.75 × VDD
—
V
IOH = –100 µA @VDD min
Output LOW Voltage
—
0.125 × OVDD
V
IOL = 100 µA @VDD min
Input HIGH Voltage
0.625 × OVDD
OVDD + 0.3
V
—
Input LOW Voltage
GND –0.3
0.25 × OVDD
V
—
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
26
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Table 17. I2C Standard/Fast/High-Speed Mode Electrical Parameters for Low/Medium Drive Strength
3.3.7
USBOTG Electrical DC Parameters
3.3.8
USB Port Electrical DC Characteristics
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Electrical Characteristics
Table 19 and Table 20 list the electrical DC characteristics.
Table 19. USBOTG Interface Electrical Specification
Parameter
Symbol
Signals
Min
Max
Unit
Test Conditions
Input High Voltage
VIH
USB_VPOUT
USB_VMOUT
USB_XRXD,
USB_VPIN,
USB_VMIN
VDD x 0.7
VDD
V
—
Input low Voltage
VIL
USB_VPOUT
USB_VMOUT
USB_XRXD,
USB_VPIN,
USB_VMIN
0
VDD × 0.3
V
—
Output High Voltage
VOH
USB_VPOUT
USB_VMOUT
USB_TXENB
VDD –0.43
—
V
7 mA Drv
at IOH = 5 mA
Output Low Voltage
VOL
USB_VPOUT
USB_VMOUT
USB_TXENB
—
0.43
V
7 mA Drv
at IOH = 5 mA
Unit
Test Conditions
Table 20. USB Interface Electrical Specification
Parameter
Symbol
Signals
Min
Max
Input High Voltage
VIH
USB_DAT_VP
USB_SE0_VM
USB_RCV,
USB_VP1,
USB_VM1
VDD x 0.7
VDD
V
—
Input Low Voltage
VIL
USB_DAT_VP
USB_SE0_VM
USB_RCV,
USB_VP1,
USB_VM1
0
VDD x 0.3
V
—
Output High Voltage
VOH
USB_DAT_VP
USB_SE0_VM
USB_TXOE_B
VDD –0.43
Output Low Voltage
VOL
USB_DAT_VP
USB_SE0_VM
USB_TXOE_B
—
—
0.43
V
7 mA Drv
at Iout = 5 mA
V
7 mA Drv
at Iout = 5 mA
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
27
Preliminary—Subject to Change Without Notice
Electrical Characteristics
Output Buffer Impedance Characteristics
This section defines the I/O Impedance parameters of the i.MX51 processor.
3.4.1
LVIO I/O Output Buffer Impedance
Table 21. LVIO I/O Output Buffer Impedance
Typical
Parameter
Symbol
Conditions
Min
Max
Unit
OVDD 2.775 V OVDD 1.875 V
Output Driver
Impedance
Rpu
Low Drive Strength, Ztl = 150 Ω
Medium Drive Strength, Ztl = 75 Ω
High Drive Strength, Ztl = 50 Ω
Max Drive Strength, Ztl = 37.5 Ω
80
40
27
20
104
52
35
26
150
75
51
38
250
125
83
62
Ω
Output Driver
Impedance
Rpd
Low Drive Strength, Ztl = 150 Ω
Medium Drive Strength, Ztl = 75 Ω
High Drive Strength, Ztl = 50 Ω
Max Drive Strength, Ztl = 37.5 Ω
64
32
21
16
88
44
30
22
134
66
44
34
243
122
81
61
Ω
3.4.2
DDR Output Buffer Impedance
Table 22. DDR I/O Output Buffer Impedance
Parameter
Symbol
Test Conditions
Best Case
Tj = –20 °C
OVDD = 1.95 V
VCC = 1.3 V
s0–s5
000000
Typical
Tj = 25 °C
OVDD = 1.8 V
VCC = 1.2 V
Worst Case
Tj = 105 °C
OVDD = 1.6 V
VCC = 1.1 V
s0–s5 s0–s5 s0–s5
111111 101010 111111
Unit
s0–s5
111111
Output Driver
Impedance
Rpu
Low Drive Strength, Ztl = 150 Ω
Medium Drive Strength, Ztl = 75 Ω
High Drive Strength, Ztl = 50 Ω,
280
140
93.4
55.2
27.6
18.4
150
75
50
50.4
34.8
23.2
90.3
45.4
32
Ω
Output Driver
Impedance
Rpd
Low Drive Strength, Ztl = 150 Ω
Medium Drive Strength, Ztl = 75 Ω
High Drive Strength, Ztl = 50 Ω,
293
147
87.7
32.8
16.4
11
131
65.6
43.8
48.8
22
14.6
72
36
24.3
Ω
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
28
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
3.4
Electrical Characteristics
UHVIO Output Buffer Impedance
Table 23. UHVIO Output Buffer Impedance
Min
Test Conditions
Typ
Parameter
Symbol
Output Driver
Impedance
Rpu
Low Drive Strength, Ztl = 150 Ω
Medium Drive Strength, Ztl = 75 Ω
High Drive Strength, Ztl = 50 Ω
98
49
32
114
57
38
Output Driver
Impedance
Rpd
Low Drive Strength, Ztl =1 50 Ω
Medium Drive Strength, Ztl = 75 Ω
High Drive Strength, Ztl = 50 Ω
97
49
32
118
59
40
OVDD
1.95 V
OVDD OVDD
3.0 V 1.875 V
Max
Unit
OVDD
3.3 V
OVDD
1.65 V
OVDD
3.6 V
124
62
41
135
67
45
198
99
66
206
103
69
Ω
126
63
42
154
77
51
179
89
60
217
109
72
Ω
NOTE
Output driver impedance is measured with “long” transmission line of
impedance Ztl attached to I/O pad and incident wave launched into
transmission lime. Rpu/Rpd and Ztl form a voltage divider that defines
specific voltage of incident wave relative to OVDD. Output driver
impedance is calculated from this voltage divider (see Figure 3).
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
29
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
3.4.3
Electrical Characteristics
PMOS (Rpu)
Ztl Ω, L = 20 inches
ipp_do
pad
predriver
Cload = 1p
NMOS (Rpd)
OVSS
U,(V)
Vin (do)
VDD
t,(ns)
0
U,(V)
Vout (pad)
OVDD
Vref2
Vref1
Vref
t,(ns)
0
Rpu =
Vovdd – Vref1
Vref1
Rpd =
Vref2
× Ztl
× Ztl
Vovdd – Vref2
Figure 3. Impedance Matching Load for Measurement
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
30
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
OVDD
Electrical Characteristics
I/O AC Parameters
The load circuit and output transition time waveforms are shown in Figure 4 and Figure 5. AC electrical
characteristics for slow and fast I/O are presented in the Table 24 and Table 25, respectively.
From Output
Under Test
Test Point
CL
CL includes package, probe and fixture capacitance
Figure 4. Load Circuit for Output
NVCC
80%
80%
20%
0V
20%
Output (at I/O)
tf
tr
Figure 5. Output Transition Time Waveform
3.5.1
Slow I/O AC Parameters
Table 24. Slow I/O AC Parameters
Parameter
Symbol
Test Condition Min Rise/Fall
Typ
Max Rise/Fall
Unit
Output Pad Transition Times (Max Drive)
tr, tf
15 pF
35 pF
—
—
1.98/1.52
3.08/2.69
ns
Output Pad Transition Times (High Drive)
tr, tf
15 pF
35 pF
—
—
2.31/1.838
3.8/2.4
ns
Output Pad Transition Times (Medium Drive)
tr, tf
15 pF
35 pF
—
—
2.92/2.43
5.37/4.99
ns
Output Pad Transition Times (Low Drive)
tr, tf
15 pF
35 pF
—
—
4.93/4.53
10.55/9.79
ns
Output Pad Slew Rate (Max Drive)
tps
15 pF
35 pF
0.5/0.65
0.32/0.37
—
—
V/ns
Output Pad Slew Rate (High Drive)
tps
15 pF
35 pF
0.43/0.54
0.26/0.41
—
—
V/ns
Output Pad Slew Rate (Medium Drive)
tps
15 pF
35 pF
0.34/0.41
0.18/0.2
—
—
V/ns
Output Pad Slew Rate (Low Drive)
tps
15 pF
35 pF
0.20/0.22
0.09/0.1
—
—
V/ns
Output Pad di/dt (Max Drive)
tdit
—
—
—
30
mA/ns
Output Pad di/dt (High Drive)
tdit
—
—
—
23
mA/ns
Output Pad di/dt (Medium drive)
tdit
—
—
—
15
mA/ns
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
31
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
3.5
Electrical Characteristics
Parameter
Symbol
Test Condition Min Rise/Fall
Typ
Max Rise/Fall
Unit
Output Pad di/dt (Low drive)
tdit
—
—
—
7
mA/ns
Input Transition Times1
trm
—
—
—
25
ns
1
Hysteresis mode is recommended for inputs with transition times greater than 25 ns.
3.5.2
Fast I/O AC Parameters
Table 25. Fast I/O AC Parameters
Test
Condition
Min Rise/Fall
Typ
Max Rise/Fall
Unit
15 pF
35 pF
—
—
1.429/1.275
2.770/2.526
ns
tr, tf
15 pF
35 pF
—
—
1.793/1.607
3.565/3.29
ns
Output Pad Transition Times (Medium
Drive)
tr, tf
15 pF
35 pF
—
—
2.542/2.257
5.252/4.918
ns
Output Pad Transition Times (Low Drive)
tr, tf
15 pF
35 pF
—
—
4.641/4.456
10.699/10.0
ns
Output Pad Slew Rate (Max Drive)
tps
15 pF
35 pF
0.69/0.78
0.36/0.39
—
—
V/ns
Output Pad Slew Rate (High Drive)
tps
15 pF
35 pF
0.55/0.62
0.28/0.30
—
—
V/ns
Output Pad Slew Rate (Medium Drive)
tps
15 pF
35 pF
0.39/0.44
0.19/0.20
—
—
V/ns
Output Pad Slew Rate (Low Drive)
tps
15 pF
35 pF
0.21/0.22
0.09/0.1
—
—
V/ns
Output Pad di/dt (Max Drive)
tdit
—
—
—
70
mA/ns
Output Pad di/dt (High Drive)
tdit
—
—
—
53
mA/ns
Output Pad di/dt (Medium drive)
tdit
—
—
—
35
mA/ns
Output Pad di/dt (Low drive)
tdit
—
—
—
18
mA/ns
Input Transition Times1
trm
—
—
—
25
ns
Parameter
Symbol
Output Pad Transition Times (Max Drive)
tr, tf
Output Pad Transition Times (High
Drive)
1
Hysteresis mode is recommended for inputs with transition time greater than 25 ns.
3.5.3
I2C AC Parameters
NOTE: See the errata for HS-I2C in i.MX51 Chip Errata document. The two standard I2C modules have
no errata
Figure 6 depicts the load circuit for output pads for standard- and fast-mode. Figure 7 depicts the output
pad transition time definition. Figure 6 depicts pull-up current source measurement for HS-mode. Figure 8
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
32
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Table 24. Slow I/O AC Parameters (continued)
Electrical Characteristics
From Output
Under Test
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
depicts load circuit with external pull-up current source for HS-mode. Figure 9 depicts HS-mode timing
definition.
Test Point
CL
CL includes package, probe and fixture capacitance
Figure 6. Load Circuit for Standard- and Fast-Mode
OVDD
70%
Output
30%
0V
tf
Figure 7. Definition of Timing for Standard- and Fast-Mode
OVDD
3 mA1
From Output
Under Test
Test Point
CL2
Notes:
1Load current when output is between 0.3×OVDD and 0.7×OVDD
2CL includes package, probe, and fixture capacitance.
Figure 8. Load Circuit for HS-Mode with External Pull-Up Current Source
OVDD
70%
30%
Output (at pad)
tTLH
70%
30%
0V
tTHL
PA3Max = max of tTLH and tTHL
PA4Max = max tTHL
Figure 9. Definition of Timing for HS-Mode
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
33
Preliminary—Subject to Change Without Notice
Electrical Characteristics
Table 26. I2C Standard- and Fast-Mode Electrical Parameters
for Low/Medium Drive Strength and OVDD = 2.7 V–3.3 V
Parameter
Symbol
Test Conditions
Min
Typ
Max
Unit
Output fall time,
(low driver strength)
tf
from V IHmin to VILmax with CL from 10 pF to 400 pF
—
—
52
ns
Output fall time,
(medium driver strength)
tf
from V IHmin to VILmax with CL from 10 pF to 400 pF
—
—
28
ns
Table 27. I2C Standard- and Fast-Mode Electrical Parameters
for Low/Medium Drive Strength and OVDD = 1.65 V–1.95 V
Parameter
Symbol
Test Conditions
Min
Typ
Max
Unit
Output fall time,
(low driver strength)
tof
from V IHmin to VILmax with CL from 10 pF to 400 pF
—
—
70
ns
Output fall time,
(medium driver strength)
tof
from V IHmin to VILmax with CL from 10 pF to 400 pF
—
—
35
ns
Table 28. I2C High-Speed Mode Electrical Parameters
for Low/Medium Drive Strength and OVDD = 2.7 V – 3.3 V
Parameter
Symbol
Test Conditions
Min
Typ
Max
Unit
Output rise time (current-source enabled) and
fall time at SCLH
(low driver strength)
trCL, tfCL
with a 3mA external
pull-up current source
and CL = 100 pF
—
—
18/21
ns
Output rise time (current-source enabled) and
fall time at SCLH
(medium driver strength)
trCL, tfCL
with a 3mA external
pull-up current source
and CL = 100 pF
—
—
9/9
ns
Output fall time at SDAH
(low driver strength)
tfDA
with CL from 10 pF to
100 pF
—
—
14
ns
Output fall time at SDAH
(medium driver strength)
tfDA
with CL from 10 pF to
100 pF
—
—
8
ns
Output fall time at SDAH
(low driver strength)
tfDA
CL = 400 pF
—
—
52
ns
Output fall time at SDAH
(medium driver strength)
tfDA
CL = 400 pF
—
—
27
ns
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
34
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
The electrical characteristics for I2C I/O are listed in the tables from the Table 26 to the Table 29
on page 35. Characteristics are guaranteed using operating ranges per Table 8, unless otherwise noted.
Electrical Characteristics
Parameter
Symbol
Test Conditions
Min
Typ
Max
Unit
Output rise time (current-source
enabled) and fall time at SCLH
(low driver strength)
trCL, tfCL
with a 3mA external pull-up current
source and CL = 100 pF
—
—
10/74
ns
Output rise time (current-source
enabled) and fall time at SCLH
(medium driver strength)
trCL, tfCL
with a 3mA external pull-up current
source and CL = 100 pF
—
—
7/14
ns
Output fall time at SDAH
(low driver strength)
tfDA
with CL from 10 pF to 100 pF
0
—
17
ns
Output fall time at SDAH
(medium driver strength)
tfDA
with CL from 10 pF to 100 pF
0
—
9
ns
Output fall time at SDAH
(low driver strength)
tfDA
CL = 400 pF
30
—
67
ns
Output fall time at SDAH
(medium driver strength)
tfDA
CL = 400 pF
15
—
34
ns
Typ
Max Rise/Fall
Unit
Table 30. Low Voltage I2C I/O Parameters
Parameter
Symbol
Test Condition Min Rise/Fall
Output Pad di/dt (Medium drive)
tdit
—
—
—
22
mA/ns
Output Pad di/dt (Low drive)
tdit
—
—
—
11
mA/ns
trm
—
—
—
25
ns
Input Transition
1
Times1
Hysteresis mode is recommended for inputs with transition time greater than 25 ns
Table 31. High Voltage I2C I/O Parameters
Parameter
Symbol
Typ
Max Rise/Fall
Unit
Output Pad Transition Times (Medium Drive)
tr, tf
15 pF
35 pF
—
—
3/3
6/5
ns
Output Pad Transition Times (Low Drive)
tr, tf
15 pF
35 pF
—
—
5/5
9/9
ns
Output Pad Slew Rate (Medium Drive)
tps
15 pF
35 pF
0/0
0/0
—
—
V/ns
Output Pad Slew Rate (Low Drive)
tps
15 pF
35 pF
0/0
0/0
—
—
V/ns
Output Pad di/dt (Medium drive)
tdit
—
—
—
36
mA/ns
Output Pad di/dt (Low drive)
tdit
—
—
—
16
mA/ns
Input Transition Times1
trm
—
—
—
25
ns
1
Test Condition Min Rise/Fall
Hysteresis mode is recommended for inputs with transition time > 25 ns
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
35
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Table 29. I2C High-Speed Mode Electrical Parameters
for Low/Medium Drive Strength and OVDD = 1.65 V – 1.95 V
Electrical Characteristics
Module Timing
This section contains the timing and electrical parameters for the modules in the i.MX51 processor.
3.6.1
Reset Timings Parameters
Figure 10 shows the reset timing and Table 32 lists the timing parameters.
RESET_IN
(Input)
CC1
Figure 10. Reset Timing Diagram
Table 32. Reset Timing Parameters
ID
CC1
3.6.2
Parameter
Duration of RESET_IN to be qualified as valid (input slope = 5 ns)
Min
Max
Unit
50
—
ns
WDOG Reset Timing Parameters
Figure 11 shows the WDOG reset timing and Table 33 lists the timing parameters.
WATCHDOG_RST
(Input)
CC5
Figure 11. WATCHDOG_RST Timing Diagram
Table 33. WATCHDOG_RST Timing Parameters
ID
CC5
Parameter
Duration of WATCHDOG_RESET Assertion
Min
Max
Unit
1
—
TCKIL
NOTE
CKIL is approximately 32 kHz. TCKIL is one period or approximately 30 μs.
3.6.3
AUDMUX Timing Parameters
The AUDMUX provides a programmable interconnect logic for voice, audio and data routing between
internal serial interfaces (SSIs) and external serial interfaces (audio and voice codecs). The AC timing of
AUDMUX external pins is hence governed by the SSI module.
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
36
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
3.6
Electrical Characteristics
Clock Amplifier Parameters (CKIH1, CKIH2)
The input to Clock Amplifier (CAMP) is internally ac-coupled allowing direct interface to a square wave
or sinusoidal frequency source. No external series capacitors are required
Table 34. CAMP Electrical Parameters (CKIH1, CKIH2)
Parameter
Min
Typ
Max
Unit
Input frequency
8.0
—
40.0
MHz
VIL (for square wave input)
0
—
0.3
V
VIH (for square wave input)
(VCC 1 –0.25)
—
3
V
—
VDD
Vp-p
50
55
%
Sinusoidal input amplitude
0.4
Output duty cycle
1
2
2
45
VCC is the supply voltage of CAMP.
This value of the sinusoidal input will be determined during characterization.
3.6.5
DPLL Electrical Parameters
Table 35. DPLL Electrical Parameters
Parameter
Test Conditions/Remarks
Min
Typ
Max
Unit
Reference clock frequency range1
—
10
—
100
MHz
Reference clock frequency range after
pre-divider
—
10
—
40
MHz
Output clock frequency range (dpdck_2)
—
300
—
1025
MHz
Pre-division factor2
—
1
—
16
—
Multiplication factor integer part
—
5
—
15
—
–67108862
—
67108862
—
—
1
—
67108863
—
—
48.5
50
51.5
%
Frequency lock
(FOL mode or non-integer MF)
—
—
—
398
Tdpdref
Phase lock time
—
—
—
100
µs
—
—
0.02
0.04
Tdck
Phase jitter (peak value)
FPL mode, integer and fractional MF
—
2.0
3.5
ns
Power dissipation
fdck = 300 MHz @ avdd = 1.8 V,
dvdd = 1.2 V
fdck = 650 MHz @ avdd = 1.8 V,
dvdd = 1.2 V
—
—
0.65 (avdd)
0.92 (dvdd)
1.98 (avdd)
1.8 (dvdd)
mW
Multiplication factor numerator3
Multiplication factor
denominator2
Output Duty Cycle
time4
Frequency
1
2
jitter5
(peak value)
Should be less than denominator
Device input range cannot exceed the electrical specifications of the CAMP, see Table 34.
The values specified here are internal to DPLL. Inside the DPLL, a “1” is added to the value specified by the user.Therefore,
the user has to enter a value “1” less than the desired value at the inputs of DPLL for PDF and MFD.
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
37
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
3.6.4
Electrical Characteristics
The maximum total multiplication factor (MFI + MFN/MFD) allowed is 15.Therefore, if the MFI value is 15, MFN value must be
zero.
4
Tdpdref is the time period of the reference clock after predivider.According to the specification, the maximum lock time in FOL
mode is 398 cycles of divided reference clock when DPLL starts after full reset.
5
Tdck is the time period of the output clock, dpdck_2.
3.6.6
NAND Flash Controller (NFC) Parameters
This section provides the relative timing requirements among different signals of NFC at the module level
in the different operational modes.
Timing parameters in Figure 12, through Figure 15, Figure 17, and Table 37 show the default NFC mode
(asymmetric mode) using two Flash clock cycles per one access of RE_B and WE_B.
Timing parameters in Figure 12, Figure 13, Figure 14, Figure 16, Figure 17, and Table 37 show symmetric
NFC mode using one Flash clock cycle per one access of RE_B and WE_B.
With reference to the timing diagrams, a high is defined as 80% of signal value and low is defined as 20%
of signal value. All parameters are given in nanoseconds. The BGA contact load used in calculations is 20
pF (except for NF16 - 40 pF) and there is max drive strength on all contacts.
All timing parameters are a function of T, which is the period of the flash_clk clock (“enfc_clk” at system
level). This clock frequency can be controlled by the user, configuring CCM (SoC clock controller). The
clock is derived from emi_slow_clk after single divider. Table 36 demonstrates few examples for clock
frequency settings.
Table 36. NFC Clock Settings Examples
1
emi_slow_clk (MHz)
nfc_podf (Division Factor)
enfc_clk (MHz)
T—Clock Period (ns)1
133 (max value)
5 (reset value)
26.6
38
133
4
33.25
31
133
3
44.33
23
Rounded up to whole nanoseconds.
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
38
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
3
NFCLE
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Electrical Characteristics
NF2
NF1
NF3
NF4
NFCE_B
NF5
NFWE_B
NF8
NFIO[7:0]
NF9
command
Figure 12. Command Latch Cycle Timing
NF4
NF3
NFCE_B
NF10
NF11
NF5
NFWE_B
NF7
NF6
NFALE
NF8
NFIO[7:0]
NF9
Address
Figure 13. Address Latch Cycle Timing
NF3
NFCE_B
NF10
NF11
NF5
NFWE_B
NF8
NFIO[15:0]
NF9
Data to NF
Figure 14. Write Data Latch Timing
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
39
Preliminary—Subject to Change Without Notice
Electrical Characteristics
NF14
NF15
NF13
NFRE_B
NF17
NF16
NFRB_B
NF12
NFIO[15:0]
Data from NF
Figure 15. Read Data Latch Timing - asymmetric mode.
NFCE_B
NF14
NF15
NF13
NFRE_B
NF16
NF18
NFRB_B
NF12
NFIO[15:0]
Data from NF
Figure 16. Read Data Latch Timing - Symmetric Mode.
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
40
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
NFCE_B
Electrical Characteristics
NF19
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
NFCLE
NF20
NFCE_B
NFWE_B
NF21
NF22
NFRE_B
NFRB_B
Figure 17. Other Timing Parameters.
Table 37. NFC—Timing Characteristics
ID
PARAMETER
Symbol
Asymmetric
Mode Min
Symmetric
Mode Min
Max
NF1
NFCLE setup Time
tCLS
2T+0.1
2T+0.1
-
NF2
NFCLE Hold Time
tCLH
T-4.45
T-4.45
-
NF3
NFCE_B Setup Time
tCS
2T+0.95
T+0.95
-
NF4
NFCE_B Hold Time
tCH
2T-5.55
1.5T-5.55
-
NF5
NFWE_B Pulse Width
tWP
T-1.4
0.5T-1.4
-
NF6
NFALE Setup Time
tALS
2T+0.1
2T+0.1
-
NF7
NFALE Hold Time
tALH
T-4.45
T-4.45
-
NF8
Data Setup Time
tDS
T-0.9
0.5T-0.9
-
NF9
Data Hold Time
tDH
T-5.55
0.5T-5.55
-
NF10
Write Cycle Time
tWC
2T
T
-
NF11
NFWE_B Hold Time
tWH
T-1.15
0.5T-1.15
-
NF12
Ready to NFRE_B Low
tRR
9T+8.9
9T+8.9
-
NF13
NFRE_B Pulse Width
tRP
1.5T
0.5T
-
NF14
READ Cycle Time
tRC
2T
T
-
NF15
NFRE_B High Hold Time
tREH
0.5T-1.15
0.5T-1.15
-
NF161
Data Setup on READ
tDSR
11.2+0.5T-Tdl2
11.2-Tdl2
-
NF173
Data Hold on READ
tDHR
0
-
2Taclk+T
NF184
Data Hold on READ
tDHR
-
Tdl2-11.2
2Taclk+T
NF19
CLE to RE delay
tCLR
13T+1.5
13T+1.5
NF20
CE to RE delay
tCRE
T-3.45
T-3.45
T+0.3
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
41
Preliminary—Subject to Change Without Notice
Electrical Characteristics
ID
PARAMETER
Symbol
Asymmetric
Mode Min
Symmetric
Mode Min
NF21
WE high to RE low
tWHR
14T-5.45
14T-5.45
NF22
WE high to busy
tWB
Max
6T
1
tDSR is calculated by the following formula:
Asymmetric mode: tDSR = tREpd + tDpd + 1/2T - Tdl2
Symmetric mode:
tDSR = tREpd + tDpd - Tdl2
tREpd + tDpd = 11.2 ns (including clock skew)
where tREpd is RE propogation delay in the chip including IO pad delay, and tDpd is Data propogation delay
from IO pad to EMI including IO pad delay.
tDSR can be used to determine tREA max parameter with the following formula: tREA = 1.5T - tDSR.
2
Tdl is composed of 4 delay-line units each generates an equal delay with min 1.25 ns and max 1 aclk
period (Taclk). Default is 1/4 aclk period for each delay-line unit, so all 4 delay lines together generates
a total of 1 aclk period. Taclk is “emi_slow_clk” of the system, which default value is 7.5 ns (133MHz).
3 NF17 is defined only in asymmetric operation mode.
NF17 max value is equivalent to max tRHZ value that can be used with NFC.
Taclk is “emi_slow_clk” of the system.
4 NF18 is defined only in Symmetric operation mode.
tDHR (MIN) is calculated by the following formula:
Tdl2 - (tREpd + tDpd)
where tREpd is RE propogation delay in the chip including IO pad delay, and tDpd is Data propogation delay
from IO pad to EMI including IO pad delay.
NF18 max value is equivalent to max tRHZ value that can be used with NFC.
Taclk is “emi_slow_clk” of the system.
3.6.7
3.6.7.1
External Interface Module (WEIM)
WEIM Signal Cross Reference
Table 38 is a guide to help the user identify signals in the WEIM Chapter of the Reference Manual
Chapter that are the same as those mentioned in this data sheet.
Table 38. WEIM Signal Cross Reference
Reference Manual
WEIM Chapter Nomenclature
BCLK
Data Sheet Nomenclature,
Reference Manual External Signals and Pin Multiplexing Chapter,
and IOMUX Controller Chapter Nomenclature
EIM_BCLK
CSx
EIM_CSx
WE_B
EIM_RW
OE_B
EIM_OE
BEy_B
EIM_EBx
ADV
EIM_LBA
ADDR
ADDR/M_DATA
EIM_A[27:16], EIM_DA[15:0]
EIM_DAx (Addr/Data muxed mode)
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
42
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Table 37. NFC—Timing Characteristics (continued)
Electrical Characteristics
Table 38. WEIM Signal Cross Reference (continued)
DATA
EIM_NFC_D (Data bus shared with NAND Flash)
EIM_Dx (dedicated data bus)
WAIT_B
3.6.7.2
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Data Sheet Nomenclature,
Reference Manual External Signals and Pin Multiplexing Chapter,
and IOMUX Controller Chapter Nomenclature
Reference Manual
WEIM Chapter Nomenclature
EIM_WAIT
WEIM Internal Module Multiplexing
Table 39 provides WEIM internal muxing information.
Table 39. WEIM Internal Module Multiplexing
Package Signal
Name
EIM 16-Bit MUXed
Data/Address
EIM 16-Bit
Non-MUXed
Data/Address
EIM 32-Bit MUXed
Data/Address
EIM_DA0
DA0
A0
DA0
EIM_DA1
DA1
A1
DA1
EIM_DA2
DA2
A2
DA2
EIM_DA3
DA3
A3
DA3
EIM_DA4
DA4
A4
DA4
EIM_DA5
DA5
A5
DA5
EIM_DA6
DA6
A6
DA6
EIM_DA7
DA7
A7
DA7
EIM_DA8
DA8
A8
DA8
EIM_DA9
DA9
A9
DA9
EIM_DA10
DA10
A10
DA10
EIM_DA11
DA11
A11
DA11
EIM_DA12
DA12
A12
DA12
EIM_DA13
DA13
A13
DA13
EIM_DA14
DA14
A14
DA14
EIM_DA15
DA15
A15
DA15
EIM_D16
—
D0
D16
EIM_D17
—
D1
D17
EIM_D18
—
D2
D18
EIM_D19
—
D3
D19
EIM_D20
—
D4
D20
EIM_D21
—
D5
D21
EIM MUXed to NAND
Flash DATA
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
43
Preliminary—Subject to Change Without Notice
Electrical Characteristics
Package Signal
Name
EIM 16-Bit MUXed
Data/Address
EIM 16-Bit
Non-MUXed
Data/Address
EIM 32-Bit MUXed
Data/Address
EIM_D22
—
D6
D22
EIM_D23
—
D7
D23
EIM_D24
—
D8
D24
EIM_D25
—
D9
D25
EIM_D26
—
D10
D26
EIM_D27
—
D11
D27
EIM_D28
—
D12
D28
EIM_D29
—
D13
D29
EIM_D30
—
D14
D30
EIM_D31
—
D15
D31
EIM_A16
A16
A16
A16
A16
EIM_A17
A17
A17
A17
A17
EIM_A18
A18
A18
A18
A18
EIM_A19
A19
A19
A19
A19
EIM_A20
A20
A20
A20
A20
EIM_A21
A21
A21
A21
A21
EIM_A22
A22
A22
A22
A22
EIM_A23
A23
A23
A23
A23
EIM_A24
A24
A24
A24
A24
EIM_A25
A25
A25
A25
A25
EIM_A26
A26
A26
A26
A26
EIM_A27
A27
A27
A27
A27
EIM_EB0
EB0
EB0
EB0
EB0
EIM_EB1
EB1
EB1
EB1
EB1
EIM_EB2
EB2
EB2
EB2
EB2
EIM_EB3
EB3
EB3
EB3
EB3
EIM_OE
OE
OE
OE
OE
EIM_CS0
CS0
CS0
CS0
CS0
EIM_CS1
CS1
CS1
CS1
CS1
EIM_CS2
CS2
CS2
CS2
CS2
EIM_CS3
CS3
CS3
CS3
CS3
EIM MUXed to NAND
Flash DATA
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
44
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Table 39. WEIM Internal Module Multiplexing (continued)
Electrical Characteristics
Package Signal
Name
EIM 16-Bit MUXed
Data/Address
EIM 16-Bit
Non-MUXed
Data/Address
EIM 32-Bit MUXed
Data/Address
EIM MUXed to NAND
Flash DATA
EIM_CS4
CS4
CS4
CS4
CS4
EIM_CS5
CS5
CS5
CS5
CS5
EIM_DTACK
DTACK
DTACK
DTACK
DTACK
EIM_WAIT
WAIT
WAIT
WAIT
WAIT
EIM_LBA
LBA
LBA
LBA
LBA
EIM_BCLK
BCLK
BCLK
BCLK
BCLK
EIM_RW
RW
RW
RW
RW
EIM_CRE
CRE
CRE
CRE
CRE
EIM_SDBA1
SDBA1
SDBA1
SDBA1
SDBA1
EIM_SDBA0
SDBA0
SDBA0
SDBA0
SDBA0
3.6.7.3
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Table 39. WEIM Internal Module Multiplexing (continued)
General WEIM Timing
The following diagrams and tables specify the timings related to the WEIM module. All WEIM output
control signals may be asserted and deasserted by an internal clock synchronized to the BCLK rising
edge according to corresponding assertion/negation control fields.
,
WE1
WE2
WE3
...
BCLK
WE4
WE5
Address
WE6
WE7
CSx_B
WE8
WE9
WE_B
WE10
WE11
OE_B
WE12
WE13
BEy_B
WE14
WE15
ADV_B
WE16
WE17
Output Data
Figure 18. WEIM Outputs Timing Diagram
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
45
Preliminary—Subject to Change Without Notice
Electrical Characteristics
WE18
Input Data
WE19
WE20
WAIT_B
WE21
Figure 19. WEIM Inputs Timing Diagram
Table 40. WEIM Bus Timing Parameters 1
BCD = 0
ID
BCD = 1
BCD = 2
BCD = 3
Parameter
Min
Max
Min
Max
Min
Max
Min
Max
t
—
2t
—
3t
—
4t
—
WE1
BCLK Cycle time2
WE2
BCLK Low Level Width
0.4t
—
0.8t
—
1.2t
—
1.6t
—
WE3
BCLK High Level Width
0.4t
—
0.8t
—
1.2t
—
1.6t
—
WE4
Clock rise to address valid3
0.5t-1.25
0.5t+1.75
t-1.25
t+1.75
2t-1.25
2t+1.75
3t-1.25
3t+1.75
WE5
Clock rise to address invalid
0.5t-1.25
0.5t+1.75
t-1.25
t+1.75
2t-1.25
2t+1.75
3t-1.25
3t+1.75
WE6
Clock rise to CSx_B valid
0.5t-1.25
0.5t+1.75
t-1.25
t+1.75
2t-1.25
2t+1.75
3t-1.25
3t+1.75
WE7
Clock rise to CSx_B invalid
0.5t-1.25
0.5t+1.75
t-1.25
t+1.75
2t-1.25
2t+1.75
3t-1.25
3t+1.75
WE8
Clock rise to WE_B Valid
0.5t-1.25
0.5t+1.75
t-1.25
t+1.75
2t-1.25
2t+1.75
3t-1.25
3t+1.75
WE9
Clock rise to WE_B Invalid
0.5t-1.25
0.5t+1.75
t-1.25
t+1.75
2t-1.25
2t+1.75
3t-1.25
3t+1.75
WE10
Clock rise to OE_B Valid
0.5t-1.25
0.5t+1.75
t-1.25
t+1.75
2t-1.25
2t+1.75
3t-1.25
3t+1.75
WE11
Clock rise to OE_B Invalid
0.5t-1.25
0.5t+1.75
t-1.25
t+1.75
2t-1.25
2t+1.75
3t-1.25
3t+1.75
WE12
Clock rise to BEy_B Valid
0.5t-1.25
0.5t+1.75
t-1.25
t+1.75
2t-1.25
2t+1.75
3t-1.25
3t+1.75
WE13
Clock rise to BEy_B Invalid
0.5t-1.25
0.5t+1.75
t-1.25
t+1.75
2t-1.25
2t+1.75
3t-1.25
3t+1.75
WE14
Clock rise to ADV_B Valid
0.5t-1.25
0.5t+1.75
t-1.25
t+1.75
2t-1.25
2t+1.75
3t-1.25
3t+1.75
WE15
Clock rise to ADV_B Invalid
0.5t-1.25
0.5t+1.75
t-1.25
t+1.75
2t-1.25
2t+1.75
3t-1.25
3t+1.75
WE16
Clock rise to Output Data
Valid
0.5t-1.25
0.5t+1.75
t-1.25
t+1.75
2t-1.25
2t+1.75
2t-1.25
2t+1.75
WE17
Clock rise to Output Data
Invalid
0.5t-1.25
0.5t+1.75
t-1.25
t+1.75
2t-1.25
2t+1.75
2t-1.25
2t+1.75
WE18
Input Data setup time to
Clock rise
2
—
2
—
2
—
2
—
WE19
Input Data hold time from
Clock rise
2.5
—
2.5
—
2.5
—
2.5
—
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
46
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
BCLK
Electrical Characteristics
Table 40. WEIM Bus Timing Parameters (continued)1
BCD = 1
BCD = 2
BCD = 3
Parameter
WE20
WAIT_B setup time to
Clock rise
WE21
WAIT_B hold time from
Clock rise
Min
Max
Min
Max
Min
Max
Min
Max
2
—
2
—
2
—
2
—
2.5
—
2.5
—
2.5
—
2.5
—
1
t is axi_clk cycle time. The maximum allowed axi_clk frequency is 133 MHz, whereas the maximum allowed BCLK frequency
is 104 MHz. As a result if BCD = 0, axi_clk must be ≤104 MHz. If BCD = 1, then 133 MHz is allowed for axi_clk, resulting in
a BCLK of 66.5 MHz. When the clock branch to WEIM is decreased to 104 MHz, other busses are impacted which are
clocked from this source. See the CCM chapter of the i.MX51 Reference Manual for a detailed clock tree description.
2
BCLK parameters are being measured from the 50% point. i.e., high is defined as 50% of signal value and low is defined as
50% as signal value.
3 For signal measurements “High” is defined as 80% of signal value and “Low” is defined as 20% of signal value.
3.6.7.4
Examples of WEIM Accesses
The following diagrams give few examples of basic WEIM accesses to external memory devices with the
timing parameters mentioned previously for specific control parameters settings.
BCLK
WE4
ADDR
Last Valid Address
WE6
WE5
Next Address
Address v1
WE7
CSx_B
WE_B
WE14
WE15
WE10
WE11
WE12
WE13
ADV_B
OE_B
BEy_B
WE18
DATA
D(v1)
WE19
Figure 20. Synchronous Memory Read Access, WSC=1
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
47
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
BCD = 0
ID
Electrical Characteristics
WE5
WE4
ADDR
Last Valid Address
Next Address
Address V1
WE6
WE7
WE8
WE9
CSx_B
WE_B
WE14
ADV_B
WE15
OE_B
WE13
WE12
BEy_B
WE17
WE16
DATA
D(V1)
Figure 21. Synchronous Memory, Write Access, WSC=1, WBEA=1, WBEN=1, and WADVN=0
BCLK
ADDR
WE5
WE4
Last Valid Addr
Address V1
Address V2
WE6
WE7
CSx_B
WE_B
WE15 WE14
WE14
WE15
ADV_B
WE10
WE11
WE12
WE13
OE_B
BEy_B
WE21
WAIT_B
WE20
WE19
D(V1) D(V1+1)
Halfword
Halfword
DATA
D(V2) D(V2+1)
HalfwordHalfword
WE18
Figure 22. Synchronous 16-Bit Memory, Two Non-Sequential 32-bit Read Accesses, WSC=2, SRD=1, BCD=0
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
48
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
BCLK
Electrical Characteristics
BCLK
WE4
Last Valid Addr
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
ADDR
WE5
Address V1
WE6
WE7
WE8
WE9
CSx_B
WE_B
WE14
WE15
ADV_B
OE_B
WE12
WE13
BEy_B
WE21
WAIT_B
WE20
WE17
WE17
D(V2) D(V3) D(V4)
D(V1)
DATA
WE16
WE16
Figure 23. Synchronous Memory, Burst Write, BCS=1, WSC=4, SRD=1, and BCD=0
BCLK
WE5
WE4
ADDR/
M_DATA
LastValid Addr
WE6
WE17
WE16
Write Data
Address V1
WE7
CSx_B
WE8
WE_B
WE14
WE9
WE15
ADV_B
OE_B
WE10
WE11
BEy_B
Figure 24. Muxed Address/Data (A/D) Mode, Synchronous Write Access, WSC=6,
ADVA=1, ADVN=1, and ADH=1
NOTE
In 32-bit muxed address/data (A/D) mode the16 MSBs are driven on the
data bus.
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
49
Preliminary—Subject to Change Without Notice
Electrical Characteristics
WE4
ADDR/
M_DATA
WE19
WE5
Last Valid Addr
WE6
Address V1
Data
WE18
CSx_B
WE7
WE_B
WE15
WE14
ADV_B
WE10
WE11
OE_B
WE12
WE13
BEy_B
Figure 25. 16-Bit Muxed A/D Mode, Synchronous Read Access, WSC=7, RADVN=1, ADH=1, OEA=2
The Figure 26, Figure 27, Figure 28, and Table 41 help to determine timing parameters relative chip
select (CS) state for asynchronous and DTACK WEIM accesses with corresponding WEIM bit fields and
the timing parameters mentioned above.
CSx_B
WE31
ADDR
Last Valid Address
WE32
Next Address
Address V1
WE_B
WE39
WE40
WE35
WE36
WE37
WE38
ADV_B
OE_B
BEy_B
WE44
DATA
D(V1)
WE43
Figure 26. Asynchronous Memory Read Access
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
50
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
BCLK
Electrical Characteristics
WE31
ADDR
WE32
Last Valid Address
WE33
Next Address
Address V1
WE34
WE_B
WE39
WE40
WE45
WE46
ADV_B
OE_B
BEy_B
WE42
DATA
D(V1)
WE41
Figure 27. Asynchronous Memory Write Access
CSx_B
WE31
ADDR
WE32
Last Valid Address
Next Address
Address V1
WE_B
WE39
WE40
WE35
WE36
WE37
WE38
ADV_B
OE_B
BEy_B
WE44
DATA
D(V1)
WE43
WE48
DATA
WE47
Figure 28. DTACK Read Access
Table 41. WEIM Asynchronous Timing Parameters Table Relative Chip Select
ID
Parameter
WE31
CSx_B valid to Address Valid
Determination by
Synchronous Measured
Parameters 1
Min
Max
Unit
WE4 – WE6 – CSA2
—
3 – CSA
ns
WE32 Address Invalid to CSx_B
invalid
WE7 – WE5 – CSN 3
—
3 – CSN
ns
WE33 CSx_B Valid to WE_B Valid
WE8 – WE6 + (WEA – CSA)
—
3 + (WEA – CSA)
ns
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
51
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
CSx_B
Electrical Characteristics
ID
Determination by
Synchronous Measured
Parameters 1
Parameter
Min
Max
Unit
WE34 WE_B Invalid to CSx_B Invalid
WE7 – WE9 + (WEN – CSN)
—
3 – (WEN_CSN)
ns
WE35 CSx_B Valid to OE_B Valid
WE10 – WE6 + (OEA – CSA)
—
3 + (OEA – CSA)
ns
WE36 OE_B Invalid to CSx_B Invalid
WE7 – WE11 + (OEN – CSN)
—
3 – (OEN – CSN)
ns
WE37 CSx_B Valid to BEy_B Valid
(Read access)
(RBEA4
WE12 – WE6 + (RBEA – CSA)
—
3+
– CSA)
ns
WE38 BEy_B Invalid to CSx_B Invalid WE7 – WE13 + (RBEN – CSN)
(Read access)
—
3 – (RBEN5 – CSN)
ns
WE39 CSx_B Valid to ADV_B Valid
—
3 + (ADVA – CSA)
ns
WE40 ADV_B Invalid to CSx_B Invalid WE7 – WE15 – CSN
(ADVL is asserted)
—
3 – CSN
ns
WE41 CSx_B Valid to Output Data
Valid
WE16 – WE6 – WCSA
—
3 – WCSA
ns
WE42 Output Data Invalid to CSx_B
Invalid
WE17 – WE7 – CSN
—
3 – CSN
ns
WE43 Input Data Valid to CSx_B
Invalid
MAXCO + MAXDI
MAXCO 6 + MAXDI7
—
ns
WE44 CSx_B Invalid to Input Data
invalid
0
0
—
ns
WE45 CSx_B Valid to BEy_B Valid
(Write access)
WE12 – WE6 + (WBEA – CSA)
—
3 + (WBEA – CSA)
ns
WE46 BEy_B Invalid to CSx_B Invalid WE7 – WE13 + (WBEN – CSN)
(Write access)
—
–3 + (WBEN – CSN)
ns
MAXCO6 + MAXDTI8
—
ns
0
—
ns
WE14 – WE6 + (ADV – CSA)
WE47 Dtack Valid to CSx_B Invalid
MAXCO + MAXDTI
WE48 CSx_B Invalid to Dtack invalid
0
1
2
3
4
5
6
7
8
Parameters WE4... WE21 value see in the Table 41.
CS Assertion. This bit field determines when CS signal is asserted during read/write cycles.
CS Negation. This bit field determines when CS signal is negated during read/write cycles.
BE Assertion. This bit field determines when BE signal is asserted during read cycles.
BE Negation. This bit field determines when BE signal is negated during read cycles.
Output maximum delay from internal driving the FFs to chip outputs. The Max. delay between all memory controls (addr,
csx_b, oe_b, we_b, bey_b, and adv_b)
Maximum delay from chip input data to internal FFs. The max. delay between all data input pins.
DTACK maximum delay from chip input data to internal FF.
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
52
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Table 41. WEIM Asynchronous Timing Parameters Table Relative Chip Select (continued)
Electrical Characteristics
SDRAM Controller Timing Parameters
3.6.8.1
Mobile DDR SDRAM Timing Parameters
DD1
SDCLK
SDCLK
DD2
DD4
DD3
CS
DD5
RAS
DD5
DD4
CAS
DD4
DD5
DD5
WE
DD6
ADDR
DD7
ROW/BA
COL/BA
Figure 29. Mobile DDR SDRAM Basic Timing Parameters
Table 42. Mobile DDR SDRAM Timing Parameter Table
200 MHz
ID
1
Parameter
166 MHz
133 MHz
Symbol
Unit
Min
Max
Min
Max
Min
Max
DD1
SDRAM clock high-level width
tCH
0.45
0.55
0.45
0.55
0.45
0.55
tCK
DD2
SDRAM clock low-level width
tCL
0.45
0.55
0.45
0.55
0.45
0.55
tCK
DD3
SDRAM clock cycle time
tCK
5
—
6
—
7.5
—
ns
DD4
CS, RAS, CAS, CKE, WE setup time
tIS1
0.9
—
1.1
—
1.3
—
ns
DD5
CS, RAS, CAS, CKE, WE hold time
tIH1
0.9
—
1.1
—
1.3
—
ns
DD6
Address output setup time
tIS1
0.9
—
1.1
—
1.3
—
ns
DD7
Address output hold time
tIH1
0.9
—
1.1
—
1.3
—
ns
This parameter is affected by pad timing. if the slew rate is < 1 V/ns, 0.2 ns should be added to the value. For cmos65 pads
this is true for medium and low drive strengths.
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
53
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
3.6.8
SDCLK
SDCLK_B
DD19
DD22
DD21
DQS (output)
DD18
DD17
DQ (output)
DD20
DD23
DD17
DD18
Data
Data
Data
Data
Data
Data
Data
Data
DM
DM
DM
DM
DM
DM
DM
DM
DQM (output)
DD17
DD18
DD17
DD18
Figure 30. Mobile DDR SDRAM Write cycle Timing Diagram
Table 43. Mobile DDR SDRAM Write Cycle Parameter Table1
200 MHz2
ID
DD17
Parameter
166 MHz
133 MHz
Symbol
DQ and DQM setup time to DQS
Unit
Min
Max
Min
Max
Min
Max
tDS3
0.48
—
0.6
—
0.8
—
ns
1
DH
0.48
—
0.6
—
0.8
—
ns
DD18
DQ and DQM hold time to DQS
t
DD19
Write cycle DQS falling edge to
SDCLK output setup time
tDSS
0.2
—
0.2
—
0.2
—
tCK
DD20
Write cycle DQS falling edge to
SDCLK output hold time
tDSH
0.2
—
0.2
—
0.2
—
tCK
DD21
Write command to first DQS latching
transition
tDQSS
0.75
1.25
0.75
1.25
0.75
1.25
tCK
DD22
DQS high level width
tDQSH
0.4
0.6
0.4
0.6
0.4
0.6
tCK
DD23
DQS low level width
tDQSL
0.4
0.6
0.4
0.6
0.4
0.6
tCK
1
Test conditions are: Capacitance 15 pF for DDR PADS. Recommended drive strengths is medium for SDCLK and high for
address and controls
2 SDRAM CLK and DQS related parameters are being measured from the 50% point. that is, high is defined as 50% of signal
value and low is defined as 50% as signal value. DDR SDRAM CLK parameters are measured at the crossing point of SDCLK
and SDCLK (inverted clock).
3 This parameter is affected by pad timing. If the slew rate is < 1 V/ns, 0.1 ns should be increased to this value.
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
54
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Electrical Characteristics
SDCLK
SDCLK_B
DD26
DQS (input)
DD25
DD24
Data
DQ (input)
Data
Data
Data
Data
Data
Data
Data
Figure 31. Mobile DDR SDRAM DQ vs. DQS and SDCLK READ Cycle Timing Diagram
Table 44. Mobile DDR SDRAM Read Cycle Parameter Table1
200 MHz2
ID
PARAMETER
166 MHz
133 MHz
Symbol
Unit
Min Max Min Max Min Max
DD24 DQS - DQ Skew (defines the Data valid window in read cycles
related to DQS)
DD25 DQS DQ in HOLD time from DQS
DD26 DQS output access time from SDCLK posedge
tDQSQ
—
0.4
—
0.75
—
0.85
ns
tQH
1.75
—
2.05
—
2.6
—
ns
tDQSCK
2
5
2
5.5
2
6.5
ns
1
Test conditions are: Capacitance 15 pF for DDR PADS. Recommended drive strengths is medium for SDCLK and high for
address and controls
2
SDRAM CLK and DQS related parameters are being measured from the 50% point. that is, high is defined as 50% of signal
value and low is defined as 50% as signal value. DDR SDRAM CLK parameters are measured at the crossing point of SDCLK
and SDCLK (inverted clock)
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
55
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Electrical Characteristics
Electrical Characteristics
DDR2 SDRAM Specific Parameters
Figure 32 shows the timing parameters for DDR2. The timing parameters for this diagram appear in
Table 45.
DDR1
SDCLK
SDCLK
DDR2
DDR4
DDR3
CS
DDR5
RAS
DDR5
DDR4
CAS
DDR4
DDR5
DDR5
WE
ODT/CKE
DDR4
DDR6
DDR7
ADDR
ROW/BA
COL/BA
Figure 32. DDR2 SDRAM Basic Timing Parameters
Table 45. DDR2 SDRAM Timing Parameter Table
SDCLK = 200 MHz
ID
Parameter
Symbol
Unit
Min
Max
DDR1
SDRAM clock high-level width
tCH
0.45
0.55
tCK
DDR2
SDRAM clock low-level width
tCL
0.45
0.55
tCK
DDR3
SDRAM clock cycle time
tCK
5
—
ns
DDR4
CS, RAS, CAS, CKE, WE, ODT setup time
tIS1
0.35
—
ns
DDR5
CS, RAS, CAS, CKE, WE, ODT hold time
tIH1
0.475
—
ns
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
56
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
3.6.9
Electrical Characteristics
Table 45. DDR2 SDRAM Timing Parameter Table (continued)
DDR6
DDR7
1
Parameter
Symbol
Unit
tIS1
Address output setup time
Address output hold time
tIH
1
Min
Max
0.35
—
ns
0.475
—
ns
These values are for command/address slew rates of 1V/ns and SDCLK / SDCLK_B differential slew rate of 2 V/ns. For
different values use the settings shown in Table 46.
Table 46. Derating Values for DDR2-400 (SDCLK = 200 MHz)
Command /
Address
Slew Rate
(V/ns)
SDCLK Differential Slew Rates1,2
2.0 V/ns
1.5 V/ns
1.0 V/ns
Unit
ΔtlS
ΔtlH
ΔtlS
ΔtlH
ΔtlS
ΔtlH
4.0
+187
+94
+217
+124
+247
+154
ps
3.5
+179
+89
+209
+119
+239
+149
ps
3.0
+167
+83
+197
+113
+227
+143
ps
2.5
+150
+75
+180
+105
+210
+135
ps
2.0
+125
+45
+155
+75
+185
+105
ps
1.5
+83
+21
+113
+51
+143
+81
ps
1.0
+0
+0
+30
+30
+60
+60
ps
0.9
–11
–14
+19
+16
+49
+46
ps
0.8
–25
–31
+5
–1
+35
+29
ps
0.7
–43
–54
–13
–24
+17
+6
ps
0.6
–67
–83
–37
–53
–7
–23
ps
0.5
–110
–125
–80
–95
–50
–65
ps
0.4
–175
–188
–145
–158
–115
–128
ps
0.3
–285
–292
–255
–262
–225
–232
ps
0.25
–350
–375
–320
–345
–290
–315
ps
0.2
–525
–500
–495
–470
–465
–440
ps
0.15
–800
–708
–770
–678
–740
–648
ps
0.1
–1450
–1125
–1420
–1095
–1390
–1065
ps
1
Test conditions are: Capacitance 15 pF for DDR contacts. Recommended drive strengths: Medium for SDCLK and High for
address and controls.
2 SDCLK and DQS related parameters are measured from the 50% point. For example, a high is defined as 50% of the signal
value and a low is defined as 50% of the signal value. DDR SDRAM CLK parameters are measured at the crossing point of
SDCLK and SDCLK_B
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
57
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
SDCLK = 200 MHz
ID
SDCLK
SDCLK_B
DDR21
DDR19
DDR22
DDR20
DDR23
DQS (output)
DDR18
DDR17
DQ (output)
DQM (output)
DDR17
DDR17
DDR18
Data
Data
Data
Data
Data
Data
Data
Data
DM
DM
DM
DM
DM
DM
DM
DM
DDR18
DDR17
DDR18
Figure 33. DDR2 SDRAM Write Cycle
Table 47. DDR2 SDRAM Write Cycle
SDCLK = 200 MHz
ID
DDR17
PARAMETER
Symbol
DQ and DQM setup time to DQS (differential strobe)1
1
DDR18
DQ and DQM hold time to DQS (differential strobe)
DDR17
DQ and DQM setup time to DQS (single-ended strobe)2
2
Unit
Min
Max
tDS(base)
0.15
—
ns
tDH(base)
0.275
—
ns
tDS1(base)
0.025
—
ns
tDH1(base)
0.025
—
ns
DDR18
DQ and DQM hold time to DQS (single-ended strobe)
DDR19
Write cycle DQS falling edge to SDCLK output setup time
tDSS
0.2
—
tCK
DDR20
Write cycle DQS falling edge to SDCLK output hold time
tDSH
0.2
—
tCK
DDR21
DQS latching rising transitions to associated clock edges
tDQSS
–0.25
0.25
tCK
DDR22
DQS high level width
tDQSH
0.35
—
tCK
DDR23
DQS low level width
tDQSL
0.35
—
tCK
1
These values are for DQ/DM slew rates of 1 V/ns and DQS/DQS_B differential slew rates of 2 V/ns. For different values use
derating table below
2 These values are for DQ/DM slew rates of 1 V/ns and DQS slew rates of 1 V/ns. For different values use derating table below
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
58
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Electrical Characteristics
Electrical Characteristics
Table 49. Derating values for DDR2 Single Ended DQS3,4
1. Test conditions are: Capacitance 15 pF for DDR PADS. Recommended drive strengths is medium for SDCLK and high for
address and controls.
2. SDRAM CLK and DQS related parameters are being measured from the 50% point. that is, high is defined as 50% of signal
value and low is defined as 50% as signal value. DDR SDRAM CLK parameters are measured at the crossing point of SDCLK
and SDCLK (inverted clock).
3. Test conditions are: Capacitance 15 pF for DDR PADS. Recommended drive strengths is medium for SDCLK and high for
address and controls.
4. SDRAM CLK and DQS related parameters are being measured from the 50% point. that is, high is defined as 50% of signal
value and low is defined as 50% as signal value. DDR SDRAM CLK parameters are measured at the crossing point of SDCLK
and SDCLK (inverted clock).
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
59
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Table 48. Derating values for DDR2 Differential DQS1,2
SDCLK
SDCLK_B
DDR26
DQS (input)
DDR25
DDR24
DQ (input)
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
Figure 34. DDR2 SDRAM DQ vs. DQS and SDCLK READ Cycle
Table 50. DDR2 SDRAM Read Cycle1
SDCLK = 200 MHz2
ID
Parameter
DDR24
DQS - DQ Skew (defines the Data valid window in read cycles related to
DQS).
DDR25
DQS DQ in HOLD time from DQS
DDR26
DQS output access time from SDCLK posedge
Unit
Symbol
Min
Max
tDQSQ
—
0.35
ns
tQH
1.8
—
ns
tDQSCK
–0.5
0.5
ns
1
Test conditions are: Capacitance of 15 pF for DDR contacts. The recommended drive strength is Medium for SDCLK and High
for address and controls
2
SDCLK and DQS related parameters are being measured from the 50% point. that is, high is defined as 50% of signal value
and low is defined as 50% as signal value. DDR SDRAM CLK parameters are measured at the crossing point of SDCLK and
SDCLK_B.
3.7
3.7.1
External Peripheral Interfaces
CSPI Timing Parameters
This section describes the timing parameters of the CSPI. The CSPI has separate timing parameters for
master and slave modes. The nomenclature used with the CSPI modules and the respective routing of these
signals is shown in Table 51 on page 61.
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
60
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Electrical Characteristics
Electrical Characteristics
Table 51. CSPI Nomenclature and Routing
eCSPI1
CSPI11, USBH1, and DI1 via IOMUX
eCSPI2
NANDF and USBH1 via IOMUX
CSPI
NANDF, USBH1, SD1, SD2, and GPIO via IOMUX
1
3.7.1.1
I/O Access
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Module
This set of BGA contacts is labeled CSPI, but is actually an eCSPI channel
CSPI Master Mode Timing
Figure 35 depicts the timing of CSPI in Master mode and Table 52 lists the CSPI Master Mode timing
characteristics.
CSPIx_DRYN1
CS11
CSPIx_CS_x
CS1
CS2
CS3
CS5
CS6
CS4
CSPIx_CLK
CS7 CS8
CS3
CS2
CSPIx_DO
CS9 CS10
CSPIx_DI
Figure 35. CSPI Master Mode Timing Diagram
Table 52. CSPI Master Mode Timing Parameters
ID
Parameter
Symbol
Min
Max
Unit
CS1
CSPIx_CLK Cycle Time
tclk
60
—
ns
CS2
CSPIx_CLK High or Low Time
tSW
6
—
ns
CS3
CSPIx_CLK Rise or Fall
tRISE/FALL
—
—
ns
CS4
CSPIx_CS_x pulse width
tCSLH
15
—
ns
CS5
CSPIx_CS_x Lead Time (CS setup time)
tSCS
5
—
ns
CS6
CSPIx_CS_x Lag Time (CS hold time)
tHCS
5
—
ns
CS7
CSPIx_DO Setup Time
tSmosi
5
—
ns
CS8
CSPIx_DO Hold Time
tHmosi
5
—
ns
CS9
CSPIx_DI Setup Time
tSmiso
5
—
ns
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
61
Preliminary—Subject to Change Without Notice
Electrical Characteristics
ID
Parameter
Symbol
Min
Max
Unit
CS10
CSPIx_DI Hold Time
tHmiso
5
—
ns
CS11
CSPIx_DRYN Setup Time
tSDRY
5
—
ns
3.7.1.2
CSPI Slave Mode Timing
Figure 36 depicts the timing of CSPI in Slave mode. Table 53 lists the CSPI Slave Mode timing
characteristics.
CSPIx_CS_x
CS1
CS2
CS3
CS5
CS6
CS4
CSPIx_CLK
CS9CS10
CS2
CS3
CSPIx_DI
CS7 CS8
CSPIx_DO
Figure 36. CSPI Slave Mode Timing Diagram
Table 53. CSPI Slave Mode Timing Parameters
ID
Parameter
Symbol
Min
Max
Unit
CS1
CSPIx_CLK Cycle Time
tclk
60
—
ns
CS2
CSPIx_CLK High or Low Time
tSW
15
—
ns
CS3
CSPIx_CLK Rise or Fall
tRISE/FALL
—
—
ns
CS4
CSPIx_CS_x pulse width
tCSLH
30
—
ns
CS5
CSPIx_CS_x Lead Time (CS setup time)
tSCS
5
—
ns
CS6
CSPIx_CS_x Lag Time (CS hold time)
tHCS
5
—
ns
CS7
CSPIx_DO Setup Time
tSmosi
5
—
ns
CS8
CSPIx_DO Hold Time
tHmosi
5
—
ns
CS9
CSPIx_DI Setup Time
tSmiso
5
—
ns
CS10
CSPIx_DI Hold Time
tHmiso
5
—
ns
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
62
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Table 52. CSPI Master Mode Timing Parameters (continued)
Electrical Characteristics
eCSPI Timing Parameters
This section describes the timing parameters of the eCSPI. The eCSPI has separate timing parameters for
master and slave modes. The nomenclature used with the CSPI modules and the respective routing of these
signals is shown in Table 51 on page 61.
3.7.2.1
eCSPI Master Mode Timing
Figure 35 depicts the timing of eCSPI in Master mode and Table 52 lists the eCSPI Master Mode timing
characteristics.
eCSPIx_DRYN1
CS11
eCSPIx_CS_x
CS1
CS2
CS3
CS5
CS6
CS4
eCSPIx_CLK
CS7 CS8
CS3
CS2
eCSPIx_DO
CS9 CS10
eCSPIx_DI
Figure 37. eCSPI Master Mode Timing Diagram
Table 54. eCSPI Master Mode Timing Parameters
ID
Parameter
Symbol
Min
Max
Unit
CS1
eCSPIx_CLK Cycle Time–Read
eCSPIx_CLK Cycle Time–Write
tclk
60
15
—
ns
CS2
eCSPIx_CLK High or Low Time
tSW
6
—
ns
CS3
eCSPIx_CLK Rise or Fall
tRISE/FALL
—
—
ns
CS4
eCSPIx_CS_x pulse width
tCSLH
15
—
ns
CS5
eCSPIx_CS_x Lead Time (CS setup time)
tSCS
5
—
ns
CS6
eCSPIx_CS_x Lag Time (CS hold time)
tHCS
5
—
ns
CS7
eCSPIx_DO Setup Time
tSmosi
5
—
ns
CS8
eCSPIx_DO Hold Time
tHmosi
5
—
ns
CS9
eCSPIx_DI Setup Time
tSmiso
5
—
ns
CS10
eCSPIx_DI Hold Time
tHmiso
5
—
ns
CS11
eCSPIx_DRYN Setup Time
tSDRY
5
—
ns
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
63
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
3.7.2
Electrical Characteristics
eCSPI Slave Mode Timing
Figure 37 depicts the timing of eCSPI in Slave mode and Table 54 lists the eCSPI Slave Mode timing
characteristics.
eCSPIx_CS_x
CS1
CS2
CS3
CS6
CS5
CS4
eCSPIx_CLK
CS9CS10
CS2
CS3
eCSPIx_DI
CS7 CS8
eCSPIx_DO
Figure 38. eCSPI Slave Mode Timing Diagram
Table 55. eCSPI Slave Mode Timing Parameters
ID
Parameter
Symbol
Min
Max
Unit
CS1
eCSPIx_CLK Cycle Time–Read
eCSPIx_CLK Cycle Time–Write
tclk
60
15
—
ns
CS2
eCSPIx_CLK High or Low Time
tSW
6
—
ns
CS3
eCSPIx_CLK Rise or Fall
tRISE/FALL
—
—
ns
CS4
eCSPIx_CS_x pulse width
tCSLH
15
—
ns
CS5
eCSPIx_CS_x Lead Time (CS setup time)
tSCS
5
—
ns
CS6
eCSPIx_CS_x Lag Time (CS hold time)
tHCS
5
—
ns
CS7
eCSPIx_DO Setup Time
tSmosi
5
—
ns
CS8
eCSPIx_DO Hold Time
tHmosi
5
—
ns
CS9
eCSPIx_DI Setup Time
tSmiso
5
—
ns
CS10
eCSPIx_DI Hold Time
tHmiso
5
—
ns
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
64
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
3.7.2.2
Electrical Characteristics
3.7.3
eSDHCv2 Timing Parameters
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
This section describes the electrical information of the eSDHCv2.
Figure 39 depicts the timing of eSDHCv2, and Table 56 lists the eSDHCv2 timing characteristics.
SD4
SD2
SD1
SD5
MMCx_CLK
SD3
MMCx_CMD
MMCx_DAT_0
MMCx_DAT_1
output from eSDHCv2 to card
......
MMCx_DAT_7
SD6
SD7
SD8
MMCx_CMD
MMCx_DAT_0
MMCx_DAT_1
input from card to eSDHCv2
......
MMCx_DAT_3
Figure 39. eSDHCv2 Timing
Table 56. eSDHCv2 Interface Timing Specification
ID
Parameter
Symbols
Min
Max
Unit
Clock Frequency (Low Speed)
fPP1
0
400
kHz
Clock Frequency (SD/SDIO Full Speed/High Speed)
fPP2
0
25/50
MHz
Clock Frequency (MMC Full Speed/High Speed)
fPP3
0
20/52
MHz
Clock Frequency (Identification Mode)
fOD
100
400
kHz
SD2
Clock Low Time
tWL
7
—
ns
SD3
Clock High Time
tWH
7
—
ns
SD4
Clock Rise Time
tTLH
—
3
ns
SD5
Clock Fall Time
tTHL
—
3
ns
3
ns
Card Input Clock
SD1
eSDHC Output / Card Inputs CMD, DAT (Reference to CLK)
SD6
eSDHC Output Delay
tOD
–3
eSDHC Input / Card Outputs CMD, DAT (Reference to CLK)
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
65
Preliminary—Subject to Change Without Notice
Electrical Characteristics
ID
Parameter
Symbols
Min
Max
Unit
SD7
eSDHC Input Setup Time
tISU
2.5
—
ns
SD8
eSDHC Input Hold Time
tIH4
2.5
—
ns
1
In low speed mode, card clock must be lower than 400 kHz, voltage ranges from 2.7 to 3.6 V.
In normal speed mode for SD/SDIO card, clock frequency can be any value between 0–25 MHz. In high-speed mode, clock
frequency can be any value between 0–50 MHz.
3
In normal speed mode for MMC card, clock frequency can be any value between 0–20 MHz. In high-speed mode, clock
frequency can be any value between 0–52 MHz.
4
To satisfy hold timing, the delay difference between clock input and cmd/data input must not exceed 2 ns.
2
3.7.4
FEC AC Timing Parameters
This section describes the electrical information of the Fast Ethernet Controller (FEC) module. The FEC
is designed to support both 10 and 100 Mbps Ethernet/IEEE 802.3 networks. An external transceiver
interface and transceiver function are required to complete the interface to the media. The FEC supports
the 10/100 Mbps MII (18 pins in total) and the 10 Mbps-only 7-wire interface, which uses 7 of the MII
pins, for connection to an external Ethernet transceiver. For the pin list of MII and 7-wire, refer to the
i.MX51 Reference Manual.
This section describes the AC timing specifications of the FEC. The MII signals are compatible with
transceivers operating at a voltage of 3.3 V.
3.7.4.1
MII Receive Signal Timing
The MII receive signal timing involves the FEC_RXD[3:0], FEC_RX_DV, FEC_RX_ER, and
FEC_RX_CLK signals. The receiver functions correctly up to a FEC_RX_CLK maximum frequency of
25 MHz + 1%. There is no minimum frequency requirement but the processor clock frequency must
exceed twice the FEC_RX_CLK frequency. Table 57 lists the MII receive channel signal timing
parameters and Figure 40 shows MII receive signal timings.
.
1
Table 57. MII Receive Signal Timing
Num
Characteristic1
Min
Max
Unit
M1
FEC_RXD[3:0], FEC_RX_DV, FEC_RX_ER to FEC_RX_CLK setup
5
—
ns
M2
FEC_RX_CLK to FEC_RXD[3:0], FEC_RX_DV, FEC_RX_ER hold
5
—
ns
M3
FEC_RX_CLK pulse width high
35%
65%
FEC_RX_CLK period
M4
FEC_RX_CLK pulse width low
35%
65%
FEC_RX_CLK period
FEC_RX_DV, FEC_RX_CLK, and FEC_RXD0 have same timing in 10 Mbps 7-wire interface mode.
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
66
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Table 56. eSDHCv2 Interface Timing Specification (continued)
Electrical Characteristics
FEC_RX_CLK (input)
M4
FEC_RXD[3:0] (inputs)
FEC_RX_DV
FEC_RX_ER
M1
M2
Figure 40. MII Receive Signal Timing Diagram
3.7.4.2
MII Transmit Signal Timing
The MII transmit signal timing affects the FEC_TXD[3:0], FEC_TX_EN, FEC_TX_ER, and
FEC_TX_CLK signals. The transmitter functions correctly up to a FEC_TX_CLK maximum frequency
of 25 MHz + 1%. There is no minimum frequency requirement. In addition, the processor clock frequency
must exceed twice the FEC_TX_CLK frequency. Table 58 lists MII transmit channel timing parameters
and Figure 41 shows MII transmit signal timing diagram for the values listed in Table 58.
Table 58. MII Transmit Signal Timing
Characteristic1
Num
1
Min
Max
Unit
M5
FEC_TX_CLK to FEC_TXD[3:0], FEC_TX_EN, FEC_TX_ER invalid
5
—
ns
M6
FEC_TX_CLK to FEC_TXD[3:0], FEC_TX_EN, FEC_TX_ER valid
—
20
ns
M7
FEC_TX_CLK pulse width high
35%
65%
FEC_TX_CLK period
M8
FEC_TX_CLK pulse width low
35%
65%
FEC_TX_CLK period
FEC_TX_EN, FEC_TX_CLK, and FEC_TXD0 have the same timing in 10 Mbps 7-wire interface mode.
.
M7
FEC_TX_CLK (input)
M5
M8
FEC_TXD[3:0] (outputs)
FEC_TX_EN
FEC_TX_ER
M6
Figure 41. MII Transmit Signal Timing Diagram
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
67
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
M3
Electrical Characteristics
MII Async Inputs Signal Timing (FEC_CRS and FEC_COL)
Table 59 lists MII asynchronous inputs signal timing information. Figure 42 shows MII asynchronous
input timings listed in Table 59.
Table 59. MII Async Inputs Signal Timing
1
Num
Characteristic
Min
Max
Unit
M91
FEC_CRS to FEC_COL minimum pulse width
1.5
—
FEC_TX_CLK period
FEC_COL has the same timing in 10 Mbit 7-wire interface mode.
.
FEC_CRS, FEC_COL
M9
Figure 42. MII Async Inputs Timing Diagram
3.7.4.4
MII Serial Management Channel Timing (FEC_MDIO and FEC_MDC)
Table 60 lists MII serial management channel timings. Figure 43 shows MII serial management channel
timings listed in Table 60. The MDC frequency should be equal to or less than 2.5 MHz to be compliant
with the IEEE 802.3 MII specification. However the FEC can function correctly with a maximum MDC
frequency of 15 MHz.
Table 60. MII Transmit Signal Timing
ID
Characteristic
Min Max
Unit
M10
FEC_MDC falling edge to FEC_MDIO output invalid (minimum propagation delay)
0
—
ns
M11
FEC_MDC falling edge to FEC_MDIO output valid (max propagation delay)
—
5
ns
M12
FEC_MDIO (input) to FEC_MDC rising edge setup
18
—
ns
M13
FEC_MDIO (input) to FEC_MDC rising edge hold
0
—
ns
M14
FEC_MDC pulse width high
40% 60% FEC_MDC period
M15
FEC_MDC pulse width low
40% 60% FEC_MDC period
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
68
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
3.7.4.3
Electrical Characteristics
M15
FEC_MDC (output)
M10
FEC_MDIO (output)
M11
FEC_MDIO (input)
M12
M13
Figure 43. MII Serial Management Channel Timing Diagram
3.7.5
Frequency Pre-Multiplier (FPM) Electrical Parameters (CKIL)
The FPM is a DPLL that converts a signal operating in the kilohertz region into a clock signal operating
in the megahertz region. The output of the FPM provides the reference frequency for the on-chip DPLLs.
Parameters of the FPM are listed in Table 61.
Table 61. FPM Specifications
Parameter
Min
Typ
Max
Unit
Reference clock frequency range—CKIL
32
32.768
256
kHz
FPM output clock frequency range
8
—
33
MHz
128
—
1024
—
—
—
312.5
µs
—
8
20
ns
FPM multiplication factor (test condition is changed by a factor of 2)
Lock-in
time1
Cycle-to-cycle frequency jitter (peak to peak)
1
plrf = 1 cycle assumed missed + x cycles for reset deassert + y cycles for calibration and lock x[ts] = {2,3,5,9};
y[ts] = {7,8,10,14}; where ts is the chosen time scale of the reference clock. In this case reference clock = 32 kHz which makes
ts = 0, therefore total time required for achieving lock is 10(1+2+7) cycles or 312.5 µs.
3.7.6
High-Speed I2C (HS-I2C) Timing Parameters
This section describes the timing parameters of the HS-I2C module. This module can operate in the
following modes: Standard, Fast and High speed.
NOTE
the HS-I2C module in the i.MX51 Chip Errata. There are
See the errata for
two standard I2C modules that have no errata.
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
69
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
M14
Electrical Characteristics
Standard and Fast Mode Timing Parameters
Figure 44 depicts the standard and fast mode timings of HS-I2C module, and Table 62 lists the timing
characteristics.
SCLH
IC11
IC10
SDAH
IC2
IC10
START
IC7
IC4
IC8
IC9
IC11
IC6
IC3
STOP
START
START
IC5
IC1
Figure 44. HS-I2C Standard and Fast Mode Bus Timing
Table 62. HS-I2C Timing Parameters—Standard and Fast Mode
Standard Mode
ID
Fast Mode
Parameter
Unit
Min
Max
Min
Max
IC1
SCLH cycle time
10
—
2.5
—
µs
IC2
Hold time (repeated) START condition
4.0
—
0.6
—
µs
IC3
Set-up time for STOP condition
4.0
—
0.6
—
µs
IC4
Data hold time
01
3.452
01
0.92
µs
IC5
HIGH Period of SCLH Clock
4.0
—
0.6
—
µs
IC6
LOW Period of the SCLH Clock
4.7
—
1.3
—
µs
IC7
Set-up time for a repeated START condition
4.7
—
0.6
—
µs
IC8
Data set-up time
250
—
1003
—
ns
IC9
Bus free time between a STOP and START condition
4.7
—
1.3
—
µs
IC10
Rise time of both SDAH and SCLH signals
—
1000
20+0.1Cb4
300
ns
4
300
ns
100
pF
IC11
Fall time of both SDAH and SCLH signals
—
300
20+0.1Cb
IC12
Capacitive load for each bus line (C b)
—
100
—
1
A device must internally provide a hold time of at least 300 ns for SDAH signal in order to bridge the undefined region of the
falling edge of SCLH.
2 The maximum hold time has only to be met if the device does not stretch the LOW period (ID no IC6) of the SCLH signal
3 A Fast-mode I2C-bus device can be used in a Standard-mode I 2C-bus system, but the requirement of Set-up time (ID No IC8)
of 250 ns must then be met. This automatically is the case if the device does not stretch the LOW period of the SCLH signal.
If such a device does stretch the LOW period of the SCLH signal, it must output the next data bit to the SDAH line max_rise_time
(ID No IC10) + data_setup_time (ID No IC8) = 1000 + 250 = 1250 ns (according to the Standard-mode I2C-bus specification)
before the SCLH line is released.
4 C = total capacitance of one bus line in pF.
b
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
70
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
3.7.6.1
Electrical Characteristics
High-Speed Mode Timing Parameters
Figure 45 depicts the high-speed mode timings of HS-I2C module, and Table 63 lists the timing
characteristics.
SCLH
IC12
IC11
SDAH
IC3
START
IC2
IC7
IC6
IC9
IC13
IC10
IC4
IC5
START
STOP
START
IC8
IC1
Figure 45. High-Speed Mode Timing
Table 63. HS-I2C High-Speed Mode Timing Parameters
High-Speed Mode
ID
Parameter
Unit
Min
Max
IC1 SCLH cycle time
10
3.4
MHz
IC2 Setup time (repeated) START condition
160
—
ns
IC3 Hold time (repeated) START condition
160
—
ns
IC4 LOW Period of the SCLH Clock
160
—
ns
IC5 HIGH Period of SCLH Clock
60
—
ns
IC6 Data set-up time
10
—
ns
IC7 Data hold time
01
70
ns
IC8 Rise time of SCLH
10
40
ns
IC9 Rise time of SCLH signal after a repeated START condition and after an acknowledge bit
10
80
ns
IC10 Fall time of SCLH signal
10
40
ns
IC11 Rise time of SDAH signal
10
80
ns
IC12 Fall time of SDAH signal
10
80
ns
IC13 Set-up time for STOP condition
160
—
ns
—
100
pF
IC14 Capacitive load for each bus line (Cb)
1
A device must internally provide a hold time of at least 300 ns for SDAH signal in order to bridge the undefined region of the
falling edge of SCLH.
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
71
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
3.7.6.2
Electrical Characteristics
I2C Module Timing Parameters
This section describes the timing parameters of the I2C Module. Figure 46 depicts the timing of I2C
module, and Table 64 lists the I2C Module timing characteristics.
I2CLK
IC11
IC10
I2DAT
IC2
START
IC7
IC4
IC8
IC10
IC11
IC6
IC9
IC3
STOP
START
START
IC5
IC1
Figure 46. I2C Bus Timing
Table 64. I2C Module Timing Parameters
ID
Parameter
Fast Mode
Standard Mode
Supply Voltage =
Supply Voltage =
2.7 V–3.3 V
Unit
1.65 V–1.95 V, 2.7 V–3.3 V
Min
Max
Min
Max
IC1
I2CLK cycle time
10
—
2.5
—
µs
IC2
Hold time (repeated) START condition
4.0
—
0.6
—
µs
IC3
Set-up time for STOP condition
4.0
—
0.6
—
µs
IC4
Data hold time
01
3.45
01
0.92
µs
IC5
HIGH Period of I2CLK Clock
4.0
—
0.6
—
µs
IC6
LOW Period of the I2CLK Clock
4.7
—
1.3
—
µs
IC7
Set-up time for a repeated START condition
4.7
—
0.6
—
µs
—
ns
2
IC8
Data set-up time
250
—
1003
IC9
Bus free time between a STOP and START condition
4.7
—
1.3
—
µs
0.1Cb4
300
ns
IC10
Rise time of both I2DAT and I2CLK signals
—
1000
20 +
IC11
Fall time of both I2DAT and I2CLK signals
—
300
20 + 0.1Cb4
300
ns
IC12
Capacitive load for each bus line (Cb)
—
400
—
400
pF
1
A device must internally provide a hold time of at least 300 ns for I2DAT signal in order to bridge the undefined region of the
falling edge of I2CLK.
2 The maximum hold time has only to be met if the device does not stretch the LOW period (ID no IC5) of the I2CLK signal
3 A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system, but the requirement of Set-up time (ID No IC7)
of 250 ns must be met. This automatically is the case if the device does not stretch the LOW period of the I2CLK signal.
If such a device does stretch the LOW period of the I2CLK signal, it must output the next data bit to the I2DAT line
max_rise_time (IC9) + data_setup_time (IC7) = 1000 + 250 = 1250 ns (according to the Standard-mode I2C-bus specification)
before the I2CLK line is released.
4
Cb = total capacitance of one bus line in pF.
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
72
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
3.7.7
Electrical Characteristics
Image Processing Unit (IPU) Module Parameters
The purpose of the IPU is to provide comprehensive support for the flow of data from an image sensor
and/or to a display device. This support covers all aspects of these activities:
• Connectivity to relevant devices—cameras, displays, graphics accelerators, and TV encoders.
• Related image processing and manipulation: sensor image signal processing, display processing,
image conversions, and other related functions.
• Synchronization and control capabilities such as avoidance of tearing artifacts.
3.7.8.1
Sensor Interface Timings
There are three camera timing modes supported by the IPU.
3.7.8.1.1
BT.656 and BT.1120 Video Mode
Smart camera sensors, which include imaging processing, usually support video mode transfer. They use
an embedded timing syntax to replace the SENSB_VSYNC and SENSB_HSYNC signals. The timing
syntax is defined by the BT.656/BT.1120 standards.
This operation mode follows the recommendations of ITU BT.656/ ITU BT.1120 specifications. The only
control signal used is SENSB_PIX_CLK. Start-of-frame and active-line signals are embedded in the data
stream. An active line starts with a SAV code and ends with a EAV code. In some cases, digital blanking
is inserted in between EAV and SAV code. The CSI decodes and filters out the timing-coding from the data
stream, thus recovering SENSB_VSYNC and SENSB_HSYNC signals for internal use. On BT.656 one
component per cycle is received over the SENSB_DATA bus. On BT.1120 two components per cycle are
received over the SENSB_DATA bus.
3.7.8.1.2
Gated Clock Mode
The SENSB_VSYNC, SENSB_HSYNC, and SENSB_PIX_CLK signals are used in this mode. See
Figure 47.
Active Line
Start of Frame
nth frame
n+1th frame
SENSB_VSYNC
SENSB_HSYNC
SENSB_PIX_CLK
SENSB_DATA[19:0]
invalid
invalid
1st byte
1st byte
Figure 47. Gated Clock Mode Timing Diagram
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
73
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
3.7.8
A frame starts with a rising edge on SENSB_VSYNC (all the timings correspond to straight polarity of the
corresponding signals). Then SENSB_HSYNC goes to high and hold for the entire line. Pixel clock is
valid as long as SENSB_HSYNC is high. Data is latched at the rising edge of the valid pixel clocks.
SENSB_HSYNC goes to low at the end of line. Pixel clocks then become invalid and the CSI stops
receiving data from the stream. For next line the SENSB_HSYNC timing repeats. For next frame the
SENSB_VSYNC timing repeats.
3.7.8.1.3
Non-Gated Clock Mode
The timing is the same as the gated-clock mode (described in Section 3.7.8.1.2, “Gated Clock Mode”),
except for the SENSB_HSYNC signal, which is not used. See Figure 48. All incoming pixel clocks are
valid and cause data to be latched into the input FIFO. The SENSB_PIX_CLK signal is inactive (states
low) until valid data is going to be transmitted over the bus.
Start of Frame
nth frame
n+1th frame
SENSB_VSYNC
SENSB_PIX_CLK
SENSB_DATA[19:0]
invalid
invalid
1st byte
1st byte
Figure 48. Non-Gated Clock Mode Timing Diagram
The timing described in Figure 48 is that of a typical sensor. Some other sensors may have a slightly
different timing. The CSI can be programmed to support rising/falling-edge triggered SENSB_VSYNC;
active-high/low SENSB_HSYNC; and rising/falling-edge triggered SENSB_PIX_CLK.
3.7.8.2
Electrical Characteristics
Figure 49 depicts the sensor interface timing. SENSB_MCLK signal described here is not generated by
the IPU.
SENSB_PIX_CLK
(Sensor Output)
IP3
IP2
1/IP1
SENSB_DATA,
SENSB_VSYNC,
SENSB_HSYNC
Figure 49. Sensor Interface Timing Diagram
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
74
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Electrical Characteristics
Electrical Characteristics
ID
Parameter
Symbol
Min
Max
Unit
IP1
Sensor output (pixel) clock frequency
Fpck
0.01
120
IP2
Data and control setup time
Tsu
3
—
ns
IP3
Data and control holdup time
Thd
2
—
ns
3.7.8.3
MHz
IPU Display Interface Signal Mapping
The IPU supports a number of display output video formats. Table 66 defines the mapping of the Display
Interface Pins used during various supported video interface formats.
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
75
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Table 65. Sensor Interface Timing Characteristics
Electrical Characteristics
i.MX51
Port Name
(x=1,2)
LCD
RGB/TV Signal Allocation (Example)
RGB,
Signal
Name
16-bit 18-bit 24 Bit
8-bit
16-bit 20-bit
(General) RGB RGB RGB YCrCb2 YCrCb YCrCb
Smart
Comment1
Signal
Name
DISPx_DAT0
DAT[0]
B[0]
B[0]
B[0]
Y/C[0]
C[0]
C[0]
DAT[0]
DISPx_DAT1
DAT[1]
B[1]
B[1]
B[1]
Y/C[1]
C[1]
C[1]
DAT[1]
DISPx_DAT2
DAT[2]
B[2]
B[2]
B[2]
Y/C[2]
C[2]
C[2]
DAT[2]
The restrictions are as follows:
a) There are maximal three
continuous groups of bits that
could be independently mapped to
the external bus.
DISPx_DAT3
DAT[3]
B[3]
B[3]
B[3]
Y/C[3]
C[3]
C[3]
DAT[3]
Groups should not be overlapped.
DISPx_DAT4
DAT[4]
B[4]
B[4]
B[4]
Y/C[4]
C[4]
C[4]
DAT[4]
DISPx_DAT5
DAT[5]
G[0]
B[5]
B[5]
Y/C[5]
C[5]
C[5]
DAT[5]
b) The bit order is expressed in
each of the bit groups, for example
B[0] = least significant blue pixel
bit
DISPx_DAT6
DAT[6]
G[1]
G[0]
B[6]
Y/C[6]
C[6]
C[6]
DAT[6]
DISPx_DAT7
DAT[7]
G[2]
G[1]
B[7]
Y/C[7]
C[7]
C[7]
DAT[7]
DISPx_DAT8
DAT[8]
G[3]
G[2]
G[0]
—
Y[0]
C[8]
DAT[8]
DISPx_DAT9
DAT[9]
G[4]
G[3]
G[1]
—
Y[1]
C[9]
DAT[9]
DISPx_DAT10
DAT[10]
G[5]
G[4]
G[2]
—
Y[2]
Y[0]
DAT[10]
DISPx_DAT11
DAT[11]
R[0]
G[5]
G[3]
—
Y[3]
Y[1]
DAT[11]
DISPx_DAT12
DAT[12]
R[1]
R[0]
G[4]
—
Y[4]
Y[2]
DAT[12]
DISPx_DAT13
DAT[13]
R[2]
R[1]
G[5]
—
Y[5]
Y[3]
DAT[13]
DISPx_DAT14
DAT[14]
R[3]
R[2]
G[6]
—
Y[6]
Y[4]
DAT[14]
DISPx_DAT15
DAT[15]
R[4]
R[3]
G[7]
—
Y[7]
Y[5]
DAT[15]
DISPx_DAT16
DAT[16]
—
R[4]
R[0]
—
—
Y[6]
—
DISPx_DAT17
DAT[17]
—
R[5]
R[1]
—
—
Y[7]
—
DISPx_DAT18
DAT[18]
—
—
R[2]
—
—
Y[8]
—
DISPx_DAT19
DAT[19]
—
—
R[3]
—
—
Y[9]
—
DISPx_DAT20
DAT[20]
—
—
R[4]
—
—
—
—
DISPx_DAT21
DAT[21]
—
—
R[5]
—
—
—
—
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
76
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Table 66. Video Signal Cross-Reference
Electrical Characteristics
i.MX51
Port Name
(x=1,2)
LCD
RGB/TV Signal Allocation (Example)
RGB,
Signal
Name
16-bit 18-bit 24 Bit
8-bit
16-bit 20-bit
(General) RGB RGB RGB YCrCb2 YCrCb YCrCb
Comment1
Smart
Signal
Name
DISPx_DAT22
DAT[22]
—
—
R[6]
—
—
—
—
—
DISPx_DAT23
DAT[23]
—
—
R[7]
—
—
—
—
—
—
—
DIx_DISP_CLK
PixCLK
DIx_PIN1
—
DIx_PIN2
HSYNC
—
—
DIx_PIN3
VSYNC
—
VSYNC out
DIx_PIN4
—
—
DIx_PIN5
—
—
Additional frame/row synchronous
signals with programmable timing
DIx_PIN6
—
—
DIx_PIN7
—
—
DIx_PIN8
—
—
DIx_D0_CS
—
CS0
—
DIx_D1_CS
—
CS1
Alternate mode of PWM output for
contrast or brightness control
DIx_PIN11
—
WR
—
DIx_PIN12
—
RD
—
DIx_PIN13
—
RS1
Register select signal
DIx_PIN14
—
RS2
Optional RS2
DIx_PIN15
DRDY/DV
DRDY
DIx_PIN16
—
—
DIx_PIN17
Q
—
1
2
VSYNC_IN May be required for anti-tearing
Data validation/blank, data enable
Additional data synchronous
signals with programmable
features/timing
Signal mapping (both data and control/synchronization) is flexible. The table provides examples.
This mode works in compliance with recommendation ITU-R BT.656. The timing reference signals (frame start, frame end, line
start, and line end) are embedded in the 8-bit data bus. Only video data is supported, transmission of non-video related data
during blanking intervals is not supported.
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
77
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Table 66. Video Signal Cross-Reference (continued)
Electrical Characteristics
IPU Display Interface Timing
The IPU Display Interface supports two kinds of display’s accesses: synchronous and asynchronous. There
are two groups of external interface pins to provide synchronous and asynchronous controls accordantly.
3.7.8.4.1
Synchronous Controls
The synchronous control is a signal that changes its value as a function either of a system or of an external
clock. This control has a permanent period and a permanent wave form.
There are special physical outputs to provide synchronous controls:
• The ipp_disp_clk is a dedicated base synchronous signal that is used to generate a base display
(component, pixel) clock for a display.
• The ipp_pin_1– ipp_pin_7 are general purpose synchronous pins, that can be used to provide
HSYNC, VSYNC, DRDY or any else independent signal to a display.
The IPU has a system of internal binding counters for internal events (like HSYNC/VSYCN etc.)
calculation. The internal event (local start point) is synchronized with internal DI_CLK. A suitable control
starts from the local start point with predefined UP and DOWN values to calculate control’s changing
points with half DI_CLK resolution. A full description of the counters system is in the IPU chapter of the
i.MX51 reference manual.
3.7.8.4.2
Asynchronous Controls
The asynchronous control is a data oriented signal that changes its a value with an output data according
to an additional internal flags coming with the data.
There are special physical outputs to provide asynchronous controls, as follows:
• The ipp_d0_cs and ipp_d1_cspins are dedicated to provide chip select signals to two displays
• The ipp_pin_11– ipp_pin_17 are general purpose asynchronous pins, that can be used to provide
WR. RD, RS or any else data oriented signal to display.
NOTE
The IPU has independent signal generators for asynchronous signals
toggling. When a DI decides to put a new asynchronous data in the bus, a
new internal start (local start point) is generated. The signals generators
calculate predefined UP and DOWN values to change pins states with half
DI_CLK resolution.
3.7.8.5
3.7.8.5.1
Synchronous Interfaces to Standard Active Matrix TFT LCD Panels
IPU Display Operating Signals
The IPU uses four control signals and data to operate a standard synchronous interface:
• IPP_DISP_CLK—Clock to display
• HSYNC—Horizontal synchronization
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
78
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
3.7.8.4
Electrical Characteristics
VSYNC—Vertical synchronization
DRDY—Active data
All synchronous display controls are generated on base of an internal generated “local start point”. The
synchronous display controls can be placed on time axis with DI’s offset, up and down parameters. The
display access can be whole number of DI clock (Tdiclk) only. The IPP_DATA can not be moved relative
to the local start point.
3.7.8.5.2
LCD Interface Functional Description
Figure 50 depicts the LCD interface timing for a generic active matrix color TFT panel. In this figure
signals are shown with negative polarity. The sequence of events for active matrix interface timing is:
• DI_CLK internal DI clock, used for calculation of other controls.
• IPP_DISP_CLK latches data into the panel on its negative edge (when positive polarity is
selected). In active mode, IPP_DISP_CLK runs continuously.
• HSYNC causes the panel to start a new line. (Usually IPP_PIN_2 is used as HSYNC)
• VSYNC causes the panel to start a new frame. It always encompasses at least one HSYNC pulse.
(Usually IPP_PIN_3 is used as VSYNC)
• DRDY acts like an output enable signal to the CRT display. This output enables the data to be
shifted onto the display. When disabled, the data is invalid and the trace is off.
(For DRDY can be used either synchronous or asynchronous generic purpose pin as well.)
VSYNC
HSYNC
LINE 1
LINE 2
LINE 3
LINE 4
LINE n-1
LINE n
HSYNC
DRDY
1
2
3
m-1
m
IPP_DISP_CLK
IPP_DATA
Figure 50. Interface Timing Diagram for TFT (Active Matrix) Panels
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
79
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
•
•
Electrical Characteristics
TFT Panel Sync Pulse Timing Diagrams
Figure 51 depicts the horizontal timing (timing of one line), including both the horizontal sync pulse and
the data. All shown on the figure parameters are programmable. All controls are started by corresponding
internal events—local start points. The timing diagrams correspond to inverse polarity of the
IPP_DISP_CLK signal and active-low polarity of the HSYNC, VSYNC and DRDY signals.
IP13o
IP7
IP5o
IP8o
IP5
IP8
DI clock
IPP_DISP_CLK
VSYNC
HSYNC
DRDY
IPP_DATA
D0
local start point
local start point
Dn
IP9o
IP9
local start point
D1
IP10
IP6
Figure 51. TFT Panels Timing Diagram—Horizontal Sync Pulse
Figure 52 depicts the vertical timing (timing of one frame). All parameters shown in the figure are
programmable.
Start of frame
IP13
End of frame
VSYNC
HSYNC
DRDY
IP11
IP15
IP14
IP12
Figure 52. TFT Panels Timing Diagram—Vertical Sync Pulse
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
80
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
3.7.8.5.3
Electrical Characteristics
Table 67 shows timing characteristics of signals presented in Figure 51 and Figure 52.
ID
Parameter
Symbol
Value
IP5
Display interface clock period
Tdicp
(1)
IP6
Display pixel clock period
Tdpcp
IP7
Screen width time
Tsw
(SCREEN_WIDTH)
× Tdicp
IP8
HSYNC width time
Thsw
(HSYNC_WIDTH)
IP9
Horizontal blank interval 1
Thbi1
BGXP × Tdicp
IP10
Horizontal blank interval 2
Thbi2
IP12
Screen height
IP13
Description
Display interface clock. IPP_DISP_CLK
DISP_CLK_PER_PIXEL Time of translation of one pixel to display,
× Tdicp
DISP_CLK_PER_PIXEL—number of pixel
components in one pixel (1.n). The
DISP_CLK_PER_PIXEL is virtual
parameter to define Display pixel clock
period.
The DISP_CLK_PER_PIXEL is received by
DC/DI one access division to n
components.
Unit
ns
ns
SCREEN_WIDTH—screen width in,
interface clocks. horizontal blanking
included.
The SCREEN_WIDTH should be built by
suitable DI’s counter2.
ns
HSYNC_WIDTH—Hsync width in DI_CLK
with 0.5 DI_CLK resolution. Defined by DI’s
counter.
ns
BGXP—Width of a horizontal blanking
before a first active data in a line. (in
interface clocks). The BGXP should be built
by suitable DI’s counter.
ns
(SCREEN_WIDTH BGXP - FW) × Tdicp
Width a horizontal blanking after a last
active data in a line. (in interface clocks)
FW—with of active line in interface clocks.
The FW should be built by suitable DI’s
counter.
ns
Tsh
(SCREEN_HEIGHT)
× Tsw
SCREEN_HEIGHT— screen height in lines
with blanking
The SCREEN_HEIGHT is a distance
between 2 VSYNCs.
The SCREEN_HEIGHT should be built by
suitable DI’s counter.
ns
VSYNC width
Tvsw
VSYNC_WIDTH
VSYNC_WIDTH—Vsync width in DI_CLK
with 0.5 DI_CLK resolution. Defined by DI’s
counter
ns
IP14
Vertical blank interval 1
Tvbi1
BGYP × Tsw
BGYP—width of first Vertical
blanking interval in line.The BGYP should
be built by suitable DI’s counter.
ns
IP15
Vertical blank interval 2
Tvbi2
width of second Vertical
blanking interval in line.The FH should be
built by suitable DI’s counter.
ns
(SCREEN_HEIGHT BGYP - FH) × Tsw
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
81
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Table 67. Synchronous Display Interface Timing Characteristics (Pixel Level)
Electrical Characteristics
Table 67. Synchronous Display Interface Timing Characteristics (Pixel Level) (continued)
Symbol
Value
Todicp
DISP_CLK_OFFSET
× Tdiclk
IP13o Offset of VSYNC
Tovs
IP8o
Offset of HSYNC
IP9o
Offset of DRDY
IP5o
1
Parameter
Offset of IPP_DISP_CLK
Description
Unit
DISP_CLK_OFFSET— offset of
IPP_DISP_CLK edges from local start
point, in DI_CLK×2
(0.5 DI_CLK Resolution)
Defined by DISP_CLK counter
ns
VSYNC_OFFSET
× Tdiclk
VSYNC_OFFSET—offset of Vsync edges
from a local start point, when a Vsync
should be active, in DI_CLK×2
(0.5 DI_CLK Resolution).The
VSYNC_OFFSET should be built by
suitable DI’s counter.
ns
Tohs
HSYNC_OFFSET
× Tdiclk
HSYNC_OFFSET—offset of Hsync edges
from a local start point, when a Hsync
should be active, in DI_CLK×2
(0.5 DI_CLK Resolution).The
HSYNC_OFFSET should be built by
suitable DI’s counter.
ns
Todrdy
DRDY_OFFSET
× Tdiclk
DRDY_OFFSET— offset of DRDY edges
from a suitable local start point, when a
corresponding data has been set on the
bus, in DI_CLK×2
(0.5 DI_CLK Resolution)
The DRDY_OFFSET should be built by
suitable DI’s counter.
ns
Display interface clock period immediate value.
⎧
DISP_CLK_PERIOD
⎪ T diclk × ------------------------------------------------------- ,
DI_CLK_PERIOD
⎪
Tdicp = ⎨
⎪T
⎛ floor DISP_CLK_PERIOD
------------------------------------------------------- + 0.5 ± 0.5⎞ ,
⎪ diclk ⎝
⎠
DI_CLK_PERIOD
⎩
DISP_CLK_PERIOD
for integer ------------------------------------------------------DI_CLK_PERIOD
DISP_CLK_PERIOD
for fractional ------------------------------------------------------DI_CLK_PERIOD
DISP_CLK_PERIOD—number of DI_CLK per one Tdicp. Resolution 1/16 of DI_CLK
DI_CLK_PERIOD—relation of between programing clock frequency and current system clock frequency
Display interface clock period average value.
DISP_CLK_PERIOD
Tdicp = T diclk × ------------------------------------------------------DI_CLK_PERIOD
2
DI’s counter can define offset, period and UP/DOWN characteristic of output signal according to programed parameters of the
counter. Same of parameters in the table are not defined by DI’s registers directly (by name), but can be generated by
corresponding DI’s counter. The SCREEN_WIDTH is an input value for DI’s HSYNC generation counter. The distance
between HSYNCs is a SCREEN_WIDTH.
The maximal accuracy of UP/DOWN edge of controls is
Accuracy = ( 0.5 × T diclk ) ± 0.75ns
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
82
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
ID
Electrical Characteristics
Accuracy = T
diclk
± 0.75ns
The DISP_CLK_PERIOD, DI_CLK_PERIOD parameters are programmed via registers.
Figure 53 depicts the synchronous display interface timing for access level. The DISP_CLK_DOWN and
DISP_CLK_UP parameters are set via the Register.
IP20o IP20
VSYNC
HSYNC
DRDY
other controls
IPP_DISP_CLK
Tdicu
Tdicd
IPP_DATA
IP16
IP17
IP19
IP18
local start point
Figure 53. Synchronous Display Interface Timing Diagram—Access Level
Table 68. Synchronous Display Interface Timing Characteristics (Access Level)
ID
Parameter
Symbol
Typ1
Min
Max
Unit
IP16
Display interface clock
low time
Tckl
Tdicd-Tdicu–1.5
Tdicd2–Tdicu3
Tdicd–Tdicu+1.5
ns
IP17
Display interface clock
high time
Tckh
Tdicp–Tdicd+Tdicu–1.5
Tdicp–Tdicd+Tdicu
Tdicp–Tdicd+Tdicu+1.5
ns
IP18
Data setup time
Tdsu
Tdicd–1.5
Tdicu
—
ns
IP19
Data holdup time
Tdhd
Tdicp–Tdicd–1.5
Tdicp–Tdicu
—
ns
IP20o
Control signals offset
times (defines for each
pin)
Tocsu
Tocsu–1.5
Tocsu
IP20
Tcsu
Control signals setup
time to display interface
clock (defines for each
pin)
Tocsu+1.5
Tdicd–1.5–Tocsu%Tdicp Tdicu
—
—
ns
1The
exact conditions have not been finalized, but will likely match the current customer requirement for their specific display.
These conditions may be chip specific.
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
83
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
The maximal accuracy of UP/DOWN edge of IPP_DATA is
Electrical Characteristics
Display interface clock down time
2 × DISP_CLK_DOWN
1
Tdicd = --- ⎛ T diclk × ceil ------------------------------------------------------------- ⎞
⎠
DI_CLK_PERIOD
2⎝
3
Display interface clock up time
2 × DISP_CLK_UP
1
Tdicu = --- ⎛ T diclk × ceil --------------------------------------------------- ⎞
DI_CLK_PERIOD ⎠
2⎝
where CEIL(X) rounds the elements of X to the nearest integers towards infinity.
3.7.8.6
Interface to a TV Encoder
The interface has an 8-bit data bus, transferring a single 8-bit value (Y/U/V) in each cycle. The timing of
the interface is described in Figure 54.
•
•
•
•
•
NOTE
The frequency of the clock DISP_CLK is 27 MHz (within 10%)
The HSYNC, VSYNC signals are active low.
The DRDY signal is shown as active high.
The transition to the next row is marked by the negative edge of the
HSYNC signal. It remains low for a single clock cycle
The transition to the next field/frame is marked by the negative edge of
the VSYNC signal. It remains low for at least one clock cycles
— At a transition to an odd field (of the next frame), the negative edges
of VSYNC and HSYNC coincide.
At a transition is to an even field (of the same frame), they do not
coincide.
—
•
The active intervals—during which data is transferred—are marked by
the HSYNC signal being high.
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
84
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
2
Electrical Characteristics
DISP_CLK
Cb
IPP_DATA
Y
Cr
Y
Cb
Y
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
HSYNC
VSYNC
DRDY
Cr
Pixel Data Timing
523
HSYNC
524
525
1
2
3
5
4
6
10
DRDY
VSYNC
Even Field
261
HSYNC
262
263
Odd Field
264
265
266
267
268
269
273
DRDY
VSYNC
Even Field
Odd Field
Line and Field Timing - NTSC
621
HSYNC
622
623
624
625
1
3
2
4
23
DRDY
VSYNC
Even Field
308
HSYNC
Odd Field
309
310
311
312
313
314
315
316
336
DRDY
VSYNC
Even Field
Odd Field
Line and Field Timing - PAL
Figure 54. TV Encoder Interface Timing Diagram
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
85
Preliminary—Subject to Change Without Notice
Electrical Characteristics
TV Encoder Performance Specifications
The TV encoder output specifications are shown in Table 69.
Table 69. TV Encoder Video Performance Specifications
Parameter
Conditions
Min
Typ
Max
Unit
DAC STATIC PERFORMANCE
Resolution1
10
Integral Nonlinearity (INL)2
Differential Nonlinearity
(DNL)2
Channel-to-channel gain matching2
Full scale output
Bits
1
2
LSBs
0.6
1
LSBs
2
voltage2
Rload = 37.5 Ohm
Rset = 1.05 kOhm
1.24
1.306
%
1.37
V
DAC DYNAMIC PERFORMANCE
Spurious Free Dynamic Range (SFDR)
Fout = 3.38 MHz
Fsamp = 216 MHz
59
dBc
Spurious Free Dynamic Range (SFDR)
Fout = 9.28 MHz
Fsamp = 297 MHz
54
dBc
Short Term Jitter (Line to Line)
2.5
±ns
Long Term Jitter (Field to Field)
3.5
±ns
VIDEO PERFORMANCE IN SD MODE2, 3
Frequency Response
0-4.0 MHz
-0.1
0.1
dB
5.75 MHz
-0.7
0
dB
Luminance Nonlinearity
0.5
±%
Differential Gain
0.35
%
Differential Phase
0.6
Degrees
75
dB
Hue Accuracy
0.8
±Degrees
Color Saturation Accuracy
1.5
±%
Chroma AM Noise
-70
dB
Chroma PM Noise
-47
dB
Chroma Nonlinear Phase
0.5
±Degrees
Chroma Nonlinear Gain
2.5
±%
Chroma/Luma Intermodulation
0.1
±%
Chroma/Luma Gain Inequality
1.0
±%
Chroma/Luma Delay Inequality
1.0
±ns
Signal-to-Noise Ratio (SNR)
Flat field full bandwidth
VIDEO PERFORMANCE IN HD MODE2
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
86
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
3.7.8.6.1
Electrical Characteristics
Luma Frequency Response
0-30 MHz
-0.7
0.1
dB
Chroma Frequency Response
0-15 MHz,
YCbCr 422 mode
TBD
TBD
dB
Luma Nonlinearity
2.6
%
Chroma Nonlinearity
2.2
%
Luma Signal-to-Noise Ratio
0-30 MHz
TBD
dB
Chroma Signal-to-Noise Ratio
0-15 MHz
TBD
dB
1
Guaranteed by design
Guaranteed by characterization
3
Rset = 1.05 kOhm
2
3.7.8.7
3.7.8.7.1
Asynchronous Interfaces
Standard Parallel Interfaces
The IPU has four signal generator machines for asynchronous signal. Each machine generates IPU’s
internal control levels (0 or 1) by UP and DOWN are defined in Registers. Each asynchronous pin has a
dynamic connection with one of the signal generators. This connection is redefined again with a new
display access (pixel/component) The IPU can generate control signals according to system 80/68
requirements. The burst length is received as a result from predefined behavior of the internal signal
generator machines.
The access to a display is realized by the following:
• CS (IPP_CS) chip select
• WR (IPP_PIN_11) write strobe
• RD (IPP_PIN_12) read strobe
• RS (IPP_PIN_13) Register select (A0)
Both system 80 and system 68k interfaces are supported for all described modes as depicted in Figure 55,
Figure 56, Figure 57, and Figure 58. The timing images correspond to active-low IPP_CS, WR and RD
signals.
Each asynchronous access is defined by an access size parameter. This parameter can be different between
different kinds of accesses. This parameter defines a length of windows, when suitable controls of the
current access are valid. A pause between two different display accesses can be guaranteed by programing
of suitable access sizes. There are no minimal/maximal hold/setup time hard defined by DI. Each control
signal can be switched at any time during access size.
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
87
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Table 69. TV Encoder Video Performance Specifications (continued)
Electrical Characteristics
RS
WR
RD
IPP_DATA
Burst access mode with sampling by CS signal
IPP_CS
RS
WR
RD
IPP_DATA
Single access mode (all control signals are not active for one display interface clock after each display access)
Figure 55. Asynchronous Parallel System 80 Interface (Type 1) Timing Diagram
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
88
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
IPP_CS
Electrical Characteristics
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
IPP_CS
RS
WR
RD
IPP_DATA
Burst access mode with sampling by WR/RD signals
IPP_CS
RS
WR
RD
IPP_DATA
Single access mode (all control signals are not active for one display interface clock after each display access)
Figure 56. Asynchronous Parallel System 80 Interface (Type 2) Timing Diagram
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
89
Preliminary—Subject to Change Without Notice
Electrical Characteristics
RS
WR
(READ/WRITE)
RD
(ENABLE)
IPP_DATA
Burst access mode with sampling by CS signal
IPP_CS
RS
WR
(READ/WRITE)
RD
(ENABLE)
IPP_DATA
Single access mode (all control signals are not active for one display interface clock after each display access)
Figure 57. Asynchronous Parallel System 68k Interface (Type 1) Timing Diagram
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
90
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
IPP_CS
Electrical Characteristics
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
IPP_CS
RS
WR
(READ/WRITE)
RD
(ENABLE)
IPP_DATA
Burst access mode with sampling by ENABLE signal
IPP_CS
RS
WR
(READ/WRITE)
RD
(ENABLE)
IPP_DATA
Single access mode (all control signals are not active for one display interface clock after each display access)
Figure 58. Asynchronous Parallel System 68k Interface (Type 2) TIming Diagram
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
91
Preliminary—Subject to Change Without Notice
Display operation can be performed with IPP_WAIT signal. The DI reacts to the incoming IPP_WAIT
signal with 2 DI_CLK delay. The DI finishes a current access and a next access is postponed until
IPP_WAIT release. Figure 59 shows timing of the parallel interface with IPP_WAIT control.
DI clock
IPP_CS
IPP_DATA
WR
RD
IPP_WAIT
IPP_DATA_IN
IP39
waiting
waiting
Figure 59. Parallel Interface Timing Diagram—Read Wait States
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
92
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Electrical Characteristics
Electrical Characteristics
Asynchronous Parallel Interface Timing Parameters
Figure 60 depicts timing of asynchronous parallel interfaces based on the system 80 and system 68k
interfaces. Table 71 shows timing characteristics at display access level. All timing diagrams are based
on active low control signals (signals polarity is controlled via the DI_DISP_SIG_POL Register).
IP29
IP32
IP35
IP36
IP33
IP30
IP47
IP34
IP31
DI clock
IPP_CS
RS
WR
RD
IPP_DATA
A0
D0
D1
D2
PP_DATA_IN
local start point
local start point
local start point
local start point
IP27
IP28d
IP37
IP38
local start point
IP28a
D3
Figure 60. Asynchronous Parallel Interface Timing Diagram
Table 70. Asynchronous Display Interface Timing Parameters (Pixel Level)
ID
Parameter
Symbol
Tcycr
Value
Description
Unit
ACCESS_SIZE_#
predefined value in DI REGISTER
ns
IP27
Read system cycle time
IP28a
Address Write system cycle time Tcycwa
ACCESS_SIZE_#
predefined value in DI REGISTER
ns
IP28d
Data Write system cycle time
Tcycwd
ACCESS_SIZE_#
predefined value in DI REGISTER
ns
IP29
RS start
Tdcsrr
UP#
RS strobe switch, predefined value
in DI REGISTER
ns
IP30
CS start
Tdcsc
UP#
CS strobe switch, predefined value
in DI REGISTER
ns
IP31
CS hold
Tdchc
DOWN#
CS strobe release, predefined
value in DI REGISTER
—
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
93
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
3.7.8.7.2
Electrical Characteristics
Table 70. Asynchronous Display Interface Timing Parameters (Pixel Level) (continued)
Parameter
Symbol
Value
Description
Unit
IP32
RS hold
Tdchrr
DOWN#
RS strobe release, predefined
value in DI REGISTER
—
IP33
Read start
Tdcsr
UP#
read strobe switch, predefined
value in DI REGISTER
ns
IP34
Read hold
Tdchr
DOWN#
read strobe release signal,
predefined value in DI REGISTER
ns
IP35
Write start
Tdcsw
UP#
write strobe switch, predefined
value in DI REGISTER
ns
IP36
Controls hold time for write
Tdchw
DOWN#
write strobe release, predefined
value in DI REGISTER
ns
IP37
Slave device data delay1
Tracc
Delay of incoming data
Physical delay of display’s data,
defined from Read access local
start point
ns
IP38
Slave device data hold time3
Troh
IP47
Read time point13
Tdrp
1This
Hold time of data on the buss Time that display read data is valid
in input bus
Data sampling point
Point of input data sampling by DI,
predefined in DC Microcode
ns
—
parameter is a requirement to the display connected to the IPU.
Table 71. Asynchronous Parallel Interface Timing Parameters (Access Level)
ID
Parameter
Symbol
IP27 Read system cycle time
Tcycr
Typ1
Min
Max
Unit
Tdicpr–1.5
Tdicpr2
Tdicpr+1.5
ns
Tdicpw+1.5
ns
IP28 Write system cycle time
Tcycw
Tdicpw–1.5
Tdicpw 3
IP29 RS start
Tdcsrr
Tdicurs–1.5
Tdicurs
Tdicurs+1.5
ns
IP30 CS start
Tdcsc
Tdicucs–1.5
Tdicur
Tdicucs+1.5
ns
IP31 CS hold
Tdchc
TdicdcsTdicucs–1.5
Tdicdcs4–Tdicucs5
Tdicdcs–Tdicucs+1.5
ns
Tdicdrs–Tdicurs+1.5
ns
IP32 RS hold
Tdchrr
Tdicdrs–Tdicurs–1.5
Tdicdrs6–Tdicurs7
IP33 Controls setup time for read
Tdcsr
Tdicur–1.5
Tdicur
Tdicur+1.5
ns
Tdicdr–Tdicur–1.5
Tdicdr8–Tdicur9
Tdicdr–Tdicur+1.5
ns
Tdicuw–1.5
Tdicuw
Tdicuw+1.5
ns
Tdicdw–Tdicuw–1.5
Tdicpw 10–Tdicuw11
Tdicdw–Tdicuw+1.5
ns
IP34 Controls hold time for read
Tdchr
IP35 Controls setup time for write Tdcsw
IP36 Controls hold time for write
Tdchw
IP37 Slave device data delay12
Tracc
0
—
Tdrp13–Tlbd14–Tdicur–1.5
ns
Troh
Tdrp–Tlbd–Tdicdr+1.5
—
Tdicpr–Tdicdr–1.5
ns
IP38 Slave device data hold
time8
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
94
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
ID
Electrical Characteristics
ID
Parameter
Symbol
IP39 Setup time for wait signal
Tswait
IP47 Read time point13
Tdrp
Min
Typ1
Max
Unit
—
—
—
—
Tdrp–1.5
Tdrp
Tdrp+1.5
ns
1The
exact conditions have not been finalized, but will likely match the current customer requirement for their specific display.
These conditions may be chip specific.
2
Display period value for read
Tdicpr = T
DI_CLK
DI_ACCESS_SIZE_#
× ceil --------------------------------------------------------DI_CLK_PERIOD
ACCESS_SIZE is predefined in REGISTER
3
Display period value for write
DI_ACCESS_SIZE_#
Tdicpw = T DI_CLK × ceil --------------------------------------------------------DI_CLK_PERIOD
ACCESS_SIZE is predefined in REGISTER
4Display control down for CS
2 × DISP_DOWN_#
1
Tdicdcs = --- ⎛ T
× ceil ----------------------------------------------------- ⎞⎠
DI_CLK_PERIOD
2 ⎝ DI_CLK
DISP_DOWN is predefined in REGISTER
5Display control up for CS
2 × DISP_UP_#
1
Tdicucs = --- ⎛ T DI_CLK × ceil ----------------------------------------------- ⎞
DI_CLK_PERIOD ⎠
2⎝
DISP_UP is predefined in REGISTER
6Display control down for RS
2 × DISP_DOWN_#
1
Tdicdrs = --- ⎛ T DI_CLK × ceil ----------------------------------------------------- ⎞
DI_CLK_PERIOD ⎠
2⎝
DISP_DOWN is predefined in REGISTER
7Display control up for RS
2 × DISP_UP_#
1
Tdicurs = --- ⎛ T
× ceil ----------------------------------------------- ⎞⎠
DI_CLK_PERIOD
2 ⎝ DI_CLK
DISP_UP is predefined in REGISTER
8Display control down for read
2 × DISP_DOWN_#
1
Tdicdr = --- ⎛ T DI_CLK × ceil ----------------------------------------------------- ⎞
DI_CLK_PERIOD ⎠
2⎝
DISP_DOWN is predefined in REGISTER
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
95
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Table 71. Asynchronous Parallel Interface Timing Parameters (Access Level) (continued)
Electrical Characteristics
Display control up for read
2 × DISP_UP_#
1
Tdicur = --- ⎛ T DI_CLK × ceil ----------------------------------------------- ⎞
DI_CLK_PERIOD ⎠
2⎝
DISP_UP is predefined in REGISTER
10
Display control down for read
2 × DISP_DOWN_#
1
Tdicdrw = --- ⎛ T
× ceil ----------------------------------------------------- ⎞⎠
DI_CLK_PERIOD
2 ⎝ DI_CLK
DISP_DOWN is predefined in REGISTER
11
Display control up for write
2 × DISP_UP_#
1
Tdicuw = --- ⎛ T DI_CLK × ceil ----------------------------------------------- ⎞
DI_CLK_PERIOD ⎠
2⎝
DISP_UP is predefined in REGISTER
12This parameter is a requirement to the display connected to the IPU
13Data read point
Tdrp = T
DI_CLK
DISP#_READ_EN
× ceil -------------------------------------------------
DI_CLK_PERIOD
Note: DISP#_READ_EN—operand of DC’s MICROCDE READ command to sample incoming data
14Loop back delay Tlbd is the cumulative propagation delay of read controls and read data. It includes an IPU output delay, a
chip-level output delay, board delays, a chip-level input delay, an IPU input delay. This value is chip specific.
3.7.8.8
Standard Serial Interfaces
The IPU supports the following types of asynchronous serial interfaces:
1. 3-wire (with bidirectional data line).
2. 4-wire (with separate data input and output lines).
3. 5-wire type 1 (with sampling RS by the serial clock).
4. 5-wire type 2 (with sampling RS by the chip select signal).
The IPU has four independent outputs and one input. The port can be configured to provide 3, 4, or 5-wire
interfaces.
Figure 61 depicts the timing diagram of the 3-wire serial interface. The timing diagrams correspond to
active-low IPP#_CS signal and the straight polarity of the IPP_CLK signal.
For this interface, a bidirectional data line is used outside the chip. The IPU still uses separate input and
output data lines (IPP_IND_DISPB_SD_D and IPP_DO_DISPB_SD_D). The I/O mux should provide
joining the internal data lines to the bidirectional external line according to the IPP_OBE_DISPB_SD_D
signal provided by the IPU.
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
96
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
9
programed
delay
programed
delay
DISPB_D#_CS
DISPB_SD_D_CLK
DISPB_SD_D
RW
RS
D7
D6
D5
D4
D3
D2
D1
D0
Input or output data
Preamble
Figure 61. 3-Wire Serial Interface Timing Diagram
Figure 62 depicts timing diagram of the 4-wire serial interface. For this interface, there are separate input
and output data lines both inside and outside the chip.
Write
programed
delay
programed
delay
DISPB_D#_CS
DISPB_SD_D_CLK
DISPB_SD_D
(Output)
RW
RS
D7
D6
D5
Preamble
D4
D3
D2
D1
D0
Output data
DISPB_SD_D
(Input)
Read
programed
delay
programed
delay
DISPB_D#_CS
DISPB_SD_D_CLK
DISPB_SD_D
(Output)
RW
RS
Preamble
DISPB_SD_D
(Input)
D7
D6
D5
D4
D3
D2
D1
D0
Input data
Figure 62. 4-Wire Serial Interface Timing Diagram
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
97
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Electrical Characteristics
Electrical Characteristics
Write
DISPB_D#_CS
programed
delay
programed
delay
DISPB_SD_D_CLK
DISPB_SD_D
(Output)
RW
D7
D6
D5
D4
D3
D2
D1
D0
Output data
Preamble
DISPB_SD_D
(Input)
DISPB_SER_RS
programed
delay
Read
DISPB_D#_CS
programed
delay
programed
delay
DISPB_SD_D_CLK
DISPB_SD_D
(Output)
RW
Preamble
DISPB_SD_D
(Input)
DISPB_SER_RS
D7
D6
D5
programed
delay
D4
D3
D2
D1
D0
Input data
Figure 63. 5-Wire Serial Interface Timing Diagram
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
98
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Figure 63 depicts timing of the 5-wire serial interface. For this interface, a separate RS line is added.
Electrical Characteristics
Asynchronous Serial Interface Timing Parameters
Figure 64 depicts timing of the serial interface. Table 72 shows timing characteristics at display access
level.
IP73
IP72
DI clock
IPP_DISPB_DO_SD_D
IPP_DO_DISPB_SER_CS
IP71
IP70
IPP_DO_DISPB_SER_RS
IP68
IP58
IPP_IND_DISPB_SD_D
IP59
IP60,
IP64, IP66
IP69
IP50, IP52
IP55, IP57,
IP61
IP54, IP56,
IP65, IP67
local start point
IPP_DO_DISPB_SD_D_CLK
IP51,53
IP48, IP49, IP62, IP63
Figure 64. Asynchronous Serial Interface Timing Diagram
Table 72. Asynchronous Serial Interface Timing Characteristics (Access Level)
ID
Parameter
IP48 Read system cycle time
Symbol
Tcycr
Min
Typ1
Max
Unit
Tdicpr–1.5
Tdicpr2
Tdicpr+1.5
ns
Tdicpw+1.5
ns
Tdicdr–Tdicur+1.5
ns
Tdicpr–Tdicdr+Tdicur+
1.5
ns
IP49 Write system cycle time
Tcycw
Tdicpw–1.5
Tdicpw3
IP50 Read clock low pulse width
Trl
Tdicdr–Tdicur–1.5
Tdicdr4–Tdicur5
IP51 Read clock high pulse width
Trh
Tdicpr–Tdicdr+Tdicur–1.5 Tdicpr–Tdicdr+
Tdicur
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
99
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
3.7.8.8.1
Electrical Characteristics
Table 72. Asynchronous Serial Interface Timing Characteristics (Access Level) (continued)
Parameter
Symbol
Typ1
Min
Max
Unit
IP52 Write clock low pulse width
Twl
Tdicdw–Tdicuw–1.5
Tdicdw6–Tdicuw7 Tdicdw–Tdicuw+1.5
ns
IP53 Write clock high pulse width
Twh
Tdicpw–Tdicdw+
Tdicuw–1.5
Tdicpw–Tdicdw+ Tdicpw–Tdicdw+
Tdicuw
Tdicuw+1.5
ns
IP54 Controls setup time for read
Tdcsr
Tdicur–1.5
Tdicur
—
ns
IP55 Controls hold time for read
Tdchr
Tdicpr–Tdicdr–1.5
Tdicpr–Tdicdr
—
ns
IP56 Controls setup time for write Tdcsw
Tdicuw–1.5
Tdicuw
—
ns
IP57 Controls hold time for write
Tdicpw–Tdicdw–1.5
Tdicpw–Tdicdw
—
ns
10
IP58 Slave device data
delay8
Tdchw
0
—
Tdrp –Tlbd -Tdicur-1.5
ns
IP59 Slave device data hold time8 Troh
Tdrp-Tlbd-Tdicdr+1.5
—
Tdicpr-Tdicdr-1.5
ns
IP60 Write data setup time
Tds
Tdicdw-1.5
Tdicdw
—
ns
IP61 Write data hold time
Tdh
Tdicpw-Tdicdw-1.5
Tdicpw-Tdicdw
—
ns
Tdicpr
Tdicpr-1.5
Tdicpr
Tdicpr+1.5
ns
Tdicpw
Tdicpw-1.5
Tdicpw
Tdicpw+1.5
ns
Tdicdr
Tdicdr-1.5
Tdicdr
Tdicdr+1.5
ns
Tdicur
Tdicur-1.5
Tdicur
Tdicur+1.5
ns
Tdicdw
Tdicdw-1.5
Tdicdw
Tdicdw+1.5
ns
Tdicuw
Tdicuw-1.5
Tdicuw
Tdicuw+1.5
ns
Tdrp
Tdrp-1.5
Tdrp
Tdrp+1.5
ns
Toclk
Toclk-1.5
Toclk
Toclk+1.5
ns
Tdicurs
Tdicurs–1.5
Tdicurs
Tdicurs+1.5
ns
Tdicdrs
Tdicdrs -1.5
Tdicdrs
Tdicdrs+1.5
ns
Tdicucs Tdicucs –1.5
Tdicucs
Tdicucs+1.5
ns
Tdicdcs Tdicdcs –1.5
Tdicdcs
Tdicdcs+1.5
ns
IP62 Read
period2
IP63 Write period3
IP64 Read down
time4
IP65 Read up time5
IP66 Write down
time6
IP67 Write up time7
IP68 Read time
point9
IP69 Clock offset11
IP70 RS up
time12
IP71 RS down time13
IP72 CS up
time14
IP73 CS down time15
Tracc
9
1
The exact conditions have not been finalized, but will likely match the current customer requirement for their specific display.
These conditions may be chip specific.
2Display interface clock period value for read
DISP#_IF_CLK_PER_RD
Tdicpr = TDI_CLK × ceil -------------------------------------------------------------------DI_CLK_PERIOD
3Display
interface clock period value for write
DISP#_IF_CLK_PER_WR
Tdicpw = T DI_CLK × ceil ---------------------------------------------------------------------DI_CLK_PERIOD
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
100
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
ID
Electrical Characteristics
Display interface clock down time for read
2 × DISP_DOWN_#
1
Tdicdr = --- ⎛ T DI_CLK × ceil ----------------------------------------------------- ⎞
DI_CLK_PERIOD ⎠
2⎝
5
Display interface clock up time for read
2 × DISP_UP_#
1
Tdicur = --- ⎛ T DI_CLK × ceil ----------------------------------------------- ⎞
DI_CLK_PERIOD ⎠
2⎝
6
Display interface clock down time for write
2 × DISP_DOWN_#
1
Tdicdw = --- ⎛ T DI_CLK × ceil ----------------------------------------------------- ⎞
DI_CLK_PERIOD ⎠
2⎝
7
Display interface clock up time for write
2 × DISP_UP_#
1
Tdicuw = --- ⎛ T DI_CLK × ceil ----------------------------------------------- ⎞
DI_CLK_PERIOD ⎠
2⎝
8This
9Data
parameter is a requirement to the display connected to the IPU
read point
DISP_READ_EN
Tdrp = T DI_CLK × ceil ----------------------------------------------DI_CLK_PERIOD
DISP_RD_EN is predefined in REGISTER
10Loop back delay Tlbd is the cumulative propagation delay of read controls and read data. It includes an IPU output delay, a
chip-level output delay, board delays, a chip-level input delay, an IPU input delay. This value is chip specific.
11Display interface clock offset value
Toclk = T
DI_CLK
DISP_CLK_OFFSET
× ceil -------------------------------------------------------DI_CLK_PERIOD
CLK_OFFSET is predefined in REGISTER
12Display RS up time
DISP_RS_UP_#
Tdicurs = T DI_CLK × ceil ----------------------------------------------DI_CLK_PERIOD
DISP_RS_UP is predefined in REGISTER
13Display RS down time
DISP_RS_DOWN_#
Tdicdrs = T DI_CLK × ceil -----------------------------------------------------DI_CLK_PERIOD
DISP_RS_DOWN is predefined in REGISTER
14Display RS up time
DISP_CS_UP_#
Tdicucs = T DI_CLK × ceil ----------------------------------------------DI_CLK_PERIOD
DISP_CS_UP is predefined in REGISTER
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
101
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
4
Electrical Characteristics
Display RS down time
DISP_CS_DOWN_#
Tdicdcs = ( T DI_CLK × ceil) -----------------------------------------------------DI_CLK_PERIOD
DISP_CS_DOWN is predefined in REGISTER.
3.7.9
1-Wire Timing Parameters
Figure 65 depicts the RPP timing, and Table 73 lists the RPP timing parameters.
1-WIRE Tx
“Reset Pulse”
DS2502 Tx
“Presence Pulse”
OW2
One-Wire bus
(BATT_LINE)
OW3
OW1
OW4
Figure 65. Reset and Presence Pulses (RPP) Timing Diagram
Table 73. RPP Sequence Delay Comparisons Timing Parameters
ID
Parameters
Symbol
Min
Typ
Max
Unit
OW1
Reset Time Low
tRSTL
480
511
—
µs
OW2
Presence Detect High
tPDH
15
—
60
µs
OW3
Presence Detect Low
tPDL
60
—
240
µs
OW4
Reset Time High
tRSTH
480
512
—
µs
Figure 66 depicts Write 0 Sequence timing, and Table 74 lists the timing parameters.
OW6
One-Wire bus
(BATT_LINE)
OW5
Figure 66. Write 0 Sequence Timing Diagram
Table 74. WR0 Sequence Timing Parameters
ID
Parameter
OW5
Write 0 Low Time
OW6
Transmission Time Slot
Symbol
Min
Typ
Max
Unit
tWR0_low
60
100
120
µs
tSLOT
OW5
117
120
µs
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
102
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
15
Electrical Characteristics
OW8
One-Wire bus
(BATT_LINE)
OW7
Figure 67. Write 1 Sequence Timing Diagram
OW8
One-Wire bus
(BATT_LINE)
OW7
OW9
Figure 68. Read Sequence Timing Diagram
Table 75. WR1 /RD Timing Parameters
ID
Parameter
Symbol
Min
Typ
Max
Unit
OW7
Write /Read Low Time
tLOW1
1
5
15
µs
OW8
Transmission Time Slot
tSLOT
60
117
120
µs
OW9
Release Time
tRELEASE
15
—
45
µs
3.7.10
Pulse Width Modulator (PWM) Timing Parameters
This section describes the electrical information of the PWM.The PWM can be programmed to select one
of three clock signals as its source frequency. The selected clock signal is passed through a prescaler before
being input to the counter. The output is available at the pulse-width modulator output (PWMO) external
pin.
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
103
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Figure 67 depicts Write 1 Sequence timing, Figure 68 depicts the Read Sequence timing, and Table 75
lists the timing parameters.
Electrical Characteristics
1
2a
3b
System Clock
2b
3a
4b
4a
PWM Output
Figure 69. PWM Timing
Table 76. PWM Output Timing Parameter
Ref. No.
1
Parameter
Min
Max
Unit
0
ipg_clk
MHz
1
System CLK frequency1
2a
Clock high time
12.29
—
ns
2b
Clock low time
9.91
—
ns
3a
Clock fall time
—
0.5
ns
3b
Clock rise time
—
0.5
ns
4a
Output delay time
—
9.37
ns
4b
Output setup time
8.71
—
ns
CL of PWMO = 30 pF
3.7.11
P-ATA Timing Parameters
This section describes the timing parameters of the Parallel ATA module which are compliant with
ATA/ATAPI-6 specification.
Parallel ATA module can work on PIO/Multi-Word DMA/Ultra DMA transfer modes. Each transfer mode
has different data transfer rate, Ultra DMA mode 4 data transfer rate is up to 100MB/s. Parallel ATA
module interface consist of a total of 29 pins, Some pins act on different function in different transfer
mode. There are different requirements of timing relationships among the function pins conform with
ATA/ATAPI-6 specification and these requirements are configurable by the ATA module registers.
Table 77 and Figure 70 define the AC characteristics of all the P-ATA interface signals on all data
transfer modes.
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
104
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Figure 69 depicts the timing of the PWM, and Table 76 lists the PWM timing parameters.
Electrical Characteristics
SI2
SI1
Figure 70. P-ATA Interface Signals Timing Diagram
Table 77. AC Characteristics of All Interface Signals
ID
1
Parameter
Symbol
Min
Max
Unit
SI1
Rising edge slew rate for any signal on ATA interface.1
Srise
—
1.25
V/ns
SI2
Falling edge slew rate for any signal on ATA interface (see note)
Sfall
—
1.25
V/ns
SI3
Host interface signal capacitance at the host connector
Chost
—
20
pF
SRISE and SFALL shall meet this requirement when measured at the sender’s connector from 10–90% of full signal
amplitude with all capacitive loads from 15–40 pF where all signals have the same capacitive load value.
The user needs to use level shifters for 5.0 V compatibility on the ATA interface. The i.MX51 P-ATA
interface is 3.3 V compatible.
The use of bus buffers introduces delay on the bus and introduces skew between signal lines. These factors
make it difficult to operate the bus at the highest speed (UDMA-5) when bus buffers are used. If fast
UDMA mode operation is needed, this may not be compatible with bus buffers.
Another area of attention is the slew rate limit imposed by the ATA specification on the ATA bus.
According to this limit, any signal driven on the bus should have a slew rate between 0.4 and 1.2 V/ns with
a 40 pF load. Not many vendors of bus buffers specify slew rate of the outgoing signals.
When bus buffers are used, the ata_data bus buffer is special. This is a bidirectional bus buffer, so a
direction control signal is needed. This direction control signal is ata_buffer_en. When its high, the bus
should drive from host to device. When its low, the bus should drive from device to host. Steering of the
signal is such that contention on the host and device tri-state busses is always avoided.
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
105
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
ATA Interface Signals
In the timing equations, some timing parameters are used. These parameters depend on the
implementation of the i.MX51 P-ATA interface on silicon, the bus buffer used, the cable delay and cable
skew. Table 78 shows ATA timing parameters.
Table 78. P-ATA Timing Parameters
Name
T
ti_ds
ti_dh
Bus clock period (ipg_clk_ata)
Peripheral clock frequency
Set-up time ata_data to ata_iordy edge (UDMA-in only)
UDMA0
UDMA1
UDMA2, UDMA3
UDMA4
UDMA5
15 ns
10 ns
7 ns
5 ns
4 ns
Hold time ata_iordy edge to ata_data (UDMA-in only)
UDMA0, UDMA1, UDMA2, UDMA3, UDMA4
UDMA5
5.0 ns
4.6 ns
tco
Propagation delay bus clock L-to-H to
ata_cs0, ata_cs1, ata_da2, ata_da1, ata_da0, ata_dior, ata_diow, ata_dmack,
ata_data, ata_buffer_en
12.0 ns
tsu
Set-up time ata_data to bus clock L-to-H
8.5 ns
tsui
Set-up time ata_iordy to bus clock H-to-L
8.5 ns
thi
Hold time ata_iordy to bus clock H to L
2.5 ns
tskew1
Max difference in propagation delay bus clock L-to-H to any of following signals
ata_cs0, ata_cs1, ata_da2, ata_da1, ata_da0, ata_dior, ata_diow, ata_dmack,
ata_data (write), ata_buffer_en
7 ns
tskew2
Max difference in buffer propagation delay for any of following signals
ata_cs0, ata_cs1, ata_da2, ata_da1, ata_da0, ata_dior, ata_diow, ata_dmack,
ata_data (write), ata_buffer_en
Transceiver
tskew3
Max difference in buffer propagation delay for any of following signals ata_iordy,
ata_data (read)
Transceiver
Max buffer propagation delay
Transceiver
tbuf
1
Value/
Contributing Factor1
Description
tcable1
Cable propagation delay for ata_data
Cable
tcable2
Cable propagation delay for control signals ata_dior, ata_diow, ata_iordy,
ata_dmack
Cable
tskew4
Max difference in cable propagation delay between ata_iordy and ata_data (read)
Cable
tskew5
Max difference in cable propagation delay between (ata_dior, ata_diow,
ata_dmack) and ata_cs0, ata_cs1, ata_da2, ata_da1, ata_da0, ata_data(write)
Cable
tskew6
Max difference in cable propagation delay without accounting for ground bounce
Cable
Values provided where applicable.
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
106
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Electrical Characteristics
Electrical Characteristics
PIO Mode Read Timing
Figure 71 shows timing for PIO read, and Table 79 lists the timing parameters for PIO read.
Figure 71. PIO Read Timing Diagram
Table 79. PIO Read Timing Parameters
ATA
Parameter
Parameter from Figure 71
Controlling
Variable
Value
t1
t1
t1 (min) = time_1 × T – (tskew1 + tskew2 + tskew5)
time_1
t2
t2r
t2 min) = time_2r × T – (tskew1 + tskew2 + tskew5)
time_2r
t9
t9
t9 (min) = time_9 × T – (tskew1 + tskew2 + tskew6)
time_3
t5
t5
t5 (min) = tco + tsu + tbuf + tbuf + tcable1 + tcable2
t6
t6
0
tA
tA
tA (min) = (1.5 + time_ax) × T – (tco + tsui + tcable2 + tcable2 + 2×tbuf)
trd
trd1
t0
—
If not met, increase
time_2
—
time_ax
trd1 (max) = (–trd) + (tskew3 + tskew4)
trd1 (min) = (time_pio_rdx – 0.5)×T – (tsu + thi)
(time_pio_rdx – 0.5) × T > tsu + thi + tskew3 + tskew4
t0 (min) = (time_1 + time_2 + time_9) × T
time_pio_rdx
time_1, time_2r, time_9
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
107
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
3.7.11.1
Electrical Characteristics
Figure 72. Multi-word DMA (MDMA) Timing
Table 80. PIO Write Timing Parameters
ATA
Parameter
Parameter from Figure 72
Controlling
Variable
Value
× T – (tskew1 + tskew2 + tskew5)
t2 (min) = time_2w × T – (tskew1 + tskew2 + tskew5)
t9 (min) = time_9 × T – (tskew1 + tskew2 + tskew6)
t3 (min) = (time_2w – time_on)× T – (tskew1 + tskew2 +tskew5)
t1
t1
t1 (min) = time_1
t2
t2w
t9
t9
t3
—
t4
t4
tA
tA
t0
—
× T – tskew1
tA = (1.5 + time_ax) × T – (tco + tsui + tcable2 + tcable2 + 2×tbuf)
t0(min) = (time_1 + time_2 + time_9) × T
—
—
Avoid bus contention when switching buffer on by making ton long enough
—
—
—
Avoid bus contention when switching buffer off by making toff long enough
—
time_1
time_2w
time_9
If not met, increase
time_2w
t4 (min) = time_4
time_4
time_ax
time_1, time_2r,
time_9
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
108
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Figure 72 shows timing for PIO write, and Table 80 lists the timing parameters for PIO write.
Electrical Characteristics
Figure 73. MDMA Read Timing Diagram
Figure 74. MDMA Write Timing Diagram
Table 81. MDMA Read and Write Timing Parameters
ATA
Parameter
Parameter
from
Figure 73,
Figure 74
tm, ti
tm
td
td, td1
tk
tk
t0
—
tg(read)
tgr
tgr (min-read) = tco + tsu + tbuf + tbuf + tcable1 + tcable2
tgr.(min-drive) = td – te(drive)
tf(read)
tfr
tfr (min-drive) = 0
tg(write)
—
tg (min-write) = time_d × T – (tskew1 + tskew2 + tskew5)
tf(write)
—
tf (min-write) = time_k
tL
—
Value
× T – (tskew1 + tskew2 + tskew5)
td1.(min) = td (min) = time_d × T – (tskew1 + tskew2 + tskew6)
tk.(min) = time_k × T – (tskew1 + tskew2 + tskew6)
t0 (min) = (time_d + time_k) × T
tm (min) = ti (min) = time_m
× T – (tskew1 + tskew2 + tskew6)
tL (max) = (time_d + time_k–2)×T – (tsu + tco + 2×tbuf + 2×tcable2)
Controlling
Variable
time_m
time_d
time_k
time_d, time_k
time_d
—
time_d
time_k
time_d, time_k
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
109
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Figure 73 shows timing for MDMA read, Figure 74 shows timing for MDMA write, and Table 81 lists
the timing parameters for MDMA read and write.
Electrical Characteristics
ATA
Parameter
Parameter
from
Figure 73,
Figure 74
tn, tj
tkjn
tn= tj= tkjn = (max(time_k,. time_jn) × T – (tskew1 + tskew2 + tskew6)
—
ton
toff
ton = time_on × T – tskew1
toff = time_off × T – tskew1
3.7.11.2
Controlling
Variable
Value
time_jn
—
Ultra DMA (UDMA) Input Timing
Figure 75 shows timing when the UDMA in transfer starts, Figure 76 shows timing when the UDMA in
host terminates transfer, Figure 77 shows timing when the UDMA in device terminates transfer, and
Table 82 lists the timing parameters for UDMA in burst.
Figure 75. UDMA In Transfer Starts Timing Diagram
Figure 76. UDMA In Host Terminates Transfer Timing Diagram
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
110
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Table 81. MDMA Read and Write Timing Parameters (continued)
Figure 77. UDMA In Device Terminates Transfer Timing Diagram
Table 82. UDMA In Burst Timing Parameters
ATA
Parameter
Parameter
from
Figure 75,
Figure 76,
Figure 77
tack
tack
tack (min) = (time_ack × T) – (tskew1 + tskew2)
time_ack
tenv
tenv
tenv (min) = (time_env × T) – (tskew1 + tskew2)
tenv (max) = (time_env × T) + (tskew1 + tskew2)
time_env
tds
tds1
tds – (tskew3) – ti_ds > 0
tdh
tdh1
tdh – (tskew3) – ti_dh > 0
tcyc
tc1
trp
trp
—
tx11
tmli
tmli1
tzah
tzah
tdzfs
tdzfs
tcvh
tcvh
—
ton
toff2
Description
Controlling Variable
tskew3, ti_ds, ti_dh
should be low enough
(tcyc – tskew) > T
× T – (tskew1 + tskew2 + tskew6)
(time_rp × T) – (tco + tsu + 3T + 2 ×tbuf + 2×tcable2) > trfs (drive)
tmli1 (min) = (time_mlix + 0.4) × T
tzah (min) = (time_zah + 0.4) × T
tdzfs = (time_dzfs × T) – (tskew1 + tskew2)
tcvh = (time_cvh ×T) – (tskew1 + tskew2)
ton = time_on × T – tskew1
toff = time_off × T – tskew1
trp (min) = time_rp
T big enough
time_rp
time_rp
time_mlix
time_zah
time_dzfs
time_cvh
—
1
There is a special timing requirement in the ATA host that requires the internal DIOW to go only high 3 clocks after the last
active edge on the DSTROBE signal. The equation given on this line tries to capture this constraint.
2 Make ton and toff big enough to avoid bus contention.
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
111
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Electrical Characteristics
Electrical Characteristics
UDMA Output Timing
Figure 78 shows timing when the UDMA out transfer starts, Figure 79 shows timing when the UDMA out
host terminates transfer, Figure 80 shows timing when the UDMA out device terminates transfer, and
Table 83 lists the timing parameters for UDMA out burst.
Figure 78. UDMA Out Transfer Starts Timing Diagram
Figure 79. UDMA Out Host Terminates Transfer Timing Diagram
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
112
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
3.7.11.3
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Electrical Characteristics
Figure 80. UDMA Out Device Terminates Transfer Timing Diagram
Table 83. UDMA Out Burst Timing Parameters
ATA
Parameter
Parameter
from
Figure 78,
Figure 79,
Figure 80
tack
tack
tenv
tenv
tdvs
tdvs
tdvh
tdvh
tcyc
tcyc
t2cyc
—
trfs1
trfs
—
tdzfs
tss
tss
tmli
tdzfs_mli
tli
tli1
tli1 > 0
—
tli
tli2
tli2 > 0
—
tli
tli3
tli3 > 0
—
tcvh
tcvh
tcvh = (time_cvh ×T) – (tskew1 + tskew2)
—
ton
toff
ton = time_on × T – tskew1
toff = time_off × T – tskew1
Value
× T) – (tskew1 + tskew2)
tenv (min) = (time_env × T) – (tskew1 + tskew2)
tenv (max) = (time_env × T) + (tskew1 + tskew2)
tdvs = (time_dvs × T) – (tskew1 + tskew2)
tdvs = (time_dvh × T) – (tskew1 + tskew2)
tcyc = time_cyc × T – (tskew1 + tskew2)
t2cyc = time_cyc × 2 × T
trfs = 1.6 × T + tsui + tco + tbuf + tbuf
tdzfs = time_dzfs × T – (tskew1)
tss = time_ss × T – (tskew1 + tskew2)
tdzfs_mli =max (time_dzfs, time_mli) × T – (tskew1 + tskew2)
tack (min) = (time_ack
Controlling
Variable
time_ack
time_env
time_dvs
time_dvh
time_cyc
time_cyc
—
time_dzfs
time_ss
—
time_cvh
—
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
113
Preliminary—Subject to Change Without Notice
Electrical Characteristics
SIM (Subscriber Identification Module) Timing
This section describes the electrical parameters of the SIM module. Each SIM module interface consists
of 12 signals (two separate ports each containing six signals). Typically a a port uses five signals.
The interface is designed to be used with synchronous SIM cards meaning the SIM module provides the
clock used by the SIM card. The clock frequency is typically 372 times the Tx/Rxdata rate, however the
SIM module can work with CLK frequencies of 16 times the Tx/Rx data rate.
There is no timing relationship between the clock and the data. The clock that the SIM module provides
to the SIM card is used by the SIM card to recover the clock from the data in the same manner as standard
UART data exchanges. All six signals (5 for bi-directional Tx/Rx) of the SIM module are asynchronous
to each other.
There are no required timing relationships between signals in normal mode. The SIM card is initiated by
the interface device; the SIM card responds with Answer to Reset. Although the SIM interface has no
defined requirements, the ISO-7816 defines reset and power-down sequences. (For detailed information,
see ISO-7816.)
Table 84 defines the general timing requirements for the SIM interface.
Table 84. SIM Timing Parameters, High Drive Strength
ID
Parameter
Symbol
Min
Max
Unit
SI1
SIM Clock Frequency (SIMx_CLKy)1,
Sfreq
0.01
25
MHz
SI2
SIM Clock Rise Time
(SIMx_CLKy)2
Srise
—
0.09×(1/Sfreq)
ns
SI3
SIM Clock Fall Time (SIMx_CLKy)3
Sfall
—
0.09×(1/Sfreq)
ns
SI4
SIM Input Transition Time
(SIMx_DATAy_RX_TX, SIMx_SIMPDy)
Strans
10
25
ns
SI5
SIM I/O Rise Time / Fall
Time(SIMx_DATAy_RX_TX)4
Tr/Tf
—
1
µs
SI6
SIM RST Rise Time / Fall Time(SIMx_RSTy)5
Tr/Tf
—
1
µs
1
50% duty cycle clock
With C = 50 pF
3 With C = 50 pF
4
With Cin = 30 pF, Cout = 30 pF
5
With Cin = 30 pF
2
1/SI1
SIMx_CLKy
SI3
SI2
Figure 81. SIM Clock Timing Diagram
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
114
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
3.7.12
Electrical Characteristics
3.7.12.1.1
Reset Sequence
Cards with internal reset
The sequence of reset for this kind of SIM Cards is as follows (see Figure 82):
• After power up, the clock signal is enabled on SIMx_CLKy(time T0)
• After 200 clock cycles, RX must be high.
• The card must send a response on RX acknowledging the reset between 400 and 40000 clock
cycles after T0.
SIMx_SVENy
SIMx_CLKy
SIMx_DATAy_RX_TX
response
1
2
T0
400 clock cycles <
1
< 200 clock cycles
2
< 40000 clock cycles
Figure 82. Internal-Reset Card Reset Sequence
3.7.12.1.2
Cards with Active Low Reset
The sequence of reset for this kind of card is as follows (see Figure 83):
• After power-up, the clock signal is enabled on SIMx_CLKy (time T0)
• After 200 clock cycles, SIMx_DATAy_RX_TX must be high.
• SIMx_RSTy must remain Low for at least 40000 clock cycles after T0 (no response is to be
received on RX during those 40000 clock cycles)
• SIMx_RSTy is set High (time T1)
• SIMx_RSTy must remain High for at least 40000 clock cycles after T1 and a response must be
received on SIMx_DATAy_RX_TX between 400 and 40000 clock cycles after T1.
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
115
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
3.7.12.1
Electrical Characteristics
SIMx_RSTy
SIMx_CLKy
SIMx_DATAy_RX_TX
response
2
1
3
3
T0
T1
1
< 200 clock cycles
400 clock cycles <
2
< 40000 clock cycles
400000 clock cycles <
3
Figure 83. Active-Low-Reset Cards Reset Sequence
3.7.12.2
Power Down Sequence
Power down sequence for SIM interface is as follows:
• SIMx_SIMPDy port detects the removal of the SIM Card
• SIMx_RSTy goes Low
• SIMx_CLKy goes Low
• SIMx_DATAy_RX_TX goes Low
• SIMx_SVENy goes Low
Each of these steps is done in one CKIL period (usually 32 kHz). Power-down can be started because of a
SIM Card removal detection or launched by the processor. Find in the table and figure below the usual
timing requirements for this sequence, with Fckil = CKIL frequency value.
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
116
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
SIMx_SVENy
Electrical Characteristics
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
SI10
SIMx_SIMPDy
SIMx_RSTy
SI7
SIMx_CLKy
SI8
SIMx_DATAy_RX_TX
SI9
SIMx_SVENy
Figure 84. SmartCard Interface Power Down AC Timing
Table 85. Timing Requirements for Power Down Sequence
ID
Parameter
Symbol
Min
Max
Unit
SI7
SIM reset to SIM clock stop
Srst2clk
0.9×1/Fckil
1.1×1/Fckil
ns
SI8
SIM reset to SIM TX data low
Srst2dat
1.8×1/Fckil
2.2×1/Fckil
ns
SI9
SIM reset to SIM voltage enable low
Srst2ven
2.7×1/Fckil
3.3×1/Fckil
ns
SI10
SIM presence detect to SIM reset low
Spd2rst
0.9×1/Fckil
1.1×1/Fckil
ns
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
117
Preliminary—Subject to Change Without Notice
Electrical Characteristics
SCAN JTAG Controller (SJC) Timing Parameters
Figure 85 depicts the SJC test clock input timing. Figure 86 depicts the SJC boundary scan timing.
Figure 87 depicts the SJC test access port. Signal parameters are listed in Table 86.
SJ1
SJ2
TCK
(Input)
SJ2
VM
VIH
VM
VIL
SJ3
SJ3
Figure 85. Test Clock Input Timing Diagram
TCK
(Input)
VIH
VIL
SJ4
Data
Inputs
SJ5
Input Data Valid
SJ6
Data
Outputs
Output Data Valid
SJ7
Data
Outputs
SJ6
Data
Outputs
Output Data Valid
Figure 86. Boundary Scan (JTAG) Timing Diagram
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
118
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
3.7.13
Electrical Characteristics
TCK
(Input)
VIH
SJ8
TDI
TMS
(Input)
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
VIL
SJ9
Input Data Valid
SJ10
TDO
(Output)
Output Data Valid
SJ11
TDO
(Output)
SJ10
TDO
(Output)
Output Data Valid
Figure 87. Test Access Port Timing Diagram
TCK
(Input)
SJ13
TRST
(Input)
SJ12
Figure 88. TRST Timing Diagram
Table 86. JTAG Timing
All Frequencies
Parameter1,2
ID
Unit
Min
Max
0.001
22
MHz
45
—
ns
22.5
—
ns
SJ0
TCK frequency of operation 1/(3•TDC)1
SJ1
TCK cycle time in crystal mode
SJ2
TCK clock pulse width measured at VM2
SJ3
TCK rise and fall times
—
3
ns
SJ4
Boundary scan input data set-up time
5
—
ns
SJ5
Boundary scan input data hold time
24
—
ns
SJ6
TCK low to output data valid
—
40
ns
SJ7
TCK low to output high impedance
—
40
ns
SJ8
TMS, TDI data set-up time
5
—
ns
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
119
Preliminary—Subject to Change Without Notice
Electrical Characteristics
Table 86. JTAG Timing (continued)
Unit
Min
Max
SJ9
TMS, TDI data hold time
25
—
ns
SJ10
TCK low to TDO data valid
—
44
ns
SJ11
TCK low to TDO high impedance
—
44
ns
SJ12
TRST assert time
100
—
ns
SJ13
TRST set-up time to TCK low
40
—
ns
1
2
TDC = target frequency of SJC
VM = mid-point voltage
3.7.14
SPDIF Timing Parameters
Table 87 shows the timing parameters for the Sony/Philips Digital Interconnect Format (SPDIF).
Table 87. SPDIF Timing
All Frequencies
Characteristics
Symbol
SPDIFOUT output (load = 50 pF)
• Skew
• Transition rising
• Transition falling
—
SPDIFOUT output (load = 30 pF)
• Skew
• Transition rising
• Transition falling
3.7.15
—
Unit
Min
Max
—
—
—
1.5
24.2
31.3
ns
—
—
—
1.5
13.6
18.0
ns
SSI Timing Parameters
This section describes the timing parameters of the SSI module. The connectivity of the serial synchronous
interfaces is summarized in Table 88.
Table 88. AUDMUX Port Allocation
Port
Signal Nomenclature
Type and Access
AUDMUX port 1
SSI 1
Internal
AUDMUX port 2
SSI 2
Internal
AUDMUX port 3
AUD3
External – AUD3 I/O
AUDMUX port 4
AUD4
External – EIM or CSPI1 I/O via IOMUX
AUDMUX port 5
AUD5
External – EIM or SD1 I/O via IOMUX
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
120
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
All Frequencies
Parameter1,2
ID
Electrical Characteristics
Table 88. AUDMUX Port Allocation (continued)
•
Signal Nomenclature
Type and Access
AUDMUX port 6
AUD6
External – EIM or DISP2 via IOMUX
AUDMUX port 7
SSI 3
Internal
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
•
Port
NOTE
The terms WL and BL used in the timing diagrams and tables refer to
Word Length (WL) and Byte Length (BL).
The SSI timing diagrams use generic signal names wherein the names
used in the i.MX51 reference manual are channel specific signal names.
For example, a channel clock referenced in the IOMUXC chapter as
AUD3_TXC appears in the timing diagram as TXC.
.
SS1
SS5
SS2
SS3
SS4
TXC
(Output)
SS8
SS6
TXFS (bl)
(Output)
SS10
SS12
SS14
TXFS (wl)
(Output)
SS15
SS16
SS18
SS17
TXD
(Output)
SS43
SS42
SS19
RXD
(Input)
Note: SRXD input in synchronous mode only
Figure 89. SSI Transmitter Internal Clock Timing Diagram
3.7.15.1
SSI Transmitter Timing with Internal Clock
Table 89. SSI Transmitter Timing with Internal Clock
ID
Parameter
Min
Max
Unit
Internal Clock Operation
SS1
(Tx/Rx) CK clock period
81.4
—
ns
SS2
(Tx/Rx) CK clock high period
36.0
—
ns
SS3
(Tx/Rx) CK clock rise time
—
6.0
ns
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
121
Preliminary—Subject to Change Without Notice
Electrical Characteristics
ID
Parameter
Min
Max
Unit
36.0
—
ns
SS4
(Tx/Rx) CK clock low period
SS5
(Tx/Rx) CK clock fall time
—
6.0
ns
SS6
(Tx) CK high to FS (bl) high
—
15.0
ns
SS8
(Tx) CK high to FS (bl) low
—
15.0
ns
SS10
(Tx) CK high to FS (wl) high
—
15.0
ns
SS12
(Tx) CK high to FS (wl) low
—
15.0
ns
SS14
(Tx/Rx) Internal FS rise time
—
6.0
ns
SS15
(Tx/Rx) Internal FS fall time
—
6.0
ns
SS16
(Tx) CK high to STXD valid from high impedance
—
15.0
ns
SS17
(Tx) CK high to STXD high/low
—
15.0
ns
SS18
(Tx) CK high to STXD high impedance
—
15.0
ns
SS19
STXD rise/fall time
—
6.0
ns
Synchronous Internal Clock Operation
SS42
SRXD setup before (Tx) CK falling
10.0
—
ns
SS43
SRXD hold after (Tx) CK falling
0.0
—
ns
SS52
Loading
—
25.0
pF
•
•
•
•
•
NOTE
All the timings for the SSI are given for a non-inverted serial clock
polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync
(TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have
been inverted, all the timing remains valid by inverting the clock signal
STCK/SRCK and/or the frame sync STFS/SRFS shown in the tables
and in the figures.
All timings are on Audiomux Pads when SSI is being used for data
transfer.
The terms WL and BL refer to Word Length (WL) and Byte Length
(BL).
”Tx” and “Rx” refer to the Transmit and Receive sections of the SSI.
For internal Frame Sync operation using external clock, the FS timing is
same as that of Tx Data (for example, during AC97 mode of operation).
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
122
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Table 89. SSI Transmitter Timing (continued)with Internal Clock (continued)
Electrical Characteristics
SSI Receiver Timing with Internal Clock
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
3.7.15.2
SS1
SS3
SS5
SS4
SS2
TXC
(Output)
SS9
SS7
TXFS (bl)
(Output)
SS11
TXFS (wl)
(Output)
SS13
SS20
SS21
RXD
(Input)
SS47
SS48
SS51
SS49
SS50
RXC
(Output)
Figure 90. SSI Receiver Internal Clock Timing Diagram
Table 90. SSI Receiver Timing with Internal Clock
ID
Parameter
Min
Max
Unit
Internal Clock Operation
SS1
(Tx/Rx) CK clock period
81.4
—
ns
SS2
(Tx/Rx) CK clock high period
36.0
—
ns
SS3
(Tx/Rx) CK clock rise time
—
6.0
ns
SS4
(Tx/Rx) CK clock low period
36.0
—
ns
SS5
(Tx/Rx) CK clock fall time
—
6.0
ns
SS7
(Rx) CK high to FS (bl) high
—
15.0
ns
SS9
(Rx) CK high to FS (bl) low
—
15.0
ns
SS11
(Rx) CK high to FS (wl) high
—
15.0
ns
SS13
(Rx) CK high to FS (wl) low
—
15.0
ns
SS20
SRXD setup time before (Rx) CK low
10.0
—
ns
SS21
SRXD hold time after (Rx) CK low
0.0
—
ns
15.04
—
ns
Oversampling Clock Operation
SS47
Oversampling clock period
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
123
Preliminary—Subject to Change Without Notice
Electrical Characteristics
ID
Parameter
Min
Max
Unit
SS48
Oversampling clock high period
6.0
—
ns
SS49
Oversampling clock rise time
—
3.0
ns
SS50
Oversampling clock low period
6.0
—
ns
SS51
Oversampling clock fall time
—
3.0
ns
•
•
•
•
•
NOTE
All the timings for the SSI are given for a non-inverted serial clock
polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync
(TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have
been inverted, all the timing remains valid by inverting the clock signal
STCK/SRCK and/or the frame sync STFS/SRFS shown in the tables
and in the figures.
All timings are on Audiomux Pads when SSI is being used for data
transfer.
“Tx” and “Rx” refer to the Transmit and Receive sections of the SSI.
The terms WL and BL refer to Word Length (WL) and Byte Length
(BL).
For internal Frame Sync operation using external clock, the FS timing is
same as that of Tx Data (for example, during AC97 mode of operation).
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
124
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Table 90. SSI Receiver Timing with Internal Clock (continued)
Electrical Characteristics
SSI Transmitter Timing with External Clock
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
3.7.15.3
SS22
SS23
SS25
SS26
SS24
TXC
(Input)
SS27
SS29
TXFS (bl)
(Input)
SS33
SS31
TXFS (wl)
(Input)
SS37
SS39
SS38
TXD
(Output)
SS45
SS44
RXD
(Input)
SS46
Note: SRXD Input in Synchronous mode only
Figure 91. SSI Transmitter External Clock Timing Diagram
Table 91. SSI Transmitter Timing with External Clock
ID
Parameter
Min
Max
Unit
External Clock Operation
SS22
(Tx/Rx) CK clock period
81.4
—
ns
SS23
(Tx/Rx) CK clock high period
36.0
—
ns
SS24
(Tx/Rx) CK clock rise time
—
6.0
ns
SS25
(Tx/Rx) CK clock low period
36.0
—
ns
SS26
(Tx/Rx) CK clock fall time
—
6.0
ns
SS27
(Tx) CK high to FS (bl) high
–10.0
15.0
ns
SS29
(Tx) CK high to FS (bl) low
10.0
—
ns
SS31
(Tx) CK high to FS (wl) high
–10.0
15.0
ns
SS33
(Tx) CK high to FS (wl) low
10.0
—
ns
SS37
(Tx) CK high to STXD valid from high impedance
—
15.0
ns
SS38
(Tx) CK high to STXD high/low
—
15.0
ns
SS39
(Tx) CK high to STXD high impedance
—
15.0
ns
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
125
Preliminary—Subject to Change Without Notice
Electrical Characteristics
ID
Parameter
Min
Max
Unit
Synchronous External Clock Operation
SS44
SRXD setup before (Tx) CK falling
10.0
—
ns
SS45
SRXD hold after (Tx) CK falling
2.0
—
ns
SS46
SRXD rise/fall time
—
6.0
ns
•
•
•
•
•
3.7.15.4
NOTE
All the timings for the SSI are given for a non-inverted serial clock
polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync
(TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have
been inverted, all the timing remains valid by inverting the clock signal
STCK/SRCK and/or the frame sync STFS/SRFS shown in the tables
and in the figures.
All timings are on Audiomux Pads when SSI is being used for data
transfer.
“Tx” and “Rx” refer to the Transmit and Receive sections of the SSI.
The terms WL and BL refer to Word Length (WL) and Byte Length
(BL).
For internal Frame Sync operation using external clock, the FS timing is
same as that of Tx Data (for example, during AC97 mode of operation).
SSI Receiver Timing with External Clock
SS22
SS26
SS24
SS25
SS23
TXC
(Input)
SS28
TXFS (bl)
(Input)
SS30
SS32
SS34
SS35
TXFS (wl)
(Input)
SS41
SS40
SS36
RXD
(Input)
Figure 92. SSI Receiver External Clock Timing Diagram
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
126
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Table 91. SSI Transmitter Timing with External Clock (continued)
Electrical Characteristics
ID
Parameter
Min
Max
Unit
81.4
—
ns
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Table 92. SSI Receiver Timing with External Clock
External Clock Operation
SS22
(Tx/Rx) CK clock period
SS23
(Tx/Rx) CK clock high period
36
—
ns
SS24
(Tx/Rx) CK clock rise time
—
6.0
ns
SS25
(Tx/Rx) CK clock low period
36
—
ns
SS26
(Tx/Rx) CK clock fall time
—
6.0
ns
SS28
(Rx) CK high to FS (bl) high
–10
15.0
ns
SS30
(Rx) CK high to FS (bl) low
10
—
ns
SS32
(Rx) CK high to FS (wl) high
–10
15.0
ns
SS34
(Rx) CK high to FS (wl) low
10
—
ns
SS35
(Tx/Rx) External FS rise time
—
6.0
ns
SS36
(Tx/Rx) External FS fall time
—
6.0
ns
SS40
SRXD setup time before (Rx) CK low
10
—
ns
SS41
SRXD hold time after (Rx) CK low
2
—
ns
•
•
•
•
•
NOTE
All the timings for the SSI are given for a non-inverted serial clock
polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync
(TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have
been inverted, all the timing remains valid by inverting the clock signal
STCK/SRCK and/or the frame sync STFS/SRFS shown in the tables
and in the figures.
All timings are on Audiomux Pads when SSI is being used for data
transfer.
“Tx” and “Rx” refer to the Transmit and Receive sections of the SSI.
The terms WL and BL refer to Word Length (WL) and Byte Length
(BL).
For internal Frame Sync operation using external clock, the FS timing is
same as that of Tx Data (for example, during AC97 mode of operation).
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
127
Preliminary—Subject to Change Without Notice
Electrical Characteristics
UART
Table 93 shows the UART I/O configuration based on which mode is enabled.
Table 93. UART I/O Configuration vs. Mode
DTE Mode
DCE Mode
Port
Direction
Description
Direction
Description
RTS
Output
RTS from DTE to DCE
Input
RTS from DTE to DCE
CTS
Input
CTS from DCE to DTE
Output
CTS from DCE to DTE
DTR
Output
DTR from DTE to DCE
Input
DTR from DTE to DCE
DSR
Input
DSR from DCE to DTE
Output
DSR from DCE to DTE
DCD
Input
DCD from DCE to DTE
Output
DCD from DCE to DTE
RI
Input
RING from DCE to DTE
Output
RING from DCE to DTE
TXD_MUX
Input
Serial data from DCE to DTE
Output
Serial data from DCE to DTE
RXD_MUX
Output
Serial data from DTE to DCE
Input
Serial data from DTE to DCE
3.7.17
USBOH3 Parameters
This section describes the electrical parameters of the USB OTG port and USB HOST ports. For on-chip
USB PHY parameters see Section 3.7.19, “USB PHY Parameters.”
3.7.17.1
USB Serial Interface
In order to support four serial different interfaces, the USB serial transceiver can be configured to operate
in one of four modes:
• DAT_SE0 bidirectional, 3-wire mode
• DAT_SE0 unidirectional, 6-wire mode
• VP_VM bidirectional, 4-wire mode
• VP_VM unidirectional, 6-wire mode
The USB controller does not support ULPI Serial mode. Only the legacy serial mode is supported.
Table 94. Serial Mode Signal Map for 6-pin FsLs Serial Mode
Signal
Maps to
Direction
Description
tx_enable
data(0)
In
Active high transmit enable
tx_dat
data(1)
In
Transmit differential data on D+/D–
tx_se0
data(2)
In
Transmit single-ended zero on D+/D–
int
data(3)
Out
Active high interrupt indication
Must be asserted whenever any unmasked interrupt occurs
rx_dp
data(4)
Out
Single-ended receive data from D+
rx_dm
data(5)
Out
Single-ended receive data from D–
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
128
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
3.7.16
Electrical Characteristics
Table 94. Serial Mode Signal Map for 6-pin FsLs Serial Mode (continued)
Maps to
Direction
Description
rx_rcv
data(6)
Out
Differential receive data from D+/D–
Reserved
data(7)
Out
Reserved The PHY must drive this signal low
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Signal
Table 95. Serial Mode Signal Map for 3-pin FsLs Serial Mode
Signal
Maps to
Direction
tx_enable
data(0)
In
Active high transmit enable
dat
data(1)
I/O
Transmit differential data on D+/D– when tx_enable is high
Receive differential data on D+/D– when tx_enable is low
se0
data(2)
I/O
Transmit single-ended zero on D+/D– when tx_enable is high
Receive single-ended zero on D+/D– when tx_enable is low
int
data(3)
Out
Active high interrupt indication
Must be asserted whenever any unmasked interrupt occurs
3.7.17.1.1
Description
USB DAT_SE0 Bi-Directional Mode
Table 96. Signal Definitions—DAT_SE0 Bi-Directional Mode
Name
Direction
Signal Description
USB_TXOE_B
Out
Transmit enable, active low
USB_DAT_VP
Out
In
TX data when USB_TXOE_B is low
Differential RX data when USB_TXOE_B is high
USB_SE0_VM
Out
In
SE0 drive when USB_TXOE_B is low
SE0 RX indicator when USB_TXOE_B is high
US3
Transmit
USB_TXOE_B
USB_DAT_VP
USB_SE0_VM
US1
US4
US2
Figure 93. USB Transmit Waveform in DAT_SE0 Bi-Directional Mode
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
129
Preliminary—Subject to Change Without Notice
Electrical Characteristics
USB_TXOE_B
USB_DAT_VP
USB_SE0_VM
US7
US8
USB_SE0_VM
Figure 94. USB Receive Waveform in DAT_SE0 Bi-Directional Mode
Table 97. Definitions of USB Receive Waveform in DAT_SE0 Bi-Directional Mode
ID
Parameter
Signal Name
Direction
Min
Max
Unit
Conditions/
Reference Signal
US1
TX Rise/Fall Time
USB_DAT_VP
Out
–
5.0
ns
50 pF
US2
TX Rise/Fall Time
USB_SE0_VM
Out
–
5.0
ns
50 pF
US3
TX Rise/Fall Time
USB_TXOE_B
Out
–
5.0
ns
50 pF
US4
TX Duty Cycle
USB_DAT_VP
Out
49.0
51.0
%
–
US7
RX Rise/Fall Time
USB_DAT_VP
In
–
3.0
ns
35 pF
US8
RX Rise/Fall Time
USB_SE0_VM
In
–
3.0
ns
35 pF
3.7.17.1.2
USB DAT_SE0 Unidirectional Mode
Table 98. Signal Definitions—DAT_SE0 Unidirectional Mode
Name
Direction
Signal Description
USB_TXOE_B
Out
Transmit enable, active low
USB_DAT_VP
Out
TX data when USB_TXOE_B is low
USB_SE0_VM
Out
SE0 drive when USB_TXOE_B is low
USB_VP1
In
Buffered data on DP when USB_TXOE_B is high
USB_VM1
In
Buffered data on DM when USB_TXOE_B is high
USB_RCV
In
Differential RX data when USB_TXOE_B is high
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
130
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Receive
Electrical Characteristics
USB_TXOE_B
USB_DAT_VP
USB_SE0_VM
US9
US12
US10
Figure 95. USB Transmit Waveform in DAT_SE0 Uni-directional Mode
Receive
USB_TXOE_B
USB_DAT_VP
USB_RCV
US16
US15/US17
USB_SE0_VM
Figure 96. USB Receive Waveform in DAT_SE0 Uni-directional Mode
Table 99. USB Port Timing Specification in DAT_SE0 Uni-directional Mode
Signal Name
Signal
Source
Min
Max
Unit
Condition/
Reference Signal
TX Rise/Fall Time
USB_DAT_VP
Out
–
5.0
ns
50 pF
US10 TX Rise/Fall Time
USB_SE0_VM
Out
–
5.0
ns
50 pF
US11 TX Rise/Fall Time
USB_TXOE_B
Out
–
5.0
ns
50 pF
US12 TX Duty Cycle
USB_DAT_VP
Out
49.0
51.0
%
–
US15 RX Rise/Fall Time
USB_VP1
In
–
3.0
ns
35 pF
US16 RX Rise/Fall Time
USB_VM1
In
–
3.0
ns
35 pF
US17 RX Rise/Fall Time
USB_RCV
In
–
3.0
ns
35 pF
ID
US9
Parameter
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
131
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
US11
Transmit
Electrical Characteristics
3.7.17.1.3
USB VP_VM Bi-Directional Mode
Name
Direction
Signal Description
USB_TXOE_B
Out
USB_DAT_VP
Out (Tx)
In (Rx)
TX VP data when USB_TXOE_B is low
RX VP data when USB_TXOE_B is high
USB_SE0_VM
Out (Tx)
In (Rx)
TX VM data when USB_TXOE_B low
RX VM data when USB_TXOE_B high
USB_RCV
In
Transmit enable, active low
Differential RX data
Transmit
US20
USB_TXOE_B
USB_DAT_VP
USB_SE0_VM
US18
US21
US19
US22
US22
Figure 97. USB Transmit Waveform in VP_VM Bi-Directional Mode
Receive
US26
USB_DAT_VP
USB_SE0_VM
US27
US28
USB_RCV
US29
Figure 98. USB Receive Waveform in VP_VM Bi-Directional Mode
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
132
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Table 100. Signal Definitions—VP_VM Bi-Directional Mode
Electrical Characteristics
ID
Parameter
Signal Name
Direction
Min
Max
Unit
Condition / Reference Signal
US18 TX Rise/Fall Time
USB_DAT_VP
Out
—
5.0
ns
50 pF
US19 TX Rise/Fall Time
USB_SE0_VM
Out
—
5.0
ns
50 pF
US20 TX Rise/Fall Time
USB_TXOE_B
Out
—
5.0
ns
50 pF
US21 TX Duty Cycle
USB_DAT_VP
Out
49.0
51.0
%
—
US22 TX Overlap
USB_SE0_VM
Out
–3.0
3.0
ns
USB_DAT_VP
US26 RX Rise/Fall Time
USB_DAT_VP
In
—
3.0
ns
35 pF
US27 RX Rise/Fall Time
USB_SE0_VM
In
—
3.0
ns
35 pF
US28 RX Skew
USB_DAT_VP
Out
–4.0
4.0
ns
USB_SE0_VM
US29 RX Skew
USB_RCV
Out
–6.0
2.0
ns
USB_DAT_VP
3.7.17.1.4
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Table 101. USB Port Timing Specification in VP_VM Bi-directional Mode
USB VP_VM Uni-Directional Mode
Table 102. USB Signal Definitions—VP_VM Uni-Directional Mode
Name
Direction
Signal Description
USB_TXOE_B
Out
Transmit enable, active low
USB_DAT_VP
Out
TX VP data when USB_TXOE_B is low
USB_SE0_VM
Out
TX VM data when USB_TXOE_B is low
USB_VP1
In
RX VP data when USB_TXOE_B is high
USB_VM1
In
RX VM data when USB_TXOE_B is high
USB_RCV
In
Differential RX data
Transmit
US32
USB_TXOE_B
USB_DAT_VP
USB_SE0_VM
US30
US33
US31
US34
US34
Figure 99. USB Transmit Waveform in VP_VM Unidirectional Mode
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
133
Preliminary—Subject to Change Without Notice
Electrical Characteristics
USB_TXOE_B
USB_VP1
US38
USB_VM1
US40
USB_RCV
US39
US41
Figure 100. USB Receive Waveform in VP_VM Unidirectional Mode
Table 103. USB Timing Specification in VP_VM Unidirectional Mode
ID
Parameter
Signal
Direction
Min
Max
Unit
Conditions / Reference Signal
US30
TX Rise/Fall Time
USB_DAT_VP
Out
—
5.0
ns
50 pF
US31
TX Rise/Fall Time
USB_SE0_VM
Out
—
5.0
ns
50 pF
US32
TX Rise/Fall Time
USB_TXOE_B
Out
—
5.0
ns
50 pF
US33
TX Duty Cycle
USB_DAT_VP
Out
49.0
51.0
%
—
US34
TX Overlap
USB_SE0_VM
Out
–3.0
3.0
ns
USB_DAT_VP
US38
RX Rise/Fall Time
USB_VP1
In
—
3.0
ns
35 pF
US39
RX Rise/Fall Time
USB_VM1
In
—
3.0
ns
35 pF
US40
RX Skew
USB_VP1
Out
–4.0
4.0
ns
USB_SE0_VM
US41
RX Skew
USB_RCV
Out
–6.0
2.0
ns
USB_DAT_VP
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
134
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Receive
Electrical Characteristics
USB Parallel Interface Timing
Electrical and timing specifications of Parallel Interface are presented in the subsequent sections.
Table 104. Signal Definitions—Parallel Interface (Normal ULPI)
Name
Direction
Signal Description
USB_Clk
In
Interface clock. All interface signals are synchronous to Clock.
USB_Data[7:0]
I/O
Bi-directional data bus, driven low by the link during idle. Bus
ownership is determined by Dir.
USB_Dir
In
Direction. Control the direction of the Data bus.
USB_Stp
Out
USB_Nxt
In
Stop. The link asserts this signal for 1 clock cycle to stop the data
stream currently on the bus.
Next. The PHY asserts this signal to throttle the data.
USB_Clk
US16
US15
USB_Dir/Nxt
US15
US16
USB_Data
US17
US17
USB_Stp
Figure 101. USB Transmit/Receive Waveform in Parallel Mode
Table 105. USB Timing Specification for ULPI Parallel Mode
ID
Parameter
Min
Max
Unit
Conditions /
Reference Signal
US15
Setup Time (Dir, Nxt in, Data in)
6
—
ns
10 pF
US16
Hold Time (Dir, Nxt in, Data in)
0
—
ns
10 pF
US17
Output delay Time (Stp out, Data out)
—
9
ns
10 pF
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
135
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
3.7.18
Electrical Characteristics
USB PHY Parameters
3.7.19.1
USB PHY AC Parameters
Table 106. USB PHY AC Timing Parameters
Parameter
Conditions
Min
Typ
Max
Unit
trise
1.5Mbps
12Mbps
480Mbps
75
4
0.5
—
300
20
ns
tfall
1.5Mbps
12Mbps
480Mbps
75
4
0.5
—
300
20
ns
Jitter
1.5Mbps
12Mbps
480Mbps
—
—
10
1
0.2
ns
3.7.19.2
USB PHY Additional Electrical Parameters
Table 107. Additional Electrical Characteristics for USB PHY
Parameter
Conditions
Min
Typ
Max
Unit
–0.05
0.8
—
0.5
2.5
V
Vcm DC
(dc level measured at receiver connector)
HS Mode
LS/FS Mode
Crossover Voltage
LS Mode
FS Mode
1.3
1.3
—
2
2
V
Power supply ripple noise
(analog 3.3 V)
<160 MHz
–50
0
50
mV
Power supply ripple noise
(analog 2.5 V)
<1.2 MHz
>1.2 MHz
–10
–50
0
0
10
50
mV
Power supply ripple noise
(Digital 1.2)
All conditions
–50
0
50
mV
3.7.19.3
USB PHY System Clocking (SYSCLK)
Table 108. USB PHY System Clocking Parameters
Parameter
Conditions
Min
Typ
Max
Unit
Clock deviation
—
–150
—
150
ppm
Rise/fall time
—
—
—
200
ps
Jitter (peak-peak)
<1.2 MHz
0
—
50
ps
Jitter (peak-peak)
>1.2 MHz
0
—
100
ps
—
40
—
60
%
Duty-cycle
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
136
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
3.7.19
Package Information and Contact Assignments
USB PHY Voltage Thresholds
Table 109. VBUS Comparators Thresholds
Parameter
Conditions
Min
Typ
Max
Unit
A-Device Session Valid
—
0.8
1.4
2.0
V
B-Device Session Valid
—
0.8
1.4
4.0
V
B-Device Session End
—
0.2
0.45
0.8
V
VBUS Valid Comparator Threshold1
—
4.4
4.6
4.75
V
1
For VBUS maximum rating, see Table 6 on page 15
4
Package Information and Contact Assignments
This section includes the contact assignment information and mechanical package drawing.
4.1
13 × 13 mm Package Information
This section contains the outline drawing, signal assignment map, ground/power/reference ID (by ball grid
location) for the 13 × 13 mm, 0.5 mm pitch package.
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
137
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
3.7.19.4
Package Information and Contact Assignments
BGA—Case 2058 13 × 13 mm, 0.5 mm Pitch
Figure 102. Package: Case 2058—0.5 mm Pitch
4.1.1.1
13 × 13 mm Package Drawing Notes
The following notes apply to Figure 102.
1
All dimensions in millimeters.
Dimensioning and tolerancing per ASME Y14.5M-1994.
3
Maximum solder ball diameter measured parallel to Datum A.
4 Datum A, the seating plane, is determined by the spherical crowns of the solder balls.
5 Parallelism measurement shall exclude any effect of mark on top surface of package.
2
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
138
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
4.1.1
Package Information and Contact Assignments
Table 110 shows the device connection list for ground, power, sense, and reference contact signals
alpha-sorted by name. Table 111 displays an alpha-sorted list of the signal assignments. Table 112 provides
a listing of the no-connect contacts.
4.1.2.1
13 × 13 mm Ball Contact Assignments
Table 110 shows the device connection list for ground, power, sense, and reference contact signals
alpha-sorted by name
Table 110. 13 × 13 mm Ground, Power, Sense, and Reference Contact Assignments
Contact Name
Contact Assignment
AHVDDRGB
V15, V16
AHVSSRGB
V13, V14
GND
A1, A24, A25, B1, B25, E7, E13, E16, E19, G5, J13, J14, K5, K13, K14, K15, L13, L14, L15, L21, M12,
M13, M14, M15, N5, N6, N8, N9, N10, N11, P8, P9, P11, P21, R8, R9, R10, R11, R12, T8, T9, T10, T11,
T12, T13, U5, U9, U10, U11, U12, U13, U21, W5, AA7, AA10, AA13, AA16, AA19, AD1, AD2, AD25, AE1,
AE24, AE25
GND_ANA_PLL_A
AE3
GND_ANA_PLL_B
AC25
GND_DIG_PLL_A
AE2
GND_DIG_PLL_B
AD24
NGND_OSC
AC23
NGND_TV_BACK
AB22
NGND_USBPHY
L23
NVCC_EMI
U8, V8
NVCC_EMI_DRAM L5, M5, R5, T5, Y5, AA5
NVCC_HS10
M20
NVCC_HS4_1
L20
NVCC_HS4_2
P20
NVCC_HS6
N20
NVCC_I2C
V11
NVCC_IPU2
V20
NVCC_IPU4
N16
NVCC_IPU5
K16
NVCC_IPU6
M16
NVCC_IPU7
H22
NVCC_IPU8
V22
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
139
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
13 × 13 mm, 0.5 Pitch Ball Assignment Lists
4.1.2
Package Information and Contact Assignments
Table 110. 13 × 13 mm Ground, Power, Sense, and Reference Contact Assignments (continued)
NVCC_IPU9
Contact Assignment
L16
NVCC_NANDF_A
J8
NVCC_NANDF_B
H8
NVCC_NANDF_C
H9
NVCC_OSC
AD22
NVCC_PER10
H12
NVCC_PER11
H11
NVCC_PER12
H15
NVCC_PER13
H14
NVCC_PER14
V9
NVCC_PER15
H16
NVCC_PER17
J16
NVCC_PER3
V10
NVCC_PER5
D20
NVCC_PER8
J15
NVCC_PER9
H10
NVCC_SRTC_POW V12
NVCC_TV_BACK
AC22
NVCC_USBPHY
P16
RREFEXT
K18
SGND
P10
SVCC
N13
SVDDGP
M11
TVDAC_DHVDD
AB21
VBUS
L22
VCC
N12, N14, N15, P12, P13, P14, P15, R13, R14, R15, T14, T15, T16, U14, U15, U16
VDD_ANA_PLL_A
AD4
VDD_ANA_PLL_B
AC24
VDD_DIG_PLL_A
AD3
VDD_DIG_PLL_B
AB23
VDD_FUSE
VDDA
VDDA33
P6
H13, N18, R6, T6, Y16
R16
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
140
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Contact Name
Package Information and Contact Assignments
Table 110. 13 × 13 mm Ground, Power, Sense, and Reference Contact Assignments (continued)
VDDGP
E10, J9, J10, J11, J12, K8, K9, K10, K11, K12, L6, L8, L9, L10, L11, L12, M6, M8, M9, M10
VREF
U6
VREFOUT
VREG
4.1.2.2
Contact Assignment
AB20
L24
13 × 13 mm Signal Assignments, Power Rails, and I/O
Table 111 shows signal assignment connect list including the associated power supplies. Table 115
on page 172 lists the contacts that can be overridden with fuse settings.
Table 111. 13 × 13 mm Signal Assignments, Power Rails, and I/O
Contact Name
Contact Assignment
Power Rail
I/O Buffer
Type
Direction
after Reset1
Configuraton
after Reset1
AUD3_BB_CK
C9
NVCC_PER9
GPIO
Input
Keeper
AUD3_BB_FS
C8
NVCC_PER9
GPIO
Input
Keeper
AUD3_BB_RXD
B8
NVCC_PER9
GPIO
Input
Keeper
AUD3_BB_TXD
B7
NVCC_PER9
GPIO
Input
Keeper
BOOT_MODE0
W22
NVCC_PER3
LVIO
Input
100 kΩ pull-up
BOOT_MODE1
AA24
NVCC_PER3
LVIO
Input
100 kΩ pull-up
CKIH1
AB24
NVCC_PER3
Analog
Input
Analog
CKIH2
AA23
NVCC_PER3
Analog
Input
Analog
CKIL
AA22
NVCC_SRTC_POW
GPIO
Input
Standard
CMOS
CLK_SS
Y22
NVCC_PER3
LVIO
Input
100 kΩ pull-up
COMP
AC20
AHVDDRGB
Analog
Input
Analog
CSI1_D10
R24
NVCC_HS10
HSGPIO
Input
Keeper
CSI1_D11
R25
NVCC_HS10
HSGPIO
Input
Keeper
CSI1_D12
P22
NVCC_HS10
HSGPIO
Input
Keeper
CSI1_D13
P23
NVCC_HS10
HSGPIO
Input
Keeper
CSI1_D14
P24
NVCC_HS10
HSGPIO
Input
Keeper
CSI1_D15
P25
NVCC_HS10
HSGPIO
Input
Keeper
CSI1_D16
N24
NVCC_HS10
HSGPIO
Input
Keeper
CSI1_D17
N25
NVCC_HS10
HSGPIO
Input
Keeper
CSI1_D18
N23
NVCC_HS10
HSGPIO
Input
Keeper
CSI1_D19
N22
NVCC_HS10
HSGPIO
Input
Keeper
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
141
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Contact Name
Package Information and Contact Assignments
Contact Name
Contact Assignment
Power Rail
I/O Buffer
Type
Direction
after Reset1
Configuraton
after Reset1
CSI1_D8
A20
NVCC_PER8
GPIO
Input
Keeper
CSI1_D9
B20
NVCC_PER8
GPIO
Input
Keeper
CSI1_HSYNC
C19
NVCC_PER8
GPIO
Input
Keeper
CSI1_MCLK
F19
NVCC_PER8
GPIO
Input
Keeper
CSI1_PIXCLK
D19
NVCC_PER8
GPIO
Input
Keeper
CSI1_VSYNC
B19
NVCC_PER8
GPIO
Input
Keeper
CSI2_D12
F11
NVCC_PER9
GPIO
Input
Keeper
CSI2_D13
D8
NVCC_PER9
GPIO
Input
Keeper
CSI2_D14
M25
NVCC_HS4_1
HSGPIO
Input
Keeper
CSI2_D15
M24
NVCC_HS4_1
HSGPIO
Input
Keeper
CSI2_D16
M23
NVCC_HS4_1
HSGPIO
Input
Keeper
CSI2_D17
M22
NVCC_HS4_1
HSGPIO
Input
Keeper
CSI2_D18
A7
NVCC_PER9
GPIO
Input
Keeper
CSI2_D19
C7
NVCC_PER9
GPIO
Input
Keeper
CSI2_HSYNC
J20
NVCC_PER8
GPIO
Input
Keeper
CSI2_PIXCLK
D21
NVCC_PER8
GPIO
Input
Keeper
CSI2_VSYNC
C20
NVCC_PER8
GPIO
Input
Keeper
CSPI1_MISO
F12
NVCC_PER10
GPIO
Input
100 kΩ pull-up
CSPI1_MOSI
D9
NVCC_PER10
GPIO
Input
100 kΩ pull-up
CSPI1_RDY
A8
NVCC_PER10
GPIO
Input
Keeper
CSPI1_SCLK
D11
NVCC_PER10
GPIO
Input
100 kΩ pull-up
CSPI1_SS0
D10
NVCC_PER10
GPIO
Input
100 kΩ pull-up
CSPI1_SS1
F13
NVCC_PER10
GPIO
Input
100 kΩ pull-up
DI_GP1
F20
NVCC_IPU6
GPIO
Input
Keeper
DI_GP2
K20
NVCC_IPU6
GPIO
Input
Keeper
DI_GP3
H23
NVCC_IPU7
GPIO
Input
100 kΩ pull-up
DI_GP4
K23
NVCC_IPU7
GPIO
Input
100 kΩ pull-up
DI1_D0_CS
W20
NVCC_IPU2
GPIO
Output
Low
DI1_D1_CS
T18
NVCC_IPU2
GPIO
Output
Low
DI1_DISP_CLK
J22
NVCC_IPU6
GPIO
Output
Low
DI1_PIN11
V18
NVCC_IPU2
GPIO
Output
Low
DI1_PIN12
W25
NVCC_IPU2
GPIO
Output
Low
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
142
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Table 111. 13 × 13 mm Signal Assignments, Power Rails, and I/O (continued)
Package Information and Contact Assignments
Contact Name
Contact Assignment
Power Rail
I/O Buffer
Type
Direction
after Reset1
Configuraton
after Reset1
DI1_PIN13
W24
NVCC_IPU2
GPIO
Output
High
DI1_PIN15
G20
NVCC_IPU6
GPIO
Output
High
DI1_PIN2
J18
NVCC_IPU6
GPIO
Output
High
DI1_PIN3
H20
NVCC_IPU6
GPIO
Output
High
DI2_DISP_CLK
J24
NVCC_IPU7
GPIO
Output
High
DI2_PIN2
H24
NVCC_IPU7
GPIO
Output
High
DI2_PIN3
J25
NVCC_IPU7
GPIO
Output
High
DI2_PIN4
J23
NVCC_IPU7
GPIO
Input
Keeper
DISP1_DAT0
T23
NVCC_HS6
HSGPIO
Input
Keeper
DISP1_DAT1
T22
NVCC_HS6
HSGPIO
Input
Keeper
DISP1_DAT102
E24
NVCC_IPU4
GPIO
Input
Keeper
DISP1_DAT112
E25
NVCC_IPU4
GPIO
Input
Keeper
DISP1_DAT122
E22
NVCC_IPU4
GPIO
Input
Keeper
DISP1_DAT132
E23
NVCC_IPU4
GPIO
Input
Keeper
DISP1_DAT142
D22
NVCC_IPU4
GPIO
Input
Keeper
DISP1_DAT152
F22
NVCC_IPU4
GPIO
Input
Keeper
DISP1_DAT162
F23
NVCC_IPU5
GPIO
Input
Keeper
DISP1_DAT172
F24
NVCC_IPU5
GPIO
Input
Keeper
DISP1_DAT182
G23
NVCC_IPU5
GPIO
Input
Keeper
DISP1_DAT192
G22
NVCC_IPU5
GPIO
Input
Keeper
DISP1_DAT2
T24
NVCC_HS6
HSGPIO
Input
Keeper
DISP1_DAT202
G25
NVCC_IPU5
GPIO
Input
Keeper
DISP1_DAT212
F25
NVCC_IPU5
GPIO
Input
Keeper
DISP1_DAT222
G24
NVCC_IPU5
GPIO
Input
Keeper
DISP1_DAT232
H25
NVCC_IPU5
GPIO
Input
Keeper
DISP1_DAT3
T25
NVCC_HS6
HSGPIO
Input
Keeper
DISP1_DAT4
R23
NVCC_HS6
HSGPIO
Input
Keeper
DISP1_DAT5
R22
NVCC_HS6
HSGPIO
Input
Keeper
DISP1_DAT62
D25
NVCC_IPU4
GPIO
Input
Keeper
DISP1_DAT72
D24
NVCC_IPU4
GPIO
Input
Keeper
DISP1_DAT82
C23
NVCC_IPU4
GPIO
Input
Keeper
DISP1_DAT92
D23
NVCC_IPU4
GPIO
Input
Keeper
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
143
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Table 111. 13 × 13 mm Signal Assignments, Power Rails, and I/O (continued)
Package Information and Contact Assignments
Contact Name
Contact Assignment
Power Rail
I/O Buffer
Type
Direction
after Reset1
Configuraton
after Reset1
DISP2_DAT0
T20
NVCC_IPU8
GPIO
Input
Keeper
DISP2_DAT1
P18
NVCC_IPU8
GPIO
Input
Keeper
DISP2_DAT10
R18
NVCC_IPU9
GPIO
Input
Keeper
DISP2_DAT11
V24
NVCC_IPU9
GPIO
Input
Keeper
DISP2_DAT12
M18
NVCC_IPU9
GPIO
Input
Keeper
DISP2_DAT13
U18
NVCC_IPU9
GPIO
Input
Keeper
DISP2_DAT14
U20
NVCC_IPU9
GPIO
Input
Keeper
DISP2_DAT15
V23
NVCC_IPU9
GPIO
Input
Keeper
DISP2_DAT2
U22
NVCC_HS4_2
HSGPIO
Input
Keeper
DISP2_DAT3
U23
NVCC_HS4_2
HSGPIO
Input
Keeper
DISP2_DAT4
U24
NVCC_HS4_2
HSGPIO
Input
Keeper
DISP2_DAT5
U25
NVCC_HS4_2
HSGPIO
Input
Keeper
DISP2_DAT6
R20
NVCC_IPU8
GPIO
Input
Keeper
DISP2_DAT7
V25
NVCC_IPU8
GPIO
Input
Keeper
DISP2_DAT8
L18
NVCC_IPU9
GPIO
Input
Keeper
DISP2_DAT9
V17
NVCC_IPU9
GPIO
Input
Keeper
DISPB2_SER_CLK
Y25
NVCC_IPU2
GPIO
Output
High
DISPB2_SER_DIN
Y23
NVCC_IPU2
GPIO
Input
100 kΩ pull-up
DISPB2_SER_DIO
Y20
NVCC_IPU2
GPIO
Input
100 kΩ pull-up
DISPB2_SER_RS
W23
NVCC_IPU2
GPIO
Output
High
DN
K25
VDDA33
Analog
Output
–
DP
K24
VDDA33
Analog
Output
–
DRAM_A0
V4
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_A1
V3
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_A10
T4
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_A11
R1
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_A12
P2
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_A13
R4
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_A14
R2
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_A2
U4
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_A3
U3
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_A4
U1
NVCC_EMI_DRAM
DDR2
Output
High
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
144
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Table 111. 13 × 13 mm Signal Assignments, Power Rails, and I/O (continued)
Package Information and Contact Assignments
Contact Name
Contact Assignment
Power Rail
I/O Buffer
Type
Direction
after Reset1
Configuraton
after Reset1
DRAM_A5
U2
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_A6
T1
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_A7
T2
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_A8
T3
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_A9
P1
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_CAS
N4
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_CS0
P3
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_CS1
R3
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_D0
AC4
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_D1
AC3
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_D10
AA2
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_D11
AA1
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_D12
AB2
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_D13
AB1
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_D14
AC2
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_D15
AC1
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_D16
F2
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_D17
F3
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_D18
G3
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_D19
F4
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_D2
AB3
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_D20
H3
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_D21
G4
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_D22
J3
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_D23
H4
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_D24
J4
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_D25
J1
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_D26
J2
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_D27
H1
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_D28
H2
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_D29
G1
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_D3
AB4
NVCC_EMI_DRAM
DDR2
Output
High
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
145
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Table 111. 13 × 13 mm Signal Assignments, Power Rails, and I/O (continued)
Package Information and Contact Assignments
Contact Name
Contact Assignment
Power Rail
I/O Buffer
Type
Direction
after Reset1
Configuraton
after Reset1
DRAM_D30
G2
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_D31
F1
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_D4
AA3
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_D5
AA4
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_D6
Y3
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_D7
Y4
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_D8
Y1
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_D9
Y2
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_DQM0
V1
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_DQM1
V2
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_DQM2
M4
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_DQM3
N2
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_RAS
N3
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_SDCKE0
N1
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_SDCKE1
L1
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_SDCLK
M1
NVCC_EMI_DRAM
DDR2CLK
Output
High
DRAM_SDCLK_B
M2
NVCC_EMI_DRAM
DDR2CLK
Output
High
DRAM_SDQS0
W3
NVCC_EMI_DRAM
DDR2CLK
Output
High
DRAM_SDQS0_B
W4
NVCC_EMI_DRAM
DDR2CLK
Output
High
DRAM_SDQS1
W2
NVCC_EMI_DRAM
DDR2CLK
Output
High
DRAM_SDQS1_B
W1
NVCC_EMI_DRAM
DDR2CLK
Output
High
DRAM_SDQS2
K3
NVCC_EMI_DRAM
DDR2CLK
Output
High
DRAM_SDQS2_B
K4
NVCC_EMI_DRAM
DDR2CLK
Output
High
DRAM_SDQS3
K2
NVCC_EMI_DRAM
DDR2CLK
Output
High
DRAM_SDQS3_B
K1
NVCC_EMI_DRAM
DDR2CLK
Output
High
DRAM_SDWE
M3
NVCC_EMI_DRAM
DDR2
Output
High
EIM_A162
Y12
NVCC_EMI
GPIO
Input
100 kΩ pull-up
EIM_A172
AE6
NVCC_EMI
GPIO
Input
100 kΩ pull-up
EIM_A182
Y13
NVCC_EMI
GPIO
Input
100 kΩ pull-up
EIM_A192
AE7
NVCC_EMI
GPIO
Input
100 kΩ pull-up
EIM_A202
Y6
NVCC_EMI
GPIO
Input
100 kΩ pull-up
EIM_A212
AD6
NVCC_EMI
GPIO
Input
100 kΩ pull-up
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
146
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Table 111. 13 × 13 mm Signal Assignments, Power Rails, and I/O (continued)
Package Information and Contact Assignments
Contact Name
Contact Assignment
Power Rail
I/O Buffer
Type
Direction
after Reset1
Configuraton
after Reset1
EIM_A22
AB9
NVCC_EMI
GPIO
Output
High
EIM_A232
AE5
NVCC_EMI
GPIO
Input
100 kΩ pull-up
EIM_A24
Y9
NVCC_EMI
GPIO
Input
100 kΩ pull-up
EIM_A25
AD5
NVCC_EMI
GPIO
Input
100 kΩ pull-up
EIM_A26
AB7
NVCC_EMI
GPIO
Input
100 kΩ pull-up
EIM_A27
AC6
NVCC_EMI
GPIO
Input
Keeper
EIM_BCLK
Y10
NVCC_EMI
GPIO
Input
Keeper
EIM_CRE
V6
NVCC_EMI
GPIO
Output
High
EIM_CS0
Y17
NVCC_EMI
GPIO
Output
High
EIM_CS1
W6
NVCC_EMI
GPIO
Output
High
EIM_CS2
AE4
NVCC_EMI
GPIO
Input
Keeper
EIM_CS3
Y8
NVCC_EMI
GPIO
Input
Keeper
EIM_CS4
AC7
NVCC_EMI
GPIO
Input
Keeper
EIM_CS5
Y7
NVCC_EMI
GPIO
Input
Keeper
EIM_D16
AB12
NVCC_EMI
GPIO
Input
Keeper
EIM_D17
AE8
NVCC_EMI
GPIO
Input
Keeper
EIM_D18
AD9
NVCC_EMI
GPIO
Input
Keeper
EIM_D19
AC10
NVCC_EMI
GPIO
Input
Keeper
EIM_D20
AD10
NVCC_EMI
GPIO
Input
Keeper
EIM_D21
AE10
NVCC_EMI
GPIO
Input
Keeper
EIM_D22
AE11
NVCC_EMI
GPIO
Input
Keeper
EIM_D23
AB11
NVCC_EMI
GPIO
Input
Keeper
EIM_D24
AE9
NVCC_EMI
GPIO
Input
Keeper
EIM_D25
AC9
NVCC_EMI
GPIO
Input
Keeper
EIM_D26
AD8
NVCC_EMI
GPIO
Input
Keeper
EIM_D27
AB10
NVCC_EMI
GPIO
Input
Keeper
EIM_D28
Y11
NVCC_EMI
GPIO
Input
Keeper
EIM_D29
AD7
NVCC_EMI
GPIO
Input
Keeper
EIM_D30
AC8
NVCC_EMI
GPIO
Input
Keeper
EIM_D31
AB8
NVCC_EMI
GPIO
Input
Keeper
EIM_DA0
AE15
NVCC_EMI
GPIO
Input
Keeper
EIM_DA1
AD15
NVCC_EMI
GPIO
Input
Keeper
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
147
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Table 111. 13 × 13 mm Signal Assignments, Power Rails, and I/O (continued)
Package Information and Contact Assignments
Contact Name
Contact Assignment
Power Rail
I/O Buffer
Type
Direction
after Reset1
Configuraton
after Reset1
EIM_DA10
AC13
NVCC_EMI
GPIO
Input
Keeper
EIM_DA11
AE12
NVCC_EMI
GPIO
Input
Keeper
EIM_DA12
AE13
NVCC_EMI
GPIO
Input
Keeper
EIM_DA13
AD12
NVCC_EMI
GPIO
Input
Keeper
EIM_DA14
AC12
NVCC_EMI
GPIO
Input
Keeper
EIM_DA15
AD11
NVCC_EMI
GPIO
Input
Keeper
EIM_DA2
AC15
NVCC_EMI
GPIO
Input
Keeper
EIM_DA3
AB16
NVCC_EMI
GPIO
Input
Keeper
EIM_DA4
AE16
NVCC_EMI
GPIO
Input
Keeper
EIM_DA5
Y18
NVCC_EMI
GPIO
Input
Keeper
EIM_DA6
AB15
NVCC_EMI
GPIO
Input
Keeper
EIM_DA7
AC14
NVCC_EMI
GPIO
Input
Keeper
EIM_DA8
AB14
NVCC_EMI
GPIO
Input
Keeper
EIM_DA9
AD13
NVCC_EMI
GPIO
Input
Keeper
EIM_DTACK
AC5
NVCC_EMI
GPIO
Input
100 kΩ pull-up
EIM_EB0
AD14
NVCC_EMI
GPIO
Output
High
EIM_EB1
AE14
NVCC_EMI
GPIO
Output
High
EIM_EB2
AB13
NVCC_EMI
GPIO
Input
Keeper
EIM_EB3
AC11
NVCC_EMI
GPIO
Input
Keeper
EIM_LBA
AB5
NVCC_EMI
GPIO
Output
High
EIM_OE
Y14
NVCC_EMI
GPIO
Output
High
EIM_RW
Y15
NVCC_EMI
GPIO
Output
High
EIM_SDBA0
P4
NVCC_EMI_DRAM
DDR2
Output
High
EIM_SDBA1
L4
NVCC_EMI_DRAM
DDR2
Output
High
EIM_SDBA2
K6
NVCC_EMI_DRAM
DDR2
Output
High
EIM_SDODT0
L2
NVCC_EMI_DRAM
DDR2
Output
High
EIM_SDODT1
L3
NVCC_EMI_DRAM
DDR2
Output
High
EIM_WAIT
AB6
NVCC_EMI
GPIO
Input
100 kΩ pull-up
EXTAL
AD23
NVCC_OSC
Analog
Input
–
FASTR_ANA
AE22
NVCC_PER3
–
Input
–
FASTR_DIG
AC21
NVCC_PER3
–
Input
–
GPANAIO
K22
NVCC_USBPHY
Analog
Output
–
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
148
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Table 111. 13 × 13 mm Signal Assignments, Power Rails, and I/O (continued)
Package Information and Contact Assignments
Contact Name
Contact Assignment
Power Rail
I/O Buffer
Type
Direction
after Reset1
Configuraton
after Reset1
GPIO_NAND
C3
NVCC_NANDF_A
UHVIO
Input
100 kΩ pull-up
GPIO1_0
H18
NVCC_PER5
GPIO
Input
Keeper
GPIO1_1
C21
NVCC_PER5
GPIO
Input
Keeper
GPIO1_2
B23
NVCC_PER5
GPIO
Input
Keeper
GPIO1_3
A22
NVCC_PER5
GPIO
Input
Keeper
GPIO1_4
B22
NVCC_PER5
GPIO
Input
Keeper
GPIO1_5
C22
NVCC_PER5
GPIO
Input
Keeper
GPIO1_6
B24
NVCC_PER5
GPIO
Input
Keeper
GPIO1_7
A23
NVCC_PER5
GPIO
Input
Keeper
GPIO1_8
C24
NVCC_PER5
GPIO
Input
Keeper
GPIO1_9
C25
NVCC_PER5
GPIO
Input
Keeper
I2C1_CLK
AB19
NVCC_I2C
I2CIO
Input
47 kΩ pull-up
I2C1_DAT
Y19
NVCC_I2C
I2CIO
Input
47 kΩ pull-up
ID
L25
NVCC_USBPHY
Analog
Input
Pull-up
IOB
AE21
AHVDDRGB
Analog
Output
—
IOB_BACK
AD21
—
Analog
Output
—
IOG
AE20
AHVDDRGB
Analog
Output
—
IOG_BACK
AD20
—
Analog
Output
—
IOR
AE19
AHVDDRGB
Analog
Output
—
IOR_BACK
AD19
—
Analog
Output
—
JTAG_DE_B
AC16
NVCC_PER14
GPIO
Input/
Open-drain
output
47 kΩ pull-up
JTAG_MOD
AD16
NVCC_PER14
GPIO
Input
100 kΩ
pull-down
JTAG_TCK
AD18
NVCC_PER14
GPIO
Input
100 kΩ
pull-down
JTAG_TDI
AB17
NVCC_PER14
GPIO
Input
47 kΩ pull-up
JTAG_TDO
AD17
NVCC_PER14
GPIO
3-state output
Keeper
JTAG_TMS
AC17
NVCC_PER14
GPIO
Input
47 kΩ pull-up
JTAG_TRSTB
AE17
NVCC_PER14
GPIO
Input
47 kΩ pull-up
KEY_COL0
B16
NVCC_PER13
GPIO
Input
100 kΩ pull-up
KEY_COL1
C16
NVCC_PER13
GPIO
Input
100 kΩ pull-up
KEY_COL2
D16
NVCC_PER13
GPIO
Input
100 kΩ pull-up
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
149
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Table 111. 13 × 13 mm Signal Assignments, Power Rails, and I/O (continued)
Package Information and Contact Assignments
Contact Name
Contact Assignment
Power Rail
I/O Buffer
Type
Direction
after Reset1
Configuraton
after Reset1
KEY_COL33
A16
NVCC_PER13
GPIO
Output
High
KEY_COL43
B17
NVCC_PER13
GPIO
Output
Low
KEY_COL53
A17
NVCC_PER13
GPIO
Output
Low
KEY_ROW0
B15
NVCC_PER13
GPIO
Input
100 kΩ pull-up
KEY_ROW1
C15
NVCC_PER13
GPIO
Input
100 kΩ pull-up
KEY_ROW2
F15
NVCC_PER13
GPIO
Input
100 kΩ pull-up
KEY_ROW3
D15
NVCC_PER13
GPIO
Input
100 kΩ pull-up
NANDF_ALE
E1
NVCC_NANDF_A
UHVIO
Output
High
NANDF_CLE
E2
NVCC_NANDF_A
UHVIO
Output
High
NANDF_CS0
D4
NVCC_NANDF_A
UHVIO
Output
High
NANDF_CS1
D1
NVCC_NANDF_A
UHVIO
Output
High
NANDF_CS2
D5
NVCC_NANDF_A
UHVIO
Output
High
NANDF_CS3
B2
NVCC_NANDF_A
UHVIO
Output
High
NANDF_CS4
B3
NVCC_NANDF_A
UHVIO
Output
Low
NANDF_CS5
C4
NVCC_NANDF_A
UHVIO
Output
Low
NANDF_CS6
A2
NVCC_NANDF_B
UHVIO
Output
Low
NANDF_CS7
F7
NVCC_NANDF_B
UHVIO
Output
Low
NANDF_D0
D7
NVCC_NANDF_C
UHVIO
Input
Keeper
NANDF_D1
F9
NVCC_NANDF_C
UHVIO
Input
Keeper
NANDF_D10
C5
NVCC_NANDF_B
UHVIO
Input
Keeper
NANDF_D11
B4
NVCC_NANDF_B
UHVIO
Input
Keeper
NANDF_D12
A3
NVCC_NANDF_B
UHVIO
Input
Keeper
NANDF_D13
F10
NVCC_NANDF_B
UHVIO
Input
Keeper
NANDF_D14
E4
NVCC_NANDF_B
UHVIO
Input
Keeper
NANDF_D15
J6
NVCC_NANDF_B
UHVIO
Input
Keeper
NANDF_D2
C6
NVCC_NANDF_C
UHVIO
Input
Keeper
NANDF_D3
B5
NVCC_NANDF_C
UHVIO
Input
Keeper
NANDF_D4
B6
NVCC_NANDF_C
UHVIO
Input
Keeper
NANDF_D5
F8
NVCC_NANDF_C
UHVIO
Input
Keeper
NANDF_D6
A6
NVCC_NANDF_C
UHVIO
Input
Keeper
NANDF_D7
A5
NVCC_NANDF_B
UHVIO
Input
Keeper
NANDF_D8
A4
NVCC_NANDF_B
UHVIO
Input
Keeper
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
150
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Table 111. 13 × 13 mm Signal Assignments, Power Rails, and I/O (continued)
Package Information and Contact Assignments
Contact Name
Contact Assignment
Power Rail
I/O Buffer
Type
Direction
after Reset1
Configuraton
after Reset1
NANDF_D9
H6
NVCC_NANDF_B
UHVIO
Input
Keeper
NANDF_RB0
D2
NVCC_NANDF_A
UHVIO
Input
100 kΩ pull-up
NANDF_RB1
C1
NVCC_NANDF_A
UHVIO
Input
100 kΩ pull-up
NANDF_RB2
D3
NVCC_NANDF_A
UHVIO
Input
100 kΩ pull-up
NANDF_RB3
C2
NVCC_NANDF_A
UHVIO
Input
100 kΩ pull-up
NANDF_RDY_INT
D6
NVCC_NANDF_B
UHVIO
Input
100 kΩ pull-up
NANDF_RE_B
F6
NVCC_NANDF_A
UHVIO
Output
—
NANDF_WE_B
G6
NVCC_NANDF_A
UHVIO
Output
—
NANDF_WP_B
E3
NVCC_NANDF_A
UHVIO
Output
—
OWIRE_LINE
A15
NVCC_PER12
GPIO
Input
100 kΩ pull-up
PMIC_INT_REQ
AC18
NVCC_SRTC_POW
GPIO
Input
100 kΩ pull-up
PMIC_ON_REQ
AE18
NVCC_SRTC_POW
GPIO
Input
100 kΩ pull-up
PMIC_RDY
AC19
NVCC_SRTC_POW
GPIO
Input
100 kΩ pull-up
PMIC_STBY_REQ
AB18
NVCC_SRTC_POW
GPIO
Input
100 kΩ pull-up
POR_B
Y24
NVCC_PER3
LVIO
Input
100 kΩ pull-up
RESET_IN_B
AA25
NVCC_PER3
LVIO
Input
100 kΩ pull-up
SD1_CLK
A18
NVCC_PER15
UHVIO
Output
—
SD1_CMD
C17
NVCC_PER15
UHVIO
Input
47 kΩ pull-up
SD1_DATA0
B18
NVCC_PER15
UHVIO
Input
47 kΩ pull-up
SD1_DATA1
D17
NVCC_PER15
UHVIO
Input
47 kΩ pull-up
SD1_DATA2
D18
NVCC_PER15
UHVIO
Input
47 kΩ pull-up
SD1_DATA3
C18
NVCC_PER15
UHVIO
Input
360 kΩ
pull-down
SD2_CLK
A19
NVCC_PER17
UHVIO
Output
—
SD2_CMD
F16
NVCC_PER17
UHVIO
Input
47 kΩ pull-up
SD2_DATA0
F18
NVCC_PER17
UHVIO
Input
47 kΩ pull-up
SD2_DATA1
B21
NVCC_PER17
UHVIO
Input
47 kΩ pull-up
SD2_DATA2
A21
NVCC_PER17
UHVIO
Input
47 kΩ pull-up
SD2_DATA3
F17
NVCC_PER17
UHVIO
Input
360 kΩ
pull-down
STR
D14
NVCC_PER12
—
—
TEST_MODE
AB25
NVCC_PER3
Input
100 kΩ
pull-down
GPIO
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
151
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Table 111. 13 × 13 mm Signal Assignments, Power Rails, and I/O (continued)
Package Information and Contact Assignments
Contact Name
Contact Assignment
Power Rail
I/O Buffer
Type
Direction
after Reset1
Configuraton
after Reset1
UART1_CTS
B13
NVVCC_PER12
GPIO
Input
100 kΩ pull-up
UART1_RTS
C13
NVVCC_PER12
GPIO
Input
100 kΩ pull-up
UART1_RXD
D13
NVVCC_PER12
GPIO
Input
100 kΩ pull-up
UART1_TXD
A12
NVVCC_PER12
GPIO
Input
100 kΩ pull-up
UART2_RXD
A13
NVVCC_PER12
GPIO
Input
100 kΩ pull-up
UART2_TXD
C14
NVVCC_PER12
GPIO
Input
100 kΩ pull-up
UART3_RXD
B14
NVVCC_PER12
GPIO
Input
Keeper
UART3_TXD
A14
NVVCC_PER12
GPIO
Input
Keeper
USBH1_CLK
C11
NVCC_PER11
GPIO
Input
Keeper
USBH1_DATA0
B11
NVCC_PER11
GPIO
Input
Keeper
USBH1_DATA1
A10
NVCC_PER11
GPIO
Input
Keeper
USBH1_DATA2
A9
NVCC_PER11
GPIO
Input
Keeper
USBH1_DATA3
C10
NVCC_PER11
GPIO
Input
Keeper
USBH1_DATA4
B9
NVCC_PER11
GPIO
Input
Keeper
USBH1_DATA5
F14
NVCC_PER11
GPIO
Input
Keeper
USBH1_DATA6
C12
NVCC_PER11
GPIO
Input
Keeper
USBH1_DATA7
B12
NVCC_PER11
GPIO
Input
Keeper
USBH1_DIR
B10
NVCC_PER11
GPIO
Input
Keeper
USBH1_NXT
D12
NVCC_PER11
GPIO
Input
Keeper
USBH1_STP
A11
NVCC_PER11
GPIO
Input
Keeper
XTAL
AE23
NVCC_OSC
Analog
Output
—
1
The state immediately after reset and before ROM firmware or software has executed.
During power-on reset this port acts as input for fuse override signal. See Table 115 on page 172 for details
3 During power-on reset this port acts as output for diagnostic signal. See Table 115 on page 172 for details
2
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
152
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Table 111. 13 × 13 mm Signal Assignments, Power Rails, and I/O (continued)
Package Information and Contact Assignments
4.1.2.3
13 × 13 mm No Connect Assignments
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Table 112 shows the device No Connect assignment list.
Table 112. 13 × 13 mm No Connect Assignments
Ball Status
Ball Assignments
NC
E5
NC
E6
NC
E8
NC
E9
NC
E11
NC
E12
NC
E14
NC
E15
NC
E17
NC
E18
NC
E20
NC
E21
NC
F5
NC
F21
NC
G7
NC
G8
NC
G9
NC
G10
NC
G11
NC
G12
NC
G13
NC
G14
NC
G15
NC
G16
NC
G17
NC
G18
NC
G19
NC
G21
NC
H5
NC
H7
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
153
Preliminary—Subject to Change Without Notice
Package Information and Contact Assignments
Ball Status
Ball Assignments
NC
H17
NC
H19
NC
H21
NC
J5
NC
J7
NC
J17
NC
J19
NC
J21
NC
K7
NC
K17
NC
K19
NC
K21
NC
L7
NC
L17
NC
L19
NC
M7
NC
M17
NC
M19
NC
M21
NC
N7
NC
N17
NC
N19
NC
N21
NC
P5
NC
P7
NC
P17
NC
P19
NC
R7
NC
R17
NC
R19
NC
R21
NC
T7
NC
T17
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
154
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Table 112. 13 × 13 mm No Connect Assignments (continued)
Package Information and Contact Assignments
Ball Status
Ball Assignments
NC
T19
NC
T21
NC
U7
NC
U17
NC
U19
NC
V5
NC
V7
NC
V19
NC
V21
NC
W7
NC
W8
NC
W9
NC
W10
NC
W11
NC
W12
NC
W13
NC
W14
NC
W15
NC
W16
NC
W17
NC
W18
NC
W19
NC
W21
NC
Y21
NC
AA6
NC
AA8
NC
AA9
NC
AA11
NC
AA12
NC
AA14
NC
AA15
NC
AA17
NC
AA18
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Table 112. 13 × 13 mm No Connect Assignments (continued)
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
155
Preliminary—Subject to Change Without Notice
Package Information and Contact Assignments
4.1.3
Ball Status
Ball Assignments
NC
AA20
NC
AA21
13 × 13 mm Ball Map
See Section 4.3, “13 × 13 mm, 0.5 Pitch Ball Map.”
4.2
19 × 19 mm Package Information
This section contains the outline drawing, signal assignment map, ground/power/reference ID (by ball grid
location) for the 19 × 19 mm, 0.8 mm pitch package.
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
156
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Table 112. 13 × 13 mm No Connect Assignments (continued)
4.2.1
Figure 103. 19x 19 mm Package: Case 2017-01—0.8 mm Pitch
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Package Information and Contact Assignments
BGA—Case 2017, 19 × 19 mm, 0.8 mm Pitch
157
Package Information and Contact Assignments
19 × 19 mm Package Drawing Notes
The following notes apply to Figure 103.
1
All dimensions in millimeters.
Dimensioning and tolerancing per ASME Y14.5M-1994.
3
Maximum solder ball diameter measured parallel to Datum A.
4
Datum A, the seating plane, is determined by the spherical crowns of the solder balls.
5
Parallelism measurement shall exclude any effect of mark on top surface of package.
2
4.2.2
19 × 19 mm Signal Assignments, Power Rails, and I/O
Table 113 shows the device connection list and Table 114 displays an alpha-sorted list of the signal
assignments including associated power supplies.
4.2.2.1
19 × 19 mm Ground, Power, Sense, and Reference Contact Assignments
Table 113 shows the device connection list for ground, power, sense, and reference contact signals
alpha-sorted by name.
Table 113. 19 × 19 mm Ground, Power, Sense, and Reference Contact Assignments
Contact Name
Contact Assignment
AHVDDRGB
Y18, AA18
AHVSSRGB
Y19, AA19
GND
A1 , A23, G5, H9, J8, J9, J10, J12, J13, J14, K8, K9, K10, K11, K12, K13, K14, L8, L9, L10, L11,L12,
L13, L14, M9, M10, M11, M12, M13, M14, M15, N8, N9, N10, N11, N12, N13, N14, N15, N16, P8,
P9, P10, P11, P12, P13, P14, P15, R8, R9, R10, R11,R12, R13, R14, R15, R16, T5, T16, AC1,
AC21, AC23
GND_ANA_PLL_A
U7
GND_ANA_PLL_B
U17
GND_DIG_PLL_A
T7
GND_DIG_PLL_B
V18
NGND_OSC
V17
NGND_TV_BACK
T15
NGND_USBPHY
L16
NVCC_EMI
U8, U9, U10, U11, U12, V7
NVCC_EMI_DRAM
H6, J6, K6, L6, M6, N6, P6, R6, T6
NVCC_HS10
M16
NVCC_HS4_1
M18
NVCC_HS4_2
N18
NVCC_HS6
M17
NVCC_I2C
T14
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
158
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
4.2.1.1
Package Information and Contact Assignments
Table 113. 19 × 19 mm Ground, Power, Sense, and Reference Contact Assignments (continued)
Contact Assignment
NVCC_IPU2
T18
NVCC_IPU4
G16
NVCC_IPU5
H17
NVCC_IPU6
J17
NVCC_IPU7
K17
NVCC_IPU8
P18
NVCC_IPU9
R18
NVCC_NANDF_A
E6, F5
NVCC_NANDF_B
G9
NVCC_NANDF_C
G10
NVCC_OSC
W17
NVCC_PER3
U18
NVCC_PER5
G15
NVCC_PER8
H16
NVCC_PER9
H10
NVCC_PER10
H11
NVCC_PER11
G11
NVCC_PER12
G12
NVCC_PER13
G13
NVCC_PER14
U13
NVCC_PER15
H15
NVCC_PER17
G14
NVCC_SRTC_POW
U14
NVCC_TV_BACK
U16
NVCC_USBPHY
L17
RREFEXT
K19
SGND
J11
SVCC
H14
SVDDGP
F13
TVDAC_DHVDD
V16
VBUS
K20
VCC
H13, J15, J16, K15, K16, L7, L15, M7, N7, N17, P7, P17, R17, T8, T9, T10, T11, T12, T17
VDD_ANA_PLL_A
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Contact Name
V6
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
159
Preliminary—Subject to Change Without Notice
Package Information and Contact Assignments
Table 113. 19 × 19 mm Ground, Power, Sense, and Reference Contact Assignments (continued)
Contact Assignment
VDD_ANA_PLL_B
W19
VDD_DIG_PLL_A
U6
VDD_DIG_PLL_B
W18
VDD_FUSE
VDDA
R7
G8, H8, H12, M8, P16, T13
VDDA33
L18
VDDGP
F6, F7, F8, F9, F10, F11, F12, G6, G7, H7, J7, K7
VREFOUT
U15
VREF
R5
VREG
K21
4.2.2.2
19 × 19 mm, Signal Assignments, Power Rails, and I/O
Table 114 displays an alpha-sorted list of the signal assignments including power rails.
Table 114. 19 x 19 mm Signal Assignments, Power Rails, and I/O
Contact Name
Contact
Assignment
Power Rail
I/O Buffer Type
Direction after
Reset1
Configuraton
after Reset1
AUD3_BB_CK
C8
NVCC_PER9
GPIO
Input
Keeper
AUD3_BB_FS
A9
NVCC_PER9
GPIO
Input
Keeper
AUD3_BB_RXD
B9
NVCC_PER9
GPIO
Input
Keeper
AUD3_BB_TXD
E9
NVCC_PER9
GPIO
Input
Keeper
BOOT_MODE0
AB21
NVCC_PER3
LVIO
Input
100 kΩ pull-up
BOOT_MODE1
AB22
NVCC_PER3
LVIO
Input
100 kΩ pull-up
CKIH1
V19
NVCC_PER3
Analog
Input
Analog
CKIH2
AA20
NVCC_PER3
Analog
Input
Analog
CKIL
Y16
NVCC_SRTC_POW
GPIO
Input
Standard CMOS
CLK_SS
AA21
NVCC_PER3
LVIO
Input
100 kΩ pull-up
COMP
Y17
AHVDDRGB
Analog
Input
Analog
CSI1_D10
R22
NVCC_HS10
HSGPIO
Input
Keeper
CSI1_D11
R23
NVCC_HS10
HSGPIO
Input
Keeper
CSI1_D12
P22
NVCC_HS10
HSGPIO
Input
Keeper
CSI1_D13
P23
NVCC_HS10
HSGPIO
Input
Keeper
CSI1_D14
M20
NVCC_HS10
HSGPIO
Input
Keeper
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
160
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Contact Name
Package Information and Contact Assignments
Contact Name
Contact
Assignment
Power Rail
I/O Buffer Type
Direction after
Reset1
Configuraton
after Reset1
CSI1_D15
M21
NVCC_HS10
HSGPIO
Input
Keeper
CSI1_D16
N22
NVCC_HS10
HSGPIO
Input
Keeper
CSI1_D17
N23
NVCC_HS10
HSGPIO
Input
Keeper
CSI1_D18
M22
NVCC_HS10
HSGPIO
Input
Keeper
CSI1_D19
M23
NVCC_HS10
HSGPIO
Input
Keeper
CSI1_D8
E18
NVCC_PER8
GPIO
Input
Keeper
CSI1_D9
A21
NVCC_PER8
GPIO
Input
Keeper
CSI1_HSYNC
A20
NVCC_PER8
GPIO
Input
Keeper
CSI1_MCLK
B20
NVCC_PER8
GPIO
Input
Keeper
CSI1_PIXCLK
F18
NVCC_PER8
GPIO
Input
Keeper
CSI1_VSYNC
G18
NVCC_PER8
GPIO
Input
Keeper
CSI2_D12
B8
NVCC_PER9
GPIO
Input
Keeper
CSI2_D13
C7
NVCC_PER9
GPIO
Input
Keeper
CSI2_D14
L20
NVCC_HS4_1
HSGPIO
Input
Keeper
CSI2_D15
L21
NVCC_HS4_1
HSGPIO
Input
Keeper
CSI2_D16
L22
NVCC_HS4_1
HSGPIO
Input
Keeper
CSI2_D17
L23
NVCC_HS4_1
HSGPIO
Input
Keeper
CSI2_D18
D9
NVCC_PER9
GPIO
Input
Keeper
CSI2_D19
A8
NVCC_PER9
GPIO
Input
Keeper
CSI2_HSYNC
C18
NVCC_PER8
GPIO
Input
Keeper
CSI2_PIXCLK
E19
NVCC_PER8
GPIO
Input
Keeper
CSI2_VSYNC
F19
NVCC_PER8
GPIO
Input
Keeper
CSPI1_MISO
C10
NVCC_PER10
GPIO
Input
100 kΩ pull-up
CSPI1_MOSI
D10
NVCC_PER10
GPIO
Input
100 kΩ pull-up
CSPI1_RDY
C9
NVCC_PER10
GPIO
Input
Keeper
CSPI1_SCLK
A10
NVCC_PER10
GPIO
Input
100 kΩ pull-up
CSPI1_SS0
E10
NVCC_PER10
GPIO
Input
100 kΩ pull-up
CSPI1_SS1
B10
NVCC_PER10
GPIO
Input
100 kΩ pull-up
DI_GP1
H21
NVCC_IPU6
GPIO
Input
Keeper
DI_GP2
J19
NVCC_IPU6
GPIO
Input
Keeper
DI_GP3
H22
NVCC_IPU7
GPIO
Input
100 kΩ pull-up
DI_GP4
J22
NVCC_IPU7
GPIO
Input
100 kΩ pull-up
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
161
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Table 114. 19 x 19 mm Signal Assignments, Power Rails, and I/O (continued)
Package Information and Contact Assignments
Contact Name
Contact
Assignment
Power Rail
I/O Buffer Type
Direction after
Reset1
Configuraton
after Reset1
DI1_D0_CS
U21
NVCC_IPU2
GPIO
Output
Low
DI1_D1_CS
AB23
NVCC_IPU2
GPIO
Output
Low
DI1_DISP_CLK
J18
NVCC_IPU6
GPIO
Output
Low
DI1_PIN11
Y22
NVCC_IPU2
GPIO
Output
Low
DI1_PIN12
AA22
NVCC_IPU2
GPIO
Output
Low
DI1_PIN13
T20
NVCC_IPU2
GPIO
Output
High
DI1_PIN15
H20
NVCC_IPU6
GPIO
Output
High
DI1_PIN2
G23
NVCC_IPU6
GPIO
Output
High
DI1_PIN3
G22
NVCC_IPU6
GPIO
Output
High
DI2_DISP_CLK
J21
NVCC_IPU7
GPIO
Output
High
DI2_PIN2
J20
NVCC_IPU7
GPIO
Output
High
DI2_PIN3
K18
NVCC_IPU7
GPIO
Output
High
DI2_PIN4
H23
NVCC_IPU7
GPIO
Input
Keeper
DISP1_DAT0
N20
NVCC_HS6
HSGPIO
Input
Keeper
DISP1_DAT1
N21
NVCC_HS6
HSGPIO
Input
Keeper
DISP1_DAT102
D22
NVCC_IPU4
GPIO
Input
Keeper
DISP1_DAT112
D23
NVCC_IPU4
GPIO
Input
Keeper
DISP1_DAT122
E21
NVCC_IPU4
GPIO
Input
Keeper
DISP1_DAT132
F20
NVCC_IPU4
GPIO
Input
Keeper
DISP1_DAT142
E22
NVCC_IPU4
GPIO
Input
Keeper
DISP1_DAT152
G19
NVCC_IPU4
GPIO
Input
Keeper
DISP1_DAT162
E23
NVCC_IPU5
GPIO
Input
Keeper
DISP1_DAT172
F21
NVCC_IPU5
GPIO
Input
Keeper
DISP1_DAT182
G20
NVCC_IPU5
GPIO
Input
Keeper
DISP1_DAT192
H18
NVCC_IPU5
GPIO
Input
Keeper
DISP1_DAT2
U22
NVCC_HS6
HSGPIO
Input
Keeper
DISP1_DAT202
F23
NVCC_IPU5
GPIO
Input
Keeper
DISP1_DAT212
H19
NVCC_IPU5
GPIO
Input
Keeper
DISP1_DAT222
F22
NVCC_IPU5
GPIO
Input
Keeper
DISP1_DAT232
G21
NVCC_IPU5
GPIO
Input
Keeper
DISP1_DAT3
U23
NVCC_HS6
HSGPIO
Input
Keeper
DISP1_DAT4
T22
NVCC_HS6
HSGPIO
Input
Keeper
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
162
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Table 114. 19 x 19 mm Signal Assignments, Power Rails, and I/O (continued)
Package Information and Contact Assignments
Contact Name
Contact
Assignment
Power Rail
I/O Buffer Type
Direction after
Reset1
Configuraton
after Reset1
DISP1_DAT5
T23
NVCC_HS6
HSGPIO
Input
Keeper
DISP1_DAT62
C22
NVCC_IPU4
GPIO
Input
Keeper
DISP1_DAT72
C23
NVCC_IPU4
GPIO
Input
Keeper
DISP1_DAT82
D21
NVCC_IPU4
GPIO
Input
Keeper
DISP1_DAT92
E20
NVCC_IPU4
GPIO
Input
Keeper
DISP2_DAT0
R21
NVCC_IPU8
GPIO
Input
Keeper
DISP2_DAT1
M19
NVCC_IPU8
GPIO
Input
Keeper
DISP2_DAT10
W22
NVCC_IPU9
GPIO
Input
Keeper
DISP2_DAT11
R19
NVCC_IPU9
GPIO
Input
Keeper
DISP2_DAT12
Y23
NVCC_IPU9
GPIO
Input
Keeper
DISP2_DAT13
T19
NVCC_IPU9
GPIO
Input
Keeper
DISP2_DAT14
AA23
NVCC_IPU9
GPIO
Input
Keeper
DISP2_DAT15
T21
NVCC_IPU9
GPIO
Input
Keeper
DISP2_DAT2
P20
NVCC_HS4_2
HSGPIO
Input
Keeper
DISP2_DAT3
P21
NVCC_HS4_2
HSGPIO
Input
Keeper
DISP2_DAT4
V22
NVCC_HS4_2
HSGPIO
Input
Keeper
DISP2_DAT5
V23
NVCC_HS4_2
HSGPIO
Input
Keeper
DISP2_DAT6
N19
NVCC_IPU8
GPIO
Input
Keeper
DISP2_DAT7
W23
NVCC_IPU8
GPIO
Input
Keeper
DISP2_DAT8
P19
NVCC_IPU9
GPIO
Input
Keeper
DISP2_DAT9
R20
NVCC_IPU9
GPIO
Input
Keeper
DISPB2_SER_CLK
AC22
NVCC_IPU2
GPIO
Output
High
DISPB2_SER_DIN
U19
NVCC_IPU2
GPIO
Input
100 kΩ pull-up
DISPB2_SER_DIO
V21
NVCC_IPU2
GPIO
Input
100 kΩ pull-up
DISPB2_SER_RS
W21
NVCC_IPU2
GPIO
Output
High
DN
K22
VDDA33
Analog
Output
–
DP
K23
VDDA33
Analog
Output
–
DRAM_A0
AB1
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_A1
AA2
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_A10
V2
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_A11
U4
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_A12
U2
NVCC_EMI_DRAM
DDR2
Output
High
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
163
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Table 114. 19 x 19 mm Signal Assignments, Power Rails, and I/O (continued)
Package Information and Contact Assignments
Contact Name
Contact
Assignment
Power Rail
I/O Buffer Type
Direction after
Reset1
Configuraton
after Reset1
DRAM_A13
U1
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_A14
T2
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_A2
AA3
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_A3
V5
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_A4
W4
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_A5
Y2
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_A6
W3
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_A7
Y1
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_A8
W2
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_A9
V3
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_CAS
V4
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_CS0
Y4
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_CS1
Y3
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_D0
T1
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_D1
R3
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_D10
M3
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_D11
M4
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_D12
M1
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_D13
M5
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_D14
L5
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_D15
L4
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_D16
L3
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_D17
L2
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_D18
L1
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_D19
K1
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_D2
R2
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_D20
K3
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_D21
K4
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_D22
J3
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_D23
J4
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_D24
K5
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_D25
H1
NVCC_EMI_DRAM
DDR2
Output
High
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
164
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Table 114. 19 x 19 mm Signal Assignments, Power Rails, and I/O (continued)
Package Information and Contact Assignments
Contact Name
Contact
Assignment
Power Rail
I/O Buffer Type
Direction after
Reset1
Configuraton
after Reset1
DRAM_D26
H2
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_D27
J5
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_D28
G1
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_D29
G2
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_D3
R1
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_D30
G3
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_D31
G4
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_D4
R4
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_D5
P5
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_D6
P4
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_D7
N5
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_D8
N2
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_D9
N1
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_DQM0
P3
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_DQM1
M2
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_DQM2
K2
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_DQM3
H5
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_RAS
W1
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_SDCKE0
AA1
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_SDCKE1
W5
NVCC_EMI_DRAM
DDR2
Output
High
DRAM_SDCLK
T3
NVCC_EMI_DRAM
DDR2CLK
Output
High
DRAM_SDCLK_B
T4
NVCC_EMI_DRAM
DDR2CLK
Output
High
DRAM_SDQS0
P2
NVCC_EMI_DRAM
DDR2CLK
Output
High
DRAM_SDQS0_B
P1
NVCC_EMI_DRAM
DDR2CLK
Output
High
DRAM_SDQS1
N4
NVCC_EMI_DRAM
DDR2CLK
Output
High
DRAM_SDQS1_B
N3
NVCC_EMI_DRAM
DDR2CLK
Output
High
DRAM_SDQS2
J1
NVCC_EMI_DRAM
DDR2CLK
Output
High
DRAM_SDQS2_B
J2
NVCC_EMI_DRAM
DDR2CLK
Output
High
DRAM_SDQS3
H3
NVCC_EMI_DRAM
DDR2CLK
Output
High
DRAM_SDQS3_B
H4
NVCC_EMI_DRAM
DDR2CLK
Output
High
DRAM_SDWE
U5
NVCC_EMI_DRAM
DDR2
Output
High
EIM_A162
AA9
NVCC_EMI
GPIO
Input
100 kΩ pull-up
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
165
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Table 114. 19 x 19 mm Signal Assignments, Power Rails, and I/O (continued)
Package Information and Contact Assignments
Contact Name
Contact
Assignment
Power Rail
I/O Buffer Type
Direction after
Reset1
Configuraton
after Reset1
EIM_A172
AB9
NVCC_EMI
GPIO
Input
100 kΩ pull-up
EIM_A182
AC8
NVCC_EMI
GPIO
Input
100 kΩ pull-up
EIM_A192
AA8
NVCC_EMI
GPIO
Input
100 kΩ pull-up
EIM_A202
AB8
NVCC_EMI
GPIO
Input
100 kΩ pull-up
EIM_A212
AC7
NVCC_EMI
GPIO
Input
100 kΩ pull-up
EIM_A22
AB7
NVCC_EMI
GPIO
Output
High
EIM_A232
AC6
NVCC_EMI
GPIO
Input
100 kΩ pull-up
EIM_A24
AC5
NVCC_EMI
GPIO
Input
100 kΩ pull-up
EIM_A25
AB6
NVCC_EMI
GPIO
Input
100 kΩ pull-up
EIM_A26
AC4
NVCC_EMI
GPIO
Input
100 kΩ pull-up
EIM_A27
AB5
NVCC_EMI
GPIO
Input
Keeper
EIM_BCLK
AA4
NVCC_EMI
GPIO
Input
Keeper
EIM_CRE
AB2
NVCC_EMI
GPIO
Output
High
EIM_CS0
W6
NVCC_EMI
GPIO
Output
High
EIM_CS1
Y6
NVCC_EMI
GPIO
Output
High
EIM_CS2
Y7
NVCC_EMI
GPIO
Input
Keeper
EIM_CS3
AC3
NVCC_EMI
GPIO
Input
Keeper
EIM_CS4
AA6
NVCC_EMI
GPIO
Input
Keeper
EIM_CS5
AA5
NVCC_EMI
GPIO
Input
Keeper
EIM_D16
AC12
NVCC_EMI
GPIO
Input
Keeper
EIM_D17
W10
NVCC_EMI
GPIO
Input
Keeper
EIM_D18
AA11
NVCC_EMI
GPIO
Input
Keeper
EIM_D19
Y10
NVCC_EMI
GPIO
Input
Keeper
EIM_D20
AB11
NVCC_EMI
GPIO
Input
Keeper
EIM_D21
W9
NVCC_EMI
GPIO
Input
Keeper
EIM_D22
AC11
NVCC_EMI
GPIO
Input
Keeper
EIM_D23
V8
NVCC_EMI
GPIO
Input
Keeper
EIM_D24
AA10
NVCC_EMI
GPIO
Input
Keeper
EIM_D25
Y9
NVCC_EMI
GPIO
Input
Keeper
EIM_D26
AB10
NVCC_EMI
GPIO
Input
Keeper
EIM_D27
W8
NVCC_EMI
GPIO
Input
Keeper
EIM_D28
AC10
NVCC_EMI
GPIO
Input
Keeper
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
166
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Table 114. 19 x 19 mm Signal Assignments, Power Rails, and I/O (continued)
Package Information and Contact Assignments
Contact Name
Contact
Assignment
Power Rail
I/O Buffer Type
Direction after
Reset1
Configuraton
after Reset1
EIM_D29
Y8
NVCC_EMI
GPIO
Input
Keeper
EIM_D30
AC9
NVCC_EMI
GPIO
Input
Keeper
EIM_D31
W7
NVCC_EMI
GPIO
Input
Keeper
EIM_DA0
AC15
NVCC_EMI
GPIO
Input
Keeper
EIM_DA1
V13
NVCC_EMI
GPIO
Input
Keeper
EIM_DA10
AC13
NVCC_EMI
GPIO
Input
Keeper
EIM_DA11
V11
NVCC_EMI
GPIO
Input
Keeper
EIM_DA12
AA12
NVCC_EMI
GPIO
Input
Keeper
EIM_DA13
W11
NVCC_EMI
GPIO
Input
Keeper
EIM_DA14
AB12
NVCC_EMI
GPIO
Input
Keeper
EIM_DA15
Y11
NVCC_EMI
GPIO
Input
Keeper
EIM_DA2
AA14
NVCC_EMI
GPIO
Input
Keeper
EIM_DA3
AB14
NVCC_EMI
GPIO
Input
Keeper
EIM_DA4
AC14
NVCC_EMI
GPIO
Input
Keeper
EIM_DA5
Y13
NVCC_EMI
GPIO
Input
Keeper
EIM_DA6
AA13
NVCC_EMI
GPIO
Input
Keeper
EIM_DA7
W13
NVCC_EMI
GPIO
Input
Keeper
EIM_DA8
AB13
NVCC_EMI
GPIO
Input
Keeper
EIM_DA9
Y12
NVCC_EMI
GPIO
Input
Keeper
EIM_DTACK
Y5
NVCC_EMI
GPIO
Input
100 kΩ pull-up
EIM_EB0
V12
NVCC_EMI
GPIO
Output
High
EIM_EB1
W12
NVCC_EMI
GPIO
Output
High
EIM_EB2
V10
NVCC_EMI
GPIO
Input
Keeper
EIM_EB3
V9
NVCC_EMI
GPIO
Input
Keeper
EIM_LBA
AC2
NVCC_EMI
GPIO
Output
High
EIM_OE
AA7
NVCC_EMI
GPIO
Output
High
EIM_RW
AB3
NVCC_EMI
GPIO
Output
High
EIM_SDBA0
V1
NVCC_EMI_DRAM
DDR2
Output
High
EIM_SDBA1
U3
NVCC_EMI_DRAM
DDR2
Output
High
EIM_SDBA2
F1
NVCC_EMI_DRAM
DDR2
Output
High
EIM_SDODT0
F3
NVCC_EMI_DRAM
DDR2
Output
High
EIM_SDODT1
F2
NVCC_EMI_DRAM
DDR2
Output
High
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
167
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Table 114. 19 x 19 mm Signal Assignments, Power Rails, and I/O (continued)
Package Information and Contact Assignments
Contact Name
Contact
Assignment
Power Rail
I/O Buffer Type
Direction after
Reset1
Configuraton
after Reset1
EIM_WAIT
AB4
NVCC_EMI
GPIO
Input
100 kΩ pull-up
EXTAL
AB20
NVCC_OSC
Analog
Input
–
FASTR_ANA
W20
NVCC_PER3
–
Input
–
FASTR_DIG
Y20
NVCC_PER3
–
Input
–
GPANAIO
J23
NVCC_USBPHY
Analog
Output
–
GPIO_NAND
D5
NVCC_NANDF_A
UHVIO
Input
100 kΩ pull-up
GPIO1_0
B21
NVCC_PER5
GPIO
Input
Keeper
GPIO1_1
D20
NVCC_PER5
GPIO
Input
Keeper
GPIO1_2
A22
NVCC_PER5
GPIO
Input
Keeper
GPIO1_3
D18
NVCC_PER5
GPIO
Input
Keeper
GPIO1_4
B22
NVCC_PER5
GPIO
Input
Keeper
GPIO1_5
D19
NVCC_PER5
GPIO
Input
Keeper
GPIO1_6
C19
NVCC_PER5
GPIO
Input
Keeper
GPIO1_7
B23
NVCC_PER5
GPIO
Input
Keeper
GPIO1_8
C21
NVCC_PER5
GPIO
Input
Keeper
GPIO1_9
C20
NVCC_PER5
GPIO
Input
Keeper
I2C1_CLK
W15
NVCC_I2C
I2CIO
Input
47 kΩ pull-up
I2C1_DAT
AB16
NVCC_I2C
I2CIO
Input
47 kΩ pull-up
ID
L19
NVCC_USBPHY
Analog
Input
Pull-up
IOB
AC19
AHVDDRGB
Analog
Output
—
IOB_BACK
AB19
—
Analog
Output
—
IOG
AC18
AHVDDRGB
Analog
Output
—
IOG_BACK
AB18
—
Analog
Output
—
IOR
AC17
AHVDDRGB
Analog
Output
—
IOR_BACK
AB17
—
Analog
Output
—
JTAG_DE_B
AB15
NVCC_PER14
GPIO
Input/Open-drain
output
47 kΩ pull-up
JTAG_MOD
V14
NVCC_PER14
GPIO
Input
100 kΩ pull-down
JTAG_TCK
V15
NVCC_PER14
GPIO
Input
100 kΩ pull-down
JTAG_TDI
Y14
NVCC_PER14
GPIO
Input
47 kΩ pull-up
JTAG_TDO
AA15
NVCC_PER14
GPIO
3-state output
Keeper
JTAG_TMS
AC16
NVCC_PER14
GPIO
Input
47 kΩ pull-up
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
168
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Table 114. 19 x 19 mm Signal Assignments, Power Rails, and I/O (continued)
Package Information and Contact Assignments
Contact Name
Contact
Assignment
Power Rail
I/O Buffer Type
Direction after
Reset1
Configuraton
after Reset1
JTAG_TRSTB
W14
NVCC_PER14
GPIO
Input
47 kΩ pull-up
KEY_COL0
E15
NVCC_PER13
GPIO
Input
100 kΩ pull-up
KEY_COL1
A16
NVCC_PER13
GPIO
Input
100 kΩ pull-up
KEY_COL2
D15
NVCC_PER13
GPIO
Input
100 kΩ pull-up
KEY_COL33
B17
NVCC_PER13
GPIO
Output
High
KEY_COL43
F16
NVCC_PER13
GPIO
Output
Low
KEY_COL53
C16
NVCC_PER13
GPIO
Output
Low
KEY_ROW0
D14
NVCC_PER13
GPIO
Input
100 kΩ pull-up
KEY_ROW1
B16
NVCC_PER13
GPIO
Input
100 kΩ pull-up
KEY_ROW2
F15
NVCC_PER13
GPIO
Input
100 kΩ pull-up
KEY_ROW3
C15
NVCC_PER13
GPIO
Input
100 kΩ pull-up
NANDF_ALE
E3
NVCC_NANDF_A
UHVIO
Output
High
NANDF_CLE
F4
NVCC_NANDF_A
UHVIO
Output
High
NANDF_CS0
C3
NVCC_NANDF_A
UHVIO
Output
High
NANDF_CS1
C2
NVCC_NANDF_A
UHVIO
Output
High
NANDF_CS2
E4
NVCC_NANDF_A
UHVIO
Output
High
NANDF_CS3
B1
NVCC_NANDF_A
UHVIO
Output
High
NANDF_CS4
B2
NVCC_NANDF_A
UHVIO
Output
Low
NANDF_CS5
A2
NVCC_NANDF_A
UHVIO
Output
Low
NANDF_CS6
E5
NVCC_NANDF_B
UHVIO
Output
Low
NANDF_CS7
C4
NVCC_NANDF_B
UHVIO
Output
Low
NANDF_D0
A7
NVCC_NANDF_C
UHVIO
Input
Keeper
NANDF_D1
E8
NVCC_NANDF_C
UHVIO
Input
Keeper
NANDF_D10
B5
NVCC_NANDF_B
UHVIO
Input
Keeper
NANDF_D11
D7
NVCC_NANDF_B
UHVIO
Input
Keeper
NANDF_D12
C5
NVCC_NANDF_B
UHVIO
Input
Keeper
NANDF_D13
A3
NVCC_NANDF_B
UHVIO
Input
Keeper
NANDF_D14
B4
NVCC_NANDF_B
UHVIO
Input
Keeper
NANDF_D15
D6
NVCC_NANDF_B
UHVIO
Input
Keeper
NANDF_D2
A6
NVCC_NANDF_C
UHVIO
Input
Keeper
NANDF_D3
D8
NVCC_NANDF_C
UHVIO
Input
Keeper
NANDF_D4
B7
NVCC_NANDF_C
UHVIO
Input
Keeper
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
169
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Table 114. 19 x 19 mm Signal Assignments, Power Rails, and I/O (continued)
Package Information and Contact Assignments
Contact Name
Contact
Assignment
Power Rail
I/O Buffer Type
Direction after
Reset1
Configuraton
after Reset1
NANDF_D5
A5
NVCC_NANDF_C
UHVIO
Input
Keeper
NANDF_D6
B6
NVCC_NANDF_C
UHVIO
Input
Keeper
NANDF_D7
C6
NVCC_NANDF_B
UHVIO
Input
Keeper
NANDF_D8
A4
NVCC_NANDF_B
UHVIO
Input
Keeper
NANDF_D9
E7
NVCC_NANDF_B
UHVIO
Input
Keeper
NANDF_RB0
D2
NVCC_NANDF_A
UHVIO
Input
100 kΩ pull-up
NANDF_RB1
D4
NVCC_NANDF_A
UHVIO
Input
100 kΩ pull-up
NANDF_RB2
D3
NVCC_NANDF_A
UHVIO
Input
100 kΩ pull-up
NANDF_RB3
C1
NVCC_NANDF_A
UHVIO
Input
100 kΩ pull-up
NANDF_RDY_INT
B3
NVCC_NANDF_B
UHVIO
Input
100 kΩ pull-up
NANDF_RE_B
E2
NVCC_NANDF_A
UHVIO
Output
—
NANDF_WE_B
E1
NVCC_NANDF_A
UHVIO
Output
—
NANDF_WP_B
D1
NVCC_NANDF_A
UHVIO
Output
—
OWIRE_LINE
E14
NVCC_PER12
GPIO
Input
100 kΩ pull-up
PMIC_INT_REQ
AA16
NVCC_SRTC_POW
GPIO
Input
100 kΩ pull-up
PMIC_ON_REQ
W16
NVCC_SRTC_POW
GPIO
Input
100 kΩ pull-up
PMIC_RDY
AA17
NVCC_SRTC_POW
GPIO
Input
100 kΩ pull-up
PMIC_STBY_REQ
Y15
NVCC_SRTC_POW
GPIO
Input
100 kΩ pull-up
POR_B
U20
NVCC_PER3
LVIO
Input
100 kΩ pull-up
RESET_IN_B
Y21
NVCC_PER3
LVIO
Input
100 kΩ pull-up
SD1_CLK
A17
NVCC_PER15
UHVIO
Output
—
SD1_CMD
E16
NVCC_PER15
UHVIO
Input
47 kΩ pull-up
SD1_DATA0
D16
NVCC_PER15
UHVIO
Input
47 kΩ pull-up
SD1_DATA1
A18
NVCC_PER15
UHVIO
Input
47 kΩ pull-up
SD1_DATA2
F17
NVCC_PER15
UHVIO
Input
47 kΩ pull-up
SD1_DATA3
A19
NVCC_PER15
UHVIO
Input
360 kΩ pull-down
SD2_CLK
B18
NVCC_PER17
UHVIO
Output
—
SD2_CMD
G17
NVCC_PER17
UHVIO
Input
47 kΩ pull-up
SD2_DATA0
E17
NVCC_PER17
UHVIO
Input
47 kΩ pull-up
SD2_DATA1
B19
NVCC_PER17
UHVIO
Input
47 kΩ pull-up
SD2_DATA2
D17
NVCC_PER17
UHVIO
Input
47 kΩ pull-up
SD2_DATA3
C17
NVCC_PER17
UHVIO
Input
360 kΩ pull-down
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
170
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Table 114. 19 x 19 mm Signal Assignments, Power Rails, and I/O (continued)
Package Information and Contact Assignments
Direction after
Reset1
Configuraton
after Reset1
—
—
GPIO
Input
100 kΩ pull-down
NVVCC_PER12
GPIO
Input
100 kΩ pull-up
D13
NVVCC_PER12
GPIO
Input
100 kΩ pull-up
UART1_RXD
E13
NVVCC_PER12
GPIO
Input
100 kΩ pull-up
UART1_TXD
A13
NVVCC_PER12
GPIO
Input
100 kΩ pull-up
UART2_RXD
A14
NVVCC_PER12
GPIO
Input
100 kΩ pull-up
UART2_TXD
C14
NVVCC_PER12
GPIO
Input
100 kΩ pull-up
UART3_RXD
F14
NVVCC_PER12
GPIO
Input
Keeper
UART3_TXD
B15
NVVCC_PER12
GPIO
Input
Keeper
USBH1_CLK
D11
NVCC_PER11
GPIO
Input
Keeper
USBH1_DATA0
E12
NVCC_PER11
GPIO
Input
Keeper
USBH1_DATA1
A11
NVCC_PER11
GPIO
Input
Keeper
USBH1_DATA2
B12
NVCC_PER11
GPIO
Input
Keeper
USBH1_DATA3
C12
NVCC_PER11
GPIO
Input
Keeper
USBH1_DATA4
D12
NVCC_PER11
GPIO
Input
Keeper
USBH1_DATA5
A12
NVCC_PER11
GPIO
Input
Keeper
USBH1_DATA6
B13
NVCC_PER11
GPIO
Input
Keeper
USBH1_DATA7
C13
NVCC_PER11
GPIO
Input
Keeper
USBH1_DIR
B11
NVCC_PER11
GPIO
Input
Keeper
USBH1_NXT
C11
NVCC_PER11
GPIO
Input
Keeper
USBH1_STP
E11
NVCC_PER11
GPIO
Input
Keeper
XTAL
AC20
NVCC_OSC
Analog
Output
—
Contact Name
Contact
Assignment
Power Rail
STR
A15
NVCC_PER12
TEST_MODE
V20
NVCC_PER3
UART1_CTS
B14
UART1_RTS
I/O Buffer Type
1
The state immediately after reset and before ROM firmware or software has executed.
During power-on reset this port acts as input for fuse override signal. See Table 115 for details
3 During power-on reset this port acts as output for diagnostic signal. See Table 115 for details
2
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
171
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Table 114. 19 x 19 mm Signal Assignments, Power Rails, and I/O (continued)
Package Information and Contact Assignments
Fuse Override Considerations
Table 115 lists the contacts that can be overridden with fuse settings.
Table 115. Fuse Override Contacts
Contact name
Direction
After Reset
Configuration
After Reset
DISP1_DAT10
Input
Keeper
BT_SPARE_SIZE
4.7 kΩ pull-up or pull-down
DISP1_DAT11
Input
Keeper
BT_LPB_FREQ[2]
4.7 kΩ pull-up or pull-down
DISP1_DAT12
Input
Keeper
BT_MLC_SEL
4.7 kΩ pull-up or pull-down
DISP1_DAT13
Input
Keeper
BT_MEM_CTL[0]
4.7 kΩ pull-up or pull-down
DISP1_DAT14
Input
Keeper
BT_MEM_CTL[1]
4.7 kΩ pull-up or pull-down
DISP1_DAT15
Input
Keeper
BT_BUS_WIDTH
4.7 kΩ pull-up or pull-down
DISP1_DAT16
Input
Keeper
BT_PAGE_SIZE[0]
4.7 kΩ pull-up or pull-down
DISP1_DAT17
Input
Keeper
BT_PAGE_SIZE[1]
4.7 kΩ pull-up or pull-down
DISP1_DAT18
Input
Keeper
BT_WEIM_MUXED[0]
4.7 kΩ pull-up or pull-down
DISP1_DAT19
Input
Keeper
BT_WEIM_MUXED[1]
4.7 kΩ pull-up or pull-down
DISP1_DAT20
Input
Keeper
BT_MEM_TYPE[0]
4.7 kΩ pull-up or pull-down
DISP1_DAT21
Input
Keeper
BT_MEM_TYPE[1]
4.7 kΩ pull-up or pull-down
DISP1_DAT22
Input
Keeper
BT_LPB_FREQ[0]
4.7 kΩ pull-up or pull-down
DISP1_DAT23
Input
Keeper
BT_LPB_FREQ[1]
4.7 kΩ pull-up or pull-down
DISP1_DAT6
Input
Keeper
BT_USB_SRC
4.7 kΩ pull-up or pull-down
DISP1_DAT7
Input
Keeper
BT_EEPROM_CFG
4.7 kΩ pull-up or pull-down
DISP1_DAT8
Input
Keeper
BT_SRC[0]
4.7 kΩ pull-up or pull-down
DISP1_DAT9
Input
Keeper
BT_SRC[1]
4.7 kΩ pull-up or pull-down
EIM_A16
Input
100 kΩ pull-up
OSC_FREQ_SEL[0]
4.7 kΩ pull-down or none for high level2
EIM_A17
Input
100 kΩ pull-up
OSC_FREQ_SEL[1]
4.7 kΩ pull-down or none for high level2
EIM_A18
Input
100 kΩ pull-up
BT_LPB[0]
4.7 kΩ pull-down or none for high level2
EIM_A19
Input
100 kΩ pull-up
BT_LPB[1]
4.7 kΩ pull-down or none for high level2
EIM_A20
Input
100 kΩ pull-up
BT_UART_SRC[0]
4.7 kΩ pull-down or none for high level2
EIM_A21
Input
100 kΩ pull-up
BT_UART_SRC[1]
4.7 kΩ pull-down or none for high level2
EIM_A23
Input
100 kΩ pull-up
No longer used; formerly
BT_HPN_EN.
none
KEY_COL3
Output
High
Signal Configuration1
External Termination for Fuse Override
Output for diagnostic signal
INT_BOOT during power-on
reset
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
172
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
4.2.2.3
Package Information and Contact Assignments
Contact name
Direction
After Reset
Configuration
After Reset
Signal Configuration1
KEY_COL4
Output
Low
Output for diagnostic signal
ANY_PU_RST during
power-on reset
KEY_COL5
Output
Low
Output for diagnostic signal
JTAG_ACT during power-on
reset
External Termination for Fuse Override
1
Signal Configuration as Fuse Override Input at Power Up. These are special I/O lines that control the boot up configuration
during product development. In production, the boot configuration is controlled by fuses.
2
Consider using an external 68 kΩ pull-up if system constraints indicate that the on-chip 100 kΩ pull-up is too weak.
4.2.3
19 x 19 Ball Map
See Section 4.4, “19 x 19 mm, 0.8 Pitch Ball Map.”
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
173
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Table 115. Fuse Override Contacts (continued)
F
DISP1_DAT11
DISP1_DAT21
25
24
GND
GPIO1_6
GPIO1_8
DISP1_DAT7
DISP1_DAT10
DISP1_DAT17
24
23
GPIO1_7
GPIO1_2
DISP1_DAT8
DISP1_DAT9
DISP1_DAT13
DISP1_DAT16
23
22
GPIO1_3
GPIO1_4
GPIO1_5
DISP1_DAT14
DISP1_DAT12
DISP1_DAT15
22
21
SD2_DATA2
SD2_DATA1
GPIO1_1
CSI2_PIXCLK
—
—
21
20
CSI1_D8
CSI1_D9
CSI2_VSYNC
NVCC_PER5
—
DI_GP1
20
19
SD2_CLK
CSI1_VSYNC
CSI1_HSYNC
CSI1_PIXCLK
GND
CSI1_MCLK
19
18
SD1_CLK
SD1_DATA0
SD1_DATA3
SD1_DATA2
—
SD2_DATA0
18
17
KEY_COL5
KEY_COL4
SD1_CMD
SD1_DATA1
—
SD2_DATA3
17
16
KEY_COL3
KEY_COL0
KEY_COL1
KEY_COL2
GND
SD2_CMD
16
15
OWIRE_LINE
KEY_ROW0
KEY_ROW1
KEY_ROW3
—
KEY_ROW2
15
14
UART3_TXD
UART3_RXD
UART2_TXD
STR
—
USBH1_DATA5
14
13
UART2_RXD
UART1_CTS
UART1_RTS
UART1_RXD
GND
CSPI1_SS1
13
12
UART1_TXD
USBH1_DATA7 USBH1_DATA6
USBH1_NXT
—
CSPI1_MISO
12
11
USBH1_STP
USBH1_DATA0
USBH1_CLK
CSPI1_SCLK
—
CSI2_D12
11
10
USBH1_DATA1
USBH1_DIR
USBH1_DATA3
CSPI1_SS0
VDDGP
NANDF_D13
10
9
USBH1_DATA2 USBH1_DATA4
AUD3_BB_CK
CSPI1_MOSI
—
NANDF_D1
9
CSPI1_RDY
AUD3_BB_RXD
AUD3_BB_FS
CSI2_D13
—
NANDF_D5
8
7
CSI2_D18
AUD3_BB_TXD
CSI2_D19
NANDF_D0
GND
NANDF_CS7
7
6
NANDF_D6
NANDF_D4
NANDF_D2
NANDF_RDY_INT
—
NANDF_RE_B
6
5
NANDF_D7
NANDF_D3
NANDF_D10
NANDF_CS2
—
—
5
4
NANDF_D8
NANDF_D11
NANDF_CS5
NANDF_CS0
NANDF_D14
DRAM_D19
4
3
NANDF_D12
NANDF_CS4
GPIO_NAND
NANDF_RB2
NANDF_WP_B
DRAM_D17
3
2
NANDF_CS6
NANDF_CS3
NANDF_RB3
NANDF_RB0
NANDF_CLE
DRAM_D16
2
1
GND
GND
NANDF_RB1
NANDF_CS1
NANDF_ALE
DRAM_D31
1
F
8
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
174
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
E
DISP1_DAT6
E
D
GPIO1_9
D
C
GND
C
B
GND
B
A
25
A
Table 116. 13 × 13 mm, 0.5 mm Pitch Ball Map
Table 116 shows the 13 x 13 mm, 0.5 pitch ball map.
4.3
13 × 13 mm, 0.5 Pitch Ball Map
Package Information and Contact Assignments
H
J
K
L
M
DISP1_DAT20
DISP1_DAT23
DI2_PIN3
DN
ID
CSI2_D14
25
24
DISP1_DAT22
DI2_PIN2
DI2_DISP_CLK
DP
VREG
CSI2_D15
24
23
DISP1_DAT18
DI_GP3
DI2_PIN4
DI_GP4
NGND_USBPHY
CSI2_D16
23
22
DISP1_DAT19
NVCC_IPU7
DI1_DISP_CLK
GPANAIO
VBUS
CSI2_D17
22
21
—
—
—
—
GND
—
21
20
DI1_PIN15
DI1_PIN3
CSI2_HSYNC
DI_GP2
NVCC_HS4_1
NVCC_HS10
20
19
—
—
—
—
—
—
19
18
—
GPIO1_0
DI1_PIN2
RREFEXT
DISP2_DAT8
DISP2_DAT12
18
17
—
—
—
—
—
—
17
16
—
NVCC_PER15
NVCC_PER17
NVCC_IPU5
NVCC_IPU9
NVCC_IPU6
16
15
—
NVCC_PER12
NVCC_PER8
GND
GND
GND
15
14
—
NVCC_PER13
GND
GND
GND
GND
14
13
—
VDDA
GND
GND
GND
GND
13
12
—
NVCC_PER10
VDDGP
VDDGP
VDDGP
GND
12
11
—
NVCC_PER11
VDDGP
VDDGP
VDDGP
SVDDGP
11
10
—
NVCC_PER9
VDDGP
VDDGP
VDDGP
VDDGP
10
9
—
NVCC_NANDF_C
VDDGP
VDDGP
VDDGP
VDDGP
9
8
—
NVCC_NANDF_B NVCC_NANDF_A
VDDGP
VDDGP
VDDGP
8
7
—
—
—
—
—
—
7
6
NANDF_WE_B
NANDF_D9
NANDF_D15
EIM_SDBA2
VDDGP
VDDGP
6
5
GND
—
—
GND
4
DRAM_D21
DRAM_D23
DRAM_D24
DRAM_SDQS2_B
EIM_SDBA1
DRAM_DQM2
4
3
DRAM_D18
DRAM_D20
DRAM_D22
DRAM_SDQS2
EIM_SDODT1
DRAM_SDWE
3
2
DRAM_D30
DRAM_D28
DRAM_D26
DRAM_SDQS3
EIM_SDODT0
DRAM_SDCLK_B
2
1
DRAM_D29
DRAM_D27
DRAM_D25
DRAM_SDQS3_B
DRAM_SDCKE1
DRAM_SDCLK
1
H
J
K
L
M
NVCC_EMI_DRAM NVCC_EMI_DRAM
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
G
25
G
Table 116. 13 × 13 mm, 0.5 mm Pitch Ball Map (continued)
Package Information and Contact Assignments
5
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
175
Preliminary—Subject to Change Without Notice
R
T
U
V
CSI1_D15
CSI1_D11
DISP1_DAT3
DISP2_DAT5
DISP2_DAT7
25
24
CSI1_D16
CSI1_D14
CSI1_D10
DISP1_DAT2
DISP2_DAT4
DISP2_DAT11
24
23
CSI1_D18
CSI1_D13
DISP1_DAT4
DISP1_DAT0
DISP2_DAT3
DISP2_DAT15
23
22
CSI1_D19
CSI1_D12
DISP1_DAT5
DISP1_DAT1
DISP2_DAT2
NVCC_IPU8
22
21
—
GND
—
—
GND
—
21
20
NVCC_HS6
NVCC_HS4_2
DISP2_DAT6
DISP2_DAT0
DISP2_DAT14
NVCC_IPU2
20
19
—
—
—
—
—
—
19
18
VDDA
DISP2_DAT1
DISP2_DAT10
DI1_D1_CS
DISP2_DAT13
DI1_PIN11
18
17
—
—
—
—
—
DISP2_DAT9
17
16
NVCC_IPU4
NVCC_USBPHY
VDDA33
VCC
VCC
AHVDDRGB
16
15
VCC
VCC
VCC
VCC
VCC
AHVDDRGB
15
14
VCC
VCC
VCC
VCC
VCC
AHVSSRGB
14
13
SVCC
VCC
VCC
GND
GND
AHVSSRGB
13
12
VCC
VCC
GND
GND
GND
NVCC_SRTC_POW
12
11
GND
GND
GND
GND
GND
NVCC_I2C
11
10
GND
SGND
GND
GND
GND
NVCC_PER3
10
9
GND
GND
GND
GND
GND
NVCC_PER14
9
8
GND
GND
GND
GND
NVCC_EMI
NVCC_EMI
8
7
—
—
—
—
—
—
7
6
GND
VDD_FUSE
VDDA
VDDA
VREF
EIM_CRE
6
5
GND
—
GND
—
5
4
DRAM_CAS
EIM_SDBA0
DRAM_A13
DRAM_A10
DRAM_A2
DRAM_A0
4
3
DRAM_RAS
DRAM_CS0
DRAM_CS1
DRAM_A8
DRAM_A3
DRAM_A1
3
2
DRAM_DQM3
DRAM_A12
DRAM_A14
DRAM_A7
DRAM_A5
DRAM_DQM1
2
1
DRAM_SDCKE0
DRAM_A9
DRAM_A11
DRAM_A6
DRAM_A4
DRAM_DQM0
1
P
R
T
U
NVCC_EMI_DRAM NVCC_EMI_DRAM
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
176
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
P
CSI1_D17
V
N
25
N
Table 116. 13 × 13 mm, 0.5 mm Pitch Ball Map (continued)
Package Information and Contact Assignments
Y
AA
AB
AC
25
DI1_PIN12
DISPB2_SER_CLK
RESET_IN_B
TEST_MODE
GND_ANA_PLL_B
25
24
DI1_PIN13
POR_B
BOOT_MODE1
CKIH1
VDD_ANA_PLL_B
24
CKIH2
VDD_DIG_PLL_B
NGND_OSC
23
22
BOOT_MODE0
CLK_SS
CKIL
NGND_TV_BACK
NVCC_TV_BACK
22
21
—
—
—
TVDAC_DHVDD
FASTR_DIG
21
20
DI1_D0_CS
DISPB2_SER_DIO
—
VREFOUT
COMP
20
19
—
I2C1_DAT
GND
I2C1_CLK
PMIC_RDY
19
18
—
EIM_DA5
—
PMIC_STBY_REQ
PMIC_INT_REQ
18
17
—
EIM_CS0
—
JTAG_TDI
JTAG_TMS
17
16
—
VDDA
GND
EIM_DA3
JTAG_DE_B
16
15
—
EIM_RW
—
EIM_DA6
EIM_DA2
15
14
—
EIM_OE
—
EIM_DA8
EIM_DA7
14
13
—
EIM_A18
GND
EIM_EB2
EIM_DA10
13
12
—
EIM_A16
—
EIM_D16
EIM_DA14
12
11
—
EIM_D28
—
EIM_D23
EIM_EB3
11
10
—
EIM_BCLK
GND
EIM_D27
EIM_D19
10
9
—
EIM_A24
—
EIM_A22
EIM_D25
9
8
—
EIM_CS3
—
EIM_D31
EIM_D30
8
7
—
EIM_CS5
GND
EIM_A26
EIM_CS4
7
6
EIM_CS1
EIM_A20
—
EIM_WAIT
EIM_A27
6
5
GND
EIM_LBA
EIM_DTACK
5
4
DRAM_SDQS0_B
DRAM_D7
DRAM_D5
DRAM_D3
DRAM_D0
4
3
DRAM_SDQS0
DRAM_D6
DRAM_D4
DRAM_D2
DRAM_D1
3
2
DRAM_SDQS1
DRAM_D9
DRAM_D10
DRAM_D12
DRAM_D14
2
1
DRAM_SDQS1_B
DRAM_D8
DRAM_D11
DRAM_D13
DRAM_D15
1
Y
AA
AB
AC
DISPB2_SER_RS DISPB2_SER_DIN
W
Table 116. 13 × 13 mm, 0.5 mm Pitch Ball Map (continued)
23
NVCC_EMI_DRAM NVCC_EMI_DRAM
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
W
Package Information and Contact Assignments
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
177
Preliminary—Subject to Change Without Notice
GND
25
24
GND_DIG_PLL_B
GND
24
23
EXTAL
XTAL
23
22
NVCC_OSC
FASTR_ANA
22
21
IOB_BACK
IOB
21
20
IOG_BACK
IOG
20
19
IOR_BACK
IOR
19
18
JTAG_TCK
PMIC_ON_REQ
18
17
JTAG_TDO
JTAG_TRSTB
17
16
JTAG_MOD
EIM_DA4
16
15
EIM_DA1
EIM_DA0
15
14
EIM_EB0
EIM_EB1
14
13
EIM_DA9
EIM_DA12
13
12
EIM_DA13
EIM_DA11
12
11
EIM_DA15
EIM_D22
11
10
EIM_D20
EIM_D21
10
9
EIM_D18
EIM_D24
9
8
EIM_D26
EIM_D17
8
7
EIM_D29
EIM_A19
7
6
EIM_A21
EIM_A17
6
5
EIM_A25
EIM_A23
5
4
VDD_ANA_PLL_A
EIM_CS2
4
3
VDD_DIG_PLL_A
GND_ANA_PLL_A
3
2
GND
GND_DIG_PLL_A
2
1
GND
GND
1
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
178
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
AE
GND
AE
AD
25
AD
Table 116. 13 × 13 mm, 0.5 mm Pitch Ball Map (continued)
Package Information and Contact Assignments
11
10
9
8
7
6
5
4
3
2
1
GPIO1_2
GPIO1_4
DISP1_DAT6
DISP1_DAT10
DISP1_DAT14
DISP1_DAT22
CSI1_D9
GPIO1_0
GPIO1_8
DISP1_DAT8
DISP1_DAT12
DISP1_DAT17
CSI1_HSYNC
CSI1_MCLK
GPIO1_9
GPIO1_1
DISP1_DAT9
DISP1_DAT13
SD1_DATA3
SD2_DATA1
GPIO1_6
GPIO1_5
CSI2_PIXCLK
CSI2_VSYNC
SD1_DATA1
SD2_CLK
CSI2_HSYNC
GPIO1_3
CSI1_D8
CSI1_PIXCLK
SD1_CLK
KEY_COL3
SD2_DATA3
SD2_DATA2
SD2_DATA0
SD1_DATA2
KEY_COL1
KEY_ROW1
KEY_COL5
SD1_DATA0
SD1_CMD
KEY_COL4
STR
UART3_TXD
KEY_ROW3
KEY_COL2
KEY_COL0
KEY_ROW2
UART2_RXD
UART1_CTS
UART2_TXD
KEY_ROW0
OWIRE_LINE
UART3_RXD
UART1_TXD
USBH1_DATA6
USBH1_DATA7
UART1_RTS
UART1_RXD
SVDDGP
USBH1_DATA5
USBH1_DATA2
USBH1_DATA3 USBH1_DATA4
USBH1_DATA0
VDDGP
USBH1_DATA1
USBH1_DIR
USBH1_NXT
USBH1_CLK
USBH1_STP
VDDGP
CSPI1_SCLK
CSPI1_SS1
CSPI1_MISO
CSPI1_MOSI
CSPI1_SS0
VDDGP
AUD3_BB_FS
AUD3_BB_RXD
CSPI1_RDY
CSI2_D18
AUD3_BB_TXD
VDDGP
CSI2_D19
CSI2_D12
AUD3_BB_CK
NANDF_D3
NANDF_D1
VDDGP
NANDF_D0
NANDF_D4
CSI2_D13
NANDF_D11
NANDF_D9
VDDGP
NANDF_D2
NANDF_D6
NANDF_D7
NANDF_D15
NVCC_NANDF_A
VDDGP
NANDF_D5
NANDF_D10
NANDF_D12
GPIO_NAND
NANDF_CS6
NVCC_NANDF_A
NANDF_D8
NANDF_D14
NANDF_CS7
NANDF_RB1
NANDF_CS2
NANDF_CLE
NANDF_D13
NANDF_RDY_INT
NANDF_CS0
NANDF_RB2
NANDF_ALE
EIM_SDODT0
NANDF_CS5
NANDF_CS4
NANDF_CS1
NANDF_RB0
NANDF_RE_B
EIM_SDODT1
GND
NANDF_CS3
NANDF_RB3
NANDF_WP_B
NANDF_WE_B
EIM_SDBA2
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
179
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
12
F
13
DISP1_DAT20
F
14
E
15
DISP1_DAT16
E
Table 117. 19 × 19 mm, 0.8 Pitch Ball Map
Table 117 shows the 19 × 19 mm, 0.8 pitch ball map.
4.4
19 x 19 mm, 0.8 Pitch Ball Map
16
D
17
DISP1_DAT11
D
18
C
19
DISP1_DAT7
C
20
B
21
GPIO1_7
B
22
GND
A
23
A
Package Information and Contact Assignments
13
12
11
10
9
8
7
6
5
4
3
2
1
DI1_PIN3
DI_GP3
DI_GP4
DN
CSI2_D16
DISP1_DAT23
DI_GP1
DI2_DISP_CLK
VREG
CSI2_D15
DISP1_DAT18
DI1_PIN15
DI2_PIN2
VBUS
CSI2_D14
DISP1_DAT15
DISP1_DAT21
DI_GP2
RREFEXT
ID
CSI1_VSYNC
DISP1_DAT19
DI1_DISP_CLK
DI2_PIN3
VDDA33
SD2_CMD
NVCC_IPU5
NVCC_IPU6
NVCC_IPU7
NVCC_USBPHY
NVCC_IPU4
NVCC_PER8
VCC
VCC
NGND_USBPHY
NVCC_PER5
NVCC_PER15
VCC
VCC
VCC
NVCC_PER17
SVCC
GND
GND
GND
NVCC_PER13
VCC
GND
GND
GND
NVCC_PER12
VDDA
GND
GND
GND
NVCC_PER11
NVCC_PER10
SGND
GND
GND
NVCC_NANDF_C
NVCC_PER9
GND
GND
GND
NVCC_NANDF_B
GND
GND
GND
GND
VDDA
VDDA
GND
GND
GND
VDDGP
VDDGP
VDDGP
VDDGP
VCC
VDDGP
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
NVCC_EMI_DRAM NVCC_EMI_DRAM NVCC_EMI_DRAM NVCC_EMI_DRAM
GND
DRAM_DQM3
DRAM_D27
DRAM_D24
DRAM_D14
DRAM_D31
DRAM_SDQS3_B
DRAM_D23
DRAM_D21
DRAM_D15
DRAM_D30
DRAM_SDQS3
DRAM_D22
DRAM_D20
DRAM_D16
DRAM_D29
DRAM_D26
DRAM_SDQS2_B
DRAM_DQM2
DRAM_D17
DRAM_D28
DRAM_D25
DRAM_SDQS2
DRAM_D19
DRAM_D18
6
5
4
3
2
1
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
180
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
14
L
15
CSI2_D17
L
16
K
Table 117. 19 × 19 mm, 0.8 Pitch Ball Map (continued)
17
DP
K
18
J
19
GPANAIO
J
20
H
21
DI2_PIN4
H
22
DI1_PIN2
G
23
G
Package Information and Contact Assignments
11
10
9
8
7
6
5
4
3
2
1
CSI1_D18
CSI1_D16
CSI1_D12
CSI1_D10
DISP1_DAT4
DISP1_DAT2
CSI1_D15
DISP1_DAT1
DISP2_DAT3
DISP2_DAT0
DISP2_DAT15
DI1_D0_CS
CSI1_D14
DISP1_DAT0
DISP2_DAT2
DISP2_DAT9
DI1_PIN13
POR_B
DISP2_DAT1
DISP2_DAT6
DISP2_DAT8
DISP2_DAT11
DISP2_DAT13
DISPB2_SER_DIN
NVCC_HS4_1
NVCC_HS4_2
NVCC_IPU8
NVCC_IPU9
NVCC_IPU2
NVCC_PER3
NVCC_HS6
VCC
VCC
VCC
VCC
GND_ANA_PLL_B
NVCC_HS10
GND
VDDA
GND
GND
NVCC_TV_BACK
GND
GND
GND
GND
NGND_TV_BACK
VREFOUT
GND
GND
GND
GND
NVCC_I2C
NVCC_SRTC_POW
GND
GND
GND
GND
VDDA
NVCC_PER14
GND
GND
GND
GND
VCC
NVCC_EMI
GND
GND
GND
GND
VCC
NVCC_EMI
GND
GND
GND
GND
VCC
NVCC_EMI
GND
GND
GND
GND
VCC
NVCC_EMI
VDDA
GND
GND
GND
VCC
NVCC_EMI
VCC
VCC
VCC
VDD_FUSE
GND_DIG_PLL_A
GND_ANA_PLL_A
NVCC_EMI_DRAM NVCC_EMI_DRAM NVCC_EMI_DRAM NVCC_EMI_DRAM NVCC_EMI_DRAM
VDD_DIG_PLL_A
DRAM_D13
DRAM_D7
DRAM_D5
VREF
GND
DRAM_SDWE
DRAM_D11
DRAM_SDQS1
DRAM_D6
DRAM_D4
DRAM_SDCLK_B
DRAM_A11
DRAM_D10
DRAM_SDQS1_B
DRAM_DQM0
DRAM_D1
DRAM_SDCLK
EIM_SDBA1
DRAM_DQM1
DRAM_D8
DRAM_SDQS0
DRAM_D2
DRAM_A14
DRAM_A12
DRAM_D12
DRAM_D9
DRAM_SDQS0_B
DRAM_D3
DRAM_D0
DRAM_A13
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
181
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
12
U
13
DISP1_DAT3
U
14
T
15
DISP1_DAT5
T
16
R
Table 117. 19 × 19 mm, 0.8 Pitch Ball Map (continued)
17
CSI1_D11
R
18
P
19
CSI1_D13
P
20
N
21
CSI1_D17
N
22
CSI1_D19
M
23
M
Package Information and Contact Assignments
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
Y
A
A
A
B
A
C
DISP2_DAT4
DISP2_DAT10
DI1_PIN11
DI1_PIN12
RESET_IN_B
CLK_SS
BOOT_MODE0
GND
DISPB2_SER_DIO DISPB2_SER_RS
23
BOOT_MODE1 DISPB2_SER_CLK
TEST_MODE
FASTR_ANA
FASTR_DIG
CKIH2
EXTAL
XTAL
CKIH1
VDD_ANA_PLL_B
AHVSSRGB
AHVSSRGB
IOB_BACK
IOB
GND_DIG_PLL_B
VDD_DIG_PLL_B
AHVDDRGB
AHVDDRGB
IOG_BACK
IOG
NGND_OSC
NVCC_OSC
COMP
PMIC_RDY
IOR_BACK
IOR
TVDAC_DHVDD
PMIC_ON_REQ
CKIL
PMIC_INT_REQ
I2C1_DAT
JTAG_TMS
JTAG_TCK
I2C1_CLK
PMIC_STBY_REQ
JTAG_TDO
JTAG_DE_B
EIM_DA0
JTAG_MOD
JTAG_TRSTB
JTAG_TDI
EIM_DA2
EIM_DA3
EIM_DA4
EIM_DA1
EIM_DA7
EIM_DA5
EIM_DA6
EIM_DA8
EIM_DA10
EIM_EB0
EIM_EB1
EIM_DA9
EIM_DA12
EIM_DA14
EIM_D16
EIM_DA11
EIM_DA13
EIM_DA15
EIM_D18
EIM_D20
EIM_D22
EIM_EB2
EIM_D17
EIM_D19
EIM_D24
EIM_D26
EIM_D28
EIM_EB3
EIM_D21
EIM_D25
EIM_A16
EIM_A17
EIM_D30
EIM_D23
EIM_D27
EIM_D29
EIM_A19
EIM_A20
EIM_A18
NVCC_EMI
EIM_D31
EIM_CS2
EIM_OE
EIM_A22
EIM_A21
VDD_ANA_PLL_A
EIM_CS0
EIM_CS1
EIM_CS4
EIM_A25
EIM_A23
DRAM_A3
DRAM_SDCKE1
EIM_DTACK
EIM_CS5
EIM_A27
EIM_A24
DRAM_CAS
DRAM_A4
DRAM_CS0
EIM_BCLK
EIM_WAIT
EIM_A26
DRAM_A9
DRAM_A6
DRAM_CS1
DRAM_A2
EIM_RW
EIM_CS3
DRAM_A10
DRAM_A8
DRAM_A5
DRAM_A1
EIM_CRE
EIM_LBA
EIM_SDBA0
DRAM_RAS
DRAM_A7
DRAM_SDCKE0
DRAM_A0
GND
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
182
Freescale Semiconductor
Preliminary—Subject to Change Without Notice
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
16
GND
A
C
Table 117. 19 × 19 mm, 0.8 Pitch Ball Map (continued)
17
DI1_D1_CS
A
B
18
DISP2_DAT14
A
A
19
DISP2_DAT12
Y
20
W
21
DISP2_DAT7
W
22
DISP2_DAT5
V
23
V
Package Information and Contact Assignments
Revision History
5
Revision History
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
Table 118 provides a revision history for this data sheet.
Table 118. i.MX51 Data Sheet Document Revision History
Rev.
Number
Date
1
11/4/2009
Substantive Change(s)
Initial public release.
i.MX51 Applications Processors for Consumer and Industrial Products, Rev. 1
Freescale Semiconductor
183
Preliminary—Subject to Change Without Notice
Home Page:
www.freescale.com
Web Support:
http://www.freescale.com/support
USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or
+1-480-768-2130
www.freescale.com/support
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064
Japan
0120 191014 or
+81 3 5437 9125
[email protected]
Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
[email protected]
For Literature Requests Only:
Freescale Semiconductor
Literature Distribution Center
1-800 441-2447 or
+1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor
@hibbertgroup.com
Document Number: IMX51CEC
Rev. 1
11/2009
Preliminary—Subject to Change Without Notice
Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free
counterparts. For further information, see http://www.freescale.com or contact your
Freescale sales representative.
For information on Freescale’s Environmental Products program, go to
http://www.freescale.com/epp.
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
ARM is the registered trademark of ARM Limited. ARM7TDMI-S and are trademarks of
ARM Limited. IEEE Std. 802.3 is a registered trademark of the Institute of Electrical and
Electronics Engineers, Inc. (IEEE). This product is not endorsed or approved by the
IEEE.
© Freescale Semiconductor, Inc., 2009. All rights reserved.
Because of an order from the United States International Trade Commission, BGA-packaged product lines and part numbers indicated here currently are not
available from Freescale for import or sale in the United States prior to September 2010: MCIMX512DVK8C, MCIMX513DVK8C, MCIMX515DVK8C, and
MCIMX511DVK8C.
How to Reach Us: