MICROCHIP 24LC65T

24AA65/24LC65/24C65
64K I2C™ Smart Serial™ EEPROM
Device Selection Table
Part Number
VCC Range
Page Size
Temp. Ranges
Packages
24AA65
1.8-6.0V
64 Bytes
C
P, SM
24LC65
2.5-6.0V
64 Bytes
C, I
P, SM
24C65
4.5-6.0V
64 Bytes
C, I, E
P, SM
Features
Description
• Voltage operating range: 1.8V to 6.0V
- Peak write current 3 mA at 6.0V
- Maximum read current 150 µA at 6.0V
- Standby current 1 µA typical
• Industry standard two-wire bus protocol I2C™
compatible
• 8-byte page, or byte modes available
• 2 ms typical write cycle time, byte or page
• 64-byte input cache for fast write loads
• Up to 8 devices may be connected to the same
bus for up to 512K bits total memory
• Including 100 kHz (1.8V ≤ Vcc < 4.5V) and 400
kHz (4.5V ≤ VCC ≤ 6.0V) compatibility
• Programmable block security options
• Programmable endurance options
• Schmitt Trigger, filtered inputs for noise
suppression
• Output slope control to eliminate ground bounce
• Self-timed erase and write cycles
• Power-on/off data protection circuitry
• Endurance:
- 10,000,000 E/W cycles for a High Endurance
Block
- 1,000,000 E/W cycles for a Standard
Endurance Block
• Electrostatic discharge protection > 4000V
• Data retention > 200 years
• 8-pin PDIP/SOIC packages
• Temperature ranges
- Commercial (C):
0°C to +70°C
- Industrial (I)
-40°C to +85°C
- Automotive (E)
-40°C to +125°C
The Microchip Technology Inc. 24AA65/24LC65/
24C65 (24XX65)* is a “smart” 8K x 8 Serial Electrically
Erasable PROM. This device has been developed for
advanced, low-power applications such as personal
communications, and provides the systems designer
with flexibility through the use of many new user-programmable features. The 24XX65 offers a relocatable
4K bit block of ultra-high-endurance memory for data
that changes frequently. The remainder of the array, or
60K bits, is rated at 1,000,000 erase/write (E/W) cycles
ensured. The 24XX65 features an input cache for fast
write loads with a capacity of eight pages, or 64 bytes.
This device also features programmable security
options for E/W protection of critical data and/or code
of up to fifteen 4K blocks. Functional address lines
allow the connection of up to eight 24XX65's on the
same bus for up to 512K bits contiguous EEPROM
memory. Advanced CMOS technology makes this
device ideal for low-power nonvolatile code and data
applications. The 24XX65 is available in the standard
8-pin plastic DIP and 8-pin surface mount SOIC
package.
A0
1
8
VCC
A1
2
7
NC
A2
3
6
SCL
VSS
4
5
SDA
A0
1
8
VCC
A1
2
7
NC
A2
3
6
SCL
VSS
4
5
SDA
SOIC
24XX65
 2003 Microchip Technology Inc.
PDIP
24XX65
*24XX65 is used in this document as a generic part
number for the 24AA65/24LC65/24C65 devices.
Package Types
DS21073J-page 1
24AA65/24LC65/24C65
Block Diagram
Pin Function Table
A0 A1 A2
I/O
Control
Logic
Memory
Control
Logic
HV Generator
XDEC
EEPROM
Array
Page Latches
I/O
SCL
SDA
Name
Function
A0, A1, A2
VSS
SDA
SCL
VCC
NC
User Configurable Chip Selects
Ground
Serial Address/Data/I/O
Serial Clock
+1.8V to 6.0V Power Supply
No Internal Connection
Cache
YDEC
VCC
VSS
DS21073J-page 2
Sense Amp.
R/W Control
 2003 Microchip Technology Inc.
24AA65/24LC65/24C65
1.0
ELECTRICAL CHARACTERISTICS
Absolute Maximum Ratings(†)
VCC.............................................................................................................................................................................7.0V
All inputs and outputs w.r.t. VSS ..........................................................................................................-0.6V to VCC +1.0V
Storage temperature ...............................................................................................................................-65°C to +150°C
Ambient temperature with power applied................................................................................................-65°C to +125°C
ESD protection on all pins ......................................................................................................................................................≥ 4 kV
† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the
device. This is a stress rating only and functional operation of the device at those or any other conditions above those
indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for an
extended period of time may affect device reliability.
TABLE 1-1:
DC CHARACTERISTICS
VCC = +1.8V to +6.0V
Commercial
(C): TA =
Industrial
(I): TA =
Automotive
(E): TA =
DC CHARACTERISTICS
Parameter
A0, A1, A2, SCL and SDA pins:
High-level input voltage
Low-level input voltage
Hysteresis of Schmitt Trigger inputs
Low-level output voltage
Input leakage current
Output leakage current
Pin capacitance
(all inputs/outputs)
Operating current
Standby current
Note 1:
0°C to +70°C
-40°C to +85°C
-40°C to +125°C
Sym
Min
Max
Units
VIH
VIL
VHYS
VOL
ILI
ILO
CIN, COUT
.7 VCC
—
.05 VCC
—
—
—
—
—
.3 VCC
—
.40
±1
±1
10
V
V
V
V
µA
µA
pF
ICC Write
ICC Read
ICCS
—
—
—
3
150
5
mA
µA
µA
Conditions
(Note 1)
IOL = 3.0 mA
VIN = .1V to VCC
VOUT = .1V to VCC
VCC = 5.0V (Note 1)
TA = 25°C, FCLK = 1 MHz
VCC = 6.0V, SCL = 400 kHz
VCC = 6.0V, SCL = 400 kHz
VCC = 5.0V, SCL = SDA = VCC
A0, A1, A2 = VSS
This parameter is periodically sampled and not 100% tested.
FIGURE 1-1:
BUS TIMING START/STOP
VHYS
SCL
THD:STA
TSU:STA
TSU:STO
SDA
START
 2003 Microchip Technology Inc.
STOP
DS21073J-page 3
24AA65/24LC65/24C65
TABLE 1-2:
AC CHARACTERISTICS
VCC = 1.8V-6.0V
STD. Mode
Symbol
Parameter
VCC = 4.5-6.0V
FAST Mode
Min
Max
Min
Max
Units
Clock frequency
Clock high time
Clock low time
SDA and SCL rise time
SDA and SCL fall time
Start condition setup time
FCLK
THIGH
TLOW
TR
TF
THD:STA
—
4000
4700
—
—
4000
100
—
—
1000
300
—
—
600
1300
—
—
600
400
—
—
300
300
—
kHz
ns
ns
ns
ns
ns
Start condition setup time
TSU:STA
4700
—
600
—
ns
Data input hold time
Data input setup time
Stop condition setup time
Output valid from clock
Bus free time
THD:DAT
TSU:DAT
TSU:STO
TAA
TBUF
0
250
4000
—
4700
—
—
—
3500
—
0
100
600
—
1300
—
—
—
900
—
ns
ns
ns
ns
ns
Remarks
(Note 1)
(Note 1)
After this period the first
clock pulse is generated
Only relevant for
repeated Start condition
(Note 2)
Time the bus must be
free before a new
transmission can start
(Note 1), CB ≤ 100 pF
Output fall time from VIH min to TOF
—
250
20 + 0.1
250
ns
VIL max
CB
50
—
50
—
ns
(Note 3)
Input filter spike suppression
TSP
(SDA and SCL pins)
—
5
—
5
ms/page (Note 4)
Write cycle time
TWR
Endurance
High Endurance Block
10M
—
10M
—
cycles 25°C, (Note 5)
Rest of Array
1M
—
1M
—
Note 1: Not 100 percent tested. CB = total capacitance of one bus line in pF.
2: As a transmitter, the device must provide an internal minimum delay time to bridge the undefined region
(minimum 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.
3: The combined TSP and VHYS specifications are due to new Schmitt Trigger inputs which provide improved
noise and spike suppression. This eliminates the need for a Ti specification for standard operation.
4: The times shown are for a single page of 8 bytes. Multiply by the number of pages loaded into the write
cache for total time.
5: This parameter is not tested but ensured by characterization. For endurance estimates in a specific
application, please consult the Total Endurance™ Model which can be downloaded at www.microchip.com.
FIGURE 1-2:
BUS TIMING DATA
TF
TR
THIGH
TLOW
SCL
TSU:STA
THD:DAT
TSU:DAT
THD:STA
SDA
IN
TSP
TSU:STO
TBUF
TAA
TAA
SDA
OUT
DS21073J-page 4
 2003 Microchip Technology Inc.
24AA65/24LC65/24C65
2.0
FUNCTIONAL DESCRIPTION
The 24XX65 supports a bidirectional two-wire bus and
data transmission protocol. A device that sends data
onto the bus is defined as transmitter, and a device
receiving data as receiver. The bus must be controlled
by a master device which generates the serial clock
(SCL), controls the bus access and generates the Start
and Stop conditions, while the 24XX65 works as slave.
Both master and slave can operate as transmitter or
receiver, but the master device determines which mode
is activated.
3.0
BUS CHARACTERISTICS
The following bus protocol has been defined:
• Data transfer may be initiated only when the bus
is not busy.
• During data transfer, the data line must remain
stable whenever the clock line is high. Changes in
the data line while the clock line is high will be
interpreted as a Start or Stop condition.
Accordingly, the following bus conditions have been
defined (Figure 3-1).
3.1
3.3
A low-to-high transition of the SDA line while the clock
(SCL) is high determines a Stop condition. All
operations must be ended with a Stop condition.
3.4
The data on the line must be changed during the low
period of the clock signal. There is one clock pulse per
bit of data.
Each data transfer is initiated with a Start condition and
terminated with a Stop condition. The number of the
data bytes transferred between the Start and Stop
conditions is determined by the master device.
3.5
Start Data Transfer (B)
A high-to-low transition of the SDA line while the clock
(SCL) is high determines a Start condition. All
commands must be preceded by a Start condition.
FIGURE 3-1:
SCL
(A)
Acknowledge
Each receiving device, when addressed, is obliged to
generate an acknowledge after the reception of each
byte. The master device must generate an extra clock
pulse which is associated with this Acknowledge bit.
Both data and clock lines remain high.
3.2
Data Valid (D)
The state of the data line represents valid data when,
after a Start condition, the data line is stable for the
duration of the high period of the clock signal.
Note:
Bus not Busy (A)
Stop Data Transfer (C)
The 24XX65 does not generate any
Acknowledge bits if an internal programming cycle is in progress.
A device that acknowledges must pull down the SDA
line during the Acknowledge clock pulse in such a way
that the SDA line is stable low during the high period of
the acknowledge related clock pulse. Of course, setup
and hold times must be taken into account. During
reads, a master must signal an end of data to the slave
by NOT generating an Acknowledge bit on the last byte
that has been clocked out of the slave. In this case, the
slave (24XX65) must leave the data line high to enable
the master to generate the Stop condition.
DATA TRANSFER SEQUENCE ON THE SERIAL BUS
(B)
(D)
Start
Condition
Address or
Acknowledge
Valid
(D)
(C)
(A)
SDA
 2003 Microchip Technology Inc.
Data
Allowed
To Change
Stop
Condition
DS21073J-page 5
24AA65/24LC65/24C65
3.6
Device Addressing
A control byte is the first byte received following the
Start condition from the master device. The control byte
consists of a four-bit control code, for the 24XX65 this
is set as ‘1010’ binary for read and write operations.
The next three bits of the control byte are the device
select bits (A2, A1, A0). They are used by the master
device to select which of the eight devices are to be
accessed. These bits are in effect the three Most
Significant bits of the word address. The last bit of the
control byte defines the operation to be performed.
When set to a one a read operation is selected, when
set to a zero a write operation is selected. The next two
bytes received define the address of the first data byte
(Figure 4-1). Because only A12..A0 are used, the
upper three address bits must be zeros. The Most
Significant bit of the Most Significant Byte is transferred
first. Following the Start condition, the 24XX65
monitors the SDA bus checking the device type
identifier being transmitted. Upon receiving a ‘1010’
code and appropriate device select bits, the slave
device (24XX65) outputs an Acknowledge signal on the
SDA line. Depending upon the state of the R/W bit, the
24XX65 will select a read or write operation.
Operation Control Code
Device Select
R/W
Read
1010
Device Address
1
Write
1010
Device Address
0
FIGURE 3-2:
CONTROL BYTE
ALLOCATION
START
READ/WRITE
SLAVE ADDRESS
1
0
DS21073J-page 6
1
0
A2
R/W
A1
A0
A
4.0
WRITE OPERATION
4.1
Byte Write
Following the Start condition from the master, the control code (four bits), the device select (three bits), and
the R/W bit which is a logic low, is placed onto the bus
by the master transmitter. This indicates to the
addressed slave receiver (24XX65) that a byte with a
word address will follow after it has generated an
Acknowledge bit during the ninth clock cycle. Therefore, the next byte transmitted by the master is the
high-order byte of the word address and will be written
into the address pointer of the 24XX65. The next byte
is the Least Significant Address Byte. After receiving
another Acknowledge signal from the 24XX65, the
master device will transmit the data word to be written
into the addressed memory location. The 24XX65
acknowledges again and the master generates a Stop
condition. This initiates the internal write cycle, and
during this time the 24XX65 will not generate
Acknowledge signals (Figure 4-1).
4.2
Page Write
The write control byte, word address and the first data
byte are transmitted to the 24XX65 in the same way as
in a byte write. But instead of generating a Stop
condition, the master transmits up to eight pages of
eight data bytes each (64 bytes total), which are
temporarily stored in the on-chip page cache of the
24XX65. They will be written from the cache into the
EEPROM array after the master has transmitted a Stop
condition. After the receipt of each word, the six lower
order address pointer bits are internally incremented by
one. The higher order seven bits of the word address
remain constant. If the master should transmit more
than eight bytes prior to generating the Stop condition
(writing across a page boundary), the address counter
(lower three bits) will roll over and the pointer will be
incremented to point to the next line in the cache. This
can continue to occur up to eight times or until the cache
is full, at which time a Stop condition should be
generated by the master. If a Stop condition is not
received, the cache pointer will roll over to the first line
(byte 0) of the cache, and any further data received will
overwrite previously captured data. The Stop condition
can be sent at any time during the transfer. As with the
byte write operation, once the Stop condition is received
an internal write cycle will begin. The 64-byte cache will
continue to capture data until a Stop condition occurs or
the operation is aborted (Figure 4-2).
 2003 Microchip Technology Inc.
24AA65/24LC65/24C65
FIGURE 4-1:
BYTE WRITE
BUS ACTIVITY
MASTER
S
T
A
R
T
SDA LINE
S
S
T
BUS
A
ACTIVITY R
MASTER T
DATA
P
A
C
K
A
C
K
A
C
K
A
C
K
PAGE WRITE (FOR CACHE WRITE, SEE FIGURE 8-2)
WORD
ADDRESS (0)
WORD
ADDRESS (1)
CONTROL
BYTE
SDA LINE S
DATA n
S
T
O
P
DATA n + 7
P
0 0 0
A
C
K
BUS
ACTIVITY:
FIGURE 4-3:
S
T
O
P
0 0 0
BUS ACTIVITY
FIGURE 4-2:
WORD
ADDRESS (0)
WORD
ADDRESS (1)
CONTROL
BYTE
A
C
K
A
C
K
A
C
K
A
C
K
CURRENT ADDRESS READ
BUS ACTIVITY
MASTER
S
T
A
R
T
SDA LINE
S
BUS ACTIVITY
 2003 Microchip Technology Inc.
CONTROL
BYTE
S
T
O
P
DATA n
P
A
C
K
N
O
A
C
K
DS21073J-page 7
24AA65/24LC65/24C65
FIGURE 4-4:
S
T
A
R
T
RANDOM READ
WORD
ADDRESS (1)
CONTROL
BYTE
FIGURE 4-5:
WORD
ADDRESS (0)
0 0 0
SDA LINE S
BUS
ACTIVITY
S
T
A
R
T
CONTROL
BYTE
S
T
O
P
DATA n
P
S
A
C
K
A
C
K
A
C
K
N
O
A
C
K
A
C
K
SEQUENTIAL READ
BUS ACTIVITY CONTROL
MASTER
BYTE
DATA n
DATA n + 1
DATA n + 2
S
T
O
P
DATA n + X
P
SDA LINE
BUS ACTIVITY
DS21073J-page 8
A
C
K
A
C
K
A
C
K
A
C
K
N
O
A
C
K
 2003 Microchip Technology Inc.
24AA65/24LC65/24C65
5.0
READ OPERATION
Read operations are initiated in the same way as write
operations with the exception that the R/W bit of the
slave address is set to one. There are three basic types
of read operations: current address read, random read
and sequential read.
5.1
Current Address Read
The 24XX65 contains an address counter that maintains the address of the last word accessed, internally
incremented by one. Therefore, if the previous access
(either a read or write operation) was to address n (n is
any legal address), the next current address read
operation would access data from address n + 1. Upon
receipt of the slave address with R/W bit set to one, the
24XX65 issues an acknowledge and transmits the
eight-bit data word. The master will not acknowledge
the transfer but does generate a Stop condition and the
24XX65 discontinues transmission (Figure 4-3).
5.2
Random Read
Random read operations allow the master to access
any memory location in a random manner. To perform
this type of read operation, first the word address must
be set. This is done by sending the word address to the
24XX65 as part of a write operation (R/W bit set to ‘0’).
After the word address is sent, the master generates a
Start condition following the acknowledge. This
terminates the write operation, but not before the
internal address pointer is set. Then the master issues
the control byte again, but with the R/W bit set to a one.
The 24XX65 will then issue an acknowledge and
transmit the eight-bit data word. The master will not
acknowledge the transfer, but does generate a Stop
condition which causes the 24XX65 to discontinue
transmission (Figure 4-4).
5.3
5.4
Contiguous Addressing Across
Multiple Devices
The device select bits A2, A1, A0 can be used to
expand the contiguous address space for up to 512K
bits by adding up to eight 24XX65's on the same bus.
In this case, software can use A0 of the control byte as
address bit A13, A1 as address bit A14 and A2 as
address bit A15.
5.5
Noise Protection
The SCL and SDA inputs have filter circuits which
suppress noise spikes to assure proper device
operation even on a noisy bus. All I/O lines incorporate
Schmitt Triggers for 400 kHz (Fast mode) compatibility.
5.6
High Endurance Block
The location of the high endurance block within the
memory map is programmed by setting the leading bit
7 (S/HE) of the configuration byte to ‘0’. The upper bits
of the address loaded in this command will determine
which 4K block within the memory map will be set to
high endurance. This block will be capable of
10,000,000 erase/write cycles typical (Figure 8-1).
The high endurance block will retain its value as the
high endurance block even if it resides within the
security block range. The high endurance setting
always takes precedence to the security setting.
Note:
The high endurance block cannot be
changed after the security option has been
set with a length greater than zero. If the
H.E. block is not programmed by the user,
the default location is the highest block of
memory which starts at location 0x1E00
and ends at 0x1FFF.
Sequential Read
Sequential reads are initiated in the same way as a
random read except that after the 24XX65 transmits the
first data byte, the master issues an acknowledge as
opposed to the Stop condition used in a random read.
This acknowledge directs the 24XX65 to transmit the
next sequentially addressed 8-bit word (Figure 4-5).
Following the final byte transmitted to the master, the
master will NOT generate an acknowledge, but will
generate a Stop condition.
To provide sequential reads the 24XX65 contains an
internal address pointer which is incremented by one at
the completion of each operation. This address pointer
allows the entire memory contents to be serially read
during one operation.
 2003 Microchip Technology Inc.
DS21073J-page 9
24AA65/24LC65/24C65
5.7
Security Options
The 24XX65 has a sophisticated mechanism for write
protecting portions of the array. This write-protect
function is programmable and allows the user to protect
0-15 contiguous 4K blocks. The user sets the security
option by sending to the device the starting block
number for the protected region and the number of
blocks to be protected. All parts will come from the
factory in the default configuration with the starting
block number set to 15 and the number of protected
blocks set to zero. THE SECURITY OPTION CAN BE
SET ONLY ONCE WITH A LENGTH GREATER THAN
ZERO.
To invoke the security option, a Write command is sent
to the device with the leading bit (bit 7) of the first
address byte set to a ‘1’ (Figure 8-1). Bits 1-4 of the first
address byte define the starting block number for the
protected region.
For example, if the starting block number is to be set to
5, the first address byte would be 1XX0101X. Bits 0, 5
and 6 of the first address byte are disregarded by the
device and can be either high or low. The device will
acknowledge after the first address byte. A byte of don’t
care bits is then sent by the master, with the device
acknowledging afterwards. The third byte sent to the
device has bit 7 (S/HE) set high and bit 6 (R) set low.
Bits 4 and 5 are don’t cares and bits 0-3 define the
number of blocks to be write-protected. For example, if
three blocks are to be protected, the third byte would be
10XX0011. After the third byte is sent to the device, it
will acknowledge and a Stop bit is then sent by the master to complete the command.
If one of the security blocks coincides with the high
endurance block, the high endurance setting will take
precedence. Also, if the range of the security blocks
encompass the high endurance block when the security option is set, the security block range will be set
accordingly, but the high endurance block will continue
to retain the high endurance setting. As a result, the
memory blocks preceding the high endurance block will
be set as secure sections.
During a normal write sequence, if an attempt is made
to write to a protected address, no data will be written
and the device will not report an error or abort the
command. If a Write command is attempted across a
secure boundary, unprotected addresses will be written
and protected addresses will not.
5.8
Security Configuration Read
The status of the secure portion of memory can be read
by using the same technique as programming this
option except the read bit (bit 6) of the configuration
byte is set to a one. After the configuration byte is sent,
the device will acknowledge and then send two bytes of
data to the master just as in a normal read sequence.
The master must acknowledge the first byte and not
DS21073J-page 10
acknowledge the second, and then send a Stop bit to
end the sequence. The upper four bits of both of these
bytes will always be read as ‘1’s. The lower four bits of
the first byte contains the starting secure block. The
lower four bits of the second byte contains the number
of secure blocks. The default starting secure block is
fifteen and the default number of secure blocks is zero
(Figure 8-1).
6.0
ACKNOWLEDGE POLLING
Since the device will not acknowledge during a write
cycle, this can be used to determine when the cycle is
complete (this feature can be used to maximize bus
throughput). Once the Stop condition for a Write
command has been issued from the master, the device
initiates the internally timed write cycle. ACK polling
can be initiated immediately. This involves the master
sending a Start condition followed by the control byte
for a Write command (R/W = 0). If the device is still
busy with the write cycle, then no ACK will be returned.
If the cycle is complete, then the device will return the
ACK and the master can then proceed with the next
Read or Write command. See Figure 6-1 for flow
diagram.
FIGURE 6-1:
ACKNOWLEDGE
POLLING FLOW
Send
Write Command
Send Stop
Condition to
Initiate Write Cycle
Send Start
Send Control Byte
with R/W = 0
Did Device
Acknowledge
(ACK = 0)?
NO
YES
Next
Operation
 2003 Microchip Technology Inc.
24AA65/24LC65/24C65
7.0
PAGE CACHE AND ARRAY
MAPPING
The cache is a 64-byte (8 pages x 8 bytes) FIFO buffer.
The cache allows the loading of up to 64 bytes of data
before the write cycle is actually begun, effectively
providing a 64-byte burst write at the maximum bus
rate. Whenever a Write command is initiated, the cache
starts loading and will continue to load until a Stop bit is
received to start the internal write cycle. The total
length of the write cycle will depend on how many
pages are loaded into the cache before the Stop bit is
given. Maximum cycle time for each page is 5 ms. Even
if a page is only partially loaded, it will still require the
same cycle time as a full page. If more than 64 bytes of
data are loaded before the Stop bit is given, the
address pointer will ‘wrap around’ to the beginning of
cache page 0 and existing bytes in the cache will be
overwritten. The device will not respond to any
commands while the write cycle is in progress.
7.1
Cache Write Starting at a Page
Boundary
If a Write command begins at a page boundary
(address bits A2, A1 and A0 are zero), then all data
loaded into the cache will be written to the array in
sequential addresses. This includes writing across a
4K block boundary. In the example shown below,
(Figure 8-2) a Write command is initiated starting at
byte 0 of page 3 with a fully loaded cache (64 bytes).
The first byte in the cache is written to byte 0 of page 3
(of the array), with the remaining pages in the cache
written to sequential pages in the array. A write cycle is
executed after each page is written. Since the write
begins at page 3 and 8 pages are loaded into the
cache, the last 3 pages of the cache are written to the
next row in the array.
7.2
Cache Write Starting at a
Non-Page Boundary
When a Write command is initiated that does not begin
at a page boundary (i.e., address bits A2, A1 and A0
are not all zero), it is important to note how the data is
loaded into the cache, and how the data in the cache is
written to the array. When a Write command begins, the
first byte loaded into the cache is always loaded into
page 0. The byte within page 0 of the cache where the
load begins is determined by the three Least Significant
Address bits (A2, A1, A0) that were sent as part of the
Write command. If the Write command does not start at
byte 0 of a page and the cache is fully loaded, then the
last byte(s) loaded into the cache will roll around to
page 0 of the cache and fill the remaining empty bytes.
If more than 64 bytes of data are loaded into the cache,
data already loaded will be overwritten. In the example
shown in Figure 8-3, a Write command has been
initiated starting at byte 2 of page 3 in the array with a
 2003 Microchip Technology Inc.
fully loaded cache of 64 bytes. Since the cache started
loading at byte 2, the last two bytes loaded into the
cache will ‘roll over' and be loaded into the first two
bytes of page 0 (of the cache). When the Stop bit is
sent, page 0 of the cache is written to page 3 of the
array. The remaining pages in the cache are then
loaded sequentially to the array. A write cycle is
executed after each page is written. If a partially loaded
page in the cache remains when the Stop bit is sent,
only the bytes that have been loaded will be written to
the array.
7.3
Power Management
The design incorporates a power Standby mode when
not in use and automatically powers off after the normal
termination of any operation when a Stop bit is received
and all internal functions are complete. This includes
any error conditions (i.e., not receiving an Acknowledge or Stop condition per the two-wire bus specification). The device also incorporates VDD monitor
circuitry to prevent inadvertent writes (data corruption)
during low voltage conditions. The VDD monitor circuitry
is powered off when the device is in Standby mode in
order to further reduce power consumption.
8.0
PIN DESCRIPTIONS
8.1
A0, A1, A2 Chip Address Inputs
The A0..A2 inputs are used by the 24XX65 for multiple
device operation and conform to the two-wire bus
standard. The levels applied to these pins define the
address block occupied by the device in the address
map. A particular device is selected by transmitting the
corresponding bits (A2, A1, A0) in the control byte
(Figure 3-2 and Figure 8-1).
8.2
SDA Serial Address/Data Input/
Output
This is a bidirectional pin used to transfer addresses
and data into and data out of the device. It is an open
drain terminal, therefore the SDA bus requires a pull-up
resistor to VCC (typical 10 KΩ for 100 kHz, 2 KΩ for 400
kHz).
For normal data transfer SDA is allowed to change only
during SCL low. Changes during SCL high are
reserved for indicating the Start and Stop conditions.
8.3
SCL Serial Clock
This input is used to synchronize the data transfer from
and to the device.
DS21073J-page 11
24AA65/24LC65/24C65
FIGURE 8-1:
Control Byte
1 0 1 0 A A A R/W
2 1 0
CONTROL SEQUENCE BIT ASSIGNMENTS
Address Byte 1
Address Byte 0
S 0 0 A A A A A
12 11 10 9 8
A
A
7 • • • • • • 0
Configuration Byte
R X X B B B B
3 2 1 0
S/HE
Slave Device
Address Select
Bits
Block
Count
Security Read
S
t
a
r
t
Acknowledge
from
Master
Acknowledges from Device
Data from Device
R
No
ACK
S
t
Data from Device
o
p
A
A
A
A
A
1 0 1 0 A A A 0 C 1 X X X X X X X C X X X X X X X X C 1 1 X X X X X X C 1 1 1 1 B B B B C 1 1 1 1 N N N N
2 1 0
3 2 1 0
3 2 1 0 K
K
K
K
K
S/HE
Starting Block
Number
Number of
Blocks to
Protect
Security Write
S
t
a
r
t
S
t
o
p
Acknowledges from Device
R
A
A
A
A
1 0 1 0 A A A 0 C 1 X X B B B B X C X X X X X X X X C 1 0 X X N N N N C
3 2 1 0 K
2 1 0
3 2 1 0
K
K
K
S/HE
Starting Block
Number
Number of
Blocks to
Protect
High Endurance Block Read
S
t
a
r
t
No
ACK
Acknowledges from Device
Data from Device
R
S
t
o
p
A
A
A
A
1 0 1 0 A A A 0 C 1 X X X X X X X C X X X X X X X X C 0 1 X X X X X X C 1 1 1 1 B B B B
2 1 0
3 2 1 0
K
K
K
K
S/HE
High Endurance
Block Number
High Endurance Block Write
S
t
a
r
t
Acknowledges from Device
R
S
t
o
p
A
A
A
A
1 0 1 0 A A A 0 C 1 X X B B B B X C X X X X X X X X C 0 0 X X 0 0 0 0 C
2 1 0
3 2 1 0
K
K
K
K
High Endurance
Block Number
DS21073J-page 12
S/HE
 2003 Microchip Technology Inc.
24AA65/24LC65/24C65
FIGURE 8-2:
CACHE WRITE TO THE ARRAY STARTING AT A PAGE BOUNDARY
1 Write command initiated at byte 0 of page 3 in the array;
First data byte is loaded into the cache byte 0.
2 64 bytes of data are loaded into cache.
cache page 0
cache
byte 0
cache
byte 1
cache
byte 7
• • •
cache page 1 cache page 2
bytes 8-15
bytes 16-23
3 Write from cache into array initiated by STOP bit.
Page 0 of cache written to page 3 of array.
Write cycle is executed after every page is written.
page 0 page 1 page 2
byte 0
byte 1
page 0 page 1 page 2
• • •
cache page 7
bytes 56-63
4 Remaining pages in cache are written
to sequential pages in array.
• • •
byte 7
page 3
page 4
• • •
page 7 array row n
page 4
• • •
page 7 array row n + 1
5 Last page in cache written to page 2 in next row.
FIGURE 8-3:
Last 2 bytes
loaded into
page 0 of cache.
CACHE WRITE TO THE ARRAY STARTING AT A NON-PAGE BOUNDARY
1 Write command initiated; 64 bytes of data
loaded into cache starting at byte 2 of page 0.
3
cache
byte 0
cache
byte 1
cache
byte 2
• • •
cache
byte 7
2 Last 2 bytes loaded 'roll over'
to beginning.
cache page 1 cache page 2
bytes 8-15
bytes 16-23
• • •
cache page 7
bytes 56-63
4 Write from cache into array initiated by STOP bit.
5 Remaining bytes in cache are
Page 0 of cache written to page 3 of array.
Write cycle is executed after every page is written.
written sequentially to array.
page 0 page 1 page 2
byte 0
byte 1
byte 2
page 0 page 1 page 2
byte 3
page 3
byte 4
• • •
byte 7
page 4
• • •
page 4
• • •
page 7 array
row n
page 7 array
row
n+1
6 Last 3 pages in cache written to next row in array.
 2003 Microchip Technology Inc.
DS21073J-page 13
24AA65/24LC65/24C65
9.0
PACKAGING INFORMATION
9.1
Package Marking Information
8-Lead PDIP (300 mil)
24LC65
I/P017
0310
XXXXXXXX
T/XXXNNN
YYWW
8-Lead SOIC (208 mil)
XXXXXXXX
T/XXXXXX
YYWWNNN
Legend: XX...X
Y
YY
WW
NNN
T
Note:
*
Example:
Example:
24LC65
I/SM
0110017
Customer specific information*
Year code (last digit of calendar year)
Year code (last 2 digits of calendar year)
Week code (week of January 1 is week ‘01’)
Alphanumeric traceability code
Temperature grade (Blank = Commercial, I = Industrial,
E = Automotive)
In the event the full Microchip part number cannot be marked on one line, it will
be carried over to the next line thus limiting the number of available characters
for customer specific information.
Standard PICmicro device marking consists of Microchip part number, year code, week code, and
traceability code. For PICmicro device marking beyond this, certain price adders apply. Please check
with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP
price.
DS21073J-page 14
 2003 Microchip Technology Inc.
24AA65/24LC65/24C65
8-Lead Plastic Dual In-line (P) – 300 mil (PDIP)
E1
D
2
n
1
α
E
A2
A
L
c
A1
β
B1
p
eB
B
Units
Dimension Limits
n
p
Number of Pins
Pitch
Top to Seating Plane
Molded Package Thickness
Base to Seating Plane
Shoulder to Shoulder Width
Molded Package Width
Overall Length
Tip to Seating Plane
Lead Thickness
Upper Lead Width
Lower Lead Width
Overall Row Spacing
Mold Draft Angle Top
Mold Draft Angle Bottom
* Controlling Parameter
§ Significant Characteristic
A
A2
A1
E
E1
D
L
c
§
B1
B
eB
α
β
MIN
.140
.115
.015
.300
.240
.360
.125
.008
.045
.014
.310
5
5
INCHES*
NOM
MAX
8
.100
.155
.130
.170
.145
.313
.250
.373
.130
.012
.058
.018
.370
10
10
.325
.260
.385
.135
.015
.070
.022
.430
15
15
MILLIMETERS
NOM
8
2.54
3.56
3.94
2.92
3.30
0.38
7.62
7.94
6.10
6.35
9.14
9.46
3.18
3.30
0.20
0.29
1.14
1.46
0.36
0.46
7.87
9.40
5
10
5
10
MIN
MAX
4.32
3.68
8.26
6.60
9.78
3.43
0.38
1.78
0.56
10.92
15
15
Notes:
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed
.010” (0.254mm) per side.
JEDEC Equivalent: MS-001
Drawing No. C04-018
 2003 Microchip Technology Inc.
DS21073J-page 15
24AA65/24LC65/24C65
8-Lead Plastic Small Outline (SM) – Medium, 208 mil (SOIC)
E
E1
p
D
2
1
n
B
α
c
A2
A
φ
β
L
Units
Dimension Limits
n
p
Number of Pins
Pitch
Overall Height
Molded Package Thickness
Standoff §
Overall Width
Molded Package Width
Overall Length
Foot Length
Foot Angle
Lead Thickness
Lead Width
Mold Draft Angle Top
Mold Draft Angle Bottom
A
A2
A1
E
E1
D
L
φ
c
B
α
β
MIN
.070
.069
.002
.300
.201
.202
.020
0
.008
.014
0
0
INCHES*
NOM
8
.050
.075
.074
.005
.313
.208
.205
.025
4
.009
.017
12
12
A1
MAX
.080
.078
.010
.325
.212
.210
.030
8
.010
.020
15
15
MILLIMETERS
NOM
8
1.27
1.78
1.97
1.75
1.88
0.05
0.13
7.62
7.95
5.11
5.28
5.13
5.21
0.51
0.64
0
4
0.20
0.23
0.36
0.43
0
12
0
12
MIN
MAX
2.03
1.98
0.25
8.26
5.38
5.33
0.76
8
0.25
0.51
15
15
* Controlling Parameter
§ Significant Characteristic
Notes:
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed
.010” (0.254mm) per side.
Drawing No. C04-056
DS21073J-page 16
 2003 Microchip Technology Inc.
24AA65/24LC65/24C65
APPENDIX A:
REVISION HISTORY
Revision J
Corrections to Section 1.0, Electrical Characteristics.
 2003 Microchip Technology Inc.
DS21073J-page 17
24AA65/24LC65/24C65
NOTES:
DS21073J-page 18
 2003 Microchip Technology Inc.
24AA65/24LC65/24C65
ON-LINE SUPPORT
Microchip provides on-line support on the Microchip
World Wide Web site.
The web site is used by Microchip as a means to make
files and information easily available to customers. To
view the site, the user must have access to the Internet
and a web browser, such as Netscape® or Microsoft®
Internet Explorer. Files are also available for FTP
download from our FTP site.
Connecting to the Microchip Internet
Web Site
SYSTEMS INFORMATION AND
UPGRADE HOT LINE
The Systems Information and Upgrade Line provides
system users a listing of the latest versions of all of
Microchip's development systems software products.
Plus, this line provides information on how customers
can receive the most current upgrade kits. The Hot Line
Numbers are:
1-800-755-2345 for U.S. and most of Canada, and
1-480-792-7302 for the rest of the world.
042003
The Microchip web site is available at the following
URL:
www.microchip.com
The file transfer site is available by using an FTP
service to connect to:
ftp://ftp.microchip.com
The web site and file transfer site provide a variety of
services. Users may download files for the latest
Development Tools, Data Sheets, Application Notes,
User's Guides, Articles and Sample Programs. A variety of Microchip specific business information is also
available, including listings of Microchip sales offices,
distributors and factory representatives. Other data
available for consideration is:
• Latest Microchip Press Releases
• Technical Support Section with Frequently Asked
Questions
• Design Tips
• Device Errata
• Job Postings
• Microchip Consultant Program Member Listing
• Links to other useful web sites related to
Microchip Products
• Conferences for products, Development Systems,
technical information and more
• Listing of seminars and events
 2003 Microchip Technology Inc.
DS21073J-page 19
24AA65/24LC65/24C65
READER RESPONSE
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation
can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.
Please list the following information, and use this outline to provide us with your comments about this document.
To:
Technical Publications Manager
RE:
Reader Response
Total Pages Sent ________
From: Name
Company
Address
City / State / ZIP / Country
Telephone: (_______) _________ - _________
FAX: (______) _________ - _________
Application (optional):
Would you like a reply?
Y
Device: 24AA65/24LC65/24C65
N
Literature Number: DS21073J
Questions:
1. What are the best features of this document?
2. How does this document meet your hardware and software development needs?
3. Do you find the organization of this document easy to follow? If not, why?
4. What additions to the document do you think would enhance the structure and subject?
5. What deletions from the document could be made without affecting the overall usefulness?
6. Is there any incorrect or misleading information (what and where)?
7. How would you improve this document?
DS21073J-page 20
 2003 Microchip Technology Inc.
24AA65/24LC65/24C65
PRODUCT IDENTIFICATION SYSTEM
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.
PART NO.
X
/XX
XXX
Device
Temperature
Range
Package
Pattern
Device
24AA65 - 64K I2C 1.8V Serial EEPROM (100 kHz)
24AA65T - 64K I2C 1.8V Serial EEPROM (100 kHz)
24LC65 - 64K I2C Serial EEPROM (100 kHz/400 kHz)
24LC65T - 64K I2C Serial EEPROM (Tape and Reel)
24C65 - 64K I2C 4.5V Serial EEPROM (400 kHz)
24C65T - 64K I2C 4.5V Serial EEPROM (Tape and Reel)
Examples:
a)
b)
c)
d)
Temperature Range
Blank
I
E
=
0°C to +70°C
= -40°C to +85°C
= -40°C to +125°C
Package
P
SM
=
=
24LC65T-I/SM: 64 Kbit Smart Serial,
Tape and Reel, 207 mil SOIC package,
Industrial temperature, 2.5V
24LC65-I/P: 64 Kbit Smart Serial,
Industrial temperature, PDIP package,
2.5V
24AA65T-/SM: 64 Kbit Smart Serial,
Tape and Reel, 207 mil SOIC package,
Commercial temperature, 1.8V
24C65-E/P: 64 Kbit Smart Serial,
Automotive temperature, PDIP, 5V
Plastic DIP (300 mil Body)
Plastic SOIC (207 mil Body, EIAJ standard)
Sales and Support
Data Sheets
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and
recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:
1.
2.
3.
Your local Microchip sales office
The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277
The Microchip Worldwide Site (www.microchip.com)
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.
New Customer Notification System
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.
 2003 Microchip Technology Inc.
DS21073J-page 21
24AA65/24LC65/24C65
NOTES:
DS21073J-page 22
 2003 Microchip Technology Inc.
Note the following details of the code protection feature on Microchip devices:
•
Microchip products meet the specification contained in their particular Microchip Data Sheet.
•
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.
•
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
•
Microchip is willing to work with the customer who is concerned about the integrity of their code.
•
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is intended through suggestion only
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
No representation or warranty is given and no liability is
assumed by Microchip Technology Incorporated with respect
to the accuracy or use of such information, or infringement of
patents or other intellectual property rights arising from such
use or otherwise. Use of Microchip’s products as critical components in life support systems is not authorized except with
express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property
rights.
Trademarks
The Microchip name and logo, the Microchip logo, Accuron,
dsPIC, KEELOQ, MPLAB, PIC, PICmicro, PICSTART,
PRO MATE and PowerSmart are registered trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.
AmpLab, FilterLab, microID, MXDEV, MXLAB, PICMASTER,
SEEVAL and The Embedded Control Solutions Company are
registered trademarks of Microchip Technology Incorporated
in the U.S.A.
Application Maestro, dsPICDEM, dsPICDEM.net, ECAN,
ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,
In-Circuit Serial Programming, ICSP, ICEPIC, microPort,
Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM,
PICkit, PICDEM, PICDEM.net, PowerCal, PowerInfo,
PowerMate, PowerTool, rfLAB, rfPIC, Select Mode,
SmartSensor, SmartShunt, SmartTel and Total Endurance are
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.
Serialized Quick Turn Programming (SQTP) is a service mark
of Microchip Technology Incorporated in the U.S.A.
All other trademarks mentioned herein are property of their
respective companies.
© 2003, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.
Printed on recycled paper.
Microchip received QS-9000 quality system
certification for its worldwide headquarters,
design and wafer fabrication facilities in
Chandler and Tempe, Arizona in July 1999
and Mountain View, California in March 2002.
The Company’s quality system processes and
procedures are QS-9000 compliant for its
PICmicro® 8-bit MCUs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals,
non-volatile memory and analog products. In
addition, Microchip’s quality system for the
design and manufacture of development
systems is ISO 9001 certified.
 2003 Microchip Technology Inc.
DS21073J-page 23
WORLDWIDE SALES AND SERVICE
AMERICAS
ASIA/PACIFIC
Korea
Corporate Office
Australia
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support: 480-792-7627
Web Address: http://www.microchip.com
Suite 22, 41 Rawson Street
Epping 2121, NSW
Australia
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea 135-882
Tel: 82-2-554-7200 Fax: 82-2-558-5932 or
82-2-558-5934
Atlanta
Unit 915
Bei Hai Wan Tai Bldg.
No. 6 Chaoyangmen Beidajie
Beijing, 100027, No. China
Tel: 86-10-85282100
Fax: 86-10-85282104
3780 Mansell Road, Suite 130
Alpharetta, GA 30022
Tel: 770-640-0034
Fax: 770-640-0307
Boston
2 Lan Drive, Suite 120
Westford, MA 01886
Tel: 978-692-3848
Fax: 978-692-3821
Chicago
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
4570 Westgrove Drive, Suite 160
Addison, TX 75001
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Tri-Atria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250
Fax: 248-538-2260
Kokomo
2767 S. Albright Road
Kokomo, IN 46902
Tel: 765-864-8360
Fax: 765-864-8387
Los Angeles
China - Beijing
China - Chengdu
Rm. 2401-2402, 24th Floor,
Ming Xing Financial Tower
No. 88 TIDU Street
Chengdu 610016, China
Tel: 86-28-86766200
Fax: 86-28-86766599
China - Fuzhou
Unit 28F, World Trade Plaza
No. 71 Wusi Road
Fuzhou 350001, China
Tel: 86-591-7503506
Fax: 86-591-7503521
China - Hong Kong SAR
Unit 901-6, Tower 2, Metroplaza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
China - Shanghai
Room 701, Bldg. B
Far East International Plaza
No. 317 Xian Xia Road
Shanghai, 200051
Tel: 86-21-6275-5700
Fax: 86-21-6275-5060
China - Shenzhen
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888
Fax: 949-263-1338
Rm. 1812, 18/F, Building A, United Plaza
No. 5022 Binhe Road, Futian District
Shenzhen 518033, China
Tel: 86-755-82901380
Fax: 86-755-8295-1393
Phoenix
China - Shunde
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7966
Fax: 480-792-4338
Room 401, Hongjian Building
No. 2 Fengxiangnan Road, Ronggui Town
Shunde City, Guangdong 528303, China
Tel: 86-765-8395507 Fax: 86-765-8395571
San Jose
China - Qingdao
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408-436-7950
Fax: 408-436-7955
Rm. B505A, Fullhope Plaza,
No. 12 Hong Kong Central Rd.
Qingdao 266071, China
Tel: 86-532-5027355 Fax: 86-532-5027205
Toronto
India
6285 Northam Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699
Fax: 905-673-6509
Divyasree Chambers
1 Floor, Wing A (A3/A4)
No. 11, O’Shaugnessey Road
Bangalore, 560 025, India
Tel: 91-80-2290061 Fax: 91-80-2290062
Japan
Benex S-1 6F
3-18-20, Shinyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa, 222-0033, Japan
Tel: 81-45-471- 6166 Fax: 81-45-471-6122
DS21073J-page 24
Singapore
200 Middle Road
#07-02 Prime Centre
Singapore, 188980
Tel: 65-6334-8870 Fax: 65-6334-8850
Taiwan
Kaohsiung Branch
30F - 1 No. 8
Min Chuan 2nd Road
Kaohsiung 806, Taiwan
Tel: 886-7-536-4818
Fax: 886-7-536-4803
Taiwan
Taiwan Branch
11F-3, No. 207
Tung Hua North Road
Taipei, 105, Taiwan
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139
EUROPE
Austria
Durisolstrasse 2
A-4600 Wels
Austria
Tel: 43-7242-2244-399
Fax: 43-7242-2244-393
Denmark
Regus Business Centre
Lautrup hoj 1-3
Ballerup DK-2750 Denmark
Tel: 45-4420-9895 Fax: 45-4420-9910
France
Parc d’Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - ler Etage
91300 Massy, France
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany
Steinheilstrasse 10
D-85737 Ismaning, Germany
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy
Via Quasimodo, 12
20025 Legnano (MI)
Milan, Italy
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands
P. A. De Biesbosch 14
NL-5152 SC Drunen, Netherlands
Tel: 31-416-690399
Fax: 31-416-690340
United Kingdom
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44-118-921-5869
Fax: 44-118-921-5820
07/28/03
 2003 Microchip Technology Inc.