LINER LTC2055HVHMS8

LTC2054/LTC2055
Single/Dual
Micropower Zero-Drift
Operational Amplifiers
DESCRIPTIO
U
FEATURES
■
■
■
■
■
■
■
■
■
■
■
The LTC®2054/LTC2055 are low power, low noise single/
dual zero-drift operational amplifiers available in the SOT-23
(ThinSOTTM) and MS8 packages. For space limited applications, the LTC2055 is also available in a 3mm × 3mm ×
0.8mm dual fine pitch leadless package (DFN). They
operate from a single 2.7V minimum supply and support
±5V applications. The current consumption is typically
150µA for the LTC2054 and 130µA/amp for the LTC2055.
Supply Current 150µA (Max per Amplifier)
Guaranteed Over Temperature
Offset Voltage 3µV (Max)
Offset Voltage Drift 30nV/°C (Max)
Common Mode Input Range from V– to V+ –0.5V
Output Swings Rail-to-Rail
Voltage Gain: 140dB (Typ)
PSRR and CMRR: 130dB (Typ)
Input Bias Current: 1pA (Typ, 25°C)
Noise: 1.6µVP-P (0.01Hz to 10Hz Typ)
Supply Operation:
2.7V to 6V (LTC2054/LTC2055)
2.7V to ±5.5V (LTC2054HV/LTC2055HV)
Low Profile (1mm) SOT-23, MS8 and
3mm × 3mm × 0.8mm DFN Packages
The LTC2054/LTC2055, despite their miniature size, feature uncompromising DC performance. The typical input
offset voltage and offset drift are 0.5µV and 25nV/°C. The
almost zero DC offset and drift are supported with a power
supply rejection ratio (PSRR) and common mode rejection ratio (CMRR) of more than 130dB.
U
APPLICATIO S
■
■
■
■
■
■
■
Thermocouple Amplifiers
Electronic Scales
Medical Instrumentation
Strain Gauge Amplifiers
High Resolution Data Acquisition
DC Accurate RC Active Filters
Low Side Current Sense
Battery-Powered Systems
, LTC and LT are registered trademarks of Linear Technology Corporation.
ThinSOT is a trademark of Linear Technology Corporation
U
■
The input common mode voltage ranges from the negative
supply up to typically 0.5V from the positive supply. The
open-loop gain is typically 140dB. The LTC2054/LTC2055
also feature a 1.6µVP-P DC to 10Hz noise and a 500kHz
gain-bandwidth product.
TYPICAL APPLICATIO
Supply Current (per Amplifier)
–48V Low Side Precision Current Sense
250
225
100Ω
1%
0.01µF
–
39k
LTC2054
+
0.1µF
–
LTC2054
+
VOUT = 100VSENSE
175
LTC2054
150
125
LTC2055
100
75
50
0.1µF
25
0
–40
0.003Ω
1% 3W
–
200
5V
100Ω
BZX84C5V1
VZ = 5.1
–48V SUPPLY
10k
1%
SUPPLY CURRENT (µA)
Q1
ZETEX
ZVN3320F
+
ISENSE, VSENSE
–48V LOAD
20545 TA01
–15
5
25
45
70
85
125
TEMPERATURE (°C)
20545 TA01b
sn20545 20545fas
1
LTC2054/LTC2055
W W
W
AXI U
U
ABSOLUTE
RATI GS
(Note 1)
Total Supply Voltage (V + to V –)
LTC2054/LTC2055 .................................................. 7V
LTC2054HV/LTC2055HV ....................................... 12V
Input Voltage ........................ (V + + 0.3V) to (V – – 0.3V)
Input Current ...................................................... ±10mA
Output Short-Circuit Duration ......................... Indefinite
Operating Temperature Range ............. – 40°C to 125°C
Specified Temperature Range (Note 3) – 40°C to 125°C
Storage Temperature Range ................ – 65°C to 150°C
DD Package ...................................... – 65°C to 125°C
Lead Temperature (Soldering, 10 sec)................. 300°C
U
U
W
PACKAGE/ORDER I FOR ATIO
TOP VIEW
TOP VIEW
OUT 1
5 V+
V– 2
+IN 3
OUT A
1
8
V+
–IN A
2
7
OUT B
+IN A
3
6
–IN B
V–
4
5
+IN B
4 –IN
S5 PACKAGE
5-LEAD PLASTIC SOT-23
TOP VIEW
OUT A
–IN A
+IN A
V–
8
7
6
5
V+
OUT B
–IN B
+IN B
MS8 PACKAGE
8-LEAD PLASTIC MSOP
DD PACKAGE
8-LEAD (3mm × 3mm) PLASTIC DFN
UNDERSIDE METAL INTERNALLY
CONNECTED TO V –
(PCB CONNECTION OPTIONAL)
TJMAX = 150°C, θJA = 250°C/W
1
2
3
4
TJMAX = 150°C, θJA = 200°C/W
TJMAX = 125°C, θJA = 160°C/W, NOTE 5
ORDER PART
NUMBER*
S5 PART
MARKING
ORDER PART
NUMBER*
DD PART
MARKING
ORDER PART
NUMBER*
MS8 PART
MARKING
LTC2054CS5
LTC2054HVCS5
LTC2054IS5
LTC2054HVIS5
LTC2054HS5
LTC2054HVHS5
LTAGB
LTAGD
LTAGB
LTAGD
LTAGB
LTAGD
LTC2055CDD
LTC2055HVCDD
LTC2055IDD
LTC2055HVIDD
LTC2055HDD
LTC2055HVHDD
LBCW
LBCX
LBCW
LBCX
LBCW
LBCX
LTC2055CMS8
LTC2055HVCMS8
LTC2055IMS8
LTC2055HVIMS8
LTC2055HMS8
LTC2055HVHMS8
LTBCR
LTBCT
LTBCR
LTBCT
LTBCR
LTBCT
*The temperature grade (C, I or H) is indicated on the shipping container. Consult LTC Marketing for parts specified with wider operating temperature
ranges.
ELECTRICAL CHARACTERISTICS
(LTC2054/LTC2055, LTC2054HV/LTC2055HV) The ● denotes the
specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. VS = 3V, 5V
unless otherwise noted. (Note 3)
SYMBOL
IS
PARAMETER
Supply Current (LTC2054)
IS
Supply Current Per Amplifier
(LTC2055)
Input Offset Voltage
Average Input Offset Drift
Long-Term Offset Drift
Input Bias Current (Note 4)
VOS
∆VOS/∆T
IB
CONDITIONS
No Load, VS = 3V
No Load, VS = 5V
No Load, VS = 3V
No Load, VS = 5V
(Note 2)
(Note 2)
VS = 3V
VS = 3V
VS = 5V
VS = 5V
●
●
●
●
●
●
●
LTC2054C/LTC2055C
LTC2054I/LTC2055I
MIN
TYP
MAX
140
175
150
175
130
150
135
150
±0.5
±3
0.02
±0.03
50
±1
±150
±1
±150
LTC2054H/LTC2055H
MIN
TYP
MAX
UNITS
140
180
µA
150
180
µA
130
155
µA
135
155
µA
±0.5
±3
µV
0.02
±0.05
µV/°C
50
nV/√mo
±1
pA
±3000
pA
±1
pA
±3000
pA
sn20545 20545fas
2
LTC2054/LTC2055
ELECTRICAL CHARACTERISTICS
(LTC2054/LTC2055, LTC2054HV/LTC2055HV) The ● denotes the
specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. VS = 3V, 5V
unless otherwise noted. (Note 3)
SYMBOL
IOS
PARAMETER
Input Offset Current (Note 4)
PSRR
Power Supply Rejection Ratio
CONDITIONS
VS = 3V
VS = 3V
VS = 5V
VS = 5V
RS = 100Ω, DC to 1Hz
RS = 100Ω, DC to 10Hz
VCM = GND to V + – 0.7V
VS = 3V
VCM = GND to V + – 0.7V
VS = 5V
VS = 2.7V to 6V
AVOL
Large-Signal Voltage Gain
RL = 100k, VS = 3V, VOUT = VS/2
en
Input Noise Voltage
CMRR
Common Mode Rejection Ratio
RL = 100k, VS = 5V, VOUT = VS/2
VOUT
VOUT
SR
GBW
fS
Output Voltage Swing High
Output Voltage Swing Low
Slew Rate
Gain Bandwidth Product
Internal Sampling Frequency
RL = 5k to GND, VS = 3V
RL = 5k to GND, VS = 3V
RL = 5k to GND, VS = 5V
RL = 5k to GND, VS = 5V
RL = 100k to GND, VS = 3V
RL = 100k to GND, VS = 3V
RL = 100k to GND, VS = 5V
RL = 100k to GND, VS = 5V
RL = 5k to GND, VS = 3V
RL = 5k to GND, VS = 3V
RL = 5k to GND, VS = 5V
RL = 5k to GND, VS = 5V
RL = 100k to GND, VS = 3V
RL = 100k to GND, VS = 3V
RL = 100k to GND, VS = 5V
RL = 100k to GND, VS = 5V
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
LTC2054C/LTC2055C
LTC2054I/LTC2055I
MIN
TYP
MAX
±2
±300
±2
±300
0.6
1.6
115
130
110
120
130
115
120
130
115
120
135
115
125
140
120
2.87
2.89
2.85
4.80
4.83
4.75
2.98
2.99
2.975
4.985 4.99
4.980
2
8
10
2
8
10
2
8
10
2
8
10
0.5
500
1
LTC2054H/LTC2055H
MIN
TYP
MAX
±2
±700
±2
±700
0.6
1.6
115
130
110
120
130
115
120
130
115
120
135
115
125
140
120
2.87
2.89
2.84
4.80
4.83
4.70
2.98
2.99
2.97
4.985 4.99
4.970
3
8
10
3
8
10
3
8
10
3
8
10
0.5
500
1
UNITS
pA
pA
pA
pA
µVP-P
µVP-P
dB
dB
dB
dB
dB
dB
dB
dB
dB
dB
V
V
V
V
V
V
V
V
mV
mV
mV
mV
mV
mV
mV
mV
V/µs
kHz
kHz
sn20545 20545fas
3
LTC2054/LTC2055
ELECTRICAL CHARACTERISTICS
(LTC2054HV/LTC2055HV) The ● denotes the specifications which apply
over the full operating temperature range, otherwise specifications are at TA = 25°C. VS = ±5V
unless otherwise noted. (Note 3)
SYMBOL
IS
IS
VOS
∆VOS/∆T
IB
PARAMETER
Supply Current
Supply Current (Per Amplifier)
Input Offset Voltage
Average Input Offset Drift
Long-Term Offset Drift
Input Bias Current (Note 4)
IOS
Input Offset Current (Note 4)
en
Input Noise Voltage
CMRR
Common Mode Rejection Ratio
CONDITIONS
No Load (LTC2054)
No Load (LTC2055)
(Note 2)
(Note 2)
●
●
●
●
●
RS = 100Ω, DC to 1Hz
RS = 100Ω, DC to 10Hz
VCM = GND to V + – 0.9
PSRR
Power Supply Rejection Ratio
VS = 2.7V to 11V
AVOL
Large-Signal Voltage Gain
RL = 100k, VOUT = GND
VOUT
Maximum Output Voltage Swing
RL = 5k to GND
RL = 5k to GND
RL = 100k to GND
RL = 100k to GND
SR
GBW
fS
Slew Rate
Gain Bandwidth Product
Internal Sampling Frequency
Note 1: Absolute Maximum Ratings are those values beyond which the life
of the device may be impaired.
Note 2: These parameters are guaranteed by design. Thermocouple effects
preclude measurements of these voltage levels during automated testing.
Note 3: All versions of the LTC2054/LTC2055 are designed, characterized
and expected to meet the extended temperature limits of – 40°C and
125°C. The LTC2054C/LTC2055C/LTC2054HVC/LTC2055HVC are
guaranteed to meet the temperature limits of 0°C and 70°C. The LTC2054I/
LTC2055I/LTC2054HVI/LTC2055HVI are guaranteed to meet temperature
●
●
●
●
●
LTC2054HVC/LTC2055HVC
LTC2054HVI/LTC2055HVI
MIN TYP MAX
175
210
150
180
±0.5
±5
0.025 ±0.03
50
±3
±150
±6
±300
0.6
1.6
120
130
115
120
130
115
125
140
120
±4.78 ±4.82
±4.75
±4.98 ±4.99
±4.975
0.5
500
1
LTC2054HVH/LTC2055HVH
MIN TYP MAX
UNITS
175
215
µA
150
185
µA
±0.5
±5
µV
0.025 ±0.05
µV/°C
50
nV/√mo
±3
pA
±3000
pA
±6
pA
±700
pA
0.6
µVP-P
1.6
µVP-P
120
130
dB
115
dB
120
130
dB
115
dB
125
140
dB
120
dB
±4.78 ±4.82
V
±4.70
V
±4.98 ±4.99
V
±4.97
V
0.5
V/µs
500
kHz
1
kHz
limits of – 40°C and 85°C. The LTC2054H/LTC2055H and LTC2054HVH/
LTC2055HVH are guaranteed to meet the temperature limits of – 40°C and
125°C.
Note 4: Limit is determined by high speed automated test capability. See
Typical Chacteristic curves for actual typical performance. For tighter
specifications, please consult Linear Technology Marketing.
Note 5: The θJA specified for the DD package is with minimal PCB heat
spreading metal. Using expanded metal area on all layers of a board
reduces this value.
sn20545 20545fas
4
LTC2054/LTC2055
U W
TYPICAL PERFOR A CE CHARACTERISTICS
Common Mode Rejection Ratio
vs Frequency
DC CMRR
vs Common Mode Input Range
140
PSRR vs Frequency
140
140
VS = 3V OR 5V
VCM = 0.5VP-P
120
VS = ±2.5V
120
120
100
100
80
60
80
80
PSRR (dB)
CMRR (dB)
CMRR (dB)
100
VS = 5V
VS = 3V
60
40
60
–PSRR
40
20
40
+PSRR
0
20
20
0
0
10k
100
1k
FREQUENCY (Hz)
100k
–40
0
1
2
3
4
VS = ±5V
V + – 0.5
VS = ±5V
V+
2
VS = ±1.5V
1
– 1.0
V + – 1.5
0
VS = ±1.5V
–1
OUTPUT SWING (V)
OUTPUT SWING (V)
V+
VS = ±2.5V
VS = ±1.5V
–2
VS = ±2.5V
–3
–4
–5
VS = ±5V
RL TO GND
2
4
LOAD RESISTANCE (kΩ)
0
V – + 1.5
V – + 1.0
VS = ±5V
VS = ±2.5V
V – + 0.5 VS = ±1.5V
V–
1
2
4
5
3
0
SOURCING OR SINKING LOAD CURRENT (mA)
6
PHASE
–60
VS = ±2.5V
VIN = 0.5VP-P
–80
RL = 10kΩ
80
–100
–120
GAIN
40
–140
20
–160
0
–20
–40
10
PHASE (DEG)
60
100
1k
10k 100k
FREQUENCY (Hz)
0
–2
–4
–6
–10
1000
1000
100
10
VS = 10V
20545 G07
7
8
9 10 11
4
5
6
TOTAL SUPPLY VOLTAGE, V + TO V – (V)
VSUPPLY = ±2.5V
TA = 125°C
100
TA = 85°C
10
TA = 70°C
VS = 5V
1
1
–220
10M
3
Input Bias Current vs Input
Common Mode Voltage
10000
TA = 25°C
VS = 3V
–200
1M
ISOURCE
VOUT = V –
–8
10000
–180
CL = 30pF
CL = 50pF
CL = 100pF
ISINK
VOUT = V +
2
20545 G14
BIAS CURRENT (pA)
100
4
Input Bias Current vs
Temperature
BIAS CURRENT (pA)
120
6
20545 G06
20545 G04
Gain/Phase vs Frequency
1M
Short-Circuit Output Current vs
Supply Voltage
VS = ±2.5V
3
1k
10k
100k
FREQUENCY (Hz)
20545 G03
Output Swing
vs Load Current
4
100
20545 G02
Output Voltage Swing
vs Load Resistance
5
10
VCM (V)
20545 G01
GAIN (dB)
5
SHORT-CIRCUIT OUTPUT CURRENT, IOUT (mA)
10
1
–20
TA = 25°C
0.1
–40
–15
70
25
45
5
TEMPERATURE (°C)
85
TA = –40°C
0.1
125
20545 G08
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
COMMON MODE VOLTAGE (V)
20545 G09
sn20545 20545fas
5
LTC2054/LTC2055
U W
TYPICAL PERFOR A CE CHARACTERISTICS
Output Overload Recovery
Output Overload Recovery
INPUT (V)
Transient Response
OUTPUT (V)
2.5
0
–1
AV = 1
10µs/DIV
RL = 100k
CL = 50pF
VS = ±2.5V
VIN = 10kHz 2VP-P
AV = –100
RL = 100k
VS = ±2.5V
–40°C ≤ TA = 125°C
9
8
7
6
5
4
3
20545 G11
250
250
225
225
200
200
175
150
125
100
75
125
75
1
25
0
0
0
9 10 11
1
2
3 4
5 6 7 8
TOTAL SUPPLY VOLTAGE (V)
9
LTC2055 Supply Current (Per
Amplifier) vs Temperature
250
225
225
200
200
SUPPLY CURRENT (µA)
250
125
100
75
175
150
125
100
50
25
25
0
1
2
3 4
5 6 7 8
TOTAL SUPPLY VOLTAGE (V)
9
10
20545 G17
VS = ±5V
VS = 5V
VS = 3V
75
50
0
–15
70
25
45
5
TEMPERATURE (°C)
0
–40
–15
70
25
45
5
TEMPERATURE (°C)
85
125
20545 G18
85
125
20545 G16
INPUT REFFERED VOLTAGE NOISE DENSITY (nV/√Hz)
LTC2055 Supply Current (Per
Amplifier) vs Supply Voltage
150
0
–40
10
20545 G15
20545 G13
175
VS = 3V
100
50
3 4 5 6 7 8
SUPPLY VOLTAGE (V)
VS = 5V
150
25
2
20545 G12
VS = ±5V
175
2
1
2ms/DIV
LTC2054 Supply Current vs
Temperature
50
0
SUPPLY CURRENT (µA)
AV = –100
RL = 100k
VS = ±2.5V
2ms/DIV
LTC2054 Supply Current vs
Supply Voltage
SUPPLY CURRENT (µA)
COMMON MODE RANGE (V)
10
–2.5
–0.2
Common Mode Input Range vs
Supply Voltage
11
0
0
20545 G10
0
OUTPUT (V)
INPUT (V)
0
SUPPLY CURRENT (µA)
OUTPUT (V)
1
0.2
Noise Spectrum
100
90
80
70
60
50
40
30
20
10 AV = 100
VS = ±2.5V
0
100
10
1k
FREQUENCY (Hz)
10k
20545 G19
sn20545 20545fas
6
LTC2054/LTC2055
TEST CIRCUITS
Electrical Characteristics
Test Circuit
100k
OUTPUT
V+
10Ω
–
LTC2054/55
+
RL
V–
2054 TC01
DC-10Hz Noise Test Circuit
100k
10Ω
–
475k
0.01µF
158k
316k
475k
–
LTC2054/55
+
0.1µF
0.01µF
LT1012
TO X-Y
RECORDER
+
FOR 1Hz NOISE BW INCREASE ALL THE CAPACITORS BY A FACTOR OF 10.
2054 TC02
sn20545 20545fas
7
LTC2054/LTC2055
U
W
U U
APPLICATIO S I FOR ATIO
Clock Feedthrough, Input Bias Current
The LTC2054 and LTC2055 use auto-zeroing circuitry to
achieve an almost zero DC offset over temperature,
common mode voltage, and power supply voltage. The
frequency of the clock used for auto-zeroing is typically
1.0kHz. The term clock feedthrough is broadly used to
indicate visibility of this clock frequency in the op amp
output spectrum. There are typically two types of clock
feedthrough in auto zeroed op amps like the LTC2054/
LTC2055.
The first form of clock feedthrough is caused by the
settling of the internal sampling capacitor and is input
referred; that is, it is multiplied by the closed loop gain of
the op amp. This form of clock feedthrough is independent
of the magnitude of the input source resistance or the
magnitude of the gain setting resistors. The LTC2054/
LTC2055 have a residue clock feedthrough of less then
0.2µVRMS input referred at 1.0kHz.
The second form of clock feedthrough is caused by the
small amount of charge injection occurring during the
sampling and holding of the op amp’s input offset voltage.
The current spikes are multiplied by the impedance seen
at the input terminals of the op amp, appearing at the
output multiplied by the closed loop gain of the op amp. To
reduce this form of clock feedthrough, use smaller valued
gain setting resistors and minimize the source resistance
at the input. If the resistance seen at the inputs is less than
10k, this form of clock feedthrough is less than the amount
of residue clock feedthrough from the first form described
above.
Placing a capacitor across the feedback resistor reduces
either form of clock feedthrough by limiting the bandwidth
of the closed loop gain.
Input bias current is defined as the DC current into the
input pins of the op amp. The same current spikes that
LTC2054/LTC2055 DC to 1Hz Noise
0.4µV
2054 G16
10 SEC
LTC2054/LTC2055 DC to 10Hz Noise
1µV
2054 G17
1 SEC
sn20545 20545fas
8
LTC2054/LTC2055
U
W
U U
APPLICATIO S I FOR ATIO
Voltage Follower with Input Exceeding
the Common Mode Range
cause the second form of clock feedthrough described
above, when averaged, dominate the DC input bias current
of the op amp below 70°C.
2.5V
At temperatures above 70°C, the leakage of the ESD
protection diodes on the inputs increases the input bias
currents of both inputs in the positive direction, while the
current caused by the charge injection stays relatively
constant. At elevated temperatures (above 70°C) the
leakage current begins to dominate and both the negative
and positive pins’ input bias currents are in the positive
direction (into the pins).
–
LTC2054/55
1k
OUTPUT
+
100k
±3.75VP
SINE WAVE
–2.5V
2054 TA09
The LTC2054/LTC2055 input stage is designed to allow
nearly rail-to-rail input common mode signals. In addition,
signals that extend beyond the allowed input common
mode range do not cause output phase inversion.
INPUT
VIN = 2V/DIV
Extended Common Mode Range
0V
OUTPUT
VOUT = 2V/DIV
LTC2054/LTC2055
Extended Common Mode Range
0V
AV = 1
500µs/DIV
RL = 100k
VS = ±2.5V
VIN = 500Hz 7.5VP-P
2054 G19
U
TYPICAL APPLICATIO S
Simple Differential Bridge Amplifier
5V
5V
0.1µF
1µF
LT1790-2.5
499k
4
10kΩ
BRIDGE
–
5
LTC2054HV
3
0.1µF
+
1
AV = 100
2
499k
– 5V
20545 TA02
sn20545 20545fas
9
LTC2054/LTC2055
U
TYPICAL APPLICATIO S
Ground Referred Precision Current Sources
LT1634-1.25
10k
4
5
–
1
LTC2054
3
+
VOUT
–
1.25V
IOUT = ———
RSET
0 ≤ IOUT ≤ 100µA
(V – ) + 1.5V ≤ VOUT ≤ –1V
V+
+
3
2
RSET
RSET
5
+
1
LTC2054
10k
4
–
2
1.25V
IOUT = ———
RSET
+
V–
VOUT
–
0 ≤ IOUT ≤ 100µA
0.2V ≤ VOUT ≤ (V+) – 1.5V
LT1634-1.25
20545 TA03
Instrumentation Amplifier with 100V Common Mode Input Voltage
1k
1M
V+
1M
2
+
VIN
1M
3
–
8
–
1/2
LTC2055HV
+
1
1k
6
4
5
V–
1k
–
1/2
LTC2055HV
7
VOUT
+
OUTPUT OFFSET ≤ 3mV
FOR 0.1% RESISTORS, CMRR = 54dB
2054 TA04
Gain of 1001 Single Supply Instrumentation Amplifier
C1
0.1µF
R2
1k
R1
1M
–VIN
R4 1M
V+
2
3
–
8
1/2
LTC2055
+
1
R3
1k
4
+VIN
OUTPUT DC OFFSET ≤ 6mV
FOR 0.1% RESISTORS, CMRR = 54dB
6
5
–
1/2
LTC2055
7
VOUT
+
20545 TA05
sn20545 20545fas
10
LTC2054/LTC2055
U
PACKAGE DESCRIPTIO
DD Package
8-Lead Plastic DFN (3mm × 3mm)
(Reference LTC DWG # 05-08-1698)
R = 0.115
TYP
5
0.675 ±0.05
3.5 ±0.05
1.65 ±0.05
2.15 ±0.05 (2 SIDES)
0.38 ± 0.10
8
1.65 ± 0.10
(2 SIDES)
3.00 ±0.10
(4 SIDES)
PIN 1
PACKAGE
OUTLINE TOP MARK
(NOTE 6)
0.25 ± 0.05
4
0.25 ± 0.05
0.75 ±0.05
0.200 REF
0.50
BSC
2.38 ±0.05
(2 SIDES)
1
0.50 BSC
2.38 ±0.10
(2 SIDES)
0.00 – 0.05
NOTE:
1. DRAWING TO BE MADE A JEDEC PACKAGE
OUTLINE M0-229 VARIATION OF (WEED-1)
2. DRAWING NOT TO SCALE
3. ALL DIMENSIONS ARE IN MILLIMETERS
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM
OF PACKAGE DO NOT INCLUDE MOLD FLASH.
MOLD FLASH, IF PRESENT, SHALL NOT EXCEED
0.15mm ON ANY SIDE
5. EXPOSED PAD SHALL BE SOLDER PLATED
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1
LOCATION ON TOP AND BOTTOM OF PACKAGE
BOTTOM VIEW—EXPOSED PAD
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS
(DD8) DFN 1203
MS8 Package
8-Lead Plastic MSOP
(Reference LTC DWG # 05-08-1660)
3.00 ± 0.102
(.118 ± .004)
(NOTE 3)
0.889 ± 0.127
(.035 ± .005)
5.23
(.206)
MIN
3.20 – 3.45
(.126 – .136)
0.254
(.010)
8
7 6 5
3.00 ± 0.102
(.118 ± .004)
(NOTE 4)
4.90 ± 0.152
(.193 ± .006)
DETAIL “A”
0.52
(.0205)
REF
0° – 6° TYP
GAUGE PLANE
0.65
(.0256)
BSC
0.42 ± 0.038
(.0165 ± .0015)
TYP
1
0.53 ± 0.152
(.021 ± .006)
RECOMMENDED SOLDER PAD LAYOUT
DETAIL “A”
2 3
4
1.10
(.043)
MAX
0.86
(.034)
REF
0.18
(.007)
SEATING
PLANE
0.22 – 0.38
(.009 – .015)
TYP
0.65
(.0256)
BSC
NOTE:
1. DIMENSIONS IN MILLIMETER/(INCH)
2. DRAWING NOT TO SCALE
3. DIMENSION DOES NOT INCLUDE MOLD FLASH,
PROTRUSIONS OR GATE BURRS.MOLD FLASH,
PROTRUSIONS OR GATE BURRS SHALL NOT
EXCEED 0.152mm (.006") PER SIDE
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH
OR PROTRUSIONS. INTERLEAD FLASH OR PROTRUSIONS
SHALL NOT EXCEED 0.152mm (.006") PER SIDE
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING)
SHALL BE 0.102mm (.004") MAX
0.127 ± 0.076
(.005 ± .003)
MSOP (MS8) 0603
S5 Package
5-Lead Plastic TSOT-23
(Reference LTC DWG # 05-08-1635)
0.62
MAX
0.95
REF
2.80 – 3.10
(NOTE 4)
1.22 REF
1.4 MIN
3.85 MAX 2.62 REF
2.60 – 3.00
NOTE:
1. DIMENSIONS ARE IN MILLIMETERS
2. DRAWING NOT TO SCALE
3. DIMENSIONS ARE INCLUSIVE OF PLATING
4. DIMENSIONS ARE EXCLUSIVE OF MOLD
FLASH AND METAL BURR
5. MOLD FLASH SHALL NOT EXCEED 0.254mm
6. PACKAGE EIAJ REFERENCE IS SC-74A (EIAJ)
1.50 – 1.75
(NOTE 4)
PIN ONE
RECOMMENDED SOLDER PAD LAYOUT
PER IPC CALCULATOR
0.25 – 0.50
TYP 5 PLCS
NOTE 3
0.95 BSC
0.90 – 1.30
0.09 – 0.20
(NOTE 3)
0.20 BSC
ATTENTION: ORIGINAL SOT23-5L PACKAGE.
MOST SOT23-5L PRODUCTS CONVERTED TO THIN SOT23
PACKAGE, DRAWING # 05-08-1635 AFTER APPROXIMATELY
APRIL 2001 SHIP DATE
0.00 – 0.15
0.90 – 1.45
DATUM ‘A’
0.35 – 0.55 REF
1.90 BSC
S5 SOT-23 0502
sn20545 20545fas
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.
11
LTC2054/LTC2055
U
TYPICAL APPLICATIO S
Low Power, Bidirectional 60V Precision Hi Side Current Sense
POSITIVE SENSE
10mΩ
5
3
+
–
VSENSE
BAT54
1
LTC1754-5
1N4686
3.9VZ
2
4
100Ω
0.1µF
6
10µF
10µF
3
PRECISION
BIDIRECTIONAL
GAIN
OF 125
5
+
1
LTC2054
100Ω
4
1µF
0.1µF
–
2
12.4k
33Ω
2
1
2N5401
ON 5V
OFF 0V
MPSA42
POWER SUPPLY
(NOTE: POSITIVE
CURRENT SENSE
INCLUDES CIRCUIT
SUPPLY CURRENT)
35.7k
PRECISION
BIDIRECTIONAL
HIGH VOLTAGE
LEVEL SHIFT
AND GAIN OF 8
VS–
7
VS+
8
5
LT1787HV
VOUT = 2.5V
+1000* VSENSE
4.7µF
6
2.5V REF
4
20545 TA06
Precision Low Drift Integrator
OPEN
t = tO
S1
Ultra-Precision, Wide Dynamic Range
10Hz Bandwidth Photodiode Amplifier
100k
1Ω
0.15µF
10µF
GAIN = 0.1V/µA
~10pA RESOLUTION
50µA FULL SCALE
5V
VIN
1MΩ
4
4
5
–
LTC2054HV
3
5V
1k
+
t V (t)
IN
dt
tO 10sec
1
∫
ANY
PHOTODIODE
–
LTC2054
3
+
2
–5V
5
2
1
2k
0.01µF
–5V
20545 TA08
20545 TA07
RELATED PARTS
PART NUMBER
DESCRIPTION
COMMENTS
LTC1049
Low Power Zero-Drift Op Amp
Low Supply Current 200µA
LTC1050
Precision Zero-Drift Op Amp
Single Supply Operation 4.75V to 16V, Noise Tested and Guaranteed
LTC1051/LTC1053 Precision Zero-Drift Op Amp
Dual/Quad Version of the LTC1050
LTC1150
High Voltage Operation ±18V
±15V Zero-Drift Op Amp
LTC1152
Rail-to-Rail Input and Output Zero-Drift Op Amp
Single Zero-Drift Op Amp with Rail-to-Rail Input and Output and Shutdown
LT1677
Low Noise Rail-to-Rail Input and Ouptput
Precision Op Amp
VOS = 90µV, VS = 2.7V to 44V
LT1884/LT1885
Rail-to-Rail Output Precision Op Amp
VOS = 50µV, IB = 400pA, VS = 2.7V to 40V
LTC2050
Zero-Drift Op Amp
Enhanced Output Drive Capability
LTC2051/LTC2052 Dual/Quad Zero-Drift Op Amp
Dual/Quad Version of the LTC2050 in MS8/GN16 Package
LTC2053
Rail-to-Rail Input
Zero-Drift Instrumentation Amp
sn20545 20545fas
12
Linear Technology Corporation
LT/TP 0404 1K REV A • PRINTED IN USA
1630 McCarthy Blvd., Milpitas, CA 95035-7417
(408) 432-1900 ● FAX: (408) 434-0507
●
www.linear.com
© LINEAR TECHNOLOGY CORPORATION 2004