DOCUMENT NUMBER 9S12DJ64DGV1/D MC9S12DJ64 Device User Guide V01.20 Covers also MC9S12D64, MC9S12A64, MC9S12D32, MC9S12A32 Original Release Date: 19 Nov. 2001 Revised: 6 April 2005 Freescale Semiconductor, Inc. Freescale reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Freescale does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. Freescale products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale was negligent regarding the design or manufacture of the part. 1 Revision History Version Revision Effective Number Date Date Author Description of Changes V01.00 16 NOV 2001 19 NOV 2001 Initial version based on MC9SDP256-2.09 Version. V01.01 18 FEB 2002 18 FEB 2002 In table 7 I/O Characteristics" of the electrical characteristics replaced tPULSE with tpign and tpval in lines "Port ... Interrupt Input Pulse filtered" and "Port ... Interrupt Input Pulse passed" respectively. 6 MAR 2002 Table "Oscillator Characteristics": removed "Oscillator start-up time from POR or STOP" row Table "5V I/O Characteristics": Updated Partial Drive IOH = +–2mA and Full Drive IOH = –10mA Table "ATD Operating Characteristics": Distinguish IREFfor 1 and 2 ATD blocks on Table "ATD Electrical Characteristics": Update CINS to 22 pF Table "Operating Conditions": Changed VDD and VDDPLL to 2.35 V (min) Removed Document number except from Cover Sheet Updated Table "Document References" 4 June 2002 Table "5V I/O Characteristics" : Corrected Input Capacitance to 6pF Section: "Device Pinout" (112-pin and 80-pin): added in diagrams RXCAN0 to PJ6 and TXCAN0 to PJ7 Table "PLL Characteristics": Updated parameters K1 and f1 Figure "Basic PLL functional diagram": Inserted XFC pin in diagram Enhanced section "XFC Component Selection" Added to Sections ATD, ECT and PWM: freeze mode = active BDM mode 4 July 2002 Added 1L86D to Table "Assigned Part ID numbers" Corrected MEMSIZ1 value in Table "Memory size registers" Subsection "Device Memory Map: Removed Flash mapping from $0000 to $3FFF. Table "Signal Properties": Added column "Internal Pull Resistor". Preface Table "Document References": Changed to full naming for each block. Table "Interrupt Vector Locations", Column "Local Enable": Corrected several register and bit names. 30 July 2002 Figure "Recommended PCB Layout for 80QFP: Corrected VREGEN pin position Thermal values for junction to board and package BGND pin pull-up Part Order Information Global Register Table Chip Configuration Summary Modified mode of Operations chapter Section "Printed Circuit Board Layout Proposals": added Pierce Oscillator examples for 112LQFP and 80QFP V01.02 V01.03 V01.04 V01.05 6 MAR 2002 4 June 2002 4 July 2002 30 July 2002 MC9S12DJ64 Device User Guide — V01.20 Version Revision Effective Number Date Date V01.06 20 Aug. 2002 Author Description of Changes 20 Aug. 2002 NVM electricals updated Subsection "Detailed Register Map: Address corrections Preface, Table "Document references": added OSC User Guide New section "Oscillator (OSC) Block Description" V01.07 20 Sept. 2002 20 Sept. 2002 Electrical Characteristics: -> Section "General": removed preliminary disclaimer ->Table "Supply Current Characteristics": changed max Run IDD from 65mA to 50mA changes max Wait IDD from 40mA to 30mA changed max Stop IDD from 50uA to 100uA Section HCS12 Core Block Description: mentioned alternate clock of BDM to be equivalent to oscillator clock V01.08 25 Sept. 2002 25 Sept. 2002 Table "5V I/O Characteristics": Corrected Input Leakage Current to +/- 1 uA Section "Part ID assignment": Located on start of next page for better readability V01.09 10 Oct. 2002 10 Oct. 2002 Added MC9S12A64 derivative to cover sheet and "Derivative Differences" Table Corrected in footnote of Table "PLL Characteristics": fOSC = 4MHz V01.10 8 Nov. 2002 8 Nov. 2002 Renamed "Preface" section to "Derivative Differences and Document references". Added details for derivatives missing CAN0 and/or BDLC Table "ESD and Latch-up Test Conditions": changed pulse numbers from 3 to 1 Table "ESD and Latch-Up Protection Characteristics": changed parameter classification from C to T Table "5V I/O Characteristics": removed foot note from "Input Leakage Current" Table " Supply Current Characteristics": updated Stop and Pseudo Stop currents V01.11 24 Jan. 2003 24 Jan. 2003 Subsection "Detailed Register Map": Corrected several entries Subsection "Unsecuring the Microcontroller": Added more details Table "Operating Conditions": improved footnote 1 wording, applied footnote 1 to PLL Supply Voltage. 31 Mar. 2003 Tables "SPI Master/Slave Mode Timing Characteristics: Corrected Operating Frequency Appendix ’NVM, Flash and EEPROM’: Replaced ’burst programming’ by ’row programming Table "Operating Conditions": corrected minimum bus frequency to 0.25MHz Section "Feature List": ECT features changed to "Four pulse accumulators ..." V01.12 31 Mar. 2003 V01.13 20 May 2003 20 May 2003 Replaced references to HCS12 Core Guide by the individual HCS12 Block guides Table "Signal Properties" corrected pull resistor reset state for PE7 and PE4-PE2. Table "Absolute Maximum Ratings" corrected footnote on clamp of TEST pin. V01.14 10 June 2003 10 June 2003 Added cycle definition to "CPU 12 Block Description". Added register reset values to MMC and MEBI block descriptions. Diagram "Clock Connections": Connect Bus Clock to HCS12 Core 3 MC9S12DJ64 Device User Guide — V01.20 Version Revision Effective Number Date Date Author Description of Changes V01.15 22 July 2003 22 July 2003 Mentioned "S12 LRAE" bootloader in Flash section Section Document References: corrected S12 CPU document reference V01.16 24 Feb. 2004 24 Feb. 2004 Added 3L86D maskset with corresponding Part ID Table Oscillator Characteristics: Added more details for EXTAL pin V01.17 21 May 2004 21 May 2004 Added 4L86D maskset with corresponding Part ID Table "MC9S12DJ64 Memory Map out of Reset": corrected $1000 $3fff memory in single chip modes to "unimplemented". V01.18 13 July 2004 13 July 2004 Added MC9S12D32 and MC9S12A32 V01.19 2 Sept. 2004 2 Sept. 2004 Appendix, Table "Oscillator Characteristics": changed item 13 VIH,EXTAL min value from 0.7*VDDPLL to 0.75*VDDPLL item 14 VIL,EXTAL max value from 0.3*VDDPLL to 0.25*VDDPLL V01.20 6 April 2005 6 April 2005 Table "Assigned Part ID Numbers": added mask set number 0M89C Table "NVM Reliability Characteristics": added footnote concerning data retention 4 MC9S12DJ64 Device User Guide — V01.20 Table of Contents Section 1 Introduction 1.1 1.2 1.3 1.4 1.5 1.5.1 1.6 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 Device Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25 Detailed Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 Part ID Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49 Section 2 Signal Description 2.1 Device Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51 2.2 Signal Properties Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53 2.3 Detailed Signal Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56 2.3.1 EXTAL, XTAL — Oscillator Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56 2.3.2 RESET — External Reset Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56 2.3.3 TEST — Test Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56 2.3.4 VREGEN — Voltage Regulator Enable Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56 2.3.5 XFC — PLL Loop Filter Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56 2.3.6 BKGD / TAGHI / MODC — Background Debug, Tag High, and Mode Pin . . . . . . . .56 2.3.7 PAD15 / AN15 / ETRIG1 — Port AD Input Pin of ATD1 . . . . . . . . . . . . . . . . . . . . . .57 2.3.8 PAD[14:08] / AN[14:08] — Port AD Input Pins ATD1 . . . . . . . . . . . . . . . . . . . . . . . .57 2.3.9 PAD07 / AN07 / ETRIG0 — Port AD Input Pin of ATD0 . . . . . . . . . . . . . . . . . . . . . .57 2.3.10 PAD[06:00] / AN[06:00] — Port AD Input Pins of ATD0 . . . . . . . . . . . . . . . . . . . . . .57 2.3.11 PA[7:0] / ADDR[15:8] / DATA[15:8] — Port A I/O Pins . . . . . . . . . . . . . . . . . . . . . . .57 2.3.12 PB[7:0] / ADDR[7:0] / DATA[7:0] — Port B I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . .57 2.3.13 PE7 / NOACC / XCLKS — Port E I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57 2.3.14 PE6 / MODB / IPIPE1 — Port E I/O Pin 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59 2.3.15 PE5 / MODA / IPIPE0 — Port E I/O Pin 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59 2.3.16 PE4 / ECLK — Port E I/O Pin 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59 2.3.17 PE3 / LSTRB / TAGLO — Port E I/O Pin 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59 2.3.18 PE2 / R/W — Port E I/O Pin 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59 2.3.19 PE1 / IRQ — Port E Input Pin 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59 2.3.20 PE0 / XIRQ — Port E Input Pin 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59 5 MC9S12DJ64 Device User Guide — V01.20 2.3.21 2.3.22 2.3.23 2.3.24 2.3.25 2.3.26 2.3.27 2.3.28 2.3.29 2.3.30 2.3.31 2.3.32 2.3.33 2.3.34 2.3.35 2.3.36 2.3.37 2.3.38 2.3.39 2.3.40 2.3.41 2.3.42 2.3.43 2.3.44 2.3.45 2.3.46 2.3.47 2.3.48 2.3.49 2.3.50 2.3.51 2.3.52 2.3.53 2.3.54 2.3.55 2.3.56 6 PH7 / KWH7 — Port H I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59 PH6 / KWH6 — Port H I/O Pin 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60 PH5 / KWH5 — Port H I/O Pin 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60 PH4 / KWH4 — Port H I/O Pin 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60 PH3 / KWH3 — Port H I/O Pin 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60 PH2 / KWH2 — Port H I/O Pin 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60 PH1 / KWH1 — Port H I/O Pin 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60 PH0 / KWH0 — Port H I/O Pin 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60 PJ7 / KWJ7 / SCL / TXCAN0 — PORT J I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . . . .60 PJ6 / KWJ6 / SDA / RXCAN0 — PORT J I/O Pin 6 . . . . . . . . . . . . . . . . . . . . . . . . . .61 PJ[1:0] / KWJ[1:0] — Port J I/O Pins [1:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61 PK7 / ECS / ROMCTL — Port K I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61 PK[5:0] / XADDR[19:14] — Port K I/O Pins [5:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . .61 PM7 — Port M I/O Pin 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61 PM6 — Port M I/O Pin 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61 PM5 / TXCAN0 / SCK0 — Port M I/O Pin 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61 PM4 / RXCAN0 / MOSI0 — Port M I/O Pin 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61 PM3 / TXCAN0 / SS0 — Port M I/O Pin 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62 PM2 / RXCAN0 / MISO0 — Port M I/O Pin 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62 PM1 / TXCAN0 / TXB — Port M I/O Pin 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62 PM0 / RXCAN0 / RXB — Port M I/O Pin 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62 PP7 / KWP7 / PWM7 — Port P I/O Pin 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62 PP6 / KWP6 / PWM6 — Port P I/O Pin 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62 PP5 / KWP5 / PWM5 — Port P I/O Pin 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62 PP4 / KWP4 / PWM4 — Port P I/O Pin 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62 PP3 / KWP3 / PWM3 — Port P I/O Pin 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63 PP2 / KWP2 / PWM2 — Port P I/O Pin 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63 PP1 / KWP1 / PWM1 — Port P I/O Pin 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63 PP0 / KWP0 / PWM0 — Port P I/O Pin 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63 PS7 / SS0 — Port S I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63 PS6 / SCK0 — Port S I/O Pin 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63 PS5 / MOSI0 — Port S I/O Pin 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63 PS4 / MISO0 — Port S I/O Pin 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63 PS3 / TXD1 — Port S I/O Pin 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63 PS2 / RXD1 — Port S I/O Pin 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64 PS1 / TXD0 — Port S I/O Pin 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64 MC9S12DJ64 Device User Guide — V01.20 2.3.57 PS0 / RXD0 — Port S I/O Pin 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64 2.3.58 PT[7:0] / IOC[7:0] — Port T I/O Pins [7:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64 2.4 Power Supply Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64 2.4.1 VDDX, VSSX — Power & Ground Pins for I/O Drivers . . . . . . . . . . . . . . . . . . . . . . .65 2.4.2 VDDR, VSSR — Power & Ground Pins for I/O Drivers & for Internal Voltage Regulator 65 2.4.3 VDD1, VDD2, VSS1, VSS2 — Internal Logic Power Supply Pins . . . . . . . . . . . . . . .65 2.4.4 VDDA, VSSA — Power Supply Pins for ATD0/ATD1 and VREG . . . . . . . . . . . . . . .65 2.4.5 VRH, VRL — ATD Reference Voltage Input Pins . . . . . . . . . . . . . . . . . . . . . . . . . . .66 2.4.6 VDDPLL, VSSPLL — Power Supply Pins for PLL . . . . . . . . . . . . . . . . . . . . . . . . . . .66 2.4.7 VREGEN — On Chip Voltage Regulator Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . .66 Section 3 System Clock Description 3.1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67 Section 4 Modes of Operation 4.1 4.2 4.3 4.3.1 4.3.2 4.3.3 4.4 4.4.1 4.4.2 4.4.3 4.4.4 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69 Chip Configuration Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69 Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70 Securing the Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70 Operation of the Secured Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70 Unsecuring the Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71 Stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71 Pseudo Stop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71 Wait . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71 Run. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72 Section 5 Resets and Interrupts 5.1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73 5.2 Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73 5.2.1 Vector Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73 5.3 Effects of Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74 5.3.1 I/O pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74 5.3.2 Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75 Section 6 HCS12 Core Block Description 7 MC9S12DJ64 Device User Guide — V01.20 6.1 6.1.1 6.2 6.2.1 6.3 6.3.1 6.4 6.5 6.5.1 6.6 CPU12 Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77 Device-specific information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77 HCS12 Module Mapping Control (MMC) Block Description . . . . . . . . . . . . . . . . . . . . . .77 Device-specific information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77 HCS12 Multiplexed External Bus Interface (MEBI) Block Description . . . . . . . . . . . . . .77 Device-specific information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77 HCS12 Interrupt (INT) Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78 HCS12 Background Debug (BDM) Block Description . . . . . . . . . . . . . . . . . . . . . . . . . .78 Device-specific information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78 HCS12 Breakpoint (BKP) Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78 Section 7 Clock and Reset Generator (CRG) Block Description 7.1 Device-specific information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78 Section 8 Oscillator (OSC) Block Description 8.1 Device-specific information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78 Section 9 Enhanced Capture Timer (ECT) Block Description Section 10 Analog to Digital Converter (ATD) Block Description Section 11 Inter-IC Bus (IIC) Block Description Section 12 Serial Communications Interface (SCI) Block Description Section 13 Serial Peripheral Interface (SPI) Block Description Section 14 J1850 (BDLC) Block Description Section 15 Pulse Width Modulator (PWM) Block Description Section 16 Flash EEPROM 64K Block Description Section 17 EEPROM 1K Block Description Section 18 RAM Block Description Section 19 MSCAN Block Description 8 MC9S12DJ64 Device User Guide — V01.20 Section 20 Port Integration Module (PIM) Block Description Section 21 Voltage Regulator (VREG) Block Description Section 22 Printed Circuit Board Layout Proposals Appendix A Electrical Characteristics A.1 General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87 A.1.1 Parameter Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87 A.1.2 Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87 A.1.3 Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88 A.1.4 Current Injection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88 A.1.5 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89 A.1.6 ESD Protection and Latch-up Immunity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90 A.1.7 Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90 A.1.8 Power Dissipation and Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .91 A.1.9 I/O Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93 A.1.10 Supply Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94 A.2 ATD Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97 A.2.1 ATD Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97 A.2.2 Factors influencing accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97 A.2.3 ATD accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99 A.3 NVM, Flash and EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101 A.3.1 NVM timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101 A.3.2 NVM Reliability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103 A.4 Voltage Regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105 A.5 Reset, Oscillator and PLL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107 A.5.1 Startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107 A.5.2 Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108 A.5.3 Phase Locked Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109 A.6 MSCAN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113 A.7 SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115 A.7.1 Master Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115 A.7.2 Slave Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117 A.8 External Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119 A.8.1 General Muxed Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119 9 MC9S12DJ64 Device User Guide — V01.20 Appendix B Package Information B.1 B.2 B.3 10 General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123 112-pin LQFP package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124 80-pin QFP package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125 MC9S12DJ64 Device User Guide — V01.20 List of Figures Figure 0-1 Figure 1-1 Figure 1-2 Figure 1-3 Figure 2-1 Figure 2-2 Figure 2-3 Figure 2-4 Figure 2-5 Figure 2-6 Figure 3-1 Figure 22-1 Figure 22-2 Figure 22-3 Figure 22-4 Figure A-1 Figure A-2 Figure A-3 Figure A-4 Figure A-5 Figure A-6 Figure A-7 Figure A-8 Figure A-9 Figure B-1 Figure B-2 Order Partnumber Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 MC9S12DJ64 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 MC9S12DJ64 Memory Map out of Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 MC9S12D32 Memory Map out of Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29 Pin Assignments in 112-pin LQFP for MC9S12DJ64 . . . . . . . . . . . . . . . . . . . . .52 Pin Assignments in 80-pin QFP for MC9S12DJ64 and MC9S12D32 . . . . . . . . .53 PLL Loop Filter Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56 Colpitts Oscillator Connections (PE7=1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58 Pierce Oscillator Connections (PE7=0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58 External Clock Connections (PE7=0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58 Clock Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67 Recommended PCB Layout 112LQFP Colpitts Oscillator. . . . . . . . . . . . . . . . . .82 Recommended PCB Layout for 80QFP Colpitts Oscillator . . . . . . . . . . . . . . . . .83 Recommended PCB Layout for 112LQFP Pierce Oscillator . . . . . . . . . . . . . . . .84 Recommended PCB Layout for 80QFP Pierce Oscillator . . . . . . . . . . . . . . . . . .85 ATD Accuracy Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Basic PLL functional diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Jitter Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Maximum bus clock jitter approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 SPI Master Timing (CPHA = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 SPI Master Timing (CPHA =1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 SPI Slave Timing (CPHA = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 SPI Slave Timing (CPHA =1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 General External Bus Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 112-pin LQFP mechanical dimensions (case no. 987) . . . . . . . . . . . . . . . . . . 124 80-pin QFP Mechanical Dimensions (case no. 841B) . . . . . . . . . . . . . . . . . . . 125 11 MC9S12DJ64 Device User Guide — V01.20 12 MC9S12DJ64 Device User Guide — V01.20 List of Tables Table 0-1 Derivative Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 Table 0-2 Document References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 Table 1-1 Device Memory Map for MC9S12DJ64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25 Table 1-2 Device Memory Map for MC9S12D32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 $0000 - $000F MEBI map 1 of 3 (HCS12 Multiplexed External Bus Interface) ................30 $0010 - $0014 MMC map 1 of 4 (HCS12 Module Mapping Control) ...............................30 $0015 - $0016 INT map 1 of 2 (HCS12 Interrupt) ............................................................31 $0017 - $0019 Reserved ..................................................................................................31 $001A - $001B Device ID Register (Table 1-4) ................................................................31 $001C - $001D MMC map 3 of 4 (HCS12 Module Mapping Control, Table 1-5) ..............31 $001E - $001E MEBI map 2 of 3 (HCS12 Multiplexed External Bus Interface) ................31 $001F - $001F INT map 2 of 2 (HCS12 Interrupt) ............................................................32 $0020 - $0027 Reserved ..................................................................................................32 $0028 - $002F BKP (HCS12 Breakpoint) .........................................................................32 $0030 - $0031 MMC map 4 of 4 (HCS12 Module Mapping Control) ...............................32 $0032 - $0033 MEBI map 3 of 3 (HCS12 Multiplexed External Bus Interface) ................32 $0034 - $003F CRG (Clock and Reset Generator) ..........................................................33 $0040 - $007F ECT (Enhanced Capture Timer 16 Bit 8 Channels) .................................33 $0080 - $009F ATD0 (Analog to Digital Converter 10 Bit 8 Channel) ..............................36 $00A0 - $00C7 PWM (Pulse Width Modulator 8 Bit 8 Channel) .......................................37 $00C8 - $00CF SCI0 (Asynchronous Serial Interface) ......................................................39 $00D0 - $00D7 SCI1 (Asynchronous Serial Interface) ......................................................39 $00D8 - $00DF SPI0 (Serial Peripheral Interface) ............................................................40 $00E0 - $00E7 IIC (Inter IC Bus) ......................................................................................40 $00E8 - $00EF BDLC (Bytelevel Data Link Controller J1850) ..........................................41 $00F0 - $00FF Reserved ..................................................................................................41 $0100 - $010F Flash Control Register (fts64k) ................................................................41 $0110 - $011B EEPROM Control Register (eets1k) ........................................................42 $011C - $011F Reserved for RAM Control Register ........................................................42 $0120 - $013F ATD1 (Analog to Digital Converter 10 Bit 8 Channel) ..............................43 $0140 - $017F CAN0 (Freescale Scalable CAN - FSCAN) ..............................................44 Table 1-3 Detailed FSCAN Foreground Receive and Transmit Buffer Layout . . . . . . . . . . .45 $0180 - $023F Reserved ..................................................................................................46 13 MC9S12DJ64 Device User Guide — V01.20 $0240 - $027F PIM (Port Integration Module) ..................................................................46 $0280 - $03FF Reserved ..................................................................................................48 Table 1-4 Assigned Part ID Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49 Table 1-5 Memory size registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49 Table 2-1 Signal Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54 Table 2-2 MC9S12DJ64 Power and Ground Connection Summary . . . . . . . . . . . . . . . . . . .64 Table 4-1 Mode Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69 Table 4-2 Clock Selection Based on PE7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69 Table 4-3 Voltage Regulator VREGEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70 Table 5-1 Interrupt Vector Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73 Table 22-1 Suggested External Component Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81 Table A-1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89 Table A-2 ESD and Latch-up Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90 Table A-3 ESD and Latch-Up Protection Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .90 Table A-4 Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91 Table A-5 Thermal Package Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93 Table A-6 5V I/O Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94 Table A-7 Supply Current Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95 Table A-8 ATD Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97 Table A-9 ATD Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98 Table A-10 ATD Conversion Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99 Table A-11 NVM Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102 Table A-12 NVM Reliability Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103 Table A-13 Voltage Regulator Recommended Load Capacitances . . . . . . . . . . . . . . . . . . .105 Table A-14 Startup Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107 Table A-15 Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108 Table A-16 PLL Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112 Table A-17 MSCAN Wake-up Pulse Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113 Table A-18 SPI Master Mode Timing Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116 Table A-19 SPI Slave Mode Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118 Table A-20 Expanded Bus Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121 14 MC9S12DJ64 Device User Guide — V01.20 Derivative Differences and Document References Derivative Differences Table 0-1 shows the availability of peripheral modules on the various derivatives. For details about the compatibility within the MC9S12D-Family refer also to engineering bulletin EB386. Table 0-1 Derivative Differences Generic device MC9S12DJ64 MC9S12D64 MC9S12A64 MC9S12D32 MC9S12A32 CAN0 1 1 0 1 0 J1850/BDLC 1 0 0 0 0 Packages 112LQFP, 80QFP 112LQFP, 80QFP 112LQFP, 80QFP 80QFP 80QFP Mask Set L86D L86D L86D L86D L86D Temp Options M, V, C M, V, C C M, V, C C Package Codes PV, FU PV, FU PV, FU FU FU Note An errata exists contact Sales office An errata exists contact Sales office An errata exists contact Sales office An errata exists contact Sales office An errata exists contact Sales office MC9S12 DJ64 C FU Package Option Temperature Option Device Title Controller Family Temperature Options C = -40˚C to 85˚C V = -40˚C to 105˚C M = -40˚C to 125˚C Package Options FU = 80QFP PV = 112LQFP Figure 0-1 Order Partnumber Example The following items should be considered when using a derivative. • • Registers – Do not write or read CAN0 registers (after reset: address range $0140 - $017F), if using a derivative without CAN0 (see Table 0-1). – Do not write or read BDLC registers (after reset: address range $00E8 - $00EF), if using a derivative without BDLC (see Table 0-1). Interrupts – Fill the four CAN0 interrupt vectors ($FFB0 - $FFB7) according to your coding policies for unused interrupts, if using a derivative without CAN0 (see Table 0-1). – Fill the BDLC interrupt vector ($FFC2, $FFC3) according to your coding policies for unused interrupts, if using a derivative without BDLC (see Table 0-1). 15 MC9S12DJ64 Device User Guide — V01.20 • • Ports – The CAN0 pin functionality (TXCAN0, RXCAN0) is not available on port PJ7, PJ6, PM5, PM4, PM3, PM2, PM1 and PM0, if using a derivative without CAN0 (see Table 0-1). – The BDLC pin functionality (TXB, RXB) is not available on port PM1 and PM0, if using a derivative without BDLC (see Table 0-1). – Do not write MODRR1 and MODRR0 Bit of Module Routing Register (PIM_9DJ64 Block User Guide), if using a derivative without CAN0 (see Table 0-1). Pins not available in 80 pin QFP package – Port H In order to avoid floating nodes the ports should be either configured as outputs by setting the data direction register (DDRH at Base+$0262) to $FF, or enabling the pull resistors by writing a $FF to the pull enable register (PERH at Base+$0264). – Port J[1:0] Port J pull-up resistors are enabled out of reset on all four pins (7:6 and 1:0). Therefore care must be taken not to disable the pull enables on PJ[1:0] by clearing the bits PERJ1 and PERJ0 at Base+$026C. – Port K Port K pull-up resistors are enabled out of reset, i.e. Bit 7 = PUKE = 1 in the register PUCR at Base+$000C. Therefor care must be taken not to clear this bit. – Port M[7:6] PM7:6 must be configured as outputs or their pull resistors must be enabled to avoid floating inputs. – Port P6 PP6 must be configured as output or its pull resistor must be enabled to avoid a floating input. – Port S[7:4] PS7:4 must be configured as outputs or their pull resistors must be enabled to avoid floating inputs. – PAD[15:8] (ATD1 channels) Out of reset the ATD1 is disabled preventing current flows in the pins. Do not modify the ATD1 registers! Document References The Device User Guide provides information about the MC9S12DJ64 device made up of standard HCS12 blocks and the HCS12 processor core. This document is part of the customer documentation. A complete set of device manuals also includes all the individual Block Guides of the implemented modules. In a effort to reduce redundancy all module specific information is located only in the respective Block Guide. If applicable, special implementation details of the module are given in the block description sections of this document. See Table 0-2 for names and versions of the referenced documents throughout the Device User Guide. 16 MC9S12DJ64 Device User Guide — V01.20 Table 0-2 Document References Versi on User Guide Document Order Number HCS12 CPU Reference Manual V02 S12CPUV2/D HCS12 Module Mapping Control (MMC) Block Guide V04 S12MMCV4/D HCS12 Multiplexed External Bus Interface (MEBI) Block Guide V03 S12MEBIV3/D HCS12 Interrupt (INT) Block Guide V01 S12INTV1/D HCS12 Background Debug (BDM) Block Guide V04 S12BDMV4/D HCS12 Breakpoint (BKP) Block Guide V01 S12BKPV1/D Clock and Reset Generator (CRG) Block User Guide V04 S12CRGV4/D Oscillator (OSC) Block User Guide V02 S12OSCV2/D Enhanced Capture Timer 16 Bit 8 Channel (ECT_16B8C) Block User Guide V01 S12ECT16B8CV1/D Analog to Digital Converter 10 Bit 8 Channel (ATD_10B8C) Block User Guide V02 S12ATD10B8CV2/D Inter IC Bus (IIC) Block User Guide V02 S12IICV2/D Asynchronous Serial Interface (SCI) Block User Guide V02 S12SCIV2/D Serial Peripheral Interface (SPI) Block User Guide V02 S12SPIV2/D Pulse Width Modulator 8 Bit 8 Channel (PWM_8B8C) Block User Guide V01 S12PWM8B8CV1/D 64K Byte Flash (FTS64K) Block User Guide V01 S12FTS64KV1/D 1K Byte EEPROM (EETS1K) Block User Guide V01 S12EETS1KV1/D Byte Level Data Link Controller -J1850 (BDLC) Block User Guide V01 S12BDLCV1/D Freescale Scalable CAN (MSCAN) Block User Guide V02 S12MSCANV2/D Voltage Regulator (VREG) Block User Guide V01 S12VREGV1/D Port Integration Module (PIM_9DJ64) Block User Guide V01 S12PIM9DJ64V1/D 17 MC9S12DJ64 Device User Guide — V01.20 18 MC9S12DJ64 Device User Guide — V01.20 Section 1 Introduction 1.1 Overview The MC9S12DJ64 microcontroller unit (MCU) is a 16-bit device composed of standard on-chip peripherals including a 16-bit central processing unit (HCS12 CPU), 64K bytes of Flash EEPROM, 4K bytes of RAM, 1K bytes of EEPROM, two asynchronous serial communications interfaces (SCI), one serial peripheral interfaces (SPI), an 8-channel IC/OC enhanced capture timer, two 8-channel, 10-bit analog-to-digital converters (ADC), an 8-channel pulse-width modulator (PWM), a digital Byte Data Link Controller (BDLC), 29 discrete digital I/O channels (Port A, Port B, Port K and Port E), 20 discrete digital I/O lines with interrupt and wakeup capability, a CAN 2.0 A, B software compatible modules (MSCAN12), and an Inter-IC Bus. The MC9S12DJ64 has full 16-bit data paths throughout. However, the external bus can operate in an 8-bit narrow mode so single 8-bit wide memory can be interfaced for lower cost systems. The inclusion of a PLL circuit allows power consumption and performance to be adjusted to suit operational requirements. 1.2 Features • HCS12 Core – 16-bit HCS12 CPU i. Upward compatible with M68HC11 instruction set ii. Interrupt stacking and programmer’s model identical to M68HC11 iii. Instruction queue iv. Enhanced indexed addressing – MEBI (Multiplexed External Bus Interface) – MMC (Module Mapping Control) – INT (Interrupt control) – BKP (Breakpoints) – BDM (Background Debug Mode) • CRG (low current Colpitts or Pierce oscillator, PLL, reset, clocks, COP watchdog, real time interrupt, clock monitor) • 8-bit and 4-bit ports with interrupt functionality • – Digital filtering – Programmable rising or falling edge trigger Memory – 64K Flash EEPROM – 1K byte EEPROM 19 MC9S12DJ64 Device User Guide — V01.20 – • • • • • • Two 8-channel Analog-to-Digital Converters – 10-bit resolution – External conversion trigger capability 1M bit per second, CAN 2.0 A, B software compatible module – Five receive and three transmit buffers – Flexible identifier filter programmable as 2 x 32 bit, 4 x 16 bit or 8 x 8 bit – Four separate interrupt channels for Rx, Tx, error and wake-up – Low-pass filter wake-up function – Loop-back for self test operation Enhanced Capture Timer – 16-bit main counter with 7-bit prescaler – 8 programmable input capture or output compare channels – Four 8-bit or two 16-bit pulse accumulators 8 PWM channels – Programmable period and duty cycle – 8-bit 8-channel or 16-bit 4-channel – Separate control for each pulse width and duty cycle – Center-aligned or left-aligned outputs – Programmable clock select logic with a wide range of frequencies – Fast emergency shutdown input – Usable as interrupt inputs Serial interfaces – Two asynchronous Serial Communications Interfaces (SCI) – Synchronous Serial Peripheral Interface (SPI) Byte Data Link Controller (BDLC) – • • 20 4K byte RAM SAE J1850 Class B Data Communications Network Interface Compatible and ISO Compatible for Low-Speed (<125 Kbps) Serial Data Communications in Automotive Applications Inter-IC Bus (IIC) – Compatible with I2C Bus standard – Multi-master operation – Software programmable for one of 256 different serial clock frequencies 112-Pin LQFP or 80 QFP package MC9S12DJ64 Device User Guide — V01.20 – I/O lines with 5V input and drive capability – 5V A/D converter inputs – Operation at 50MHz equivalent to 25MHz Bus Speed – Development support – Single-wire background debug™ mode (BDM) – On-chip hardware breakpoints 1.3 Modes of Operation User modes • • Normal and Emulation Operating Modes – Normal Single-Chip Mode – Normal Expanded Wide Mode – Normal Expanded Narrow Mode – Emulation Expanded Wide Mode – Emulation Expanded Narrow Mode Special Operating Modes – Special Single-Chip Mode with active Background Debug Mode – Special Test Mode (Freescale use only) – Special Peripheral Mode (Freescale use only) Low power modes • Stop Mode • Pseudo Stop Mode • Wait Mode 21 MC9S12DJ64 Device User Guide — V01.20 1.4 Block Diagram Figure 1-1 shows a block diagram of the MC9S12DJ64 device. 22 MC9S12DJ64 Device User Guide — V01.20 Figure 1-1 MC9S12DJ64 Block Diagram PLL 2.5V VDDPLL VSSPLL ADDR7 ADDR6 ADDR5 ADDR4 ADDR3 ADDR2 ADDR1 ADDR0 RXB TXB RXCAN CAN0 TXCAN IIC I/O Driver 5V VDDX VSSX A/D Converter 5V & Voltage Regulator Reference VDDA VSSA Voltage Regulator 5V & I/O VDDR VSSR PWM SDA SCL KWJ0 KWJ1 KWJ6 KWJ7 PWM0 PWM1 PWM2 PWM3 PWM4 PWM5 PWM6 PWM7 KWP0 KWP1 KWP2 KWP3 KWP4 KWP5 KWP6 KWP7 KWH0 KWH1 KWH2 KWH3 KWH4 KWH5 KWH6 KWH7 PM0 PM1 PM2 PM3 PM4 PM5 PM6 PM7 PJ0 PJ1 PJ6 PJ7 PP0 PP1 PP2 PP3 PP4 PP5 PP6 PP7 XADDR14 XADDR15 XADDR16 XADDR17 XADDR18 XADDR19 ECS Signals shown in Bold are not available on the 80 Pin Package DATA7 DATA6 DATA5 DATA4 DATA3 DATA2 DATA1 DATA0 Internal Logic 2.5V VDD1,2 VSS1,2 BDLC (J1850) AD1 PTB PB7 PB6 PB5 PB4 PB3 PB2 PB1 PB0 PTA PTK Multiplexed Narrow Bus DDRB DATA7 DATA6 DATA5 DATA4 DATA3 DATA2 DATA1 DATA0 Multiplexed Wide Bus DDRA DATA15 ADDR15 PA7 DATA14 ADDR14 PA6 DATA13 ADDR13 PA5 DATA12 ADDR12 PA4 DATA11 ADDR11 PA3 DATA10 ADDR10 PA2 DATA9 ADDR9 PA1 DATA8 ADDR8 PA0 SPI0 MISO MOSI SCK SS PTT Multiplexed Address/Data Bus PTS SCI1 PS0 PS1 PS2 PS3 PS4 PS5 PS6 PS7 PTM RXD TXD RXD TXD SCI0 TEST PT0 PT1 PT2 PT3 PT4 PT5 PT6 PT7 PTJ Enhanced Capture Timer PK0 PK1 PK2 PK3 PK4 PK5 PK7 PTP XIRQ IRQ System R/W Integration LSTRB ECLK MODA MODB NOACC/XCLKS IOC0 IOC1 IOC2 IOC3 IOC4 IOC5 IOC6 IOC7 DDRK Periodic Interrupt COP Watchdog Clock Monitor Breakpoints VRH VRL VDDA VSSA PAD08 PAD09 PAD10 PAD11 PAD12 PAD13 PAD14 PAD15 PH0 PH1 PH2 PTH PTE PE0 PE1 PE2 PE3 PE4 PE5 PE6 PE7 Clock and Reset Generation Module PIX0 PIX1 PIX2 PIX3 PIX4 PIX5 ECS DDRT PLL PPAGE DDRS XFC VDDPLL VSSPLL EXTAL XTAL RESET CPU12 DDRM Single-wire Background Debug Module DDRE BKGD Voltage Regulator AN0 AN1 AN2 AN3 AN4 AN5 AN6 AN7 PAD00 PAD01 PAD02 PAD03 PAD04 PAD05 PAD06 PAD07 DDRJ VDDR VSSR VREGEN VDD1,2 VSS1,2 VRH VRL VDDA VSSA DDRP AN0 AN1 AN2 AN3 AN4 AN5 AN6 AN7 1K Byte EEPROM ATD1 DDRH 4K Byte RAM VRH VRL VDDA VSSA Module to Port Routing ATD0 AD0 64K Byte Flash EEPROM PH3 PH4 PH5 PH6 PH7 23 MC9S12DJ64 Device User Guide — V01.20 24 MC9S12DJ64 Device User Guide — V01.20 1.5 Device Memory Map Table 1-1 and Figure 1-2 show the device memory map of the MC9S12DJ64 after reset. The 1K EEPROM is mapped twice in a 2K address space. Note that after reset the bottom 1k of the EEPROM ($0000 - $03FF) are hidden by the register space, and the 1K $0400 - $07FF is hidden by the RAM. Table 1-1 Device Memory Map for MC9S12DJ64 Address Module $0000 - $000F HCS12 Multiplexed External Bus Interface $0010 - $0014 HCS12 Module Mapping Control Size (Bytes) 16 5 $0015 - $0016 HCS12 Interrupt 2 $0017 - $0019 Reserved 3 $001A - $001B Device ID register (PARTID) 2 $001C - $001D HCS12 Module Mapping Control 2 $001E HCS12 Multiplexed External Bus Interface 1 $001F HCS12 Interrupt 1 $0020 - $0027 Reserved 8 $0028 - $002F HCS12 Breakpoint Module 8 $0030 - $0031 HCS12 Module Mapping Control 2 $0032 - $0033 HCS12 Multiplexed External Bus Interface 2 $0034 - $003F Clock and Reset Generator (PLL, RTI, COP) 12 $0040 - $007F Enhanced Capture Timer 16-bit 8 channels 64 $0080 - $009F Analog to Digital Converter 10-bit 8 channels (ATD0) $00A0 - $00C7 Pulse Width Modulator 8-bit 8 channels (PWM) 32 40 $00C8 - $00CF Serial Communications Interface 0 (SCI0) 8 $00D0 - $00D7 Serial Communications Interface 0 (SCI1) 8 $00D8 - $00DF Serial Peripheral Interface (SPI0) 8 $00E0 - $00E7 Inter IC Bus 8 $00E8 - $00EF Byte Data Link Controller (BDLC) 8 $00F0 - $00FF Reserved 16 $0100- $010F Flash Control Register 16 $0110 - $011B EEPROM Control Register 12 $011C - $011F Reserved $0120 - $013F Analog to Digital Converter 10-bit 8 channels (ATD1) $0140 - $017F Freescale Scalable Can (CAN0) $0180 - $023F Reserved 4 32 64 192 $0240 - $027F Port Integration Module (PIM) $0280 - $03FF Reserved $0000 - $07FF EEPROM array 1k Array mapped twice in the address space 2048 $0000 - $0FFF RAM array 4096 $4000 - $7FFF Fixed Flash EEPROM array incl. 0.5K, 1K, 2K or 4K Protected Sector at start $8000 - $BFFF Flash EEPROM Page Window 64 384 16384 16384 25 MC9S12DJ64 Device User Guide — V01.20 Table 1-1 Device Memory Map for MC9S12DJ64 Address Module Fixed Flash EEPROM array $C000 - $FFFF incl. 0.5K, 1K, 2K or 4K Protected Sector at end and 256 bytes of Vector Space at $FF80 - $FFFF 26 Size (Bytes) 16384 MC9S12DJ64 Device User Guide — V01.20 Figure 1-2 MC9S12DJ64 Memory Map out of Reset $0000 $0000 $0400 $03FF $0800 $1000 REGISTERS (Mappable to any 2K Boundary within the first 32K) $0000 1K Bytes EEPROM $07FF (Mappable to any 2K Boundary; 1K mapped two times in the 2K address space) $0000 4K Bytes RAM (Mappable to any 4K Boundary) Unimplemented Unimplemented $0FFF $4000 $4000 16K Fixed Flash Page $3E = 62 (This is dependant on the state of the ROMHM bit) $7FFF $8000 $8000 16K Page Window 4 x 16K Flash EEPROM pages EXTERN $BFFF $C000 $C000 16K Fixed Flash Page $3F = 63 $FFFF $FF00 BDM (if active) $FF00 VECTORS VECTORS VECTORS EXPANDED NORMAL SINGLE CHIP SPECIAL SINGLE CHIP $FFFF $FFFF 27 MC9S12DJ64 Device User Guide — V01.20 Table 1-2 Device Memory Map for MC9S12D32 Address Module $0000 - $000F HCS12 Multiplexed External Bus Interface $0010 - $0014 HCS12 Module Mapping Control 5 $0015 - $0016 HCS12 Interrupt 2 $0017 - $0019 Reserved 3 $001A - $001B Device ID register (PARTID) 2 $001C - $001D HCS12 Module Mapping Control 16 2 $001E HCS12 Multiplexed External Bus Interface 1 $001F HCS12 Interrupt 1 Reserved 8 $0020 - $0027 $0028 - $002F HCS12 Breakpoint Module 8 $0030 - $0031 HCS12 Module Mapping Control 2 $0032 - $0033 HCS12 Multiplexed External Bus Interface $0034 - $003F Clock and Reset Generator (PLL, RTI, COP) 12 $0040 - $007F Enhanced Capture Timer 16-bit 8 channels 64 $0080 - $009F Analog to Digital Converter 10-bit 8 channels (ATD0) 32 $00A0 - $00C7 Pulse Width Modulator 8-bit 8 channels (PWM) $00C8 - $00CF Serial Communications Interface 0 (SCI0) 2 40 8 $00D0 - $00D7 Serial Communications Interface 0 (SCI1) 8 $00D8 - $00DF Serial Peripheral Interface (SPI0) 8 $00E0 - $00E7 Inter IC Bus 8 $00E8 - $00EF Byte Data Link Controller (BDLC) 8 $00F0 - $00FF Reserved 16 $0100- $010F Flash Control Register 16 $0110 - $011B EEPROM Control Register 12 $011C - $011F Reserved $0120 - $013F Analog to Digital Converter 10-bit 8 channels (ATD1) $0140 - $017F Freescale Scalable Can (CAN0) $0180 - $023F Reserved $0240 - $027F Port Integration Module (PIM) 4 32 64 192 64 $0280 - $03FF Reserved $0000 - $07FF EEPROM array 1k Array mapped twice in the address space 2048 $0000 - $0FFF RAM array, lower half ($0000-$07FF not usable) 4096 $4000 - $7FFF 16k Fixed Flash EEPROM array (same as array from $8000 - $BFFF when ROMHM=0) $8000 - $FFFF 32K Fixed Flash EEPROM array 28 Size (Bytes) 384 16384 32768 MC9S12DJ64 Device User Guide — V01.20 Figure 1-3 MC9S12D32 Memory Map out of Reset $0000 $0000 $0400 not usable not usable not usable $0800 $1000 Unimplemented Unimplemented $03FF REGISTERS (Mappable to any 2K Boundary within the first 32K) $0000 1K Bytes EEPROM $07FF (Mappable to any 2K Boundary; 1K mapped two times in the 2K address space) $0000 4K Bytes RAM lower half ($0000-$07FF) not usable $0FFF (Mappable to any 4K Boundary) $4000 16K Fixed Flash Block 1 $4000 (This is dependant on the state of the ROMHM bit) $7FFF $8000 $8000 16K Fixed Flash Block 1 (paging not usable) EXTERN $BFFF $C000 $C000 16K Fixed Flash Block 2 $FFFF $FF00 BDM (if active) $FF00 VECTORS VECTORS VECTORS EXPANDED NORMAL SINGLE CHIP SPECIAL SINGLE CHIP $FFFF $FFFF 29 MC9S12DJ64 Device User Guide — V01.20 1.5.1 Detailed Register Map $0000 - $000F Address Name $0000 PORTA $0001 PORTB $0002 DDRA $0003 DDRB $0004 Reserved $0005 Reserved $0006 Reserved $0007 Reserved $0008 PORTE $0009 DDRE $000A PEAR $000B MODE $000C PUCR $000D RDRIV $000E EBICTL $000F Reserved $0010 - $0014 Address 30 Name $0010 INITRM $0011 INITRG MEBI map 1 of 3 (HCS12 Multiplexed External Bus Interface) Bit 7 Read: Bit 7 Write: Read: Bit 7 Write: Read: Bit 7 Write: Read: Bit 7 Write: Read: 0 Write: Read: 0 Write: Read: 0 Write: Read: 0 Write: Read: Bit 7 Write: Read: Bit 7 Write: Read: NOACCE Write: Read: MODC Write: Read: PUPKE Write: Read: RDPK Write: Read: 0 Write: Read: 0 Write: Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 6 5 4 3 2 1 Bit 0 6 5 4 3 2 1 Bit 0 6 5 4 3 2 1 Bit 0 6 5 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 5 4 3 2 Bit 1 Bit 0 6 5 4 3 Bit 2 0 0 PIPOE NECLK LSTRE RDWE 0 0 EMK EME PUPBE PUPAE RDPB RDPA 0 MODB MODA 0 0 0 0 0 0 0 0 0 IVIS 0 0 0 0 0 0 0 0 0 0 0 0 0 PUPEE RDPE ESTR 0 MMC map 1 of 4 (HCS12 Module Mapping Control) Bit 7 Read: RAM15 Write: Read: 0 Write: Bit 6 Bit 5 Bit 4 Bit 3 RAM14 RAM13 RAM12 RAM11 REG14 REG13 REG12 REG11 Bit 2 0 Bit 1 0 0 0 Bit 0 RAMHAL 0 MC9S12DJ64 Device User Guide — V01.20 $0010 - $0014 Address MMC map 1 of 4 (HCS12 Module Mapping Control) Name $0012 INITEE $0013 MISC $0014 Reserved Read: Write: Read: Write: Read: Write: $0015 - $0016 Address ITCR $0016 ITEST Read: Write: Read: Write: $0017 - $0019 Address $0017 $0019 Read: Write: $001A - $001B Address PARTIDH $001B PARTIDL Read: Write: Read: Write: $001C - $001D Address Name $001C MEMSIZ0 $001D MEMSIZ1 $001E EE15 EE14 EE13 EE12 EE11 0 0 0 0 0 0 0 0 Bit 2 0 Bit 1 0 Bit 0 EEON EXSTR1 EXSTR0 ROMHM ROMON 0 0 0 0 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 WRINT ADR3 ADR2 ADR1 ADR0 Bit 7 0 Bit 6 0 Bit 5 0 INTE INTC INTA INT8 INT6 INT4 INT2 INT0 Bit 5 0 Bit 4 0 Bit 3 0 Bit 2 0 Bit 1 0 Bit 0 0 Bit 7 0 Bit 6 0 Bit 7 ID15 Bit 6 ID14 Bit 5 ID13 Bit 4 ID12 Bit 3 ID11 Bit 2 ID10 Bit 1 ID9 Bit 0 ID8 ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0 Bit 7 Bit 6 Bit 5 Bit 4 Read: reg_sw0 0 eep_sw1 eep_sw0 Write: Read: rom_sw1 rom_sw0 0 0 Write: Bit 3 0 0 Bit 2 Bit 1 Bit 0 ram_sw2 ram_sw1 ram_sw0 0 pag_sw1 pag_sw0 MEBI map 2 of 3 (HCS12 Multiplexed External Bus Interface) Name INTCR Bit 3 MMC map 3 of 4 (HCS12 Module Mapping Control, Table 1-5) $001E - $001E Address Bit 4 Device ID Register (Table 1-4) Name $001A Bit 5 Reserved Name Reserved Bit 6 INT map 1 of 2 (HCS12 Interrupt) Name $0015 Bit 7 Read: Write: Bit 7 Bit 6 IRQE IRQEN Bit 5 0 Bit 4 0 Bit 3 0 Bit 2 0 Bit 1 0 Bit 0 0 31 MC9S12DJ64 Device User Guide — V01.20 $001F - $001F Address $001F INT map 2 of 2 (HCS12 Interrupt) Name HPRIO Read: Write: $0020 - $0027 Address $0020 $0027 Read: Write: $0028 - $002F Address Name $0028 BKPCT0 $0029 BKPCT1 $002A BKP0X $002B BKP0H $002C BKP0L $002D BKP1X $002E BKP1H $002F BKP1L PPAGE $0031 Reserved Read: Write: Read: Write: 32 PORTK $0033 DDRK Bit 2 Bit 1 PSEL7 PSEL6 PSEL5 PSEL4 PSEL3 PSEL2 PSEL1 Bit 5 0 Bit 4 0 Bit 3 0 Bit 2 0 Bit 1 0 Bit 0 0 Bit 7 0 Bit 6 0 Bit 0 0 Bit 7 0 Bit 6 0 0 0 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 PIX5 PIX4 PIX3 PIX2 PIX1 PIX0 0 0 0 0 0 0 MEBI map 3 of 3 (HCS12 Multiplexed External Bus Interface) Name $0032 Bit 3 MMC map 4 of 4 (HCS12 Module Mapping Control) $0032 - $0033 Address Bit 4 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Read: 0 0 0 0 BKEN BKFULL BKBDM BKTAG Write: Read: BK0MBH BK0MBL BK1MBH BK1MBL BK0RWE BK0RW BK1RWE BK1RW Write: Read: 0 0 BK0V5 BK0V4 BK0V3 BK0V2 BK0V1 BK0V0 Write: Read: Bit 15 14 13 12 11 10 9 Bit 8 Write: Read: Bit 7 6 5 4 3 2 1 Bit 0 Write: Read: 0 0 BK1V5 BK1V4 BK1V3 BK1V2 BK1V1 BK1V0 Write: Read: Bit 15 14 13 12 11 10 9 Bit 8 Write: Read: Bit 7 6 5 4 3 2 1 Bit 0 Write: Name $0030 Bit 5 BKP (HCS12 Breakpoint) $0030 - $0031 Address Bit 6 Reserved Name Reserved Bit 7 Read: Write: Read: Write: Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Bit 7 6 5 4 3 2 1 Bit 0 Bit 7 6 5 4 3 2 1 Bit 0 MC9S12DJ64 Device User Guide — V01.20 $0034 - $003F Address Name $0034 SYNR $0035 REFDV $0036 CTFLG TEST ONLY $0037 CRGFLG $0038 CRGINT $0039 CLKSEL $003A PLLCTL $003B RTICTL $003C COPCTL $003D $003E $003F FORBYP TEST ONLY CTCTL TEST ONLY ARMCOP $0040 - $007F Address Name $0040 TIOS $0041 CFORC $0042 OC7M $0043 OC7D $0044 TCNT (hi) $0045 TCNT (lo) $0046 TSCR1 $0047 TTOV $0048 TCTL1 $0049 TCTL2 CRG (Clock and Reset Generator) Bit 7 Read: 0 Write: Read: 0 Write: Read: 0 Write: Read: RTIF Write: Read: RTIE Write: Read: PLLSEL Write: Read: CME Write: Read: 0 Write: Read: WCOP Write: Read: 0 Write: Read: 0 Write: Read: 0 Write: Bit 7 Bit 6 0 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 SYN5 SYN4 SYN3 SYN2 SYN1 SYN0 0 0 0 0 0 0 PORF 0 PSTP 0 0 LOCKIF LOCKIE SYSWAI ROAWAI REFDV3 REFDV2 REFDV1 REFDV0 0 0 LOCK TRACK 0 0 PLLWAI CWAI RTIWAI COPWAI PRE PCE SCME RTR2 RTR1 RTR0 CR2 CR1 CR0 0 0 SCMIF SCMIE 0 SCM 0 PLLON AUTO ACQ RTR6 RTR5 RTR4 RTR3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 5 0 4 0 3 0 2 0 1 0 Bit 0 RSBCK ECT (Enhanced Capture Timer 16 Bit 8 Channels) Bit 7 Read: IOS7 Write: Read: 0 Write: FOC7 Read: OC7M7 Write: Read: OC7D7 Write: Read: Bit 15 Write: Read: Bit 7 Write: Read: TEN Write: Read: TOV7 Write: Read: OM7 Write: Read: OM3 Write: Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 IOS6 IOS5 IOS4 IOS3 IOS2 IOS1 IOS0 0 FOC6 0 FOC5 0 FOC4 0 FOC3 0 FOC2 0 FOC1 0 FOC0 OC7M6 OC7M5 OC7M4 OC7M3 OC7M2 OC7M1 OC7M0 OC7D6 OC7D5 OC7D4 OC7D3 OC7D2 OC7D1 OC7D0 14 13 12 11 10 9 Bit 8 6 5 4 3 2 1 Bit 0 TSWAI TSFRZ TFFCA 0 0 0 0 TOV6 TOV5 TOV4 TOV3 TOV2 TOV1 TOV0 OL7 OM6 OL6 OM5 OL5 OM4 OL4 OL3 OM2 OL2 OM1 OL1 OM0 OL0 33 MC9S12DJ64 Device User Guide — V01.20 $0040 - $007F 34 Address Name $004A TCTL3 $004B TCTL4 $004C TIE $004D TSCR2 $004E TFLG1 $004F TFLG2 $0050 TC0 (hi) $0051 TC0 (lo) $0052 TC1 (hi) $0053 TC1 (lo) $0054 TC2 (hi) $0055 TC2 (lo) $0056 TC3 (hi) $0057 TC3 (lo) $0058 TC4 (hi) $0059 TC4 (lo) $005A TC5 (hi) $005B TC5 (lo) $005C TC6 (hi) $005D TC6 (lo) $005E TC7 (hi) $005F TC7 (lo) $0060 PACTL $0061 PAFLG $0062 PACN3 (hi) ECT (Enhanced Capture Timer 16 Bit 8 Channels) Bit 7 Read: EDG7B Write: Read: EDG3B Write: Read: C7I Write: Read: TOI Write: Read: C7F Write: Read: TOF Write: Read: Bit 15 Write: Read: Bit 7 Write: Read: Bit 15 Write: Read: Bit 7 Write: Read: Bit 15 Write: Read: Bit 7 Write: Read: Bit 15 Write: Read: Bit 7 Write: Read: Bit 15 Write: Read: Bit 7 Write: Read: Bit 15 Write: Read: Bit 7 Write: Read: Bit 15 Write: Read: Bit 7 Write: Read: Bit 15 Write: Read: Bit 7 Write: Read: 0 Write: Read: 0 Write: Read: Bit 7 Write: Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 EDG7A EDG6B EDG6A EDG5B EDG5A EDG4B EDG4A EDG3A EDG2B EDG2A EDG1B EDG1A EDG0B EDG0A C6I C5I C4I C3I C2I C1I C0I 0 0 0 TCRE PR2 PR1 PR0 C6F C5F C4F C3F C2F C1F C0F 0 0 0 0 0 0 0 14 13 12 11 10 9 Bit 8 6 5 4 3 2 1 Bit 0 14 13 12 11 10 9 Bit 8 6 5 4 3 2 1 Bit 0 14 13 12 11 10 9 Bit 8 6 5 4 3 2 1 Bit 0 14 13 12 11 10 9 Bit 8 6 5 4 3 2 1 Bit 0 14 13 12 11 10 9 Bit 8 6 5 4 3 2 1 Bit 0 14 13 12 11 10 9 Bit 8 6 5 4 3 2 1 Bit 0 14 13 12 11 10 9 Bit 8 6 5 4 3 2 1 Bit 0 14 13 12 11 10 9 Bit 8 6 5 4 3 2 1 Bit 0 PAEN PAMOD PEDGE CLK1 CLK0 PAOVI PAI 0 0 0 0 0 PAOVF PAIF 6 5 4 3 2 1 Bit 0 MC9S12DJ64 Device User Guide — V01.20 $0040 - $007F Address Name $0063 PACN2 (lo) $0064 PACN1 (hi) $0065 PACN0 (lo) $0066 MCCTL $0067 MCFLG $0068 ICPAR $0069 DLYCT $006A ICOVW $006B ICSYS $006C Reserved $006D TIMTST Test Only $006E Reserved $006F Reserved $0070 PBCTL $0071 PBFLG $0072 PA3H $0073 PA2H $0074 PA1H $0075 PA0H $0076 MCCNT (hi) $0077 MCCNT (lo) $0078 TC0H (hi) $0079 TC0H (lo) $007A TC1H (hi) $007B TC1H (lo) ECT (Enhanced Capture Timer 16 Bit 8 Channels) Bit 7 Read: Bit 7 Write: Read: Bit 7 Write: Read: Bit 7 Write: Read: MCZI Write: Read: MCZF Write: Read: 0 Write: Read: 0 Write: Read: NOVW7 Write: Read: SH37 Write: Read: Write: Read: 0 Write: Read: Write: Read: Write: Read: 0 Write: Read: 0 Write: Read: Bit 7 Write: Read: Bit 7 Write: Read: Bit 7 Write: Read: Bit 7 Write: Read: Bit 15 Write: Read: Bit 7 Write: Read: Bit 15 Write: Read: Bit 7 Write: Read: Bit 15 Write: Read: Bit 7 Write: Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 6 5 4 3 2 1 Bit 0 6 5 4 3 2 1 Bit 0 6 5 4 3 2 1 Bit 0 MODMC RDMCL MCPR1 MCPR0 0 0 FLMC POLF3 MCEN 0 0 ICLAT 0 POLF2 POLF1 POLF0 0 0 0 PA3EN PA2EN PA1EN PA0EN 0 0 0 0 0 DLY1 DLY0 NOVW6 NOVW5 NOVW4 NOVW3 NOVW2 NOVW1 NOVW0 SH26 SH15 SH04 TFMOD PACMX BUFEN LATQ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 5 4 3 2 1 Bit 0 6 5 4 3 2 1 Bit 0 6 5 4 3 2 1 Bit 0 6 5 4 3 2 1 Bit 0 14 13 12 11 10 9 Bit 8 6 5 4 3 2 1 Bit 0 14 13 12 11 10 9 Bit 8 6 5 4 3 2 1 Bit 0 14 13 12 11 10 9 Bit 8 6 5 4 3 2 1 Bit 0 PBEN TCBYP PBOVI PBOVF 0 0 0 35 MC9S12DJ64 Device User Guide — V01.20 $0040 - $007F Address Name $007C TC2H (hi) $007D TC2H (lo) $007E TC3H (hi) $007F TC3H (lo) $0080 - $009F Address 36 ECT (Enhanced Capture Timer 16 Bit 8 Channels) Name $0080 ATD0CTL0 $0081 ATD0CTL1 $0082 ATD0CTL2 $0083 ATD0CTL3 $0084 ATD0CTL4 $0085 ATD0CTL5 $0086 ATD0STAT0 $0087 Reserved $0088 ATD0TEST0 $0089 ATD0TEST1 $008A Reserved $008B ATD0STAT1 $008C Reserved $008D ATD0DIEN $008E Reserved $008F PORTAD0 $0090 ATD0DR0H $0091 ATD0DR0L Read: Write: Read: Write: Read: Write: Read: Write: Bit 7 Bit 15 Bit 6 14 Bit 5 13 Bit 4 12 Bit 3 11 Bit 2 10 Bit 1 9 Bit 0 Bit 8 Bit 7 6 5 4 3 2 1 Bit 0 Bit 15 14 13 12 11 10 9 Bit 8 Bit 7 6 5 4 3 2 1 Bit 0 ATD0 (Analog to Digital Converter 10 Bit 8 Channel) Bit 7 Read: 0 Write: Read: 0 Write: Read: ADPU Write: Read: 0 Write: Read: SRES8 Write: Read: DJM Write: Read: SCF Write: Read: 0 Write: Read: 0 Write: Read: 0 Write: Read: 0 Write: Read: CCF7 Write: Read: 0 Write: Read: Bit 7 Write: Read: 0 Write: Read: Bit7 Write: Read: Bit15 Write: Read: Bit7 Write: Bit 6 0 Bit 5 0 Bit 4 0 Bit 3 0 Bit 2 0 Bit 1 0 Bit 0 0 0 0 0 0 0 0 0 AFFC AWAI ETRIG ASCIE S8C S4C S2C S1C FIFO FRZ1 FRZ0 SMP1 SMP0 PRS4 PRS3 PRS2 PRS1 PRS0 DSGN SCAN MULT CC CB CA ETORF FIFOR 0 CC2 CC1 CC0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CCF6 CCF5 CCF4 CCF3 CCF2 CCF1 CCF0 0 0 0 0 0 0 0 6 5 4 3 2 1 Bit 0 0 0 0 0 0 0 0 6 5 4 3 2 1 BIT 0 14 13 12 11 10 9 Bit8 Bit6 0 0 0 0 0 0 0 ETRIGLE ETRIGP 0 ASCIF SC MC9S12DJ64 Device User Guide — V01.20 $0080 - $009F Address Name $0092 ATD0DR1H $0093 ATD0DR1L $0094 ATD0DR2H $0095 ATD0DR2L $0096 ATD0DR3H $0097 ATD0DR3L $0098 ATD0DR4H $0099 ATD0DR4L $009A ATD0DR5H $009B ATD0DR5L $009C ATD0DR6H $009D ATD0DR6L $009E ATD0DR7H $009F ATD0DR7L $00A0 - $00C7 Address Name $00A0 PWME $00A1 PWMPOL $00A2 PWMCLK $00A3 PWMPRCLK $00A4 PWMCAE $00A5 PWMCTL $00A6 $00A7 $00A8 ATD0 (Analog to Digital Converter 10 Bit 8 Channel) PWMTST Test Only PWMPRSC Test Only PWMSCLA Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Bit 7 Bit15 Bit 6 14 Bit 5 13 Bit 4 12 Bit 3 11 Bit 2 10 Bit 1 9 Bit 0 Bit8 Bit7 Bit6 0 0 0 0 0 0 Bit15 14 13 12 11 10 9 Bit8 Bit7 Bit6 0 0 0 0 0 0 Bit15 14 13 12 11 10 9 Bit8 Bit7 Bit6 0 0 0 0 0 0 Bit15 14 13 12 11 10 9 Bit8 Bit7 Bit6 0 0 0 0 0 0 Bit15 14 13 12 11 10 9 Bit8 Bit7 Bit6 0 0 0 0 0 0 Bit15 14 13 12 11 10 9 Bit8 Bit7 Bit6 0 0 0 0 0 0 Bit15 14 13 12 11 10 9 Bit8 Bit7 Bit6 0 0 0 0 0 0 PWM (Pulse Width Modulator 8 Bit 8 Channel) Bit 7 Read: PWME7 Write: Read: PPOL7 Write: Read: PCLK7 Write: Read: 0 Write: Read: CAE7 Write: Read: CON67 Write: Read: 0 Write: Read: 0 Write: Read: Bit 7 Write: Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 PWME6 PWME5 PWME4 PWME3 PWME2 PWME1 PWME0 PPOL6 PPOL5 PPOL4 PPOL3 PPOL2 PPOL1 PPOL0 PCLK6 PCLK5 PCLK4 PCLK3 PCLK2 PCLK1 PCLK0 PCKB2 PCKB1 PCKB0 PCKA2 PCKA1 PCKA0 CAE6 CAE5 CAE4 CAE3 CAE2 CAE1 CAE0 CON45 CON23 CON01 PSWAI PFRZ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 5 4 3 2 1 Bit 0 0 37 MC9S12DJ64 Device User Guide — V01.20 $00A0 - $00C7 Address $00A9 $00AA $00AB $00AC $00AD $00AE $00AF $00B0 $00B1 $00B2 $00B3 $00B4 $00B5 $00B6 $00B7 $00B8 $00B9 $00BA $00BB $00BC $00BD $00BE $00BF $00C0 $00C1 38 Name Read: PWMSCLB Write: PWMSCNTA Read: Test Only Write: PWMSCNTB Read: Test Only Write: Read: PWMCNT0 Write: Read: PWMCNT1 Write: Read: PWMCNT2 Write: Read: PWMCNT3 Write: Read: PWMCNT4 Write: Read: PWMCNT5 Write: Read: PWMCNT6 Write: Read: PWMCNT7 Write: Read: PWMPER0 Write: Read: PWMPER1 Write: Read: PWMPER2 Write: Read: PWMPER3 Write: Read: PWMPER4 Write: Read: PWMPER5 Write: Read: PWMPER6 Write: Read: PWMPER7 Write: Read: PWMDTY0 Write: Read: PWMDTY1 Write: Read: PWMDTY2 Write: Read: PWMDTY3 Write: Read: PWMDTY4 Write: Read: PWMDTY5 Write: PWM (Pulse Width Modulator 8 Bit 8 Channel) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Bit 7 6 5 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Bit 7 0 Bit 7 0 Bit 7 0 Bit 7 0 Bit 7 0 Bit 7 0 Bit 7 0 Bit 7 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 Bit 0 0 Bit 0 0 Bit 0 0 Bit 0 0 Bit 0 0 Bit 0 0 Bit 0 0 Bit 0 0 Bit 7 6 5 4 3 2 1 Bit 0 Bit 7 6 5 4 3 2 1 Bit 0 Bit 7 6 5 4 3 2 1 Bit 0 Bit 7 6 5 4 3 2 1 Bit 0 Bit 7 6 5 4 3 2 1 Bit 0 Bit 7 6 5 4 3 2 1 Bit 0 Bit 7 6 5 4 3 2 1 Bit 0 Bit 7 6 5 4 3 2 1 Bit 0 Bit 7 6 5 4 3 2 1 Bit 0 Bit 7 6 5 4 3 2 1 Bit 0 Bit 7 6 5 4 3 2 1 Bit 0 Bit 7 6 5 4 3 2 1 Bit 0 Bit 7 6 5 4 3 2 1 Bit 0 Bit 7 6 5 4 3 2 1 Bit 0 MC9S12DJ64 Device User Guide — V01.20 $00A0 - $00C7 Address Name $00C2 PWMDTY6 $00C3 PWMDTY7 $00C4 PWMSDN $00C5 Reserved $00C6 Reserved $00C7 Reserved $00C8 - $00CF Address Name $00C8 SCI0BDH $00C9 SCI0BDL $00CA SCI0CR1 $00CB SCI0CR2 $00CC SCI0SR1 $00CD SCI0SR2 $00CE SCI0DRH $00CF SCI0DRL $00D0 - $00D7 Address Name $00D0 SCI1BDH $00D1 SCI1BDL $00D2 SCI1CR1 $00D3 SCI1CR2 $00D4 SCI1SR1 PWM (Pulse Width Modulator 8 Bit 8 Channel) Bit 7 Read: Bit 7 Write: Read: Bit 7 Write: Read: PWMIF Write: Read: 0 Write: Read: 0 Write: Read: 0 Write: Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 6 5 4 3 2 1 Bit 0 6 5 4 3 2 1 Bit 0 0 PWM7IN PWMIE PWMRSTRT PWMLVL PWM7INL PWM7ENA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SCI0 (Asynchronous Serial Interface) Bit 7 Bit 6 Read: 0 0 Write: Read: SBR7 SBR6 Write: Read: LOOPS SCISWAI Write: Read: TIE TCIE Write: Read: TDRE TC Write: Read: 0 0 Write: Read: R8 T8 Write: Read: R7 R6 Write: T7 T6 Bit 5 0 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 SBR12 SBR11 SBR10 SBR9 SBR8 SBR5 SBR4 SBR3 SBR2 SBR1 SBR0 RSRC M WAKE ILT PE PT RIE ILIE TE RE RWU SBK RDRF IDLE OR NF FE PF 0 0 0 BRK13 TXDIR 0 0 0 0 0 0 R5 T5 R4 T4 R3 T3 R2 T2 R1 T1 R0 T0 RAF SCI1 (Asynchronous Serial Interface) Bit 7 Bit 6 Read: 0 0 Write: Read: SBR7 SBR6 Write: Read: LOOPS SCISWAI Write: Read: TIE TCIE Write: Read: TDRE TC Write: Bit 5 0 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 SBR12 SBR11 SBR10 SBR9 SBR8 SBR5 SBR4 SBR3 SBR2 SBR1 SBR0 RSRC M WAKE ILT PE PT RIE ILIE TE RE RWU SBK RDRF IDLE OR NF FE PF 39 MC9S12DJ64 Device User Guide — V01.20 $00D0 - $00D7 Address SCI1 (Asynchronous Serial Interface) Name $00D5 SCI1SR2 $00D6 SCI1DRH $00D7 SCI1DRL Read: Write: Read: Write: Read: Write: $00D8 - $00DF Address SPI0CR1 $00D9 SPI0CR2 $00DA SPI0BR $00DB SPI0SR $00DC Reserved $00DD SPI0DR $00DE Reserved $00DF Reserved Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: $00E0 - $00E7 Address 40 IBAD $00E1 IBFD $00E2 IBCR $00E3 IBSR $00E4 IBDR $00E5 Reserved $00E6 Reserved $00E7 Reserved R7 T7 T8 R6 T6 Bit 5 0 Bit 4 0 Bit 3 0 Bit 2 Bit 1 0 0 R5 T5 R4 T4 Bit 0 RAF BRK13 TXDIR 0 0 0 0 R3 T3 R2 T2 R1 T1 R0 T0 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 SPIE SPE SPTIE MSTR CPOL CPHA SSOE LSBFE 0 0 0 SPISWAI SPC0 SPPR2 SPPR1 SPPR0 SPR2 SPR1 SPR0 SPIF 0 SPTEF MODF 0 0 0 0 0 0 0 0 0 0 0 0 Bit7 6 5 4 3 2 1 Bit0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 MODFEN BIDIROE 0 0 IIC (Inter IC Bus) Name $00E0 R8 Bit 6 0 SPI0 (Serial Peripheral Interface) Name $00D8 Bit 7 0 Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 ADR7 ADR6 ADR5 ADR4 ADR3 ADR2 ADR1 0 IBC7 IBC6 IBC5 IBC4 IBC3 IBC2 IBC1 IBC0 IBEN IBIE MS/SL TX/RX TXAK 0 TCF IAAS IBB 0 0 RSTA SRW D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 IBAL IBIF IBSWAI RXAK MC9S12DJ64 Device User Guide — V01.20 $00E8 - $00EF Address Name $00E8 DLCBCR1 $00E9 DLCBSVR $00EA DLCBCR2 $00EB DLCBDR $00EC DLCBARD $00ED DLCBRSR $00EE DLCSCR $00EF DLCBSTAT BDLC (Bytelevel Data Link Controller J1850) Bit 7 Read: IMSG Write: Read: 0 Write: Read: SMRST Write: Read: D7 Write: Read: 0 Write: Read: 0 Write: Read: 0 Write: Read: 0 Write: $00F0 - $00FF Address $00F0 $00FF $0100 - $010F Address Name $0100 FCLKDIV $0101 FSEC $0102 Reserved $0103 FCNFG $0104 FPROT $0105 FSTAT $0106 FCMD $0107 Reserved $0108 FADDRHI $0109 FADDRLO Bit 5 0 Bit 4 0 Bit 3 0 Bit 2 0 Bit 1 Bit 0 IE WCM 0 I3 I2 I1 I0 0 0 DLOOP RX4XE NBFS TEOD TSIFR TMIFR1 TMIFR0 D6 D5 D4 D3 D2 D1 D0 0 0 BO3 BO2 BO1 BO0 R5 R4 R3 R2 R1 R0 0 0 0 0 CLKS RXPOL 0 0 0 0 0 0 0 0 0 IDLE Bit 6 0 Bit 5 0 Bit 4 0 Bit 3 0 Bit 2 0 Bit 1 0 Bit 0 0 BDLCE Reserved Name Reserved Bit 6 Read: Write: Bit 7 0 Flash Control Register (fts64k) Bit 7 Bit 6 Read: FDIVLD PRDIV8 Write: Read: KEYEN NV6 Write: Read: 0 0 Write: Read: CBEIE CCIE Write: Read: FPOPEN NV6 Write: Read: CCIF CBEIF Write: Read: 0 CMDB6 Write: Read: 0 0 Write: Read: Bit 14 Bit 14 Write: Read: Bit 7 6 Write: Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 FDIV5 FDIV4 FDIV3 FDIV2 FDIV1 FDIV0 NV5 NV4 NV3 NV2 SEC1 SEC0 0 0 0 0 0 0 0 0 0 0 0 FPHDIS FPHS1 FPHS0 FPLDIS FPLS1 FPLS0 PVIOL ACCERR 0 0 KEYACC 0 BLANK 0 0 0 0 0 0 0 0 13 12 11 10 9 Bit 8 5 4 3 2 1 Bit 0 CMDB5 CMDB2 0 CMDB0 41 MC9S12DJ64 Device User Guide — V01.20 $0100 - $010F Address Flash Control Register (fts64k) Name $010A FDATAHI $010B FDATALO $010C $010F Reserved Read: Write: Read: Write: Read: Write: $0110 - $011B Address Name $0110 ECLKDIV $0111 Reserved $0112 Reserved $0113 ECNFG $0114 EPROT $0115 ESTAT $0116 ECMD $0117 Reserved for Factory Test $0118 EADDRHI $0119 EADDRLO $011A EDATAHI $011B EDATALO 42 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Bit 15 14 13 12 11 10 9 Bit 8 Bit 7 6 5 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 Bit 7 Bit 6 Read: EDIVLD PRDIV8 Write: Read: 0 0 Write: Read: 0 0 Write: Read: CBEIE CCIE Write: Read: NV6 EPOPEN Write: Read: CCIF CBEIF Write: Read: 0 CMDB6 Write: Read: 0 0 Write: Read: 0 0 Write: Read: Bit 7 6 Write: Read: Bit 15 14 Write: Read: Bit 7 6 Write: Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 EDIV5 EDIV4 EDIV3 EDIV2 EDIV1 EDIV0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NV5 NV4 EPDIS EP2 EP1 EP0 PVIOL ACCERR 0 0 0 BLANK 0 0 0 0 0 0 0 0 0 0 0 0 5 4 3 2 1 Bit 0 13 12 11 10 9 Bit 8 5 4 3 2 1 Bit 0 Bit 2 0 Bit 1 0 Bit 0 0 CMDB5 CMDB2 0 CMDB0 0 Bit 8 Reserved for RAM Control Register Name Reserved Bit 6 EEPROM Control Register (eets1k) $011C - $011F Address $011C $011F Bit 7 Read: Write: Bit 7 0 Bit 6 0 Bit 5 0 Bit 4 0 Bit 3 0 MC9S12DJ64 Device User Guide — V01.20 $0120 - $013F Address Name $0120 ATD1CTL0 $0121 ATD1CTL1 $0122 ATD1CTL2 $0123 ATD1CTL3 $0124 ATD1CTL4 $0125 ATD1CTL5 $0126 ATD1STAT0 $0127 Reserved $0128 ATD1TEST0 $0129 ATD1TEST1 $012A Reserved $012B ATD1STAT1 $012C Reserved $012D ATD1DIEN $012E Reserved $012F PORTAD1 $0130 ATD1DR0H $0131 ATD1DR0L $0132 ATD1DR1H $0133 ATD1DR1L $0134 ATD1DR2H $0135 ATD1DR2L $0136 ATD1DR3H $0137 ATD1DR3L $0138 ATD1DR4H ATD1 (Analog to Digital Converter 10 Bit 8 Channel) Bit 7 Read: 0 Write: Read: 0 Write: Read: ADPU Write: Read: 0 Write: Read: SRES8 Write: Read: DJM Write: Read: SCF Write: Read: 0 Write: Read: 0 Write: Read: 0 Write: Read: 0 Write: Read: CCF7 Write: Read: 0 Write: Read: Bit 7 Write: Read: 0 Write: Read: Bit7 Write: Read: Bit15 Write: Read: Bit7 Write: Read: Bit15 Write: Read: Bit7 Write: Read: Bit15 Write: Read: Bit7 Write: Read: Bit15 Write: Read: Bit7 Write: Read: Bit15 Write: Bit 6 0 Bit 5 0 Bit 4 0 Bit 3 0 Bit 2 0 Bit 1 0 Bit 0 0 0 0 0 0 0 0 0 AFFC AWAI ETRIG ASCIE S8C S4C S2C S1C FIFO FRZ1 FRZ0 SMP1 SMP0 PRS4 PRS3 PRS2 PRS1 PRS0 DSGN SCAN MULT CC CB CA 0 ETORF FIFOR 0 CC2 CC1 CC0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CCF6 CCF5 CCF4 CCF3 CCF2 CCF1 CCF0 0 0 0 0 0 0 0 6 5 4 3 2 1 Bit 0 0 0 0 0 0 0 0 6 5 4 3 2 1 BIT 0 14 13 12 11 10 9 Bit8 Bit6 0 0 0 0 0 0 14 13 12 11 10 9 Bit8 Bit6 0 0 0 0 0 0 14 13 12 11 10 9 Bit8 Bit6 0 0 0 0 0 0 14 13 12 11 10 9 Bit8 Bit6 0 0 0 0 0 0 14 13 12 11 10 9 Bit8 ETRIGLE ETRIGP 0 0 0 ASCIF SC 43 MC9S12DJ64 Device User Guide — V01.20 $0120 - $013F Address Name $0139 ATD1DR4L $013A ATD1DR5H $013B ATD1DR5L $013C ATD1DR6H $013D ATD1DR6L $013E ATD1DR7H $013F ATD1DR7L $0140 - $017F Address $0140 $0141 $0142 $0143 $0144 $0145 $0146 $0147 $0148 $0149 $014A $014B $014C $014D $014E 44 ATD1 (Analog to Digital Converter 10 Bit 8 Channel) Name Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Bit 7 Bit7 Bit 6 Bit6 Bit 5 0 Bit 4 0 Bit 3 0 Bit 2 0 Bit 1 0 Bit 0 0 Bit15 14 13 12 11 10 9 Bit8 Bit7 Bit6 0 0 0 0 0 0 Bit15 14 13 12 11 10 9 Bit8 Bit7 Bit6 0 0 0 0 0 0 Bit15 14 13 12 11 10 9 Bit8 Bit7 Bit6 0 0 0 0 0 0 Bit 2 Bit 1 Bit 0 WUPE SLPRQ INITRQ SLPAK INITAK BRP1 BRP0 CAN0 (Freescale Scalable CAN - FSCAN) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Read: RXACT SYNCH CAN0CTL0 RXFRM CSWAI TIME Write: Read: 0 CAN0CTL1 CANE CLKSRC LOOPB LISTEN Write: Read: CAN0BTR0 SJW1 SJW0 BRP5 BRP4 BRP3 Write: Read: CAN0BTR1 SAMP TSEG22 TSEG21 TSEG20 TSEG13 Write: Read: RSTAT1 RSTAT0 TSTAT1 CAN0RFLG WUPIF CSCIF Write: Read: CAN0RIER WUPIE CSCIE RSTATE1 RSTATE0 TSTATE1 Write: Read: 0 0 0 0 0 CAN0TFLG Write: Read: 0 0 0 0 0 CAN0TIER Write: Read: 0 0 0 0 0 CAN0TARQ Write: Read: 0 0 0 0 0 CAN0TAAK Write: Read: 0 0 0 0 0 CAN0TBSEL Write: Read: 0 0 0 CAN0IDAC IDAM1 IDAM0 Write: Read: 0 0 0 0 0 Reserved Write: Read: 0 0 0 0 0 Reserved Write: Read: RXERR7 RXERR6 RXERR5 RXERR4 RXERR3 CAN0RXERR Write: WUPM BRP2 TSEG12 TSEG11 TSEG10 TSTAT0 OVRIF RXF TSTATE0 OVRIE RXFIE TXE2 TXE1 TXE0 TXEIE2 TXEIE1 TXEIE0 ABTRQ2 ABTRQ1 ABTRQ0 ABTAK2 ABTAK1 ABTAK0 TX2 TX1 TX0 IDHIT2 IDHIT1 IDHIT0 0 0 0 0 0 0 RXERR2 RXERR1 RXERR0 MC9S12DJ64 Device User Guide — V01.20 $0140 - $017F Address Name $014F CAN0TXERR $0150 $0153 $0154 $0157 $0158 $015B $015C $015F $0160 $016F $0170 $017F CAN0IDAR0 CAN0IDAR3 CAN0IDMR0 CAN0IDMR3 CAN0IDAR4 CAN0IDAR7 CAN0IDMR4 CAN0IDMR7 CAN0RXFG CAN0TXFG CAN0 (Freescale Scalable CAN - FSCAN) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Read: TXERR7 TXERR6 TXERR5 TXERR4 TXERR3 TXERR2 TXERR1 TXERR0 Write: Read: AC7 AC6 AC5 AC4 AC3 AC2 AC1 AC0 Write: Read: AM7 AM6 AM5 AM4 AM3 AM2 AM1 AM0 Write: Read: AC7 AC6 AC5 AC4 AC3 AC2 AC1 AC0 Write: Read: AM7 AM6 AM5 AM4 AM3 AM2 AM1 AM0 Write: Read: FOREGROUND RECEIVE BUFFER see Table 1-3 Write: Read: FOREGROUND TRANSMIT BUFFER see Table 1-3 Write: Table 1-3 Detailed MSCAN Foreground Receive and Transmit Buffer Layout Address $0160 $0161 $0162 $0163 $0164$016B $016C $016D $016E $016F $0170 $0171 Name Extended ID Standard ID CAN0RIDR0 Extended ID Standard ID CAN0RIDR1 Extended ID Standard ID CAN0RIDR2 Extended ID Standard ID CAN0RIDR3 CAN0RDSR0 CAN0RDSR7 Read: Read: Write: Read: Read: Write: Read: Read: Write: Read: Read: Write: Read: Write: Read: CAN0RDLR Write: Read: Reserved Write: Read: CAN0RTSRH Write: Read: CAN0RTSRL Write: Extended ID Read: CAN0TIDR0 Write: Standard ID Read: Write: Extended ID Read: CAN0TIDR1 Write: Standard ID Read: Write: Bit 7 ID28 ID10 Bit 6 ID27 ID9 Bit 5 ID26 ID8 Bit 4 ID25 ID7 Bit 3 ID24 ID6 Bit 2 ID23 ID5 Bit 1 ID22 ID4 Bit 0 ID21 ID3 ID20 ID2 ID19 ID1 ID18 ID0 SRR=1 RTR IDE=1 IDE=0 ID17 ID16 ID15 ID14 ID13 ID12 ID11 ID10 ID9 ID8 ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0 RTR DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 DLC3 DLC2 DLC1 DLC0 TSR15 TSR14 TSR13 TSR12 TSR11 TSR10 TSR9 TSR8 TSR7 TSR6 TSR5 TSR4 TSR3 TSR2 TSR1 TSR0 ID28 ID27 ID26 ID25 ID24 ID23 ID22 ID21 ID10 ID9 ID8 ID7 ID6 ID5 ID4 ID3 ID20 ID19 ID18 SRR=1 IDE=1 ID17 ID16 ID15 ID2 ID1 ID0 RTR IDE=0 45 MC9S12DJ64 Device User Guide — V01.20 Table 1-3 Detailed MSCAN Foreground Receive and Transmit Buffer Layout Address $0172 $0173 Name Extended ID CAN0TIDR2 Standard ID Extended ID CAN0TIDR3 Standard ID $0174$017B CAN0TDSR0 CAN0TDSR7 $017C CAN0TDLR $017D CAN0TTBPR $017E CAN0TTSRH $017F CAN0TTSRL Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: $0180 - $023F Address $0180 $023F $0240 - $027F Address 46 Name $0240 PTT $0241 PTIT $0242 DDRT $0243 RDRT $0244 PERT $0245 PPST $0246 Reserved $0247 Reserved $0248 PTS $0249 PTIS Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 ID14 ID13 ID12 ID11 ID10 ID9 ID8 ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0 RTR DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 DLC3 DLC2 DLC1 DLC0 PRIO7 PRIO6 PRIO5 PRIO4 PRIO3 PRIO2 PRIO1 PRIO0 TSR15 TSR14 TSR13 TSR12 TSR11 TSR10 TSR9 TSR8 TSR7 TSR6 TSR5 TSR4 TSR3 TSR2 TSR1 TSR0 Bit 5 0 Bit 4 0 Bit 3 0 Bit 2 0 Bit 1 0 Bit 0 0 Reserved Name Reserved Bit 7 Read: Write: Bit 7 0 Bit 6 0 PIM (Port Integration Module) Bit 7 Read: PTT7 Write: Read: PTIT7 Write: Read: DDRT7 Write: Read: RDRT7 Write: Read: PERT7 Write: Read: PPST7 Write: Read: 0 Write: Read: 0 Write: Read: PTS7 Write: Read: PTIS7 Write: Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 PTT6 PTT5 PTT4 PTT3 PTT2 PTT1 PTT0 PTIT6 PTIT5 PTIT4 PTIT3 PTIT2 PTIT1 PTIT0 DDRT7 DDRT5 DDRT4 DDRT3 DDRT2 DDRT1 DDRT0 RDRT6 RDRT5 RDRT4 RDRT3 RDRT2 RDRT1 RDRT0 PERT6 PERT5 PERT4 PERT3 PERT2 PERT1 PERT0 PPST6 PPST5 PPST4 PPST3 PPST2 PPST1 PPST0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PTS6 PTS5 PTS4 PTS3 PTS2 PTS1 PTS0 PTIS6 PTIS5 PTIS4 PTIS3 PTIS2 PTIS1 PTIS0 MC9S12DJ64 Device User Guide — V01.20 $0240 - $027F Address PIM (Port Integration Module) Name $024A DDRS $024B RDRS $024C PERS $024D PPSS $024E WOMS $024F Reserved $0250 PTM $0251 PTIM $0252 DDRM $0253 RDRM $0254 PERM $0255 PPSM $0256 WOMM $0257 MODRR $0258 PTP $0259 PTIP $025A DDRP $025B RDRP $025C PERP $025D PPSP $025E PIEP $025F PIFP $0260 PTH $0261 PTIH $0262 DDRH Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 DDRS7 DDRS7 DDRS5 DDRS4 DDRS3 DDRS2 DDRS1 DDRS0 RDRS7 RDRS6 RDRS5 RDRS4 RDRS3 RDRS2 RDRS1 RDRS0 PERS7 PERS6 PERS5 PERS4 PERS3 PERS2 PERS1 PERS0 PPSS7 PPSS6 PPSS5 PPSS4 PPSS3 PPSS2 PPSS1 PPSS0 WOMS7 WOMS6 WOMS5 WOMS4 WOMS3 WOMS2 WOMS1 WOMS0 0 0 0 0 0 0 0 0 PTM7 PTM6 PTM5 PTM4 PTM3 PTM2 PTM1 PTM0 PTIM7 PTIM6 PTIM5 PTIM4 PTIM3 PTIM2 PTIM1 PTIM0 DDRM7 DDRM7 DDRM5 DDRM4 DDRM3 DDRM2 DDRM1 DDRM0 RDRM7 RDRM6 RDRM5 RDRM4 RDRM3 RDRM2 RDRM1 RDRM0 PERM7 PERM6 PERM5 PERM4 PERM3 PERM2 PERM1 PERM0 PPSM7 PPSM6 PPSM5 PPSM4 PPSM3 PPSM2 PPSM1 PPSM0 WOMM7 WOMM6 WOMM5 WOMM4 WOMM3 WOMM2 WOMM1 WOMM0 0 0 0 0 0 PTP7 PTP6 PTP5 PTP4 PTP3 PTP2 PTP1 PTP0 PTIP7 PTIP6 PTIP5 PTIP4 PTIP3 PTIP2 PTIP1 PTIP0 DDRP7 DDRP7 DDRP5 DDRP4 DDRP3 DDRP2 DDRP1 DDRP0 RDRP7 RDRP6 RDRP5 RDRP4 RDRP3 RDRP2 RDRP1 RDRP0 PERP7 PERP6 PERP5 PERP4 PERP3 PERP2 PERP1 PERP0 PPSP7 PPSP6 PPSP5 PPSP4 PPSP3 PPSP2 PPSP1 PPSS0 PIEP7 PIEP6 PIEP5 PIEP4 PIEP3 PIEP2 PIEP1 PIEP0 PIFP7 PIFP6 PIFP5 PIFP4 PIFP3 PIFP2 PIFP1 PIFP0 PTH7 PTH6 PTH5 PTH4 PTH3 PTH2 PTH1 PTH0 PTIH7 PTIH6 PTIH5 PTIH4 PTIH3 PTIH2 PTIH1 PTIH0 DDRH7 DDRH7 DDRH5 DDRH4 DDRH3 DDRH2 DDRH1 DDRH0 MODRR4 MODRR1 MODRR0 47 MC9S12DJ64 Device User Guide — V01.20 $0240 - $027F Address Name $0263 RDRH $0264 PERH $0265 PPSH $0266 PIEH $0267 PIFH $0268 PTJ $0269 PTIJ $026A DDRJ $026B RDRJ $026C PERJ $026D PPSJ $026E PIEJ $026F PIFJ $0270 $027F Reserved PIM (Port Integration Module) Bit 7 Read: RDRH7 Write: Read: PERH7 Write: Read: PPSH7 Write: Read: PIEH7 Write: Read: PIFH7 Write: Read: PTJ7 Write: Read: PTIJ7 Write: Read: DDRJ7 Write: Read: RDRJ7 Write: Read: PERJ7 Write: Read: PPSJ7 Write: Read: PIEJ7 Write: Read: PIFJ7 Write: Read: 0 Write: $0280 - $03FF Address $0280 $03FF 48 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 RDRH6 RDRH5 RDRH4 RDRH3 RDRH2 RDRH1 RDRH0 PERH6 PERH5 PERH4 PERH3 PERH2 PERH1 PERH0 PPSH6 PPSH5 PPSH4 PPSH3 PPSH2 PPSH1 PPSH0 PIEH6 PIEH5 PIEH4 PIEH3 PIEH2 PIEH1 PIEH0 PIFH6 PIFH5 PIFH4 PIFH3 PIFH2 PIFH1 PIFH0 0 0 0 0 PTJ1 PTJ0 0 0 0 0 PTIJ1 PTIJ0 0 0 0 0 DDRJ1 DDRJ0 0 0 0 0 RDRJ1 RDRJ0 0 0 0 0 PERJ1 PERJ0 0 0 0 0 PPSJ1 PPSJ0 0 0 0 0 PIEJ1 PIEJ0 0 0 0 0 PIFJ1 PIFJ0 0 0 0 0 0 0 0 Bit 6 0 Bit 5 0 Bit 4 0 Bit 3 0 Bit 2 0 Bit 1 0 Bit 0 0 PTJ6 PTIJ6 DDRJ7 RDRJ6 PERJ6 PPSJ6 PIEJ6 PIFJ6 Reserved Name Reserved Bit 6 Read: Write: Bit 7 0 MC9S12DJ64 Device User Guide — V01.20 1.6 Part ID Assignments The part ID is located in two 8-bit registers PARTIDH and PARTIDL (addresses $001A and $001B after reset). The read-only value is a unique part ID for each revision of the chip. Table 1-4 shows the assigned part ID number. Table 1-4 Assigned Part ID Numbers Device Mask Set Number MC9S12DJ64 MC9S12DJ64 0L86D 1L86D Part ID1 $0200 $0201 MC9S12DJ64 2L86D $02012 MC9S12DJ64 MC9S12DJ64 MC9S12DJ64 3L86D 4L86D 0M89C $0203 $0204 $0204 NOTES: 1. The coding is as follows: Bit 15-12: Major family identifier Bit 11-8: Minor family identifier Bit 7-4: Major mask set revision number including FAB transfers Bit 3-0: Minor - non full - mask set revision 2. 1L86D is identical to 2L86D except improved ESD performance on 2L86D The device memory sizes are located in two 8-bit registers MEMSIZ0 and MEMSIZ1 (addresses $001C and $001D after reset). Table 1-5 shows the read-only values of these registers. Refer to HCS12 Module Mapping Control (MMC) Block Guide for further details. Table 1-5 Memory size registers Register name MEMSIZ0 MEMSIZ1 Value $11 $80 49 MC9S12DJ64 Device User Guide — V01.20 50 MC9S12DJ64 Device User Guide — V01.20 Section 2 Signal Description This section describes signals that connect off-chip. It includes a pinout diagram, a table of signal properties, and detailed discussion of signals. It is built from the signal description sections of the Block Guides of the individual IP blocks on the device. 2.1 Device Pinout The MC9S12DJ64 is available in a 112-pin low profile quad flat pack (LQFP) and in a 80-pin quad flat pack (QFP). The MC9S12D32 is only available in a 80-pin quad flat pack (QFP). Most pins perform two or more functions, as described in the Signal Descriptions. Figure 2-1 and Figure 2-2 show the pin assignments. 51 MC9S12DJ64 112LQFP 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 VRH VDDA PAD15/AN15/ETRIG1 PAD07/AN07/ETRIG0 PAD14/AN14 PAD06/AN06 PAD13/AN13 PAD05/AN05 PAD12/AN12 PAD04/AN04 PAD11/AN11 PAD03/AN03 PAD10/AN10 PAD02/AN02 PAD09/AN09 PAD01/AN01 PAD08/AN08 PAD00/AN00 VSS2 VDD2 PA7/ADDR15/DATA15 PA6/ADDR14/DATA14 PA5/ADDR13/DATA13 PA4/ADDR12/DATA12 PA3/ADDR11/DATA11 PA2/ADDR10/DATA10 PA1/ADDR9/DATA9 PA0/ADDR8/DATA8 ADDR5/DATA5/PB5 ADDR6/DATA6/PB6 ADDR7/DATA7/PB7 KWH7/PH7 KWH6/PH6 KWH5/PH5 KWH4/PH4 XCLKS/NOACC/PE7 MODB/IPIPE1/PE6 MODA/IPIPE0/PE5 ECLK/PE4 VSSR VDDR RESET VDDPLL XFC VSSPLL EXTAL XTAL TEST KWH3/PH3 KWH2/PH2 KWH1/PH1 KWH0/PH0 LSTRB/TAGLO/PE3 R/W/PE2 IRQ/PE1 XIRQ/PE0 PWM3/KWP3/PP3 PWM2/KWP2/PP2 PWM1/KWP1/PP1 PWM0/KWP0/PP0 XADDR17/PK3 XADDR16/PK2 XADDR15/PK1 XADDR14/PK0 IOC0/PT0 IOC1/PT1 IOC2/PT2 IOC3/PT3 VDD1 VSS1 IOC4/PT4 IOC5/PT5 IOC6/PT6 IOC7/PT7 XADDR19/PK5 XADDR18/PK4 KWJ1/PJ1 KWJ0/PJ0 MODC/TAGHI/BKGD ADDR0/DATA0/PB0 ADDR1/DATA1/PB1 ADDR2/DATA2/PB2 ADDR3/DATA3/PB3 ADDR4/DATA4/PB4 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 PP4/KWP4/PWM4 PP5/KWP5/PWM5 PP6/KWP6/PWM6 PP7/KWP7/PWM7 PK7/ECS/ROMCTL VDDX VSSX PM0/RXCAN0/RXB PM1/TXCAN0/TXB PM2/RXCAN0/MISO0 PM3/TXCAN0/SS0 PM4/RXCAN0/MOSI PM5/TXCAN0/SCK0 PJ6/KWJ6/SDA/RXCAN0 PJ7/KWJ7/SCL/TXCAN0 VREGEN PS7/SS0 PS6/SCK0 PS5/MOSI0 PS4/MISO0 PS3/TXD1 PS2/RXD1 PS1/TXD0 PS0/RXD0 PM6 PM7 VSSA VRL MC9S12DJ64 Device User Guide — V01.20 Signals shown in Bold are not available on the 80 Pin Package Figure 2-1 Pin Assignments in 112-pin LQFP for MC9S12DJ64 52 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 MC9S12DJ64 80 QFP 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 VRH VDDA PAD07/AN07/ETRIG0 PAD06/AN06 PAD05/AN05 PAD04/AN04 PAD03/AN03 PAD02/AN02 PAD01/AN01 PAD00/AN00 VSS2 VDD2 PA7/ADDR15/DATA15 PA6/ADDR14/DATA14 PA5/ADDR13/DATA13 PA4/ADDR12/DATA12 PA3/ADDR11/DATA11 PA2/ADDR10/DATA10 PA1/ADDR9/DATA9 PA0/ADDR8/DATA8 ADDR5/DATA5/PB5 ADDR6/DATA6/PB6 ADDR7/DATA7/PB7 XCLKS/NOACC/PE7 MODB/IPIPE1/PE6 MODA/IPIPE0/PE5 ECLK/PE4 VSSR VDDR RESET VDDPLL XFC VSSPLL EXTAL XTAL TEST LSTRB/TAGLO/PE3 R/W/PE2 IRQ/PE1 XIRQ/PE0 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 PWM3/KWP3/PP3 PWM2/KWP2/PP2 PWM1/KWP1/PP1 PWM0/KWP0/PP0 IOC0/PT0 IOC1/PT1 IOC2/PT2 IOC3/PT3 VDD1 VSS1 IOC4/PT4 IOC5/PT5 IOC6/PT6 IOC7/PT7 MODC/TAGHI/BKGD ADDR0/DATA0/PB0 ADDR1/DATA1/PB1 ADDR2/DATA2/PB2 ADDR3/DATA3/PB3 ADDR4/DATA4/PB4 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 PP4/KWP4/PWM4 PP5/KWP5/PWM5 PP7/KWP7/PWM7 VDDX VSSX PM0/RXCAN0/RXB PM1/TXCAN0/TXB PM2/RXCAN0/MISO0 PM3/TXCAN0/SS0 PM4/RXCAN0/MOSI0 PM5/TXCAN0/SCK0 PJ6/KWJ6/SDA/RXCAN0 PJ7/KWJ7/SCL/TXCAN0 VREGEN PS3/TXD1 PS2/RXD1 PS1/TXD0 PS0/RXD0 VSSA VRL MC9S12DJ64 Device User Guide — V01.20 Figure 2-2 Pin Assignments in 80-pin QFP for MC9S12DJ64 and MC9S12D32 2.2 Signal Properties Summary Table 2-1 summarizes the pin functionality. Signals shown in bold are not available in the 80 pin package. 53 MC9S12DJ64 Device User Guide — V01.20 Table 2-1 Signal Properties Pin Name Function1 Pin Name Function2 Pin Name Pin Name Powered Function3 Function4 by EXTAL — — — XTAL — — — RESET — — — Internal Pull Resistor CTRL VDDPLL VDDR TEST — — — N.A. VREGEN — — — VDDX XFC — — — VDDPLL VDDR Description Reset State Oscillator Pins None None External Reset Test Input Voltage Regulator Enable Input PLL Loop Filter Always Up Up Background Debug, Tag High, Mode Input BKGD TAGHI MODC — PAD15 AN15 ETRIG1 — PAD[14:08] AN[14:08] — — PAD07 AN07 ETRIG0 — Port AD Input, Analog Input AN7 of ATD0, External Trigger Input of ATD0 PAD[06:00] AN[06:00] — — Port AD Inputs, Analog Inputs AN[6:0] of ATD0 PA[7:0] ADDR[15:8]/ DATA[15:8] — — PUCR/ PUPAE PB[7:0] ADDR[7:0]/ DATA[7:0] — — PUCR/ PUPBE PE7 NOACC XCLKS — PUCR/ PUPEE PE6 IPIPE1 MODB — PE5 IPIPE0 MODA — PE4 ECLK — — PE3 LSTRB TAGLO — PE2 R/W — — Port AD Input, Analog Input AN7 of ATD1, External Trigger Input of ATD1 VDDA None None Port AD Inputs, Analog Inputs AN[6:0] of ATD1 Port A I/O, Multiplexed Address/Data Disabled Port B I/O, Multiplexed Address/Data Mode dependant1 Port E I/O, Access, Clock Select While RESET pin is Port E I/O, Pipe Status, Mode Input low: Port E I/O, Pipe Status, Mode Input Down VDDR PUCR/ PUPEE Mode dependant1 Port E I/O, Bus Clock Output Port E I/O, Byte Strobe, Tag Low Port E I/O, R/W in expanded modes PE1 IRQ — — PE0 XIRQ — — PH7 KWH7 — — Port H I/O, Interrupt PH6 KWH6 — — Port H I/O, Interrupt PH5 KWH5 — — PH4 KWH4 — — PH3 KWH3 — — PH2 KWH2 — — Port H I/O, Interrupt PH1 KWH1 — — Port H I/O, Interrupt PH0 KWH0 — — Port H I/O, Interrupt 54 Up Port E Input, Maskable Interrupt Port E Input, Non Maskable Interrupt Port H I/O, Interrupt PERH/ PPSH Disabled Port H I/O, Interrupt Port H I/O, Interrupt MC9S12DJ64 Device User Guide — V01.20 Pin Name Pin Name Powered Function3 Function4 by Internal Pull Resistor Pin Name Function1 Pin Name Function2 PJ7 KWJ7 SCL TXCAN0 PJ6 KWJ6 SDA RXCAN0 PJ[1:0] KWJ[1:0] — — Port J I/O, Interrupts Port K I/O, Emulation Chip Select, ROM On Enable CTRL Description Reset State Port J I/O, Interrupt, SCL of IIC, TX of CAN0 VDDX PERJ/ PPSJ Up Port J I/O, Interrupt, SDA of IIC, RX of CAN0 PK7 ECS ROMCTL — PK[5:0] XADDR[19:14] — — PM7 — — — Port M I/O PM6 — — — Port M I/O Port M I/O, TX of CAN0, SCK of SPI0 PM5 TXCAN0 SCK — PM4 RXCAN0 MOSI — PUCR/ PUPKE Up Port K I/O, Extended Addresses Port M I/O, RX of CAN0, MOSI of SPI0 PERM/ PPSM PM3 TXCAN0 SS0 — PM2 RXCAN0 MISO0 — Port M I/O, RX of CAN0, MISO of SPI0 Port M I/O, TX of CAN0, SS of SPI0 PM1 TXCAN0 TXB — Port M I/O, TX of CAN0, RX of BDLC PM0 RXCAN0 RXB — PP7 KWP7 PWM7 — Port M I/O, RX of CAN0, RX of BDLC Disabled Port P I/O, Interrupt, Channel 7 of PWM PP6 KWP6 PWM6 — PP5 KWP5 PWM5 — PP4 KWP4 PWM4 — PP3 KWP3 PWM3 — PP2 KWP2 PWM2 — Port P I/O, Interrupt, PWM Channel 2 PP1 KWP1 PWM1 — Port P I/O, Interrupt, PWM Channel 1 PP0 KWP0 PWM0 — Port P I/O, Interrupt, PWM Channel 0 Port P I/O, Interrupt, PWM Channel 6 Port P I/O, Interrupt, PWM Channel 5 VDDX PERP/ PPSP Port P I/O, Interrupt, PWM Channel 4 Port P I/O, Interrupt, PWM Channel 3 PS7 SS0 — — Port S I/O, SS of SPI0 PS6 SCK0 — — Port S I/O, SCK of SPI0 PS5 MOSI0 — — PS4 MISO0 — — PS3 TXD1 — — PS2 RXD1 — — Port S I/O, RXD of SCI1 PS1 TXD0 — — Port S I/O, TXD of SCI0 PS0 RXD0 — — Port S I/O, RXD of SCI0 PT[7:0] IOC[7:0] — — Port S I/O, MOSI of SPI0 PERS/ PPSS PERT/ PPST Up Port S I/O, MISO of SPI0 Port S I/O, TXD of SCI1 Disabled Port T I/O, Timer channels NOTES: 1. Refer to PEAR register description in HCS12 Multiplexed External Bus Interface (MEBI) Block Guide 55 MC9S12DJ64 Device User Guide — V01.20 2.3 Detailed Signal Descriptions 2.3.1 EXTAL, XTAL — Oscillator Pins EXTAL and XTAL are the crystal driver and external clock pins. On reset all the device clocks are derived from the EXTAL input frequency. XTAL is the crystal output. 2.3.2 RESET — External Reset Pin An active low bidirectional control signal, it acts as an input to initialize the MCU to a known start-up state, and an output when an internal MCU function causes a reset. 2.3.3 TEST — Test Pin This input only pin is reserved for test. NOTE: The TEST pin must be tied to VSS in all applications. 2.3.4 VREGEN — Voltage Regulator Enable Pin This input only pin enables or disables the on-chip voltage regulator. 2.3.5 XFC — PLL Loop Filter Pin PLL loop filter. Please ask your Freescale representative for the interactive application note to compute PLL loop filter elements. Any current leakage on this pin must be avoided. XFC R0 MCU CP CS VDDPLL VDDPLL Figure 2-3 PLL Loop Filter Connections 2.3.6 BKGD / TAGHI / MODC — Background Debug, Tag High, and Mode Pin The BKGD/TAGHI/MODC pin is used as a pseudo-open-drain pin for the background debug communication. In MCU expanded modes of operation when instruction tagging is on, an input low on this pin during the falling edge of E-clock tags the high half of the instruction word being read into the 56 MC9S12DJ64 Device User Guide — V01.20 instruction queue. It is used as a MCU operating mode select pin during reset. The state of this pin is latched to the MODC bit at the rising edge of RESET. This pin has a permanently enabled pull-up device. 2.3.7 PAD15 / AN15 / ETRIG1 — Port AD Input Pin of ATD1 PAD15 is a general purpose input pin and analog input AN7 of the analog to digital converter ATD1. It can act as an external trigger input for the ATD1. 2.3.8 PAD[14:08] / AN[14:08] — Port AD Input Pins ATD1 PAD14 - PAD08 are general purpose input pins and analog inputs AN[6:0] of the analog to digital converter ATD1. 2.3.9 PAD07 / AN07 / ETRIG0 — Port AD Input Pin of ATD0 PAD07 is a general purpose input pin and analog input AN0 of the analog to digital converter ATD0. It can act as an external trigger input for the ATD0. 2.3.10 PAD[06:00] / AN[06:00] — Port AD Input Pins of ATD0 PAD06 - PAD00 are general purpose input pins and analog inputs AN[6:0] of the analog to digital converter ATD0. 2.3.11 PA[7:0] / ADDR[15:8] / DATA[15:8] — Port A I/O Pins PA7-PA0 are general purpose input or output pins. In MCU expanded modes of operation, these pins are used for the multiplexed external address and data bus. 2.3.12 PB[7:0] / ADDR[7:0] / DATA[7:0] — Port B I/O Pins PB7-PB0 are general purpose input or output pins. In MCU expanded modes of operation, these pins are used for the multiplexed external address and data bus. 2.3.13 PE7 / NOACC / XCLKS — Port E I/O Pin 7 PE7 is a general purpose input or output pin. During MCU expanded modes of operation, the NOACC signal, when enabled, is used to indicate that the current bus cycle is an unused or “free” cycle. This signal will assert when the CPU is not using the bus. The XCLKS is an input signal which controls whether a crystal in combination with the internal Colpitts (low power) oscillator is used or whether Pierce oscillator/external clock circuitry is used. The state of this pin is latched at the rising edge of RESET. If the input is a logic low the EXTAL pin is configured for an external clock drive or a Pierce Oscillator. If input is a logic high a Colpitts oscillator circuit is configured on EXTAL and XTAL. Since this pin is an input with a pull-up device during reset, if the pin is left floating, the default configuration is a Colpitts oscillator circuit on EXTAL and XTAL. 57 MC9S12DJ64 Device User Guide — V01.20 EXTAL CDC * C1 MCU Crystal or ceramic resonator XTAL C2 VSSPLL * Due to the nature of a translated ground Colpitts oscillator a DC voltage bias is applied to the crystal Please contact the crystal manufacturer for crystal DC bias conditions and recommended capacitor value CDC. Figure 2-4 Colpitts Oscillator Connections (PE7=1) EXTAL C3 MCU XTAL Crystal or ceramic resonator RB RS * C4 VSSPLL * Rs can be zero (shorted) when used with higher frequency crystals. Refer to manufacturer’s data. Figure 2-5 Pierce Oscillator Connections (PE7=0) EXTAL MCU XTAL CMOS-COMPATIBLE EXTERNAL OSCILLATOR (VDDPLL-Level) not connected Figure 2-6 External Clock Connections (PE7=0) 58 MC9S12DJ64 Device User Guide — V01.20 2.3.14 PE6 / MODB / IPIPE1 — Port E I/O Pin 6 PE6 is a general purpose input or output pin. It is used as a MCU operating mode select pin during reset. The state of this pin is latched to the MODB bit at the rising edge of RESET. This pin is shared with the instruction queue tracking signal IPIPE1. This pin is an input with a pull-down device which is only active when RESET is low. 2.3.15 PE5 / MODA / IPIPE0 — Port E I/O Pin 5 PE5 is a general purpose input or output pin. It is used as a MCU operating mode select pin during reset. The state of this pin is latched to the MODA bit at the rising edge of RESET. This pin is shared with the instruction queue tracking signal IPIPE0. This pin is an input with a pull-down device which is only active when RESET is low. 2.3.16 PE4 / ECLK — Port E I/O Pin 4 PE4 is a general purpose input or output pin. It can be configured to drive the internal bus clock ECLK. ECLK can be used as a timing reference. 2.3.17 PE3 / LSTRB / TAGLO — Port E I/O Pin 3 PE3 is a general purpose input or output pin. In MCU expanded modes of operation, LSTRB can be used for the low-byte strobe function to indicate the type of bus access and when instruction tagging is on, TAGLO is used to tag the low half of the instruction word being read into the instruction queue. 2.3.18 PE2 / R/W — Port E I/O Pin 2 PE2 is a general purpose input or output pin. In MCU expanded modes of operations, this pin drives the read/write output signal for the external bus. It indicates the direction of data on the external bus. 2.3.19 PE1 / IRQ — Port E Input Pin 1 PE1 is a general purpose input pin and the maskable interrupt request input that provides a means of applying asynchronous interrupt requests. This will wake up the MCU from STOP or WAIT mode. 2.3.20 PE0 / XIRQ — Port E Input Pin 0 PE0 is a general purpose input pin and the non-maskable interrupt request input that provides a means of applying asynchronous interrupt requests. This will wake up the MCU from STOP or WAIT mode. 2.3.21 PH7 / KWH7 — Port H I/O Pin 7 PH7 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. 59 MC9S12DJ64 Device User Guide — V01.20 2.3.22 PH6 / KWH6 — Port H I/O Pin 6 PH6 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. 2.3.23 PH5 / KWH5 — Port H I/O Pin 5 PH5 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. 2.3.24 PH4 / KWH4 — Port H I/O Pin 2 PH4 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. 2.3.25 PH3 / KWH3 — Port H I/O Pin 3 PH3 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. 2.3.26 PH2 / KWH2 — Port H I/O Pin 2 PH2 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. 2.3.27 PH1 / KWH1 — Port H I/O Pin 1 PH1 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. 2.3.28 PH0 / KWH0 — Port H I/O Pin 0 PH0 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. 2.3.29 PJ7 / KWJ7 / SCL / TXCAN0 — PORT J I/O Pin 7 PJ7 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as the serial clock pin SCL of the IIC module. It can be configured as the transmit pin TXCAN of the Freescale Scalable Controller Area Network controller 0 (CAN0). 60 MC9S12DJ64 Device User Guide — V01.20 2.3.30 PJ6 / KWJ6 / SDA / RXCAN0 — PORT J I/O Pin 6 PJ6 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as the serial data pin SDA of the IIC module. It can be configured as the receive pin RXCAN of the Freescale Scalable Controller Area Network controller 0 (CAN0). 2.3.31 PJ[1:0] / KWJ[1:0] — Port J I/O Pins [1:0] PJ1 and PJ0 are general purpose input or output pins. They can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. 2.3.32 PK7 / ECS / ROMCTL — Port K I/O Pin 7 PK7 is a general purpose input or output pin. During MCU expanded modes of operation, this pin is used as the emulation chip select output (ECS). During MCU expanded modes of operation, this pin is used to enable the Flash EEPROM memory in the memory map (ROMCTL). At the rising edge of RESET, the state of this pin is latched to the ROMON bit. For a complete list of modes refer to 4.2 Chip Configuration Summary. 2.3.33 PK[5:0] / XADDR[19:14] — Port K I/O Pins [5:0] PK5-PK0 are general purpose input or output pins. In MCU expanded modes of operation, these pins provide the expanded address XADDR[19:14] for the external bus. 2.3.34 PM7 — Port M I/O Pin 7 PM7 is a general purpose input or output pin. 2.3.35 PM6 — Port M I/O Pin 6 PM6 is a general purpose input or output pin. 2.3.36 PM5 / TXCAN0 / SCK0 — Port M I/O Pin 5 PM5 is a general purpose input or output pin. It can be configured as the transmit pin TXCAN of the Freescale Scalable Controller Area Network controller 0 (CAN0). It can be configured as the serial clock pin SCK of the Serial Peripheral Interface 0 (SPI0). 2.3.37 PM4 / RXCAN0 / MOSI0 — Port M I/O Pin 4 PM4 is a general purpose input or output pin. It can be configured as the receive pin RXCAN of the Freescale Scalable Controller Area Network controller 0 (CAN0). It can be configured as the master output (during master mode) or slave input pin (during slave mode) MOSI for the Serial Peripheral Interface 0 (SPI0). 61 MC9S12DJ64 Device User Guide — V01.20 2.3.38 PM3 / TXCAN0 / SS0 — Port M I/O Pin 3 PM3 is a general purpose input or output pin. It can be configured as the transmit pin TXCAN of the Freescale Scalable Controller Area Network controller 0 (CAN0). It can be configured as the slave select pin SS of the Serial Peripheral Interface 0 (SPI0). 2.3.39 PM2 / RXCAN0 / MISO0 — Port M I/O Pin 2 PM2 is a general purpose input or output pin. It can be configured as the receive pin RXCAN of the Freescale Scalable Controller Area Network controller 0 (CAN0). It can be configured as the master input (during master mode) or slave output pin (during slave mode) MISO for the Serial Peripheral Interface 0 (SPI0). 2.3.40 PM1 / TXCAN0 / TXB — Port M I/O Pin 1 PM1 is a general purpose input or output pin. It can be configured as the transmit pin TXCAN of the Freescale Scalable Controller Area Network controller 0 (CAN0). It can be configured as the transmit pin TXB of the BDLC. 2.3.41 PM0 / RXCAN0 / RXB — Port M I/O Pin 0 PM0 is a general purpose input or output pin. It can be configured as the receive pin RXCAN of the Freescale Scalable Controller Area Network controller 0 (CAN0). It can be configured as the receive pin RXB of the BDLC. 2.3.42 PP7 / KWP7 / PWM7 — Port P I/O Pin 7 PP7 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 7 output. 2.3.43 PP6 / KWP6 / PWM6 — Port P I/O Pin 6 PP6 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 6 output. 2.3.44 PP5 / KWP5 / PWM5 — Port P I/O Pin 5 PP5 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 5 output. 2.3.45 PP4 / KWP4 / PWM4 — Port P I/O Pin 4 PP4 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 4 output. 62 MC9S12DJ64 Device User Guide — V01.20 2.3.46 PP3 / KWP3 / PWM3 — Port P I/O Pin 3 PP3 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 3 output. 2.3.47 PP2 / KWP2 / PWM2 — Port P I/O Pin 2 PP2 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 2 output. 2.3.48 PP1 / KWP1 / PWM1 — Port P I/O Pin 1 PP1 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 1 output. 2.3.49 PP0 / KWP0 / PWM0 — Port P I/O Pin 0 PP0 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 0 output. 2.3.50 PS7 / SS0 — Port S I/O Pin 7 PS6 is a general purpose input or output pin. It can be configured as the slave select pin SS of the Serial Peripheral Interface 0 (SPI0). 2.3.51 PS6 / SCK0 — Port S I/O Pin 6 PS6 is a general purpose input or output pin. It can be configured as the serial clock pin SCK of the Serial Peripheral Interface 0 (SPI0). 2.3.52 PS5 / MOSI0 — Port S I/O Pin 5 PS5 is a general purpose input or output pin. It can be configured as master output (during master mode) or slave input pin (during slave mode) MOSI of the Serial Peripheral Interface 0 (SPI0). 2.3.53 PS4 / MISO0 — Port S I/O Pin 4 PS4 is a general purpose input or output pin. It can be configured as master input (during master mode) or slave output pin (during slave mode) MOSI of the Serial Peripheral Interface 0 (SPI0). 2.3.54 PS3 / TXD1 — Port S I/O Pin 3 PS3 is a general purpose input or output pin. It can be configured as the transmit pin TXD of Serial Communication Interface 1 (SCI1). 63 MC9S12DJ64 Device User Guide — V01.20 2.3.55 PS2 / RXD1 — Port S I/O Pin 2 PS2 is a general purpose input or output pin. It can be configured as the receive pin RXD of Serial Communication Interface 1 (SCI1). 2.3.56 PS1 / TXD0 — Port S I/O Pin 1 PS1 is a general purpose input or output pin. It can be configured as the transmit pin TXD of Serial Communication Interface 0 (SCI0). 2.3.57 PS0 / RXD0 — Port S I/O Pin 0 PS0 is a general purpose input or output pin. It can be configured as the receive pin RXD of Serial Communication Interface 0 (SCI0). 2.3.58 PT[7:0] / IOC[7:0] — Port T I/O Pins [7:0] PT7-PT0 are general purpose input or output pins. They can be configured as input capture or output compare pins IOC7-IOC0 of the Enhanced Capture Timer (ECT). 2.4 Power Supply Pins MC9S12DJ64 power and ground pins are described below. NOTE: All VSS pins must be connected together in the application. Table 2-2 MC9S12DJ64 Power and Ground Connection Summary 64 Pin Number 112-pin QFP Nominal Voltage VDD1, 2 13, 65 2.5V VSS1, 2 14, 66 0V VDDR 41 5.0V VSSR 40 0V VDDX 107 5.0V VSSX 106 0V VDDA 83 5.0V VSSA 86 0V VRL 85 0V VRH 84 5.0V Mnemonic Description Internal power and ground generated by internal regulator External power and ground, supply to pin drivers and internal voltage regulator. External power and ground, supply to pin drivers. Operating voltage and ground for the analog-to-digital converters and the reference for the internal voltage regulator, allows the supply voltage to the A/D to be bypassed independently. Reference voltages for the analog-to-digital converter. MC9S12DJ64 Device User Guide — V01.20 Pin Number 112-pin QFP Nominal Voltage VDDPLL 43 2.5V VSSPLL 45 0V VREGEN 97 5.0V Mnemonic Description Provides operating voltage and ground for the Phased-Locked Loop. This allows the supply voltage to the PLL to be bypassed independently. Internal power and ground generated by internal regulator. Internal Voltage Regulator enable/disable 2.4.1 VDDX, VSSX — Power & Ground Pins for I/O Drivers External power and ground for I/O drivers. Because fast signal transitions place high, short-duration current demands on the power supply, use bypass capacitors with high-frequency characteristics and place them as close to the MCU as possible. Bypass requirements depend on how heavily the MCU pins are loaded. VDDX and VSSX are the supplies for Ports J, K, M, P, T and S. 2.4.2 VDDR, VSSR — Power & Ground Pins for I/O Drivers & for Internal Voltage Regulator External power and ground for I/O drivers and input to the internal voltage regulator. Because fast signal transitions place high, short-duration current demands on the power supply, use bypass capacitors with high-frequency characteristics and place them as close to the MCU as possible. Bypass requirements depend on how heavily the MCU pins are loaded. VDDR and VSSR are the supplies for Ports A, B, E and H. 2.4.3 VDD1, VDD2, VSS1, VSS2 — Internal Logic Power Supply Pins Power is supplied to the MCU through VDD and VSS. Because fast signal transitions place high, short-duration current demands on the power supply, use bypass capacitors with high-frequency characteristics and place them as close to the MCU as possible. This 2.5V supply is derived from the internal voltage regulator. There is no static load on those pins allowed. The internal voltage regulator is turned off, if VREGEN is tied to ground. NOTE: No load allowed except for bypass capacitors. 2.4.4 VDDA, VSSA — Power Supply Pins for ATD0/ATD1 and VREG VDDA, VSSA are the power supply and ground input pins for the voltage regulator and the two analog to digital converters. It also provides the reference for the internal voltage regulator. This allows the supply voltage to ATD0/ATD1 and the reference voltage to be bypassed independently. 65 MC9S12DJ64 Device User Guide — V01.20 2.4.5 VRH, VRL — ATD Reference Voltage Input Pins VRH and VRL are the reference voltage input pins for the analog to digital converter. 2.4.6 VDDPLL, VSSPLL — Power Supply Pins for PLL Provides operating voltage and ground for the Oscillator and the Phased-Locked Loop. This allows the supply voltage to the Oscillator and PLL to be bypassed independently.This 2.5V voltage is generated by the internal voltage regulator. NOTE: No load allowed except for bypass capacitors. 2.4.7 VREGEN — On Chip Voltage Regulator Enable Enables the internal 5V to 2.5V voltage regulator. If this pin is tied low, VDD1,2 and VDDPLL must be supplied externally. 66 MC9S12DJ64 Device User Guide — V01.20 Section 3 System Clock Description 3.1 Overview The Clock and Reset Generator provides the internal clock signals for the HCS12 Core and all peripheral modules. Figure 3-1 shows the clock connections from the CRG to all modules. Consult the CRG Block User Guide and OSC Block User Guide for details on clock generation. HCS12 CORE Core Clock BDM CPU MEBI MMC INT BKP Flash RAM EEPROM ECT EXTAL ATD0, 1 OSC CRG Bus Clock PWM SCI0, SCI1 Oscillator Clock XTAL SPI0 CAN0 IIC BDLC PIM Figure 3-1 Clock Connections 67 MC9S12DJ64 Device User Guide — V01.20 68 MC9S12DJ64 Device User Guide — V01.20 Section 4 Modes of Operation 4.1 Overview Eight possible modes determine the operating configuration of the MC9S12DJ64 and MC9S12D32. Each mode has an associated default memory map and external bus configuration. Three low power modes exist for the device. 4.2 Chip Configuration Summary The operating mode out of reset is determined by the states of the MODC, MODB, and MODA pins during reset (Table 4-1). The MODC, MODB, and MODA bits in the MODE register show the current operating mode and provide limited mode switching during operation. The states of the MODC, MODB, and MODA pins are latched into these bits on the rising edge of the reset signal. The ROMCTL signal allows the setting of the ROMON bit in the MISC register thus controlling whether the internal Flash is visible in the memory map. ROMON = 1 mean the Flash is visible in the memory map. The state of the ROMCTL pin is latched into the ROMON bit in the MISC register on the rising edge of the reset signal. Table 4-1 Mode Selection BKGD = MODC PE6 = MODB PE5 = MODA PK7 = ROMCTL ROMON Bit 0 0 0 X 1 0 0 1 0 1 1 0 0 1 0 X 0 0 1 1 0 X 1 0 0 1 1 X 1 0 0 1 1 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 Mode Description Special Single Chip, BDM allowed and ACTIVE. BDM is allowed in all other modes but a serial command is required to make BDM active. Emulation Expanded Narrow, BDM allowed Special Test (Expanded Wide), BDM allowed Emulation Expanded Wide, BDM allowed Normal Single Chip, BDM allowed Normal Expanded Narrow, BDM allowed Peripheral; BDM allowed but bus operations would cause bus conflicts (must not be used) Normal Expanded Wide, BDM allowed For further explanation on the modes refer to the HCS12 Multiplexed External Bus Interface Block Guide. Table 4-2 Clock Selection Based on PE7 PE7 = XCLKS 1 Description Colpitts Oscillator selected 69 MC9S12DJ64 Device User Guide — V01.20 Table 4-2 Clock Selection Based on PE7 PE7 = XCLKS 0 Description Pierce Oscillator/external clock selected Table 4-3 Voltage Regulator VREGEN VREGEN Description 1 Internal Voltage Regulator enabled 0 Internal Voltage Regulator disabled, VDD1,2 and VDDPLL must be supplied externally with 2.5V 4.3 Security The device will make available a security feature preventing the unauthorized read and write of the memory contents. This feature allows: • Protection of the contents of FLASH, • Protection of the contents of EEPROM, • Operation in single-chip mode, • Operation from external memory with internal FLASH and EEPROM disabled. The user must be reminded that part of the security must lie with the user’s code. An extreme example would be user’s code that dumps the contents of the internal program. This code would defeat the purpose of security. At the same time the user may also wish to put a back door in the user’s program. An example of this is the user downloads a key through the SCI which allows access to a programming routine that updates parameters stored in EEPROM. 4.3.1 Securing the Microcontroller Once the user has programmed the FLASH and EEPROM (if desired), the part can be secured by programming the security bits located in the FLASH module. These non-volatile bits will keep the part secured through resetting the part and through powering down the part. The security byte resides in a portion of the Flash array. Check the Flash Block User Guide for more details on the security configuration. 4.3.2 Operation of the Secured Microcontroller 4.3.2.1 Normal Single Chip Mode This will be the most common usage of the secured part. Everything will appear the same as if the part was not secured with the exception of BDM operation. The BDM operation will be blocked. 70 MC9S12DJ64 Device User Guide — V01.20 4.3.2.2 Executing from External Memory The user may wish to execute from external space with a secured microcontroller. This is accomplished by resetting directly into expanded mode. The internal FLASH and EEPROM will be disabled. BDM operations will be blocked. 4.3.3 Unsecuring the Microcontroller In order to unsecure the microcontroller, the internal FLASH and EEPROM must be erased. This can be done through an external program in expanded mode or via a sequence of BDM commands. Unsecuring is also possible via the Backdoor Key Access. Refer to Flash Block Guide for details. Once the user has erased the FLASH and EEPROM, the part can be reset into special single chip mode. This invokes a program that verifies the erasure of the internal FLASH and EEPROM. Once this program completes, the user can erase and program the FLASH security bits to the unsecured state. This is generally done through the BDM, but the user could also change to expanded mode (by writing the mode bits through the BDM) and jumping to an external program (again through BDM commands). Note that if the part goes through a reset before the security bits are reprogrammed to the unsecure state, the part will be secured again. 4.4 Low Power Modes The microcontroller features three main low power modes. Consult the respective Block User Guide for information on the module behavior in Stop, Pseudo Stop, and Wait Mode. An important source of information about the clock system is the Clock and Reset Generator User Guide (CRG). 4.4.1 Stop Executing the CPU STOP instruction stops all clocks and the oscillator thus putting the chip in fully static mode. Wake up from this mode can be done via reset or external interrupts. 4.4.2 Pseudo Stop This mode is entered by executing the CPU STOP instruction. In this mode the oscillator is still running and the Real Time Interrupt (RTI) or Watchdog (COP) sub module can stay active. Other peripherals are turned off. This mode consumes more current than the full STOP mode, but the wake up time from this mode is significantly shorter. 4.4.3 Wait This mode is entered by executing the CPU WAI instruction. In this mode the CPU will not execute instructions. The internal CPU signals (address and data bus) will be fully static. All peripherals stay active. For further power consumption the peripherals can individually turn off their local clocks. 71 MC9S12DJ64 Device User Guide — V01.20 4.4.4 Run Although this is not a low power mode, unused peripheral modules should not be enabled in order to save power. 72 MC9S12DJ64 Device User Guide — V01.20 Section 5 Resets and Interrupts 5.1 Overview Consult the Exception Processing section of the CPU12 Reference Manual for information on resets and interrupts. 5.2 Vectors 5.2.1 Vector Table Table 5-1 lists interrupt sources and vectors in default order of priority. Table 5-1 Interrupt Vector Locations Interrupt Source CCR Mask Local Enable HPRIO Value to Elevate $FFFE, $FFFF Reset None None – $FFFC, $FFFD Clock Monitor fail reset None PLLCTL (CME, SCME) – $FFFA, $FFFB COP failure reset None COP rate select – $FFF8, $FFF9 Unimplemented instruction trap None None – $FFF6, $FFF7 SWI None None – $FFF4, $FFF5 XIRQ X-Bit None – $FFF2, $FFF3 IRQ I-Bit IRQCR (IRQEN) $F2 $FFF0, $FFF1 Real Time Interrupt I-Bit CRGINT (RTIE) $F0 $FFEE, $FFEF Enhanced Capture Timer channel 0 I-Bit TIE (C0I) $EE Vector Address $FFEC, $FFED Enhanced Capture Timer channel 1 I-Bit TIE (C1I) $EC $FFEA, $FFEB Enhanced Capture Timer channel 2 I-Bit TIE (C2I) $EA $FFE8, $FFE9 Enhanced Capture Timer channel 3 I-Bit TIE (C3I) $E8 $FFE6, $FFE7 Enhanced Capture Timer channel 4 I-Bit TIE (C4I) $E6 $FFE4, $FFE5 Enhanced Capture Timer channel 5 I-Bit TIE (C5I) $E4 $FFE2, $FFE3 Enhanced Capture Timer channel 6 I-Bit TIE (C6I) $E2 $FFE0, $FFE1 Enhanced Capture Timer channel 7 I-Bit TIE (C7I) $E0 $FFDE, $FFDF Enhanced Capture Timer overflow I-Bit TSRC2 (TOI) $DE $FFDC, $FFDD Pulse accumulator A overflow I-Bit PACTL (PAOVI) $DC $FFDA, $FFDB Pulse accumulator input edge I-Bit PACTL (PAI) $DA $FFD8, $FFD9 SPI0 I-Bit SPICR1 (SPIE, SPTIE) $D8 $D6 $FFD6, $FFD7 SCI0 I-Bit SCICR2 (TIE, TCIE, RIE, ILIE) $FFD4, $FFD5 SCI1 I-Bit SCICR2 (TIE, TCIE, RIE, ILIE) $D4 $FFD2, $FFD3 ATD0 I-Bit ATDCTL2 (ASCIE) $D2 $FFD0, $FFD1 ATD1 I-Bit ATDCTL2 (ASCIE) $D0 $FFCE, $FFCF Port J I-Bit PIEJ (PIEJ7, PIEJ6, PIEJ1, PIEJ0) $CE $FFCC, $FFCD Port H I-Bit PIEH (PIEH7-0) $CC 73 MC9S12DJ64 Device User Guide — V01.20 $FFCA, $FFCB Modulus Down Counter underflow I-Bit MCCTL (MCZI) $CA $FFC8, $FFC9 Pulse Accumulator B Overflow I-Bit PBCTL (PBOVI) $C8 $FFC6, $FFC7 CRG PLL lock I-Bit CRGINT (LOCKIE) $C6 $FFC4, $FFC5 CRG Self Clock Mode I-Bit CRGINT (SCMIE) $C4 $FFC2, $FFC3 BDLC I-Bit DLCBCR1 (IE) $C2 $FFC0, $FFC1 IIC Bus I-Bit IBCR (IBIE) $C0 $FFBE, $FFBF Reserved $FFBC, $FFBD I-Bit Reserved I-Bit $BE $BC $FFBA, $FFBB EEPROM I-Bit ECNFG (CCIE, CBEIE) $BA $FFB8, $FFB9 FLASH I-Bit FCNFG (CCIE, CBEIE) $B8 $FFB6, $FFB7 CAN0 wake-up I-Bit CANRIER (WUPIE) $B6 $FFB4, $FFB5 CAN0 errors I-Bit CANRIER (CSCIE, OVRIE) $B4 $FFB2, $FFB3 CAN0 receive I-Bit CANRIER (RXFIE) $B2 $FFB0, $FFB1 CAN0 transmit I-Bit CANTIER (TXEIE2-TXEIE0) $B0 $FFAE, $FFAF I-Bit $AE $FFAC, $FFAD I-Bit $AC $FFAA, $FFAB I-Bit $AA $FFA8, $FFA9 I-Bit $A8 $FFA6, $FFA7 I-Bit $A6 $FFA4, $FFA5 I-Bit $A4 $FFA2, $FFA3 I-Bit $A2 $FFA0, $FFA1 I-Bit Reserved $FF9E, $FF9F I-Bit Reserved $A0 $9E $FF9C, $FF9D I-Bit $9C $FF9A, $FF9B I-Bit $9A $FF98, $FF99 I-Bit $98 $FF96, $FF97 I-Bit $96 $FF94, $FF95 I-Bit $94 $FF92, $FF93 I-Bit $92 $FF90, $FF91 I-Bit $90 $FF8E, $FF8F Port P I-Bit PIEP (PIEP7-0) $8E $FF8C, $FF8D PWM Emergency Shutdown I-Bit PWMSDN (PWMIE) $8C $FF80 to $FF8B Reserved 5.3 Effects of Reset When a reset occurs, MCU registers and control bits are changed to known start-up states. Refer to the respective module Block User Guides for register reset states. 5.3.1 I/O pins Refer to the HCS12 Multiplexed External Bus Interface (MEBI) Block Guide for mode dependent pin configuration of port A, B, E and K out of reset. Refer to the PIM Block User Guide for reset configurations of all peripheral module ports. 74 MC9S12DJ64 Device User Guide — V01.20 NOTE: For devices assembled in 80-pin QFP packages all non-bonded out pins should be configured as outputs after reset in order to avoid current drawn from floating inputs. Refer to Table 2-1 for affected pins. 5.3.2 Memory Refer to Table 1-1 for locations of the memories depending on the operating mode after reset. The RAM array is not automatically initialized out of reset. 75 MC9S12DJ64 Device User Guide — V01.20 76 MC9S12DJ64 Device User Guide — V01.20 Section 6 HCS12 Core Block Description 6.1 CPU12 Block Description Consult the CPU12 Reference Manual for information on the CPU. 6.1.1 Device-specific information When the CPU12 Reference Manual refers to cycles this is equivalent to Bus Clock periods. So 1 cycle is equivalent to 1 Bus Clock period. 6.2 HCS12 Module Mapping Control (MMC) Block Description Consult the MMC Block Guide for information on the HCS12 Module Mapping Control module. 6.2.1 Device-specific information • • • INITEE – Reset state: $01 – Bits EE11-EE15 are "Write once in Normal and Emulation modes and write anytime in Special modes". PPAGE – Reset state: $00 – Register is "Write anytime in all modes" MEMSIZ0 – • Reset state: $11 MEMSIZ1 – Reset state: $80 6.3 HCS12 Multiplexed External Bus Interface (MEBI) Block Description Consult the MEBI Block Guide for information on HCS12 Multiplexed External Bus Interface module. 6.3.1 Device-specific information • PUCR – Reset state: $90 77 MC9S12DJ64 Device User Guide — V01.20 6.4 HCS12 Interrupt (INT) Block Description Consult the INT Block Guide for information on the HCS12 Interrupt module. 6.5 HCS12 Background Debug (BDM) Block Description Consult the BDM Block Guide for information on the HCS12 Background Debug module. 6.5.1 Device-specific information When the BDM Block Guide refers to alternate clock this is equivalent to Oscillator Clock. 6.6 HCS12 Breakpoint (BKP) Block Description Consult the BKP Block Guide for information on the HCS12 Breakpoint module. Section 7 Clock and Reset Generator (CRG) Block Description Consult the CRG Block User Guide for information about the Clock and Reset Generator module. 7.1 Device-specific information The Low Voltage Reset feature of the CRG is not available on this device. Section 8 Oscillator (OSC) Block Description Consult the OSC Block User Guide for information about the Oscillator module. 8.1 Device-specific information The XCLKS input signal is active low (see 2.3.13 PE7 / NOACC / XCLKS — Port E I/O Pin 7). Section 9 Enhanced Capture Timer (ECT) Block Description Consult the ECT_16B8C Block User Guide for information about the Enhanced Capture Timer module. When the ECT_16B8C Block User Guide refers to freeze mode this is equivalent to active BDM mode. 78 MC9S12DJ64 Device User Guide — V01.20 Section 10 Analog to Digital Converter (ATD) Block Description There are two Analog to Digital Converters (ATD1 and ATD0) implemented on the MC9S12DJ64. Consult the ATD_10B8C Block User Guide for information about each Analog to Digital Converter module. When the ATD_10B8C Block User Guide refers to freeze mode this is equivalent to active BDM mode. Section 11 Inter-IC Bus (IIC) Block Description Consult the IIC Block User Guide for information about the Inter-IC Bus module. Section 12 Serial Communications Interface (SCI) Block Description There are two Serial Communications Interfaces (SCI1 and SCI0) implemented on the MC9S12DJ64 device. Consult the SCI Block User Guide for information about each Serial Communications Interface module. Section 13 Serial Peripheral Interface (SPI) Block Description Consult the SPI Block User Guide for information about each Serial Peripheral Interface module. Section 14 J1850 (BDLC) Block Description Consult the BDLC Block User Guide for information about the J1850 module. Section 15 Pulse Width Modulator (PWM) Block Description Consult the PWM_8B8C Block User Guide for information about the Pulse Width Modulator module. When the PWM_8B8C Block User Guide refers to freeze mode this is equivalent to active BDM mode. Section 16 Flash EEPROM 64K Block Description 79 MC9S12DJ64 Device User Guide — V01.20 Consult the FTS64K Block User Guide for information about the flash module. The "S12 LRAE" is a generic Load RAM and Execute (LRAE) program which will be programmed into the flash memory of this device during manufacture. This LRAE program will provide greater programming flexibility to the end users by allowing the device to be programmed directly using CAN or SCI after it is assembled on the PCB. Use of the LRAE program is at the discretion of the end user and, if not required, it must simply be erased prior to flash programming. For more details of the S12 LRAE and its implementation, please see the S12 LREA Application Note (AN2546/D). It is planned that most HC9S12 devices manufactured after Q1 of 2004 will be shipped with the S12 LRAE programmed in the Flash . Exact details of the changeover (ie blank to programmed) for each product will be communicated in advance via GPCN and will be traceable by the customer via datecode marking on the device. Please contact Freescale SPS Sales if you have any additional questions. Section 17 EEPROM 1K Block Description Consult the EETS1K Block User Guide for information about the EEPROM module. Section 18 RAM Block Description This module supports single-cycle misaligned word accesses. Section 19 MSCAN Block Description Consult the MSCAN Block User Guide for information about the Freescale Scalable CAN Module. Section 20 Port Integration Module (PIM) Block Description Consult the PIM_9DJ64 Block User Guide for information about the Port Integration Module. Section 21 Voltage Regulator (VREG) Block Description Consult the VREG Block User Guide for information about the dual output linear voltage regulator. Section 22 Printed Circuit Board Layout Proposals 80 MC9S12DJ64 Device User Guide — V01.20 Table 22-1 Suggested External Component Values Component Purpose Type Value C1 VDD1 filter cap ceramic X7R 100 .. 220nF C2 VDD2 filter cap ceramic X7R 100 .. 220nF C3 VDDA filter cap ceramic X7R 100nF C4 VDDR filter cap X7R/tantalum >=100nF C5 VDDPLL filter cap ceramic X7R 100nF C6 VDDX filter cap X7R/tantalum >=100nF C7 OSC load cap C8 OSC load cap C9 / CS PLL loop filter cap C10 / CP PLL loop filter cap C11 / CDC DC cutoff cap Colpitts mode only, if recommended by quartz manufacturer R1 PLL loop filter res See PLL specification chapter R2 / RB PLL loop filter res R3 / RS PLL loop filter res Q1 Quartz See PLL specification chapter Pierce mode only The PCB must be carefully laid out to ensure proper operation of the voltage regulator as well as of the MCU itself. The following rules must be observed: • Every supply pair must be decoupled by a ceramic capacitor connected as near as possible to the corresponding pins(C1 - C6). • Central point of the ground star should be the VSSR pin. • Use low ohmic low inductance connections between VSS1, VSS2 and VSSR. • VSSPLL must be directly connected to VSSR. • Keep traces of VSSPLL, EXTAL and XTAL as short as possible and occupied board area for C7, C8, C11 and Q1 as small as possible. • Do not place other signals or supplies underneath area occupied by C7, C8, C10 and Q1 and the connection area to the MCU. • Central power input should be fed in at the VDDA/VSSA pins. 81 MC9S12DJ64 Device User Guide — V01.20 Figure 22-1 Recommended PCB Layout 112LQFP Colpitts Oscillator VREGEN C6 VDDX VSSX VSSA C3 VDDA VDD1 C1 VSS1 VSS2 C2 VDD2 VSSR C4 C7 82 C8 C10 C9 R1 C11 C5 VDDR Q1 VSSPLL VDDPLL MC9S12DJ64 Device User Guide — V01.20 Figure 22-2 Recommended PCB Layout for 80QFP Colpitts Oscillator VREGEN C6 VDDX VSSX VSSA C3 VDDA VDD1 VSS2 C1 C2 VSS1 VDD2 VSSR C4 C5 VDDR C7 C8 C11 Q1 C10 C9 R1 VSSPLL VDDPLL 83 MC9S12DJ64 Device User Guide — V01.20 Figure 22-3 Recommended PCB Layout for 112LQFP Pierce Oscillator VREGEN C6 VDDX VSSX VSSA C3 VDDA VDD1 C1 VSS1 VSS2 C2 VDD2 VSSR VSSPLL C4 R3 C5 VDDR R2 Q1 84 C7 R1 C8 C10 C9 VDDPLL MC9S12DJ64 Device User Guide — V01.20 Figure 22-4 Recommended PCB Layout for 80QFP Pierce Oscillator VREGEN C6 VDDX VSSX VSSA C3 VDDA VDD1 VSS2 C1 C2 VSS1 VDD2 VSSPLL VSSR C4 R3 C5 VDDR R2 Q1 C7 C8 C10 C9 R1 VSSPLL VDDPLL 85 MC9S12DJ64 Device User Guide — V01.20 86 MC9S12DJ64 Device User Guide — V01.20 Appendix A Electrical Characteristics A.1 General This introduction is intended to give an overview on several common topics like power supply, current injection etc. A.1.1 Parameter Classification The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding the following classification is used and the parameters are tagged accordingly in the tables where appropriate. NOTE: This classification is shown in the column labeled “C” in the parameter tables where appropriate. P: Those parameters are guaranteed during production testing on each individual device. C: Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations. T: Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category. D: Those parameters are derived mainly from simulations. A.1.2 Power Supply The MC9S12DJ64 and MC9S12D32 utilize several pins to supply power to the I/O ports, A/D converter, oscillator, PLL and internal logic. The VDDA, VSSA pair supplies the A/D converter and the resistor ladder of the internal voltage regulator. The VDDX, VSSX, VDDR and VSSR pairs supply the I/O pins, VDDR supplies also the internal voltage regulator. VDD1, VSS1, VDD2 and VSS2 are the supply pins for the digital logic, VDDPLL, VSSPLL supply the oscillator and the PLL. VSS1 and VSS2 are internally connected by metal. 87 MC9S12DJ64 Device User Guide — V01.20 VDDA, VDDX, VDDR as well as VSSA, VSSX, VSSR are connected by anti-parallel diodes for ESD protection. NOTE: In the following context VDD5 is used for either VDDA, VDDR and VDDX; VSS5 is used for either VSSA, VSSR and VSSX unless otherwise noted. IDD5 denotes the sum of the currents flowing into the VDDA, VDDX and VDDR pins. VDD is used for VDD1, VDD2 and VDDPLL, VSS is used for VSS1, VSS2 and VSSPLL. IDD is used for the sum of the currents flowing into VDD1 and VDD2. A.1.3 Pins There are four groups of functional pins. A.1.3.1 5V I/O pins Those I/O pins have a nominal level of 5V. This class of pins is comprised of all port I/O pins, the analog inputs, BKGD and the RESET pins.The internal structure of all those pins is identical, however some of the functionality may be disabled. E.g. for the analog inputs the output drivers, pull-up and pull-down resistors are disabled permanently. A.1.3.2 Analog Reference This group is made up by the VRH and VRL pins. A.1.3.3 Oscillator The pins XFC, EXTAL, XTAL dedicated to the oscillator have a nominal 2.5V level. They are supplied by VDDPLL. A.1.3.4 TEST This pin is used for production testing only. A.1.3.5 VREGEN This pin is used to enable the on chip voltage regulator. A.1.4 Current Injection Power supply must maintain regulation within operating VDD5 or VDD range during instantaneous and operating maximum current conditions. If positive injection current (Vin > VDD5) is greater than IDD5, the injection current may flow out of VDD5 and could result in external power supply going out of regulation. Ensure external VDD5 load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power; e.g. if no system clock is present, or if clock rate is very low which would reduce overall power consumption. 88 MC9S12DJ64 Device User Guide — V01.20 A.1.5 Absolute Maximum Ratings Absolute maximum ratings are stress ratings only. A functional operation under or outside those maxima is not guaranteed. Stress beyond those limits may affect the reliability or cause permanent damage of the device. This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (e.g., either VSS5 or VDD5). Table A-1 Absolute Maximum Ratings1 Num Rating Symbol Min Max Unit 1 I/O, Regulator and Analog Supply Voltage VDD5 -0.3 6.0 V 2 Digital Logic Supply Voltage 2 VDD -0.3 3.0 V 3 PLL Supply Voltage 2 VDDPLL -0.3 3.0 V 4 Voltage difference VDDX to VDDR and VDDA ∆VDDX -0.3 0.3 V 5 Voltage difference VSSX to VSSR and VSSA ∆VSSX -0.3 0.3 V 6 Digital I/O Input Voltage VIN -0.3 6.0 V 7 Analog Reference VRH, VRL -0.3 6.0 V 8 XFC, EXTAL, XTAL inputs VILV -0.3 3.0 V 9 TEST input VTEST -0.3 10.0 V 10 Instantaneous Maximum Current Single pin limit for all digital I/O pins 3 ID -25 +25 mA 11 Instantaneous Maximum Current Single pin limit for XFC, EXTAL, XTAL4 I DL -25 +25 mA 12 Instantaneous Maximum Current Single pin limit for TEST 5 IDT -0.25 0 mA 13 Storage Temperature Range T – 65 155 °C stg NOTES: 1. Beyond absolute maximum ratings device might be damaged. 2. The device contains an internal voltage regulator to generate the logic and PLL supply out of the I/O supply. The absolute maximum ratings apply when the device is powered from an external source. 3. All digital I/O pins are internally clamped to VSSX and VDDX, VSSR and VDDR or VSSA and VDDA. 4. Those pins are internally clamped to VSSPLL and VDDPLL. 5. This pin is clamped low to VSSR, but not clamped high. This pin must be tied low in applications. 89 MC9S12DJ64 Device User Guide — V01.20 A.1.6 ESD Protection and Latch-up Immunity All ESD testing is in conformity with CDF-AEC-Q100 Stress test qualification for Automotive Grade Integrated Circuits. During the device qualification ESD stresses were performed for the Human Body Model (HBM), the Machine Model (MM) and the Charge Device Model. A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification. Complete DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification. Table A-2 ESD and Latch-up Test Conditions Model Human Body Machine Description Symbol Value Unit Series Resistance R1 1500 Ohm Storage Capacitance C 100 pF Number of Pulse per pin positive negative - 1 1 Series Resistance R1 0 Ohm Storage Capacitance C 200 pF Number of Pulse per pin positive negative - 3 3 Minimum input voltage limit -2.5 V Maximum input voltage limit 7.5 V Latch-up Table A-3 ESD and Latch-Up Protection Characteristics Num C Rating Symbol Min Max Unit 1 T Human Body Model (HBM) VHBM 2000 - V 2 T Machine Model (MM) VMM 200 - V 3 T Charge Device Model (CDM) VCDM 500 - V 4 Latch-up Current at TA = 125°C T positive negative ILAT +100 -100 - mA 5 Latch-up Current at TA = 27°C T positive negative ILAT +200 -200 - mA A.1.7 Operating Conditions This chapter describes the operating conditions of the device. Unless otherwise noted those conditions apply to all the following data. 90 MC9S12DJ64 Device User Guide — V01.20 NOTE: Please refer to the temperature rating of the device (C, V, M) with regards to the ambient temperature TA and the junction temperature TJ. For power dissipation calculations refer to Section A.1.8 Power Dissipation and Thermal Characteristics. Table A-4 Operating Conditions Rating Symbol Min Typ Max Unit I/O, Regulator and Analog Supply Voltage VDD5 4.5 5 5.25 V Digital Logic Supply Voltage 1 VDD 2.35 2.5 2.75 V PLL Supply Voltage 1 VDDPLL 2.35 2.5 2.75 V Voltage Difference VDDX to VDDR and VDDA ∆VDDX -0.1 0 0.1 V Voltage Difference VSSX to VSSR and VSSA ∆VSSX -0.1 0 0.1 V Oscillator fosc 0.5 - 16 MHz Bus Frequency fbus 0.252 - 25 MHz Operating Junction Temperature Range T J -40 - 100 °C Operating Ambient Temperature Range 3 T A -40 27 85 °C J -40 - 120 °C TA -40 27 105 °C Operating Junction Temperature Range TJ -40 - 140 °C Operating Ambient Temperature Range 3 TA -40 27 125 °C MC9S12DJ64C MC9S12DJ64V Operating Junction Temperature Range Operating Ambient Temperature Range 3 T MC9S12DJ64M NOTES: 1. The device contains an internal voltage regulator to generate the logic and PLL supply out of the I/O supply. The given operating range applies when this regulator is disabled and the device is powered from an external source. 2. Some blocks e.g. ATD (conversion) and NVMs (program/erase) require higher bus frequencies for proper operation. 3. Please refer to Section A.1.8 Power Dissipation and Thermal Characteristics for more details about the relation between ambient temperature TA and device junction temperature TJ. A.1.8 Power Dissipation and Thermal Characteristics Power dissipation and thermal characteristics are closely related. The user must assure that the maximum operating junction temperature is not exceeded. The average chip-junction temperature (TJ) in °C can be obtained from: T J = T A + ( P D • Θ JA ) T J = Junction Temperature, [°C ] 91 MC9S12DJ64 Device User Guide — V01.20 T A = Ambient Temperature, [°C ] P D = Total Chip Power Dissipation, [W] Θ JA = Package Thermal Resistance, [°C/W] The total power dissipation can be calculated from: P D = P INT + P IO P INT = Chip Internal Power Dissipation, [W] Two cases with internal voltage regulator enabled and disabled must be considered: 1. Internal Voltage Regulator disabled P INT = I DD ⋅ V DD + I DDPLL ⋅ V DDPLL + I DDA ⋅ V DDA 2 P IO = R DSON ⋅ I IO i i ∑ PIO is the sum of all output currents on I/O ports associated with VDDX and VDDR. For RDSON is valid: V OL R DSON = ------------ ;for outputs driven low I OL respectively V DD5 – V OH R DSON = ------------------------------------ ;for outputs driven high I OH 2. Internal voltage regulator enabled P INT = I DDR ⋅ V DDR + I DDA ⋅ V DDA IDDR is the current shown in Table A-7 and not the overall current flowing into VDDR, which additionally contains the current flowing into the external loads with output high. 2 P IO = R DSON ⋅ I IO i i ∑ PIO is the sum of all output currents on I/O ports associated with VDDX and VDDR. 92 MC9S12DJ64 Device User Guide — V01.20 Table A-5 Thermal Package Characteristics1 Num C Rating Symbol Min Typ Max Unit 1 T Thermal Resistance LQFP112, single sided PCB2 θJA – – 54 o 2 T Thermal Resistance LQFP112, double sided PCB with 2 internal planes3 θJA – – 41 o 3 T Junction to Board LQFP112 θJB – – 31 oC/W 4 T Junction to Case LQFP112 θJC – – 11 o 5 T Junction to Package Top LQFP112 ΨJT – – 2 o 6 T Thermal Resistance QFP 80, single sided PCB θJA – – 51 oC/W 7 T θJA – – 41 oC/W 8 T Junction to Board QFP80 θJB – – 27 oC/W 9 T Junction to Case QFP80 θJC – – 14 oC/W 10 T Junction to Package Top QFP80 ΨJT – – 3 oC/W Thermal Resistance QFP 80, double sided PCB with 2 internal planes C/W C/W C/W C/W NOTES: 1. The values for thermal resistance are achieved by package simulations 2. PC Board according to EIA/JEDEC Standard 51-3 3. PC Board according to EIA/JEDEC Standard 51-7 A.1.9 I/O Characteristics This section describes the characteristics of all 5V I/O pins. All parameters are not always applicable, e.g. not all pins feature pull up/down resistances. 93 MC9S12DJ64 Device User Guide — V01.20 Table A-6 5V I/O Characteristics Conditions are shown in Table A-4 unless otherwise noted Num C Rating Symbol 1 P Input High Voltage V 2 P Input Low Voltage V 3 C Input Hysteresis 4 Input Leakage Current (pins in high impedance input P mode) V =V or VSS5 in DD5 5 Output High Voltage (pins in output mode) P Partial Drive IOH = –2mA Full Drive IOH = –10mA V 6 Output Low Voltage (pins in output mode) P Partial Drive IOL = +2mA Full Drive IOL = +10mA 7 IH IL Min Typ Max Unit 0.65*VDD5 - VDD5 + 0.3 V VSS5 - 0.3 - 0.35*VDD5 V V 250 HYS mV –1 - 1 µA VDD5 – 0.8 - - V V OL - - 0.8 V Internal Pull Up Device Current, P tested at V Max. IPUL - - –130 µA Internal Pull Up Device Current, C tested at V Min. IPUH -10 - - µA Internal Pull Down Device Current, P tested at V Min. IPDH - - 130 µA Internal Pull Down Device Current, C tested at V Max. IPDL 10 - - µA 11 D Input Capacitance Cin 6 - pF 12 Injection current1 T Single Pin limit Total Device Limit. Sum of all injected currents IICS IICP - 2.5 25 mA 13 P Port H, J, P Interrupt Input Pulse filtered2 tpign 3 µs 14 P Port H, J, P Interrupt Input Pulse passed2 tpval IL 8 IH 9 IH 10 IL Iin OH -2.5 -25 10 µs NOTES: 1. Refer to Section A.1.4 Current Injection, for more details 2. Parameter only applies in STOP or Pseudo STOP mode. A.1.10 Supply Currents This section describes the current consumption characteristics of the device as well as the conditions for the measurements. 94 MC9S12DJ64 Device User Guide — V01.20 A.1.10.1 Measurement Conditions All measurements are without output loads. Unless otherwise noted the currents are measured in single chip mode, internal voltage regulator enabled and at 25MHz bus frequency using a 4MHz oscillator in Colpitts mode. Production testing is performed using a square wave signal at the EXTAL input. A.1.10.2 Additional Remarks In expanded modes the currents flowing in the system are highly dependent on the load at the address, data and control signals as well as on the duty cycle of those signals. No generally applicable numbers can be given. A very good estimate is to take the single chip currents and add the currents due to the external loads. Table A-7 Supply Current Characteristics Conditions are shown in Table A-4 unless otherwise noted Num C Rating Symbol Run supply currents Single Chip, Internal regulator enabled IDD5 50 IDDW 30 5 1 P 2 P P All modules enabled, PLL on only RTI enabled 1 C P C C P C P C P Pseudo Stop Current (RTI and COP disabled) 1, 2 -40°C 27°C 70°C 85°C "C" Temp Option 100°C 105°C "V" Temp Option 120°C 125°C "M" Temp Option 140°C C C C C C C C Pseudo Stop Current (RTI and COP enabled) 1, 2 -40°C 27°C 70°C 85°C 105°C 125°C 140°C Min Typ Max Unit mA Wait Supply current 3 4 IDDPS IDDPS 370 400 450 550 600 650 800 850 1200 mA 500 1600 µA 2100 5000 570 600 650 750 850 1200 1500 µA Stop Current 2 5 C P C C P C P C P -40°C 27°C 70°C 85°C "C" Temp Option 100°C 105°C "V" Temp Option 120°C 125°C "M" Temp Option 140°C IDDS 12 25 100 130 160 200 350 400 600 100 1200 µA 1700 5000 95 MC9S12DJ64 Device User Guide — V01.20 NOTES: 1. PLL off 2. At those low power dissipation levels TJ = TA can be assumed 96 MC9S12DJ64 Device User Guide — V01.20 A.2 ATD Characteristics This section describes the characteristics of the analog to digital converter. A.2.1 ATD Operating Characteristics The Table A-8 shows conditions under which the ATD operates. The following constraints exist to obtain full-scale, full range results: VSSA ≤ VRL ≤ VIN ≤ VRH ≤ VDDA. This constraint exists since the sample buffer amplifier can not drive beyond the power supply levels that it ties to. If the input level goes outside of this range it will effectively be clipped. Table A-8 ATD Operating Characteristics Conditions are shown in Table A-4 unless otherwise noted Num C Rating Symbol Min VRL VRH VSSA VDDA/2 Typ Max Unit VDDA/2 VDDA V V 5.25 V Reference Potential 1 D Low High 2 C Differential Reference Voltage1 VRH-VRL 4.50 3 D ATD Clock Frequency fATDCLK 0.5 2.0 MHz 4 D 14 7 28 14 Cycles µs 5 D 12 6 26 13 Cycles µs 6 D Recovery Time (VDDA=5.0 Volts) tREC 20 µs 7 P Reference Supply current 2 ATD blocks on IREF 0.750 mA 8 P Reference Supply current 1 ATD block on IREF 0.375 mA 5.00 ATD 10-Bit Conversion Period Clock Cycles2 NCONV10 Conv, Time at 2.0MHz ATD Clock fATDCLK TCONV10 ATD 8-Bit Conversion Period Clock Cycles2 Conv, Time at 2.0MHz ATD Clock fATDCLK NCONV8 TCONV8 NOTES: 1. Full accuracy is not guaranteed when differential voltage is less than 4.50V 2. The minimum time assumes a final sample period of 2 ATD clocks cycles while the maximum time assumes a final sample period of 16 ATD clocks. A.2.2 Factors influencing accuracy Three factors - source resistance, source capacitance and current injection - have an influence on the accuracy of the ATD. A.2.2.1 Source Resistance: Due to the input pin leakage current as specified in Table A-6 in conjunction with the source resistance there will be a voltage drop from the signal source to the ATD input. The maximum source resistance RS 97 MC9S12DJ64 Device User Guide — V01.20 specifies results in an error of less than 1/2 LSB (2.5mV) at the maximum leakage current. If device or operating conditions are less than worst case or leakage-induced error is acceptable, larger values of source resistance is allowed. A.2.2.2 Source Capacitance When sampling an additional internal capacitor is switched to the input. This can cause a voltage drop due to charge sharing with the external and the pin capacitance. For a maximum sampling error of the input voltage ≤ 1LSB, then the external filter capacitor, Cf ≥ 1024 * (CINS- CINN). A.2.2.3 Current Injection There are two cases to consider. 1. A current is injected into the channel being converted. The channel being stressed has conversion values of $3FF ($FF in 8-bit mode) for analog inputs greater than VRH and $000 for values less than VRL unless the current is higher than specified as disruptive condition. 2. Current is injected into pins in the neighborhood of the channel being converted. A portion of this current is picked up by the channel (coupling ratio K), This additional current impacts the accuracy of the conversion depending on the source resistance. The additional input voltage error on the converted channel can be calculated as VERR = K * RS * IINJ, with IINJ being the sum of the currents injected into the two pins adjacent to the converted channel. Table A-9 ATD Electrical Characteristics Conditions are shown in Table A-4 unless otherwise noted Num C Rating Symbol Min Typ Max Unit RS - - 1 KΩ 10 22 pF 2.5 mA 1 C Max input Source Resistance 2 Total Input Capacitance T Non Sampling Sampling 3 C Disruptive Analog Input Current INA 4 C Coupling Ratio positive current injection Kp 10-4 A/A 5 C Coupling Ratio negative current injection Kn 10-2 A/A 98 CINN CINS -2.5 MC9S12DJ64 Device User Guide — V01.20 A.2.3 ATD accuracy Table A-10 specifies the ATD conversion performance excluding any errors due to current injection, input capacitance and source resistance. Table A-10 ATD Conversion Performance Conditions are shown in Table A-4 unless otherwise noted VREF = VRH - VRL = 5.12V. Resulting to one 8 bit count = 20mV and one 10 bit count = 5mV fATDCLK = 2.0MHz Num C Rating Symbol Min 1 P 10-Bit Resolution LSB 2 P 10-Bit Differential Nonlinearity DNL –1 3 P 10-Bit Integral Nonlinearity INL –2.5 4 P 10-Bit Absolute Error1 AE -3 5 P 8-Bit Resolution LSB 6 P 8-Bit Differential Nonlinearity DNL –0.5 7 P 8-Bit Integral Nonlinearity INL –1.0 AE -1.5 8 P 8-Bit Absolute Error1 Typ Max 5 Unit mV 1 Counts ±1.5 2.5 Counts ±2.0 3 Counts 20 mV 0.5 Counts ±0.5 1.0 Counts ±1.0 1.5 Counts NOTES: 1. These values include the quantization error which is inherently 1/2 count for any A/D converter. For the following definitions see also Figure A-1. Differential Non-Linearity (DNL) is defined as the difference between two adjacent switching steps. Vi – Vi – 1 DNL ( i ) = ------------------------ – 1 1LSB The Integral Non-Linearity (INL) is defined as the sum of all DNLs: n INL ( n ) = ∑ i=1 Vn – V0 DNL ( i ) = -------------------- – n 1LSB 99 MC9S12DJ64 Device User Guide — V01.20 DNL 10-Bit Absolute Error Boundary LSB Vi-1 Vi $3FF 8-Bit Absolute Error Boundary $3FE $3FD $3FC $FF $3FB $3FA $3F9 $3F8 $FE $3F7 $3F6 $3F4 8-Bit Resolution 10-Bit Resolution $3F5 $FD $3F3 9 Ideal Transfer Curve 8 2 7 10-Bit Transfer Curve 6 5 4 1 3 8-Bit Transfer Curve 2 1 0 5 10 15 20 25 30 35 40 45 5055 5060 5065 5070 5075 5080 5085 5090 5095 5100 5105 5110 5115 5120 Vin mV Figure A-1 ATD Accuracy Definitions NOTE: 100 Figure A-1 shows only definitions, for specification values refer to Table A-10. MC9S12DJ64 Device User Guide — V01.20 A.3 NVM, Flash and EEPROM NOTE: Unless otherwise noted the abbreviation NVM (Non Volatile Memory) is used for both Flash and EEPROM. A.3.1 NVM timing The time base for all NVM program or erase operations is derived from the oscillator. A minimum oscillator frequency fNVMOSC is required for performing program or erase operations. The NVM modules do not have any means to monitor the frequency and will not prevent program or erase operation at frequencies above or below the specified minimum. Attempting to program or erase the NVM modules at a lower frequency a full program or erase transition is not assured. The Flash and EEPROM program and erase operations are timed using a clock derived from the oscillator using the FCLKDIV and ECLKDIV registers respectively. The frequency of this clock must be set within the limits specified as fNVMOP. The minimum program and erase times shown in Table A-11 are calculated for maximum fNVMOP and maximum fbus. The maximum times are calculated for minimum fNVMOP and a fbus of 2MHz. A.3.1.1 Single Word Programming The programming time for single word programming is dependant on the bus frequency as a well as on the frequency fNVMOP and can be calculated according to the following formula. 1 1 t swpgm = 9 ⋅ --------------------- + 25 ⋅ ---------f NVMOP f bus A.3.1.2 Row Programming This applies only to the Flash where up to 32 words in a row can be programmed consecutively by keeping the command pipeline filled. The time to program a consecutive word can be calculated as: 1 1 t bwpgm = 4 ⋅ --------------------- + 9 ⋅ ---------f NVMOP f bus The time to program a whole row is: t brpgm = t swpgm + 31 ⋅ t bwpgm Row programming is more than 2 times faster than single word programming. A.3.1.3 Sector Erase Erasing a 512 byte Flash sector or a 4 byte EEPROM sector takes: 101 MC9S12DJ64 Device User Guide — V01.20 1 t era ≈ 4000 ⋅ --------------------f NVMOP The setup time can be ignored for this operation. A.3.1.4 Mass Erase Erasing a NVM block takes: 1 t mass ≈ 20000 ⋅ --------------------f NVMOP The setup time can be ignored for this operation. A.3.1.5 Blank Check The time it takes to perform a blank check on the Flash or EEPROM is dependant on the location of the first non-blank word starting at relative address zero. It takes one bus cycle per word to verify plus a setup of the command. t check ≈ location ⋅ t cyc + 10 ⋅ t cyc Table A-11 NVM Timing Characteristics Conditions are shown in Table A-4 unless otherwise noted Num C Rating Symbol Min Typ Max Unit 50 1 MHz 1 D External Oscillator Clock fNVMOSC 0.5 2 D Bus frequency for Programming or Erase Operations fNVMBUS 1 3 D Operating Frequency fNVMOP 150 200 kHz 4 P Single Word Programming Time tswpgm 46 2 74.5 3 µs 5 D Flash Burst Programming consecutive word 4 tbwpgm 20.4 2 31 3 µs 6 D Flash Burst Programming Time for 32 Words 4 tbrpgm 678.4 2 1035.5 3 µs 7 P Sector Erase Time tera 20 5 26.7 3 ms 8 P Mass Erase Time tmass 100 5 133 3 ms 9 D Blank Check Time Flash per block tcheck 11 6 32778 7 tcyc 10 D Blank Check Time EEPROM per block tcheck 11 6 20587 tcyc MHz NOTES: 1. Restrictions for oscillator in crystal mode apply! 2. Minimum Programming times are achieved under maximum NVM operating frequency fNVMOP and maximum bus frequency fbus. 3. Maximum Erase and Programming times are achieved under particular combinations of fNVMOP and bus frequency fbus. Refer to formulae in Sections A.3.1.1 - A.3.1.4 for guidance. 4. Burst Programming operations are not applicable to EEPROM 5. Minimum Erase times are achieved under maximum NVM operating frequency fNVMOP. 6. Minimum time, if first word in the array is not blank 7. Maximum time to complete check on an erased block 102 MC9S12DJ64 Device User Guide — V01.20 A.3.2 NVM Reliability The reliability of the NVM blocks is guaranteed by stress test during qualification, constant process monitors and burn-in to screen early life failures. The failure rates for data retention and program/erase cycling are specified at the operating conditions noted. The program/erase cycle count on the sector is incremented every time a sector or mass erase event is executed. Table A-12 NVM Reliability Characteristics Conditions are shown in Table A-4 unless otherwise noted Num C Rating Symbol Min Typ Max Unit Data Retention at an average junction temperature of TJavg = 85°C1 tNVMRET 15 Years nFLPE 10,000 Cycles 1 C 2 C Flash number of Program/Erase cycles 3 C EEPROM number of Program/Erase cycles (–40°C ≤ TJ ≤ 0°C) nEEPE 10,000 Cycles 4 C EEPROM number of Program/Erase cycles (0°C < TJ ≤ 140°C) nEEPE 100,000 Cycles NOTES: 1. Total time at the maximum guaranteed device operating temperature <= 1 year 103 MC9S12DJ64 Device User Guide — V01.20 104 MC9S12DJ64 Device User Guide — V01.20 A.4 Voltage Regulator The on-chip voltage regulator is intended to supply the internal logic and oscillator circuits. No external DC load is allowed. Table A-13 Voltage Regulator Recommended Load Capacitances Rating Symbol Min Typ Max Unit Load Capacitance on VDD1, 2 CLVDD 220 nF Load Capacitance on VDDPLL CLVDDfcPLL 220 nF 105 MC9S12DJ64 Device User Guide — V01.20 106 MC9S12DJ64 Device User Guide — V01.20 A.5 Reset, Oscillator and PLL This section summarizes the electrical characteristics of the various startup scenarios for Oscillator and Phase-Locked-Loop (PLL). A.5.1 Startup Table A-14 summarizes several startup characteristics explained in this section. Detailed description of the startup behavior can be found in the Clock and Reset Generator (CRG) Block User Guide. Table A-14 Startup Characteristics Conditions are shown in Table A-4 unless otherwise noted Num C Rating Symbol Min Typ Max Unit 2.07 V 1 T POR release level VPORR 2 T POR assert level VPORA 0.97 V 3 D Reset input pulse width, minimum input time PWRSTL 2 tosc 4 D Startup from Reset nRST 192 5 D Interrupt pulse width, IRQ edge-sensitive mode PWIRQ 20 6 D Wait recovery startup time tWRS 196 nosc ns 14 tcyc A.5.1.1 POR The release level VPORR and the assert level VPORA are derived from the VDD Supply. They are also valid if the device is powered externally. After releasing the POR reset the oscillator and the clock quality check are started. If after a time tCQOUT no valid oscillation is detected, the MCU will start using the internal self clock. The fastest startup time possible is given by nuposc. A.5.1.2 SRAM Data Retention Provided an appropriate external reset signal is applied to the MCU, preventing the CPU from executing code when VDD5 is out of specification limits, the SRAM contents integrity is guaranteed if after the reset the PORF bit in the CRG Flags Register has not been set. A.5.1.3 External Reset When external reset is asserted for a time greater than PWRSTL the CRG module generates an internal reset, and the CPU starts fetching the reset vector without doing a clock quality check, if there was an oscillation before reset. A.5.1.4 Stop Recovery Out of STOP the controller can be woken up by an external interrupt. A clock quality check as after POR is performed before releasing the clocks to the system. 107 MC9S12DJ64 Device User Guide — V01.20 A.5.1.5 Pseudo Stop and Wait Recovery The recovery from Pseudo STOP and Wait are essentially the same since the oscillator was not stopped in both modes. The controller can be woken up by internal or external interrupts. After twrs the CPU starts fetching the interrupt vector. A.5.2 Oscillator The device features an internal Colpitts and Pierce oscillator. The selection of Colpitts oscillator or Pierce oscillator/external clock depends on the XCLKS signal which is sampled during reset. Pierce oscillator/external clock mode allows the input of a square wave. Before asserting the oscillator to the internal system clocks the quality of the oscillation is checked for each start from either power-on, STOP or oscillator fail. tCQOUT specifies the maximum time before switching to the internal self clock mode after POR or STOP if a proper oscillation is not detected. The quality check also determines the minimum oscillator start-up time tUPOSC. The device also features a clock monitor. A Clock Monitor Failure is asserted if the frequency of the incoming clock signal is below the Assert Frequency fCMFA. Table A-15 Oscillator Characteristics Conditions are shown in Table A-4 unless otherwise noted Num C Rating Symbol Min Typ Max Unit 1a C Crystal oscillator range (Colpitts) fOSC 0.5 16 MHz 1b C Crystal oscillator range (Pierce) 1 fOSC 0.5 40 MHz 2 P Startup Current iOSC 100 3 C Oscillator start-up time (Colpitts) tUPOSC 4 D Clock Quality check time-out tCQOUT 0.45 5 P Clock Monitor Failure Assert Frequency fCMFA 50 6 P External square wave input frequency 4 fEXT 0.5 7 D External square wave pulse width low tEXTL 9.5 ns 8 D External square wave pulse width high tEXTH 9.5 ns 9 D External square wave rise time tEXTR 1 ns 10 D External square wave fall time tEXTF 1 ns 11 D Input Capacitance (EXTAL, XTAL pins) 12 C 13 P EXTAL Pin Input High Voltage4 VIH,EXTAL T EXTAL Pin Input High Voltage4 VIH,EXTAL VDDPLL+ 0.3 V P EXTAL Pin Input Low Voltage4 VIL,EXTAL 0.25*VDDPLL V T EXTAL Pin Input Low Voltage4 VIL,EXTAL 14 15 108 DC Operating Bias in Colpitts Configuration on EXTAL Pin C EXTAL Pin Input Hysteresis4 µA 82 100 1003 ms 2.5 s 200 KHz 50 MHz CIN 7 pF VDCBIAS 1.1 V VHYS,EXTAL 0.75*VDDPLL V VDDPLL - 0.3 V 250 mV MC9S12DJ64 Device User Guide — V01.20 NOTES: 1. Depending on the crystal a damping series resistor might be necessary 2. fosc = 4MHz, C = 22pF. 3. Maximum value is for extreme cases using high Q, low frequency crystals 4. Only valid if Pierce oscillator/external clock mode is selected A.5.3 Phase Locked Loop The oscillator provides the reference clock for the PLL. The PLL´s Voltage Controlled Oscillator (VCO) is also the system clock source in self clock mode. A.5.3.1 XFC Component Selection This section describes the selection of the XFC components to achieve a good filter characteristics. Cp VDDPLL R Phase Cs fosc 1 refdv+1 fref ∆ fcmp XFC Pin VCO KΦ KV fvco Detector Loop Divider 1 synr+1 1 2 Figure A-2 Basic PLL functional diagram The following procedure can be used to calculate the resistance and capacitance values using typical values for K1, f1 and ich from Table A-16. The grey boxes show the calculation for fVCO = 50MHz and fref = 1MHz. E.g., these frequencies are used for fOSC = 4MHz and a 25MHz bus clock. The VCO Gain at the desired VCO frequency is approximated by: KV = K1 ⋅ e ( f 1 – f vco ) ----------------------K 1 ⋅ 1V = – 100 ⋅ e ( 60 – 50 ) -----------------------– 100 = -90.48MHz/V 109 MC9S12DJ64 Device User Guide — V01.20 The phase detector relationship is given by: K Φ = – i ch ⋅ K V = 316.7Hz/Ω ich is the current in tracking mode. The loop bandwidth fC should be chosen to fulfill the Gardner’s stability criteria by at least a factor of 10, typical values are 50. ζ = 0.9 ensures a good transient response. 2 ⋅ ζ ⋅ f ref f ref 1 f C < ------------------------------------------ ------ → f C < -------------- ;( ζ = 0.9 ) 4 ⋅ 10 2 10 π ⋅ ζ + 1 + ζ fC < 25kHz And finally the frequency relationship is defined as f VCO n = ------------- = 2 ⋅ ( synr + 1 ) f ref = 50 With the above values the resistance can be calculated. The example is shown for a loop bandwidth fC=10kHz: 2 ⋅ π ⋅ n ⋅ fC R = ----------------------------- = 2*π*50*10kHz/(316.7Hz/Ω)=9.9kΩ=~10kΩ KΦ The capacitance Cs can now be calculated as: 2 0.516 2⋅ζ C s = ---------------------- ≈ --------------- ;( ζ = 0.9 ) = 5.19nF =~ 4.7nF π ⋅ fC ⋅ R fC ⋅ R The capacitance Cp should be chosen in the range of: C s ⁄ 20 ≤ C p ≤ C s ⁄ 10 Cp = 470pF A.5.3.2 Jitter Information The basic functionality of the PLL is shown in Figure A-2. With each transition of the clock fcmp, the deviation from the reference clock fref is measured and input voltage to the VCO is adjusted accordingly.The adjustment is done continuously with no abrupt changes in the clock output frequency. Noise, voltage, temperature and other factors cause slight variations in the control loop resulting in a clock jitter. This jitter affects the real minimum and maximum clock periods as illustrated in Figure A-3. 110 MC9S12DJ64 Device User Guide — V01.20 1 0 2 3 N-1 N tmin1 tnom tmax1 tminN tmaxN Figure A-3 Jitter Definitions The relative deviation of tnom is at its maximum for one clock period, and decreases towards zero for larger number of clock periods (N). Defining the jitter as: t min ( N ) t max ( N ) J ( N ) = max 1 – --------------------- , 1 – --------------------- N ⋅ t nom N ⋅ t nom For N < 100, the following equation is a good fit for the maximum jitter: j1 J ( N ) = -------- + j 2 N J(N) 1 5 10 20 N Figure A-4 Maximum bus clock jitter approximation 111 MC9S12DJ64 Device User Guide — V01.20 This is very important to notice with respect to timers, serial modules where a pre-scaler will eliminate the effect of the jitter to a large extent. Table A-16 PLL Characteristics Conditions are shown in Table A-4 unless otherwise noted Num C Rating Symbol Min Typ Max Unit 1 P Self Clock Mode frequency fSCM 1 5.5 MHz 2 D VCO locking range fVCO 8 50 MHz 3 D |∆trk| 3 4 %1 4 D Lock Detection |∆Lock| 0 1.5 %1 5 D Un-Lock Detection |∆unl| 0.5 2.5 %1 6 D |∆unt| 6 8 %1 7 C PLLON Total Stabilization delay (Auto Mode) 2 tstab 0.5 ms 8 D PLLON Acquisition mode stabilization delay 2 tacq 0.3 ms 9 D PLLON Tracking mode stabilization delay 2 tal 0.2 ms 10 D Fitting parameter VCO loop gain K1 -100 MHz/V 11 D Fitting parameter VCO loop frequency f1 60 MHz 12 D Charge pump current acquisition mode | ich | 38.5 µA 13 D Charge pump current tracking mode | ich | 3.5 µA 14 C Jitter fit parameter 12 j1 1.1 % 15 C Jitter fit parameter 22 j2 0.13 % Lock Detector transition from Acquisition to Tracking mode Lock Detector transition from Tracking to Acquisition mode NOTES: 1. % deviation from target frequency 2. fOSC = 4MHz, fBUS = 25MHz equivalent fVCO = 50MHz: REFDV = #$03, SYNR = #$018, Cs = 4.7nF, Cp = 470pF, Rs = 10KΩ. 112 MC9S12DJ64 Device User Guide — V01.20 A.6 MSCAN Table A-17 MSCAN Wake-up Pulse Characteristics Conditions are shown in Table A-4 unless otherwise noted Num C Rating Symbol 1 P MSCAN Wake-up dominant pulse filtered tWUP 2 P MSCAN Wake-up dominant pulse pass tWUP Min 5 Typ Max Unit 2 µs µs 113 MC9S12DJ64 Device User Guide — V01.20 114 MC9S12DJ64 Device User Guide — V01.20 A.7 SPI A.7.1 Master Mode Figure A-5 and Figure A-6 illustrate the master mode timing. Timing values are shown in Table A-18. SS1 (OUTPUT) 2 1 SCK (CPOL = 0) (OUTPUT) 4 12 SCK (CPOL = 1) (OUTPUT) 5 MISO (INPUT) 6 MSB IN2 9 MOSI (OUTPUT) 3 11 4 BIT 6 . . . 1 LSB IN 9 MSB OUT2 BIT 6 . . . 1 10 LSB OUT 1. If configured as output. 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB. Figure A-5 SPI Master Timing (CPHA = 0) 115 MC9S12DJ64 Device User Guide — V01.20 SS1 (OUTPUT) 1 2 12 11 11 12 3 SCK (CPOL = 0) (OUTPUT) 4 4 SCK (CPOL = 1) (OUTPUT) 5 MISO (INPUT) 6 MSB IN2 BIT 6 . . . 1 LSB IN 10 9 MOSI (OUTPUT) PORT DATA MASTER MSB OUT2 BIT 6 . . . 1 MASTER LSB OUT PORT DATA 1. If configured as output 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB. Figure A-6 SPI Master Timing (CPHA =1) Table A-18 SPI Master Mode Timing Characteristics1 Conditions are shown in Table A-4 unless otherwise noted, CLOAD = 200pF on all outputs Num C Rating Symbol Min Typ Max Unit 1 P Operating Frequency fop DC 1/2 fbus 1 P SCK Period tsck = 1./fop tsck 4 2048 tbus 2 D Enable Lead Time tlead 1/2 — tsck 3 D Enable Lag Time tlag 1/2 4 D Clock (SCK) High or Low Time twsck tbus − 30 5 D Data Setup Time (Inputs) tsu 25 ns 6 D Data Hold Time (Inputs) thi 0 ns 9 D Data Valid (after SCK Edge) tv 10 D Data Hold Time (Outputs) tho 11 D Rise Time Inputs and Outputs tr 25 ns 12 D Fall Time Inputs and Outputs tf 25 ns tsck 1024 tbus 25 0 ns ns ns NOTES: 1. The numbers 7, 8 in the column labeled “Num” are missing. This has been done on purpose to be consistent between the Master and the Slave timing shown in Table A-19. 116 MC9S12DJ64 Device User Guide — V01.20 A.7.2 Slave Mode Figure A-7 and Figure A-8 illustrate the slave mode timing. Timing values are shown in Table A-19. SS (INPUT) 1 12 11 11 12 3 SCK (CPOL = 0) (INPUT) 4 2 4 SCK (CPOL = 1) (INPUT) 8 7 MISO (OUTPUT) 9 5 MOSI (INPUT) BIT 6 . . . 1 MSB OUT SLAVE 10 10 SLAVE LSB OUT 6 BIT 6 . . . 1 MSB IN LSB IN Figure A-7 SPI Slave Timing (CPHA = 0) SS (INPUT) 3 1 2 12 11 11 12 SCK (CPOL = 0) (INPUT) 4 4 SCK (CPOL = 1) (INPUT) SLAVE 7 MOSI (INPUT) 8 10 9 MISO (OUTPUT) MSB OUT 5 BIT 6 . . . 1 SLAVE LSB OUT 6 MSB IN BIT 6 . . . 1 LSB IN Figure A-8 SPI Slave Timing (CPHA =1) 117 MC9S12DJ64 Device User Guide — V01.20 Table A-19 SPI Slave Mode Timing Characteristics Conditions are shown in Table A-4 unless otherwise noted, CLOAD = 200pF on all outputs Num C Rating Symbol Min Typ Max Unit 1 P Operating Frequency fop DC 1/6 fbus 1 P SCK Period tsck = 1./fop tsck 4 2048 tbus 2 D Enable Lead Time tlead 1 tcyc 3 D Enable Lag Time tlag 1 tcyc 4 D Clock (SCK) High or Low Time twsck tcyc − 30 ns 5 D Data Setup Time (Inputs) tsu 25 ns 6 D Data Hold Time (Inputs) thi 25 ns 7 D Slave Access Time ta 1 tcyc 8 D Slave MISO Disable Time tdis 1 tcyc 9 D Data Valid (after SCK Edge) tv 25 ns 10 D Data Hold Time (Outputs) tho 11 D Rise Time Inputs and Outputs tr 25 ns 12 D Fall Time Inputs and Outputs tf 25 ns 118 0 ns MC9S12DJ64 Device User Guide — V01.20 A.8 External Bus Timing A timing diagram of the external multiplexed-bus is illustrated in Figure A-9 with the actual timing values shown on table Table A-20. All major bus signals are included in the diagram. While both a data write and data read cycle are shown, only one or the other would occur on a particular bus cycle. A.8.1 General Muxed Bus Timing The expanded bus timings are highly dependent on the load conditions. The timing parameters shown assume a balanced load across all outputs. 119 MC9S12DJ64 Device User Guide — V01.20 1, 2 3 4 ECLK PE4 5 9 Addr/Data (read) PA, PB 6 data 16 15 7 data 8 14 13 data addr 17 11 data addr 12 Addr/Data (write) PA, PB 10 19 18 Non-Multiplexed Addresses PK5:0 20 21 22 23 ECS PK7 24 25 26 27 28 29 30 31 32 33 34 R/W PE2 LSTRB PE3 NOACC PE7 35 36 IPIPO0 IPIPO1, PE6,5 Figure A-9 General External Bus Timing 120 MC9S12DJ64 Device User Guide — V01.20 Table A-20 Expanded Bus Timing Characteristics Conditions are shown in Table A-4 unless otherwise noted, CLOAD = 50pF Num C Rating Symbol Min Typ Max Unit fo 0 25.0 MHz tcyc 40 ns 1 P Frequency of operation (E-clock) 2 P Cycle time 3 D Pulse width, E low PWEL 19 ns 4 D Pulse width, E high1 PWEH 19 ns 5 D Address delay time tAD 6 D Address valid time to E rise (PWEL–tAD) tAV 11 ns 7 D Muxed address hold time tMAH 2 ns 8 D Address hold to data valid tAHDS 7 ns 9 D Data hold to address tDHA 2 ns 10 D Read data setup time tDSR 13 ns 11 D Read data hold time tDHR 0 ns 12 D Write data delay time tDDW 13 D Write data hold time tDHW 2 ns 14 D Write data setup time1 (PWEH–tDDW) tDSW 12 ns 15 D Address access time1 (tcyc–tAD–tDSR) tACCA 19 ns 16 D E high access time1 (PWEH–tDSR) tACCE 6 ns 17 D Non-multiplexed address delay time tNAD 18 D Non-muxed address valid to E rise (PWEL–tNAD) tNAV 15 ns 19 D Non-multiplexed address hold time tNAH 2 ns 20 D Chip select delay time tCSD 21 D Chip select access time1 (tcyc–tCSD–tDSR) tACCS 11 ns 22 D Chip select hold time tCSH 2 ns 23 D Chip select negated time tCSN 8 ns 24 D Read/write delay time tRWD 25 D Read/write valid time to E rise (PWEL–tRWD) tRWV 14 ns 26 D Read/write hold time tRWH 2 ns 27 D Low strobe delay time tLSD 28 D Low strobe valid time to E rise (PWEL–tLSD) tLSV 14 ns 29 D Low strobe hold time tLSH 2 ns 30 D NOACC strobe delay time tNOD 31 D NOACC valid time to E rise (PWEL–tNOD) tNOV 8 7 6 16 7 7 7 14 ns ns ns ns ns ns ns ns 121 MC9S12DJ64 Device User Guide — V01.20 Table A-20 Expanded Bus Timing Characteristics Conditions are shown in Table A-4 unless otherwise noted, CLOAD = 50pF Num C Rating Symbol Min 32 D NOACC hold time tNOH 2 33 D IPIPO[1:0] delay time tP0D 2 34 D IPIPO[1:0] valid time to E rise (PWEL–tP0D) tP0V 11 35 D IPIPO[1:0] delay time1 (PWEH-tP1V) tP1D 2 36 D IPIPO[1:0] valid time to E fall tP1V 11 Typ NOTES: 1. Affected by clock stretch: add N x tcyc where N=0,1,2 or 3, depending on the number of clock stretches. 122 Max Unit ns 7 ns ns 25 ns ns MC9S12DJ64 Device User Guide — V01.20 Appendix B Package Information B.1 General This section provides the physical dimensions of the MC9S12DJ64 and MC9S12D32 packages. 123 MC9S12DJ64 Device User Guide — V01.20 B.2 112-pin LQFP package 0.20 T L-M N 4X PIN 1 IDENT 0.20 T L-M N 4X 28 TIPS 112 J1 85 4X P J1 1 CL 84 VIEW Y 108X G X X=L, M OR N VIEW Y B L V M B1 28 57 29 F D 56 0.13 N T L-M N SECTION J1-J1 S1 A S C2 VIEW AB θ2 0.050 0.10 T 112X SEATING PLANE θ3 T θ R R2 R 0.25 R1 GAGE PLANE (K) C1 E (Y) (Z) VIEW AB M θ1 NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. DIMENSIONS IN MILLIMETERS. 3. DATUMS L, M AND N TO BE DETERMINED AT SEATING PLANE, DATUM T. 4. DIMENSIONS S AND V TO BE DETERMINED AT SEATING PLANE, DATUM T. 5. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 PER SIDE. DIMENSIONS A AND B INCLUDE MOLD MISMATCH. 6. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE D DIMENSION TO EXCEED 0.46. DIM A A1 B B1 C C1 C2 D E F G J K P R1 R2 S S1 V V1 Y Z AA θ θ1 θ2 θ3 MILLIMETERS MIN MAX 20.000 BSC 10.000 BSC 20.000 BSC 10.000 BSC --1.600 0.050 0.150 1.350 1.450 0.270 0.370 0.450 0.750 0.270 0.330 0.650 BSC 0.090 0.170 0.500 REF 0.325 BSC 0.100 0.200 0.100 0.200 22.000 BSC 11.000 BSC 22.000 BSC 11.000 BSC 0.250 REF 1.000 REF 0.090 0.160 8 ° 0° 7 ° 3 ° 13 ° 11 ° 11 ° 13 ° Figure B-1 112-pin LQFP mechanical dimensions (case no. 987) 124 BASE METAL ROTATED 90 ° COUNTERCLOCKWISE A1 C AA J V1 MC9S12DJ64 Device User Guide — V01.20 B.3 80-pin QFP package L 60 41 61 D S M V P B C A-B D 0.20 M B B -A-,-B-,-D- 0.20 L H A-B -B- 0.05 D -A- S S S 40 DETAIL A DETAIL A 21 80 1 0.20 A H A-B M S F 20 -DD S 0.05 A-B J S 0.20 C A-B M S D S D M E DETAIL C C -H- -C- DATUM PLANE 0.20 M C A-B S D S SECTION B-B VIEW ROTATED 90 ° 0.10 H SEATING PLANE N M G U T DATUM PLANE -H- R K W X DETAIL C Q NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DATUM PLANE -H- IS LOCATED AT BOTTOM OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE. 4. DATUMS -A-, -B- AND -D- TO BE DETERMINED AT DATUM PLANE -H-. 5. DIMENSIONS S AND V TO BE DETERMINED AT SEATING PLANE -C-. 6. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 PER SIDE. DIMENSIONS A AND B DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -H-. 7. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. DIM A B C D E F G H J K L M N P Q R S T U V W X MILLIMETERS MIN MAX 13.90 14.10 13.90 14.10 2.15 2.45 0.22 0.38 2.00 2.40 0.22 0.33 0.65 BSC --0.25 0.13 0.23 0.65 0.95 12.35 REF 5° 10 ° 0.13 0.17 0.325 BSC 0° 7° 0.13 0.30 16.95 17.45 0.13 --0° --16.95 17.45 0.35 0.45 1.6 REF Figure B-2 80-pin QFP Mechanical Dimensions (case no. 841B) 125 MC9S12DJ64 Device User Guide — V01.20 126 MC9S12DJ64 Device User Guide — V01.20 User Guide End Sheet 127 MC9S12DJ64 Device User Guide — V01.20 FINAL PAGE OF 128 PAGES 128