SAMSUNG K4B1G0846C-ZCG9

1Gb DDR3 SDRAM
K4B1G04(08/16)46C
1Gb C-die DDR3 SDRAM Specification
Revision 1.0
June 2007
INFORMATION IN THIS DOCUMENT IS PROVIDED IN RELATION TO SAMSUNG PRODUCTS,
AND IS SUBJECT TO CHANGE WITHOUT NOTICE.
NOTHING IN THIS DOCUMENT SHALL BE CONSTRUED AS GRANTING ANY LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE,
TO ANY INTELLECTUAL PROPERTY RIGHTS IN SAMSUNG PRODUCTS OR TECHNOLOGY. ALL
INFORMATION IN THIS DOCUMENT IS PROVIDED
ON AS "AS IS" BASIS WITHOUT GUARANTEE OR WARRANTY OF ANY KIND.
1. For updates or additional information about Samsung products, contact your nearest Samsung office.
2. Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar
applications where Product failure could result in loss of life or personal or physical harm, or any military or
defense application, or any governmental procurement to which special terms or provisions may apply.
* Samsung Electronics reserves the right to change products or specification without notice.
Page 1 of 63
Rev. 1.0 June 2007
1Gb DDR3 SDRAM
K4B1G04(08/16)46C
Revision History
Revision
Month
Year
History
0.0
January
2007
- Revision 0.0 release
0.1
June
2007
- Deleted 800Mbps 5-5-5 speed
- Timing Parameters by Speed Grade (13.0)
- Input/Output Capacitance (11.0)
1.0
June
2007
- Revision 1.0 specification release.
Page 2 of 63
Rev. 1.0 June 2007
1Gb DDR3 SDRAM
K4B1G04(08/16)46C
Table Contents
1.0 Ordering Information ....................................................................................................................................................4
2.0 Key Features .................................................................................................................................................................4
3.0 Package pinout/Mechanical Dimension & Addressing .............................................................................................5
3.1 x4 Package Pinout (Top view) : 94ball FBGA Package(78balls + 16 balls of support balls) ..........................................5
3.2 x8 Package Pinout (Top view) : 94ball FBGA Package(78balls + 16 balls of support balls) ..........................................6
3.3 x16 Package Pinout (Top view) : 112ball FBGA Package(96balls + 16 balls of support balls) ......................................7
3.4 FBGA Package Dimension (x4) ...................................................................................................................................8
3.5 FBGA Package Dimension (x8) ...................................................................................................................................9
3.6 FBGA Package Dimension (x16) ...............................................................................................................................10
4.0 Input/Output Functional Description ........................................................................................................................11
5.0 DDR3 SDRAM Addressing .........................................................................................................................................12
6.0 Absolute Maximum Ratings .......................................................................................................................................14
6.1 Absolute Maximum DC Ratings ................................................................................................................................14
6.2 DRAM Component Operating Temperature Range ....................................................................................................14
7.0 AC & DC Operating Conditions .................................................................................................................................14
7.1 Recommended DC operating Conditions (SSTL_1.5) .................................................................................................14
8.0 AC & DC Input Measurement Levels .........................................................................................................................15
8.1 AC and DC Logic input levels for single-ended signals .............................................................................................15
8.2 Differential swing requirement for differntial signals ................................................................................................16
8.2.1 Single-ended requirements for differential signals ............................................................................................17
8.3 AC and DC logic input levels for Differential Signals .................................................................................................18
8.4 Differential Input Cross Point Voltage .......................................................................................................................18
8.5 Slew rate definition for Single Ended Input Signals ...................................................................................................19
8.5.1 Input Slew Rate for Input Setup Time (tIS) and Data Setup Time (tDS) ...............................................................19
8.5.2 Input Slew Rate for Input Hold Time (tIH) and Data Hold Time (tDH) ..................................................................19
8.6 Slew rate definition for Differential Input Signals ......................................................................................................19
9.0 AC and DC Output Measurement Levels .................................................................................................................. 20
9.1 Single Ended AC and DC Output Levels ....................................................................................................................20
9.2 Differential AC and DC Output Levels .......................................................................................................................20
9.3.Single Ended Output Slew Rate ................................................................................................................................ 21
9.4 Differential Output Slew Rate ....................................................................................................................................21
9.5 Reference Load for AC Timing and Output Slew Rate ................................................................................................22
9.6 Overshoot/Undershoot Specification ........................................................................................................................23
9.6.1 Address and Control Overshoot and Undershoot specifications .......................................................................23
9.6.2 Clock, Data, Strobe and Mask Overshoot and Undershoot specifications ..........................................................23
9.7 34 ohm Output Driver DC Electrical Characteristics ..................................................................................................24
9.7.1 Output Drive Temperature and Voltage sensitivity ............................................................................................25
9.8 On-Die Termination (ODT) Levels and I-V Characteristics ..........................................................................................25
9.8.1 ODT DC electrical characteristics .....................................................................................................................26
9.8.2 ODT Temperature and Voltage sensitivity ......................................................................................................... 27
9.9 ODT Timing Definitions ............................................................................................................................................ 28
9.9.1 Test Load for ODT Timings ............................................................................................................................... 28
9.9.2 ODT Timing Definition ......................................................................................................................................28
10.0 Idd Specification Parameters and Test Conditions ...............................................................................................31
10.1 IDD Measurement Conditions .................................................................................................................................31
10.2 IDD Specifications ..................................................................................................................................................41
11.0 Input/Output Capacitance ........................................................................................................................................43
12.0 Electrical Characteristics and AC timing for DDR3-800 to DDR3-1600 ................................................................44
12.1 Clock specification .................................................................................................................................................44
12.2 Clock Jitter Specification ........................................................................................................................................45
12.3 Refresh Parameters by Device Density ...................................................................................................................46
12.4 Standard Speed Bins ..............................................................................................................................................46
13.0 Timing Parameters by Speed Grade ....................................................................................................................... 48
Page 3 of 63
Rev. 1.0 June 2007
1Gb DDR3 SDRAM
K4B1G04(08/16)46C
1.0 Ordering Information
[ Table 1 ] Samsung DDR3 ordering information table
Organization
DDR3-800 (6-6-6)
DDR3-1066 (7-7-7/8-8-8)
DDR3-1333 (8-8-8/9-9-9)
Package
256Mx4
K4B1G0446C-ZCF7
K4B1G0446C-CF8/G8
K4B1G0446C-ZCG9/H9
94 FBGA
128Mx8
K4B1G0846C-ZCF7
K4B1G0846C-CF8/G8
K4B1G0846C-ZCG9/H9
94 FBGA
64Mx16
K4B1G1646C-ZCF7
K4B1G1646C-CF8/G8
K4B1G1646C-ZCG9/H9
112 FBGA
Note :
1. Speed bin is in order of CL-tRCD-tRP.
2. x4/x8/x16 Package - including 16 support balls
2.0 Key Features
[ Table 2 ] 1Gb DDR3 C-die Speed bins
Speed
tCK(min)
DDR3-800
6-6-6
DDR3-1066
7-7-7
2.5
DDR3-1333
8-8-8
8-8-8
1.875
9-9-9
1.5
Unit
ns
CAS Latency
6
7
8
8
9
tCK
tRCD(min)
15
13.125
15
12
13.5
ns
tRP(min)
15
13.125
15
12
13.5
ns
tRAS(min)
37.5
37.5
37.5
36
36
ns
tRC(min)
52.5
50.625
52.5
48
49.5
ns
• JEDEC standard 1.5V ± 0.075V Power Supply
• VDDQ = 1.5V ± 0.075V
• 400 MHz fCK for 800Mb/sec/pin, 533MHz fCK for 1066Mb/sec/pin,
667MHz fCK for 1333Mb/sec/pin
• 8 Banks
• Posted CAS
• Programmable CAS Latency: 5, 6, 7, 8, 9, 10, (11 for high density
only)
• Programmable Additive Latency: 0, CL-2 or CL-1 clock
• Programmable CAS Write Latency (CWL) = 5 (DDR3-800), 6
(DDR3-1066), 7 (DDR3-1333)
• 8-bit pre-fetch
• Burst Length: 8 (Interleave without any limit, sequential with starting
address “000” only), 4 with tCCD = 4 which does not allow seamless
read or write [either On the fly using A12 or MRS]
The 1Gb DDR3 SDRAM C-die is organized as a 32Mbit x 4/16Mbit x 8/
8Mbit x 16 I/Os x 8banks device. This synchronous device achieves high
speed double-data-rate transfer rates of up to 1333Mb/sec/pin (DDR31333) for general applications.
The chip is designed to comply with the following key DDR3 SDRAM features such as posted CAS, Programmable CWL, Internal (Self) Calibration, On Die Termination using ODT pin and Asynchronous Reset .
All of the control and address inputs are synchronized with a pair of externally supplied differential clocks. Inputs are latched at the crosspoint of differential clocks (CK rising and CK falling). All I/Os are synchronized with a
pair of bidirectional strobes (DQS and DQS) in a source synchronous fashion. The address bus is used to convey row, column, and bank address
information in a RAS/CAS multiplexing style. The DDR3 device operates
with a single 1.5V ± 0.075V power supply and 1.5V ± 0.075V VDDQ.
The 1Gb DDR3 device is available in 94ball FBGAs(x4/x8) and 112ball
FBGA(x16)
• Bi-directional Differential Data-Strobe
• Internal(self) calibration : Internal self calibration through ZQ pin
(RZQ : 240 ohm ± 1%)
• On Die Termination using ODT pin
Note : 1. The functionality described and the timing specifications included
in this data sheet are for the DLL Enabled mode of operation.
2. 1066Mbps CL7 doesn’t have back-ward compatibility with
800Mbps CL5
• Average Refresh Period 7.8us at lower than TCASE 85×C, 3.9us at
85×C < TCASE < 95 ×C
• Asynchronous Reset
• Package : 94 balls FBGA - x4/x8 (with 16 support balls)
112 balls FBGA - x16 (with 16 support balls)
• All of Lead-free products are compliant for RoHS
Note : This data sheet is an abstract of full DDR3 specification and does not cover the common features which are described in “DDR3 SDRAM Device
Operation & Timing Diagram”.
Page 4 of 63
Rev. 1.0 June 2007
1Gb DDR3 SDRAM
K4B1G04(08/16)46C
3.0 Package pinout/Mechanical Dimension & Addressing
3.1 x4 Package Pinout (Top view) : 94ball FBGA Package(78balls + 16 balls of support balls)
A
1
2
NC
NC
NC
3
4
5
6
7
8
NC
9
NC
10
11
NC
NC
NC
B
C
D
VSS
VDD
NC
NC
VSS
VDD
E
VSS
VSSQ
DQ0
DM
VSSQ
VDDQ
D
F
VDDQ
DQ2
DQS
DQ1
DQ3
VSSQ
F
G
VSSQ
NC
DQS
VDD
VSS
VSSQ
G
H
VREFDQ
VDDQ
NC
NC
NC
VDDQ
H
E
J
NC
VSS
RAS
CK
VSS
NC
J
K
ODT
VDD
CAS
CK
VDD
CKE
K
L
NC
CS
WE
A10/AP
ZQ
NC
L
M
VSS
BA0
BA2
A15
VREFCA
VSS
M
N
VDD
A3
A0
A12/BC
BA1
VDD
N
P
VSS
A5
A2
A1
A4
VSS
P
R
VDD
A7
A9
A11
A6
VDD
R
NC
VSS
RESET
A13
NC
A8
VSS
NC
NC
NC
NC
NC
NC
NC
T
T
U
V
W
Note1: A1,A2,A4,A8,A10,A11,D1,D11,T1,T11,W1,W2,W4,W8,W10 and W11 balls indicate mechanical support balls with no internal connection
1
Ball Locations (x4)
2
3
4
5
6
7
8
9
10 11
A
B
C
Populated ball
Ball not populated
D
E
F
G
H
Top view
(See the balls through the Package)
J
K
L
M
N
P
R
T
U
V
W
Page 5 of 63
Rev. 1.0 June 2007
1Gb DDR3 SDRAM
K4B1G04(08/16)46C
3.2 x8 Package Pinout (Top view) : 94ball FBGA Package(78balls + 16 balls of support balls)
A
1
2
NC
NC
NC
3
4
5
6
7
8
NC
9
NC
10
11
NC
NC
NC
B
C
D
VSS
VDD
NC
NU/TDQS
VSS
VDD
E
VSS
VSSQ
DQ0
DM/TDQS
VSSQ
VDDQ
D
E
F
VDDQ
DQ2
DQS
DQ1
DQ3
VSSQ
F
G
VSSQ
DQ6
DQS
VDD
VSS
VSSQ
G
H
VREFDQ
VDDQ
DQ4
DQ7
DQ5
VDDQ
H
J
NC
VSS
RAS
CK
VSS
NC
J
K
ODT
VDD
CAS
CK
VDD
CKE
K
L
NC
CS
WE
A10/AP
ZQ
NC
L
M
VSS
BA0
BA2
NC
VREFCA
VSS
M
N
VDD
A3
A0
A12/BC
BA1
VDD
N
P
VSS
A5
A2
A1
A4
VSS
P
R
T
VDD
A7
A9
A11
A6
VDD
NC
VSS
RESET
A13
NC
A8
VSS
NC
R
NC
NC
NC
NC
NC
NC
T
U
V
W
Note1: A1,A2,A4,A8,A10,A11,D1,D11,T1,T11,W1,W2,W4,W8,W10 and W11 balls indicate mechanical support balls with no internal connection
1
Ball Locations (x8)
2
3
4
5
6
7
8
9
10 11
A
B
C
Populated ball
Ball not populated
D
E
F
G
H
Top view
(See the balls through the Package)
J
K
L
M
N
P
R
T
U
V
W
Page 6 of 63
Rev. 1.0 June 2007
1Gb DDR3 SDRAM
K4B1G04(08/16)46C
3.3 x16 Package Pinout (Top view) : 112ball FBGA Package(96balls + 16 balls of support balls)
A
1
2
NC
NC
NC
3
4
5
6
7
NC
8
9
NC
10
11
NC
NC
NC
B
C
D
VDDQ
DQU5
DQU7
DQU4
VDDQ
VSS
E
VSSQ
VDD
VSS
DQSU
DQU6
VSSQ
D
F
VDDQ
DQU3
DQU1
DQSU
DQU2
VDDQ
F
G
VSSQ
VDDQ
DMU
DQU0
VSSQ
VDD
G
H
VSS
VSSQ
DQL0
DML
VSSQ
VDDQ
H
J
VDDQ
DQL2
DQSL
DQL1
DQL3
VSSQ
J
K
E
K
VSSQ
DQL6
DQSL
VDD
VSS
VSSQ
L
VREFDQ
VDDQ
DQL4
DQL7
DQL5
VDDQ
L
M
NC
VSS
RAS
CK
VSS
NC
M
N
ODT
VDD
CAS
CK
VDD
CKE
N
P
NC
CS
WE
A10/AP
ZQ
NC
P
R
VSS
BA0
BA2
A15
VREFCA
VSS
R
T
VDD
A3
A0
A12/BC
BA1
VDD
T
U
VSS
A5
A2
A1
A4
VSS
U
V
VDD
A7
A9
A11
A6
VDD
V
NC
VSS
RESET
A13
NC
A8
VSS
NC
NC
NC
NC
NC
NC
NC
W
W
Y
AA
AB
Note1: A1,A2,A4,A8,A10,A11,D1,D11,W1,W11,AB1,AB2,AB4,AB8,AB10 and AB11 balls indicate mechanical support balls with no internal connection
1
2
3
4
5
6
7
8
9
10 11
A
B
Ball Locations (x16)
C
D
E
Populated ball
Ball not populated
F
G
H
J
K
Top view
(See the balls through the Package)
L
M
N
P
R
T
U
V
W
Y
AA
AB
Page 7 of 63
Rev. 1.0 June 2007
1Gb DDR3 SDRAM
K4B1G04(08/16)46C
3.4 FBGA Package Dimension (x4)
11.00 ± 0.10
A
0.80 x 10 = 8.00
#A1 INDEX MARK
0.80
1.60
4.00
B
11 10 9 8 7 6 5 4 3 2 1
(Datum A)
MOLDING AREA
11.00 ± 0.10
0.50 ± 0.05
0.10MAX
BOTTOM VIEW
18.00 ± 0.10
#A1
18.00 ± 0.10
0.80
0.80
94 - ∅0.45 Solder ball
0.2 M A B
0.80 x 18 = 14.40
7.20
A
B
C
D
E
F
(Datum B)
G
H
J
K
L
M
N
P
R
T
U
V
W
0.35 ± 0.05
TOP VIEW
Page 8 of 63
1.10 ± 0.10
Rev. 1.0 June 2007
1Gb DDR3 SDRAM
K4B1G04(08/16)46C
3.5 FBGA Package Dimension (x8)
11.00 ± 0.10
A
0.80 x 10 = 8.00
#A1 INDEX MARK
0.80
1.60
4.00
B
11 10 9 8 7 6 5 4 3 2 1
(Datum A)
MOLDING AREA
11.00 ± 0.10
0.50 ± 0.05
0.10MAX
BOTTOM VIEW
18.00 ± 0.10
#A1
18.00 ± 0.10
0.80
0.80
94 - ∅0.45 Solder ball
0.2 M A B
0.80 x 18 = 14.40
7.20
A
B
C
D
E
F
(Datum B)
G
H
J
K
L
M
N
P
R
T
U
V
W
0.35 ± 0.05
TOP VIEW
Page 9 of 63
1.10 ± 0.10
Rev. 1.0 June 2007
1Gb DDR3 SDRAM
K4B1G04(08/16)46C
3.6 FBGA Package Dimension (x16)
11.00 ± 0.10
A
0.80 x 10 = 8.00
#A1 INDEX MARK
0.80
1.60
4.00
B
11 10 9 8 7 6 5 4 3 2 1
(Datum A)
18.00 ± 0.10
0.80
0.40
0.80 x 21 = 16.80
8.40
A
B
C
D
E
F
G
(Datum B) H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
MOLDING AREA
#A1
0.10MAX
BOTTOM VIEW
11.00 ± 0.10
0.50 ± 0.05
0.2 M A B
18.00 ± 0.10
112 - ∅0.45 Solder ball
0.35 ± 0.05
TOP VIEW
Page 10 of 63
1.10 ± 0.10
Rev. 1.0 June 2007
1Gb DDR3 SDRAM
K4B1G04(08/16)46C
4.0 Input/Output Functional Description
[ Table 3 ] Input/Output function description
Symbol
Type
Function
CK, CK
Input
Clock: CK and CK are differential clock inputs. All address and control input signals are sampled on the crossing of
the positive edge of CK and negative edge of CK. Output (read) data is referenced to the crossings of CK and CK
CKE
Input
Clock Enable: CKE HIGH activates, and CKE Low deactivates, internal clock signals and device input buffers and
output drivers. Taking CKE Low provides Precharge Power-Down and Self Refresh operation (all banks idle), or
Active Power-Down (Row Active in any bank). CKE is asynchronous for self refresh exit. After VREFCA has become
stable during the power on and initialization sequence, it must be maintained during all operations (including SelfRefresh). CKE must be maintained high throughout read and write accesses. Input buffers, excluding CK, CK, ODT
and CKE are disabled during power-down. Input buffers, excluding CKE, are disabled during Self -Refresh.
CS
Input
Chip Select: All commands are masked when CS is registered HIGH. CS provides for external Rank selection on
systems with multiple Ranks. CS is considered part of the command code.
ODT
Input
On Die Termination: ODT (registered HIGH) enables termination resistance internal to the DDR3 SDRAM. When
enabled, ODT is only applied to each DQ, DQS, DQS and DM/TDQS, NU/TDQS (When TDQS is enabled via Mode
Register A11=1 in MR1) signal for x8 configurations. The ODT pin will be ignored if the Mode Register (MR1) is programmed to disable ODT.
RAS, CAS, WE
Input
Command Inputs: RAS, CAS and WE (along with CS) define the command being entered.
DM
(DMU), (DML)
Input
Input Data Mask: DM is an input mask signal for write data. Input data is masked when DM is sampled HIGH coincident with that input data during a Write access. DM is sampled on both edges of DQS. For x8 device, the function of
DM or TDQS/TDQS is enabled by Mode Register A11 setting in MR1.
BA0 - BA2
Input
Bank Address Inputs: BA0 - BA2 define to which bank an Active, Read, Write or Precharge command is being
applied. Bank address also determines if the mode register or extended mode register is to be accessed during a
MRS cycle.
Input
Address Inputs: Provided the row address for Active commands and the column address for Read/Write commands
to select one location out of the memory array in the respective bank. (A10/AP and A12/BC have additional functions,
see below)
The address inputs also provide the op-code during Mode Register Set commands.
A10 / AP
Input
Autoprecharge: A10 is sampled during Read/Write commands to determine whether Autoprecharge should be performed to the accessed bank after the Read/Write operation. (HIGH:Autoprecharge; LOW: No Autoprecharge)
A10 is sampled during a Precharge command to determine whether the Precharge applies to one bank (A10 LOW) or
all banks (A10 HIGH). if only one bank is to be precharged, the bank is selected by bank addresses.
A12 / BC
Input
Burst Chop:A12 is sampled during Read and Write commands to determine if burst chop(on-the-fly) will be performed. (HIGH : no burst chop, LOW : burst chopped). See command truth table for details
RESET
Input
Active Low Asynchronous Reset: Reset is active when RESET is LOW, and inactive when RESET is HIGH.
RESET must be HIGH during normal operation. RESET is a CMOS rail to rail signal with DC high and low at 80% and
20% of VDD, i.e. 1.20V for DC high and 0.30V for DC low.
A0 - A12
DQ
Input/Output
Data Input/ Output: Bi-directional data bus.
DQS, (DQS)
Input/Output
Data Strobe: output with read data, input with write data. Edge-aligned with read data, centered in write data.
TDQS, (TDQS)
Output
NC
Termination Data Strobe: TDQS/TDQS is applicable for X8 DRAMs only. When enabled via Mode Register A11=1 in
MR1, DRAM will enable the same termination resistance function on TDQS/TDQS that is applied to DQS/DQS. When
disabled via mode register A11=0 in MR1, DM/TDQS will provide the data mask function and TDQS is not used.
No Connect: No internal electrical connection is present.
VDDQ
Supply
DQ Power Supply: 1.5V +/- 0.075V
VSSQ
Supply
DQ Ground
VDD
Supply
Power Supply: 1.5V +/- 0.075V
VSS
Supply
Ground
VREFDQ
Supply
Reference voltage for DQ
VREFCA
Supply
Reference voltage for CA
Supply
Reference Pin for ZQ calibration
ZQ
Note : Input only pins (BA0-BA2, A0-A12, RAS, CAS, WE, CS, CKE, ODT and RESET) do not supply termination.
Page 11 of 63
Rev. 1.0 June 2007
1Gb DDR3 SDRAM
K4B1G04(08/16)46C
5.0 DDR3 SDRAM Addressing
512Mb
Configuration
128Mb x4
64Mb x 8
32Mb x16
# of Bank
8
8
8
Bank Address
BA0 - BA2
BA0 - BA2
BA0 - BA2
Auto precharge
A10/AP
A10/AP
A10/AP
Row Address
A0 - A12
A0 - A12
A0 - A11
Column Address
A0 - A9,A11
A0 - A9
A0 - A9
BC switch on the fly
A12/BC
A12/BC
A12/BC
1 KB
1 KB
2 KB
Page size
*1
* Reference Information : The following tables are address mapping information for other densitites
1Gb
Configuration
256Mb x4
128Mb x 8
64Mb x16
# of Bank
8
8
8
Bank Address
BA0 - BA2
BA0 - BA2
BA0 - BA2
Auto precharge
A10/AP
A10/AP
A10/AP
Row Address
A0 - A13
A0 - A13
A0 - A12
Column Address
A0 - A9,A11
A0 - A9
A 0 - A9
BC switch on the fly
A12/BC
A12/BC
A12/BC
1 KB
1 KB
2 KB
Configuration
512Mb x4
256Mb x 8
128Mb x16
# of Bank
8
8
8
Bank Address
BA0 - BA2
BA0 - BA2
BA0 - BA2
Auto precharge
A10/AP
A10/AP
A10/AP
Page size
*1
2Gb
Row Address
A0 - A14
A0 - A14
A0 - A13
Column Address
A0 - A9,A11
A0 - A9
A 0 - A9
BC switch on the fly
A12/BC
A12/BC
A12/BC
Page size
1 KB
1 KB
2 KB
Configuration
1Gb x4
512Mb x 8
256Mb x16
4Gb
# of Bank
8
8
8
Bank Address
BA0 - BA2
BA0 - BA2
BA0 - BA2
Auto precharge
A10/AP
A10/AP
A10/AP
Row Address
A0 - A15
A0 - A15
A0 - A14
Column Address
A0 - A9,A11
A 0 - A9
A0 - A 9
BC switch on the fly
A12/BC
A12/BC
A12/BC
Page size
1 KB
1 KB
2 KB
Page 12 of 63
Rev. 1.0 June 2007
1Gb DDR3 SDRAM
K4B1G04(08/16)46C
8Gb
Configuration
2Gb x4
1Gb x 8
512Mb x16
# of Bank
8
8
8
Bank Address
BA0 - BA2
BA0 - BA2
BA0 - BA2
Auto precharge
A10/AP
A10/AP
A10/AP
Row Address
A0 - A15
A0 - A15
A0 - A15
Column Address
A0 - A9,A11,A13
A0 - A9,A11
A0 - A9
BC switch on the fly
A12/BC
A12/BC
A12/BC
Page size
2 KB
2 KB
2 KB
Note 1 : Page size is the number of bytes of data delivered from the array to the internal sense amplifiers when an ACTIVE command is registered.
Page size is per bank, calculated as follows:
page size = 2 COLBITS * ORG ³ 8
where, COLBITS = the number of column address bits, ORG = the number of I/O (DQ) bits
Page 13 of 63
Rev. 1.0 June 2007
1Gb DDR3 SDRAM
K4B1G04(08/16)46C
6.0 Absolute Maximum Ratings
6.1 Absolute Maximum DC Ratings
Symbol
Parameter
Rating
Units
Notes
VDD
Voltage on VDD pin relative to Vss
-0.4 V ~ 1.975 V
V
1,3
VDDQ
Voltage on VDDQ pin relative to Vss
-0.4 V ~ 1.975 V
V
1,3
VIN, VOUT
Voltage on any pin relative to Vss
-0.4 V ~ 1.975 V
V
1
TSTG
Storage Temperature
-55 to +100
°C
[ Table 4 ] Absolute Maximum DC Ratings
Note :
1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and
functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2
standard.
3. VDD and VDDQ must be within 300mV of each other at all times;and VREF must be not greater than 0.6xVDDQ, When VDD and VDDQ are less than
500mV; VREF may be equal to or less than 300mV.
6.2 DRAM Component Operating Temperature Range
Symbol
TOPER
Parameter
rating
Unit
Notes
Normal Operating Temperature Range
0 to 85
°C
1,2
Extended Temperature Range (Optional)
85 to 95
°C
1,3
[ Table 5 ] Temperature Range
Note :
1. Operating Temperature TOPER is the case surface temperature on the center/top side of the DRAM. For measurement conditions, please refer to the
JEDEC document JESD51-2.
2. The Normal Temperature Range specifies the temperatures where all DRAM specifications will be supported. During operation, the DRAM case temperature must be maintained between 0-85°C under all operating conditions
3. Some applications require operation of the Extended Temperature Range between 85°C and 95°C case temperature. Full specifications are guaranteed in this range, but the following additional conditions apply:
a) Refresh commands must be doubled in frequency, therefore reducing the Refresh interval tREFI to 3.9us. It is also possible to specify a component
with 1X refresh (tREFI to 7.8us) in the Extended Temperature Range. Please refer to supplier data sheet and/or the DIMM SPD for option availability.
b) If Self-Refresh operation is required in the Extended Temperature Range, then it is mandatory to either use the Manual Self-Refresh mode with
Extended Temperature Range capability (MR2 A6 = 0b and MR2 A7 = 1b) or enable the optional Auto Self-Refresh mode (MR2 A6 = 1b and MR2 A7 =
0b). Please refer to the supplier data sheet and/or the DIMM SPD for Auto Self-Refresh option availability, Extended Temperature Range support and
tREFI requirements in the Extended Temperature Range.
7.0 AC & DC Operating Conditions
7.1 Recommended DC operating Conditions (SSTL_1.5)
Symbol
VDD
VDDQ
Parameter
Rating
Units
Notes
1.575
V
1,2
1.575
V
1,2
Min.
Typ.
Max.
Supply Voltage
1.425
1.5
Supply Voltage for Output
1.425
1.5
[ Table 6 ] Recommended DC Operating Conditions
Note :
1. Under all conditions VDDQ must be less than or equal to VDD.
2. VDDQ tracks with VDD. AC parameters are measured with VDD and VDDQ tied together.
Page 14 of 63
Rev. 1.0 June 2007
1Gb DDR3 SDRAM
K4B1G04(08/16)46C
8.0 AC & DC Input Measurement Levels
8.1 AC and DC Logic input levels for single-ended signals
Symbol
Parameter
DDR3-800/1066/1333
Min.
Max.
Unit
Notes
VIH(DC)
dc input logic high
VREF + 100
VDD
mV
1
VIL(DC)
dc input logic low
VSS
VREF - 100
mV
1
VIH(AC)
ac input logic high
VREF + 175
-
mV
1,2
VIL(AC)
ac input logic low
-
VREF - 175
mV
1,2
VREFDQ(DC)
I/O Reference Voltage(DQ)
0.49*VDDQ
0.51*VDDQ
V
3,4
VREFCA(DC)
I/O Reference Voltage(CMD/ADD)
0.49*VDDQ
0.51*VDDQ
V
3,4
[ Table 7 ] Single Ended AC and DC input levels
Note :
1. For DQ and DM, VREF = VREFDQ . For input only pins except RESET, or VREF = VREFCA
2. See 9.6 "Overshoot and Undershoot specifications" on page 23.
3. The ac peak noise on VREF may not allow VREF to deviate from VREF(DC) by more than ± 1% VDD (for reference : approx. ± 15mV)
4. For reference : approx. VDD/2 ± 15mV
The dc-tolerance limits and ac-noise limits for the reference voltages VREFCA and VREFDQ are illustrate in Figure 1. It shows a valid reference voltage
VREF(t) as a function of time. (VREF stands for VREFCA and VREFDQ likewise).
VREF(DC) is the linear average of VREF(t) over a very long period of time (e.g. 1 sec). This average has to meet the min/max requiremts in above
table. Furthermore VREF(t) may temporarily deviate from VREF(DC) by no more than ± 1% VDD.
voltage
VDD
VRef(DC)
VRef ac-noise
VRef(DC)max
VRef(DC)
VDD/2
VRef(DC)min
VSS
time
Figure 1. Illustration of VREF(DC) tolerance and VREF ac-noise limits
The voltage levels for setup and hold time measurements VIH(AC), VIH(DC), VIL(AC) and VIL(DC) are dependent on VRef.
"VRef" shall be understood as VRef(DC), as defined in Figure 1.
This clarifies, that dc-variations of VRef affect the absolute voltage a signal has to reach to achieve a valid high or low level and therefore the time to
which setup and hold is measured. System timing and voltage budgets need to account for VRef(DC) deviations from the optimum position within the
data-eye of the input signals.
This also clarifies that the DRAM setup/hold specification and derating values need to include time and voltage associated with VRef ac-noise. Timing
and voltage effects due to ac-noise on VRef up to the specified limit (+/-1% of VDD) are included in DRAM timings and their associated deratings.
Page 15 of 63
Rev. 1.0 June 2007
1Gb DDR3 SDRAM
K4B1G04(08/16)46C
8.2 Differential swing requirement for differntial signals
Figure 2 : Definition of differntial ac-swing and "time above ac level tDVAC
tDVAC
VIHdiff(ac) min
VIHdiff min
VIHdiff(dc) min
CK - CK
DQS - DQS
0.0
VIHdiff(ac) max
VIHdiff max
VIHdiff(dc) max
differential
voltage
time
half cycle
tDVAC
time
[ Table 8 ] Differential swing requirement for clock (CK - CK) and strobe (DQS - DQS)
Symbol
Parameter
VIHdiff
DDR3-800 & 1066 & 1033 & 1600
unit
Note
note 3
V
1
note 3
-0.2
V
1
differential input high ac
2 x (VIH(ac)-Vref)
note 3
V
2
differential input low ac
note 3
2 x (Vref - VIL(ac))
V
2
min
max
differential input high
+0.2
VILdiff
differential input low
VIHdiff(ac)
VIHdiff(ac)
Notes:
1. used to define a differential signal slew-rate.
2. for CK - CK use VIH/VIL(ac) of ADD/CMD and VREFCA; for DQS - DQS, DQSL - DQSL, DQSU - DQSU use VIH/VIL(ac) of DQs and VREFDQ; if a
reduced ac-high or ac-low level is used for a signal group, then the reduced level applies also here.
3. these values are not defined, however they single-ended signals CK, CK, DQS, DQS, DQSL, DQSL, DQSU, DQSU need to be within the respective
limits (VIH(dc) max, VIL(dc)min) for single-ended signals as well as the limitations for overshoot and undershoot.
[ Table 9 ] Allowed time before ringback (tDVAC) for CLK - CLK and DQS - DQS.
Slew Rate [V/ns]
tDVAC [ps] @ |VIH/Ldiff(ac)| = 350mV
min
max
tDVAC [ps] @ |VIH/Ldiff(ac)| = 300mV
min
max
> 4.0
75
-
175
-
4.0
57
-
170
-
3.0
50
-
167
-
2.0
38
-
163
-
1.8
34
-
162
-
1.6
29
-
161
-
1.4
22
-
159
-
1.2
13
-
155
-
1.0
0
-
150
-
< 1.0
0
-
150
-
Page 16 of 63
Rev. 1.0 June 2007
1Gb DDR3 SDRAM
K4B1G04(08/16)46C
8.2.1 Single-ended requirements for differential signals
Each individual component of a differential signal (CK, DQS, DQSL, DQSU, CK, DQS, DQSL, or DQSU) has also to comply with certain
requirements for single-ended signals.
CK and CK have to approximately reach VSEHmin / VSELmax (approximately equal to the ac-levels ( VIH(ac) / VIL(ac) ) for ADD/CMD
signals) in every half-cycle.
DQS, DQSL, DQSU, DQS, DQSL have to reach VSEHmin / VSELmax (approximately the ac-levels ( VIH(ac) / VIL(ac) ) for DQ signals)
in every half-cycle preceeding and following a valid transition.
Note that the applicable ac-levels for ADD/CMD and DQ’s might be different per speed-bin etc. E.g. if VIH150(ac)/VIL150(ac) is used for
ADD/CMD signals, then these ac-levels apply also for the single-ended signals CK and CK
VDD or VDDQ
VSEH min
VSEH
VDD/2 or VDDQ/2
CK or DQS
VSEL max
VSEL
VSS or VSSQ
time
Figure 3: Single-ended requirement for differential signals.
Note that while ADD/CMD and DQ signal requirements are with respect to Vref, the single-ended components of differential signals have
a requirement with respect to VDD/2; this is nominally the same. The transition of single-ended signals through the ac-levels is used to
measure setup time. For single-ended components of differential signals the requirement to reach VSELmax, VSEHmin has no bearing
on timing, but adds a restriction on the common mode charateristics of these signals.
Page 17 of 63
Rev. 1.0 June 2007
1Gb DDR3 SDRAM
K4B1G04(08/16)46C
8.3 AC and DC logic input levels for Differential Signals
[ Table 10 ] Differential DC and AC input levels
Symbol
DDR3-800/1066/1333
Parameter
Min
Max
VIHdiff
Differential input logic high
+ 200
-
VILdiff
Differential input logic low
-
- 200
Unit
Notes
mV
1
Note :
1. Refer to "Overshoot and Undershoot specifications" on page 23.
8.4 Differential Input Cross Point Voltage
To guarantee tight setup and hold times as well as output skew parameters with respect to clock and strobe, each cross point voltage of differential input
signals (CK, CK and DQS, DQS) must meet the requirements in below table. The differential input cross point voltage VIX is measured from the actual
cross point of true and complement signal to the midlevel between of VDD and VSS.
VDD
CK, DQS
VIX
VDD/2
VIX
VIX
CK, DQS
VSS
Figure 4. Vix Definition
[ Table 11 ] Cross point voltage for differential input signals (CK, DQS)
DDR3-800/1066/1333/1600
Symbol
Parameter
VIX
Differential input Cross point voltage relative to VDD/2
Page 18 of 63
Min
Max
-150
150
Unit
Notes
mV
Rev. 1.0 June 2007
1Gb DDR3 SDRAM
K4B1G04(08/16)46C
8.5 Slew rate definition for Single Ended Input Signals
8.5.1 Input Slew Rate for Input Setup Time (tIS) and Data Setup Time (tDS)
Setup (tIS and tDS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VRef and the first crossing of
VIH(AC)min. Setup (tIS and tDS) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of VRef and the first crossing
of VIL(AC)max.
8.5.2 Input Slew Rate for Input Hold Time (tIH) and Data Hold Time (tDH)
Hold nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VIL(DC)max and the first crossing of VRef. Hold (tIH &
tDH) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of VIH(DC)min and the first crossing of VRef
Measured
Description
Input slew rate for rising edge
From
Defined by
To
Vref
Vih(AC)min
Vih(AC)min-Vref
Delta TRS
Input slew rate for falling edge
Vref
Vil(AC)max
Vref-Vil(AC)max
Delta TFS
Input slew rate for rising edge
Vil(DC)max
Vref
Vref-Vil(DC)max
Delta TFH
Vref
Vih(DC)min-Vref
Delta TRH
Input slew rate for falling edge
Vih(DC)min
Applicable for
Setup
(tIS,tDS)
Hold
(tIH,tDH)
[ Table 12 ] Single Ended Input Slew Rate definition
Notes: This nominal slew rate applies for linear signal waveforms.
VDDQ
VDDQ
VIH(ac) min
VIH(ac) min
VIH(dc) min
VSWING(MAX)
VREF
delta TFS
VIH(dc) min
VSWING(MAX)
VREF
VIL(dc) max
VIL(dc) max
VIL(ac) max
VIL(ac) max
VSSQ
VSSQ
delta TRS
delta TFH
< Figure : Input slew rate for setup>
delta TRH
< Figure : Input slew rate for Hold>
Figure 5. Input Nominal Slew Rate definition for Singel ended Signals
8.6 Slew rate definition for Differential Input Signals
Measured
Description
From
Defined by
To
Differential input slew rate for rising edge (CKVILdiffmax
CK and DQS-DQS)
VIHdiffmin
VIHdiffmin - VILdiffmax
Delta TRdiff
Differential input slew rate for falling edge (CKVIHdiffmin
CK and DQS-DQS)
VILdiffmax
VIHdiffmin - VILdiffmax
Delta TFdiff
[ Table 13 ] Differential input slew rate definition
Note : The differential signal (i.e. CK - CK and DQS - DQS) must be linear between these thresholds
VDDQ
VIHdiffmin
VSWING(MAX)
VREF
VILdiffmax
VSSQ
delta TFdiff
delta TRdiff
Figure 6. Differential Input Slew Rate definition for DQS, DQS and CK, CK
Page 19 of 63
Rev. 1.0 June 2007
1Gb DDR3 SDRAM
K4B1G04(08/16)46C
9.0 AC and DC Output Measurement Levels
9.1 Single Ended AC and DC Output Levels
[ Table 14 ] Single Ended AC and DC output levels
Symbol
Parameter
DDR3-800/1066/1333/1600
Units
VOH(DC)
DC output high measurement level (for IV curve linearity)
0.8 x VDDQ
V
Notes
VOM(DC)
DC output mid measurement level (for IV curve linearity)
0.5 x VDDQ
V
VOL(DC)
DC output low measurement level (for IV curve linearity)
0.2 x VDDQ
V
VOH(AC)
AC output high measurement level (for output SR)
VTT + 0.1 x VDDQ
V
1
VOL(AC)
AC output low measurement level (for output SR)
VTT - 0.1 x VDDQ
V
1
Note :
1. The swing of +/-0.1xVDDQ is based on approximately 50% of the static single ended output high or low swing with a driver impedance of 34ohms and
an effective test load of 25ohms to VTT=VDDQ/2.
9.2 Differential AC and DC Output Levels
Symbol
Parameter
DDR3-800/1066/1333/1600
Units
Notes
VOHdiff(AC)
AC differential output high measurement level (for output SR)
+0.2 x VDDQ
V
1
VOLdiff(DC)
AC differential output low measurement level (for output SR)
-0.2 x VDDQ
V
1
[ Table 15 ] Differential AC and DC output levels
Note :
1. The swing of +/-0.2xVDDQ is based on approximately 50% of the static singel ended output high or low swing with a driver impedance of 34ohms and
an effective test load of 25ohms to VTT=VDDQ/2 at each of the differential outputs
Page 20 of 63
Rev. 1.0 June 2007
1Gb DDR3 SDRAM
K4B1G04(08/16)46C
9.3.Single Ended Output Slew Rate
With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOL(AC) and VOH(AC)
for single ended signals as shown in Table 16 and figure 7.
[ Table 16 ] Single Ended Output slew rate definition
Measured
Description
Defined by
From
To
Single ended output slew rate for rising edge
VOL(AC)
VOH(AC)
VOH(AC)-VOL(AC)
Delta TRse
Single ended output slew rate for falling edge
VOH(AC)
VOL(AC)
VOH(AC)-VOL(AC)
Delta TFse
Parameter
Single ended output slew rate
Symbol
SRQse
DDR3-800
DDR3-1066
DDR3-1333
DDR3-1600
Min
Max
Min
Max
Min
Max
Min
Max
2.5
5
2.5
5
2.5
5
TBD
5
Units
V/ns
[ Table 17 ] Single Ended Output slew rate
Note : Output slew rate is verified by design and characterization, and may not be subject to production test.
For Ron=RZQ/7 setting
VDDQ
VOH(AC)
VREF
VOL(AC)
VSSQ
delta TFS
delta TRS
Figure 7. Single Ended Output Slew Rate definition
9.4 Differential Output Slew Rate
With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOLdiff(AC) and
VOHdiff(AC) for differential signals as shown inTable 18 and figure 8.
[ Table 18 ] Differential Output slew rate definition
Measured
Description
Defined by
From
To
Differential output slew rate for rising edge
VOLdiff(AC)
VOHdiff(AC)
VOHdiff(AC)-VOLdiff(AC)
Delta TRdiff
Differential output slew rate for falling edge
VOHdiff(AC)
VOLdiff(AC)
VOHdiff(AC)-VOLdiff(AC)
Delta TFdiff
Parameter
Single ended output slew rate
Symbol
SRQse
DDR3-800
DDR3-1066
DDR3-1333
DDR3-1600
Min
Max
Min
Max
Min
Max
Min
Max
5
10
5
10
5
10
TBD
10
Units
V/ns
[ Table 19 ] Differential Output slew rate
Note : Output slew rate is verified by design and characterization, and may not be subject to production test.
For Ron=RZQ/7 setting
VDDQ
VOHdiff(AC)
VREF
VOLdiff(AC)
VSSQ
delta TFdiff
delta TRdiff
Figure 8. Differential Output Slew Rate definition
Page 21 of 63
Rev. 1.0 June 2007
1Gb DDR3 SDRAM
K4B1G04(08/16)46C
9.5 Reference Load for AC Timing and Output Slew Rate
Figure 9 represents the effective reference load of 25 ohms used in defining the relevant AC timing parameters of the device as well as output slew rate
measurements.
It is not intended as a precise representation of any particular system environment of a depiction of the actual load presented by a production tester. System designers should use IBIS or other simulation tools to correlate the timing reference load to a system environment. Manufacturers correlate to their
production test conditions, generally one or more coaxial transmission lines terminated at the tester electronics.
VDDQ
CK/CK
DUT
DQ
DQS
DQS
VTT = VDDQ/2
25Ω
Reference
Point
Figure 9. Reference Load for AC Timing and Output Slew Rate
Page 22 of 63
Rev. 1.0 June 2007
1Gb DDR3 SDRAM
K4B1G04(08/16)46C
9.6 Overshoot/Undershoot Specification
9.6.1 Address and Control Overshoot and Undershoot specifications
AC Overshoot/Undershoot Specification for Address and Control Pins
(A0-A12, BA0-BA2, CS, RAS, CAS, WE, CKE, ODT)
Specification
Parameter
DDR3-800
DDR3-1066
DDR3-1333
DDR3-1600
Maximum peak amplitude allowed for overshoot area (See Figure 8)
0.4V
0.4V
0.4V
0.4V
Maximum peak amplitude allowed for undershoot area (See Figure 8)
0.4V
0.4V
0.4V
0.4V
Maximum overshoot area above VDD (See Figure 8)
0.67V-ns
0.5V-ns
0.4V-ns
0.33V-ns
Maximum undershoot area below VSS (See Figure 8)
0.67V-ns
0.5V-ns
0.4V-ns
0.33V-ns
[ Table 20 ] AC overshoot/undershoot specification for Address and Control pins
Maximum Amplitude
Volts
(V)
Overshoot Area
VDD
VSS
Maximum Amplitude
Undershoot Area
Time (ns)
Figure 10. Address and Control Overshoot and Undershoot definition
9.6.2 Clock, Data, Strobe and Mask Overshoot and Undershoot specifications
AC Overshoot/Undershoot Specification for Clock, Data, Strobe, and Mask Pins
(DQ, DQS, DQS, DM, CK, CK)
Specification
Parameter
DDR3-800
DDR3-1066
DDR3-1333
DDR3-1600
Maximum peak amplitude allowed for overshoot area (See Figure 9)
0.4V
0.4V
0.4V
0.4V
Maximum peak amplitude allowed for undershoot area (See Figure 9)
0.4V
0.4V
0.4V
0.4V
Maximum overshoot area above VDDQ (See Figure 9)
0.25V-ns
0.19V-ns
0.15V-ns
0.13V-ns
Maximum undershoot area below VSSQ (See Figure 9)
0.25V-ns
0.19V-ns
0.15V-ns
0.13V-ns
[ Table 21 ] AC overshoot/undershoot specification for Clock, Data, Strobe and Mask
Maximum Amplitude
Volts
(V)
Overshoot Area
VDDQ
VSSQ
Maximum Amplitude
Undershoot Area
Time (ns)
Figure 11. Clock, Data, Strobe and Mask Overshoot and Undershoot definition
Page 23 of 63
Rev. 1.0 June 2007
1Gb DDR3 SDRAM
K4B1G04(08/16)46C
9.7 34 ohm Output Driver DC Electrical Characteristics
A functional representation of the output buffer is shown below. Output driver impedance RON is defined by the value of external reference resistor RZQ
as follows:
RON34 = RZQ/7 (Nominal 34ohms +/- 10% with nominal RZQ=240ohm)
The individual Pull-up and Pull-down resistors (RONpu and RONpd) are defined as follows
VDDQ-Vout
RONpu =
under the condition that RONpd is turned off
l Iout l
Vout
RONpd =
under the condition that RONpu is turned off
l Iout l
Output Driver : Definition of Voltages and Currents
Output Driver
VDDQ
Ipu
To
other
circuity
RON
Pu
DQ
Iout
RON
Pd
Vout
Ipd
VSSQ
Figure 12. Output Driver : Definition of Voltages and Currents
[ Table 22 ] Output Driver DC Electrical Characteristics, assuming RZQ=240 ohms ;
entire operating temperature range; after proper ZQ calibration
RONnom
Resistor
RON34pd
34Ohms
RON34pu
Mismatch between Pull-up and Pull-down,
MMpupd
Vout
Min
Nom
Max
Units
Notes
VOLdc = 0.2 x VDDQ
0.6
1.0
1.1
RZQ/7
1,2,3
VOMdc = 0.5 x VDDQ
0.9
1.0
1.1
RZQ/7
1,2,3
VOHdc = 0.8 x VDDQ
0.9
1.0
1.4
RZQ/7
1,2,3
VOLdc = 0.2 x VDDQ
0.9
1.0
1.4
RZQ/7
1,2,3
VOMdc = 0.5 x VDDQ
0.9
1.0
1.1
RZQ/7
1,2,3
VOHdc = 0.8 x VDDQ
0.6
1.0
1.1
RZQ/7
1,2,3
VOMdc = 0.5 x VDDQ
-10
10
%
1,2,4
Note :
1. The tolerance limits are specified after calibration with stable voltage and temperature. For the behavior of the tolerance limits if temperature or voltage changes after calibration, see following section on voltage and temperature sensitivity
2. The tolerance limits are specified under the condition that VDDQ = VDD and that VSSQ = VSS
3. Pull-down and pull-up output driver impedance are recommended to be calibrated at 0.5 X VDDQ. Other calibration schemes may be used to achieve the linearity spec
shown above, e.g. calibration at 0.2 X VDDQ and 0.8 X VDDQ
4. Measurement definition for mismatch between pull-up and pull-down, MMpupd: Measure RONpu and RONpd. both at 0.5 X VDDQ:
RONpu - RONpd
MMpupd =
x 100
RONnom
Page 24 of 63
Rev. 1.0 June 2007
1Gb DDR3 SDRAM
K4B1G04(08/16)46C
9.7.1 Output Drive Temperature and Voltage sensitivity
If temperature and/or voltage change after calibration, the tolerance limits widen according to table below
∆T = T - T(@calibration); ∆V = VDDQ - VDDQ (@calibration); VDD = VDDQ
*dRONdT and dRONdV are not subject to production test but are verified by design and characterization
[ Table 23 ] Output Driver Sensitivity Definition
Min
Max
Units
RONPU@VOHDC
0.6 - dRONdTH * |∆T| - dRONdVH * |∆V|
1.1 + dRONdTH * |∆T| + dRONdVH * |∆V|
RZQ/7
RON@VOMDC
0.9 - dRONdTM * |∆T| - dRONdVM * |∆V|
1.1 + dRONdTM * |∆T| + dRONdVM * |∆V|
RZQ/7
RONPD@VOLDC
0.6 - dRONdTL * |∆T| - dRONdVL * |∆V|
1.1 + dRONdTL * |∆T| + dRONdVL * |∆V|
RZQ/7
Min
Max
Units
[ Table 24 ] Output Driver Voltage and Temperature Sensitivity
dRONdTM
0
1.5
%/°C
dRONdVM
0
0.15
%/mV
dRONdTL
0
1.5
%/°C
dRONdVL
0
TBD
%/mV
dRONdTH
0
1.5
%/°C
dRONdVH
0
TBD
%/mV
9.8 On-Die Termination (ODT) Levels and I-V Characteristics
On-Die Termination effective resistance RTT is defined by bits A9, A6 and A2 of MR1 register.
ODT is applied to the DQ,DQ, DQS/DQS and TDQS,TDQS (x8 devices only) pins.
A functional representation of the on-die termination is shown below. The individual pull-up and pull-down resistors (RTTpu and RTTpd)
are defined as follows :
VDDQ-Vout
RTTpu =
Vout
RTTpd =
under the condition that RTTpd is turned off
l Iout l
under the condition that RTTpu is turned off
l Iout l
On-Die Termination : Definition of Voltages and Currents
Output Driver
VDDQ
Ipu
To
other
circuitry
like
RCV,
...
RTT
Iout=Ipd-Ipu
Pu
DQ
RTT
Iout
Pd
Ipd
Vout
VSSQ
Figure 13. On-Die Termination : Definitionof Voltages and Currents
Page 25 of 63
Rev. 1.0 June 2007
1Gb DDR3 SDRAM
K4B1G04(08/16)46C
9.8.1 ODT DC electrical characteristics
Table # provides and overview of the ODT DC electrical characteristics. They values for RTT60pd120, RTT60pu120, RTT120pd240, RTT120pu240, RTT40pd80,
RTT40pu80, RTT30pd60, RTT30pu60, RTT20pd40, RTT20pu40 are not specification requirements, but can be used as design guide lines:.
MR1 (A9,A6,A2)
(0,1,0)
RTT
RESISTOR
Vout
MIN
NOM
MAX
0.2XVDDQ
0.6
1.0
RTT120pd240
0.5XVDDQ
0.9
0.8XVDDQ
0.9
0.2XVDDQ
120 ohm
RTT120pu240
RTT120
RTT60pd240
(0,0,1)
60 ohm
RZQ
1,2,3,4
1.0
1.1
RZQ
1,2,3,4
1.0
1.4
RZQ
1,2,3,4
0.9
1.0
1.4
RZQ
1,2,3,4
0.5XVDDQ
0.9
1.0
1.1
RZQ
1,2,3,4
0.8XVDDQ
0.6
1.0
1.1
RZQ
1,2,3,4
VIL(AC) TO VIH(AC)
0.9
1.0
1.6
RZQ/2
1,2,5
0.2XVDDQ
0.6
1.0
1.1
RZQ/2
1,2,3,4
0.5XVDDQ
0.9
1.0
1.1
RZQ/2
1,2,3,4
0.8XVDDQ
0.9
1.0
1.4
RZQ/2
1,2,3,4
0.2XVDDQ
0.9
1.0
1.4
RZQ/2
1,2,3,4
1,2,3,4
0.9
1.0
1.1
0.8XVDDQ
0.6
1.0
1.1
RZQ/2
1,2,3,4
VIL(AC) TO VIH(AC)
0.9
1.0
1.6
RZQ/4
1,2,5
0.2XVDDQ
0.6
1.0
1.1
RZQ/3
1,2,3,4
0.5XVDDQ
0.9
1.0
1.1
RZQ/3
1,2,3,4
0.8XVDDQ
0.9
1.0
1.4
RZQ/3
1,2,3,4
0.2XVDDQ
0.9
1.0
1.4
RZQ/3
1,2,3,4
0.5XVDDQ
0.9
1.0
1.1
RZQ/3
1,2,3,4
0.8XVDDQ
0.6
1.0
1.1
RZQ/3
1,2,3,4
RTT40
VIL(AC) TO VIH(AC)
0.9
1.0
1.6
RZQ/6
1,2,5
0.2XVDDQ
0.6
1.0
1.1
RZQ/4
1,2,3,4
RTT60pd240
0.5XVDDQ
1.1
RZQ/4
1,2,3,4
1,2,3,4
RTT40pd240
40 ohm
RTT40pu240
30 ohm
RTT60pu240
RTT60
RTT60pd240
(1,0,0)
1.1
RZQ/2
RTT60
(1,0,1)
NOTES
0.5XVDDQ
RTT60pu240
(0,1,1)
UNIT
20 ohm
RTT60pu240
1.0
0.9
1.0
1.4
RZQ/4
0.2XVDDQ
0.9
1.0
1.4
RZQ/4
1,2,3,4
0.5XVDDQ
0.9
1.0
1.1
RZQ/4
1,2,3,4
0.8XVDDQ
0.6
1.0
1.1
RZQ/4
1,2,3,4
VIL(AC) TO VIH(AC)
0.9
1.0
1.6
RZQ/8
1,2,5
0.2XVDDQ
0.6
1.0
1.1
RZQ/6
1,2,3,4
0.5XVDDQ
0.9
1.0
1.1
RZQ/6
1,2,3,4
0.8XVDDQ
0.9
1.0
1.4
RZQ/6
1,2,3,4
0.2XVDDQ
0.9
1.0
1.4
RZQ/6
1,2,3,4
1.1
RZQ/6
1,2,3,4
1.1
RZQ/6
1,2,3,4
1.6
RZQ/12
1,2,5
5
%
1,2,5,6
0.5XVDDQ
0.8XVDDQ
RTT60
0.9
0.8XVDDQ
VIL(AC) TO VIH(AC)
Deviation of VM w.r.t VDDQ/2, ∆VM
0.9
0.6
0.9
-5
1.0
1.0
1.0
[ Table 25 ] ODT DC Electrical characteristics, assuming RZQ=240 ohm +/- 1% entire operating temperature range; after proper ZQ calibration
Page 26 of 63
Rev. 1.0 June 2007
1Gb DDR3 SDRAM
K4B1G04(08/16)46C
Note :
1. The tolerance limits are specified after calibration with stable voltage and temperature. For the behavior of the tolerance limits if temperature or voltage
changes after calibration, see following section on voltage and temperature sensitivity
2. The tolerance limits are specified under the condition that VDDQ = VDD and that VSSQ = VSS
3. Pull-down and pull-up ODT resistors are recommended to be calibrated at 0.5XVDDQ. Other calibration schemes may be used to achieve the linearity
spec shown above, e.g. calibration at 0.2XVDDQ and 0.8XVDDQ.
4. Not a specification requirement, but a design guide line
5. Measurement definition for RTT:
Apply VIH(ac) to pin under test and measure current I(VIH(ac)), then apply VIL(ac) to pin under test and measure current I(VIL(ac)) perspectively
VIH(ac) - VIL(ac)
RTT
=
I(VIH(ac)) - I(VIL(ac))
6. Measurement definition for VM and ∆VM : Measure voltage (VM) at test pin (midpoint) with no load
∆ VM =
2 x VM
VDDQ
-1
x 100
9.8.2 ODT Temperature and Voltage sensitivity
If temperature and/or voltage change after calibration, the tolerance limits widen according to table below
∆T = T - T(@calibration); ∆V = VDDQ - VDDQ (@calibration); VDD = VDDQ
[ Table 26 ] ODT Sensitivity Definition
Min
Max
Units
0.9 - dRTTdT * |∆T| - dRTTdV * |∆V|
1.6 + dRTTdT * |∆T| + dRTTdV * |∆V|
RZQ/2,4,6,8,12
Min
Max
Units
dRTTdT
0
1.5
%/°C
dRTTdV
0
0.15
%/mV
RTT
[ Table 27 ] ODT Voltage and Temperature Sensitivity
These parameters may not be subject to production test. They are verified by design and characterization.
Page 27 of 63
Rev. 1.0 June 2007
1Gb DDR3 SDRAM
K4B1G04(08/16)46C
9.9 ODT Timing Definitions
9.9.1 Test Load for ODT Timings
Different than for timing measurements, the reference load for ODT timings is defined in Figure 14.
VDDQ
CK,CK
DUTDQ, DM
VTT=
VSSQ
RTT
=25 ohm
DQS , DQS
TDQS , TDQS
VSSQ
Timing Reference Points
BD_REFLOAD_ODT
Figure 14. ODT Timing Reference Load
9.9.2 ODT Timing Definition
Definitions for tAON, tAONPD, tAOF, tAOFPD and tADC are provided in Table28 and subsequent figures. Measurement reference settings
are provided in Table29.
[ Table 28 ] ODT Timing Definitions
Symbol
Begin Point Definition
End Point Definition
Figute
tAON
Rising edge of CK - CK defined by the end point of ODTLon
Extrapolated point at VSSQ
Figure 2
tAONPD
Rising edge of CK - CK with ODT being first registered high
Extrapolated point at VSSQ
Figure 3
tAOF
Rising edge of CK - CK defined by the end point of ODTLoff
End point: Extrapolated point at VRTT_Nom
Figure 4
tAOFPD
Rising edge of CK - CK with ODT being first registered low
End point: Extrapolated point at VRTT_Nom
Figure 5
tADC
Rising edge of CK - CK defined by the end point of ODTLcnw,
ODTLcwn4 of ODTLcwn8
End point: Extrapolated point at VRTT_Wr and
VRTT_Nom respectively
Figure 6
[ Table 29 ] Reference Settings for ODT Timing Measurements
Measured
Parameter
tAON
tAONPD
tAOF
tAOFPD
tADC
RTT_Nom Setting
RTT_Wr Setting
VSW1[V]
VSW2[V]
RZQ/4
NA
0.05
0.10
RZQ/12
NA
0.10
0.20
RZQ/4
NA
0.05
0.10
RZQ/12
NA
0.10
0.20
RZQ/4
NA
0.05
0.10
RZQ/12
NA
0.10
0.20
RZQ/4
NA
0.05
0.10
RZQ/12
NA
0.10
0.20
RZQ/12
RZQ/2
0.20
0.30
Page 28 of 63
Note
Rev. 1.0 June 2007
1Gb DDR3 SDRAM
K4B1G04(08/16)46C
Begin point : Rising edge of CK - CK
defined by the end point of ODTLon
CK
VTT
CK
tAON
TSW2
DQ, DM
DQS , DQS
TDQS , TDQS
TSW1
VSW2
VSW1
VSSQ
VSSQ
End point Extrapolated point at VSSQ
Figure 15. Definition of tAON
Begin point : Rising edge of CK - CK
with ODT being first registered high
CK
VTT
CK
tAONPD
TSW2
DQ, DM
DQS , DQS
TDQS , TDQS
TSW1
VSW2
VSW1
VSSQ
VSSQ
End point Extrapolated point at VSSQ
Figure 16. Definition of tAONPD
Begin point : Rising edge of CK - CK
defined by the end point of ODTLoff
CK
VTT
CK
tAOF
End point Extrapolated point at VRTT_Nom
VRTT_Nom
DQ, DM
DQS , DQS
TDQS , TDQS
TSW2
TSW1
VSW2
VSW1
VSSQ
TD_TAON_DEF
Figure 17. Definition of tAOF
Page 29 of 63
Rev. 1.0 June 2007
1Gb DDR3 SDRAM
K4B1G04(08/16)46C
Begin point : Rising edge of CK - CK
with ODT being first registered low
CK
VTT
CK
tAOFPD
End point Extrapolated point at VRTT_Nom
VRTT_Nom
DQ, DM
DQS , DQS
TDQS , TDQS
TSW2
TSW1
VSW2
VSW1
VSSQ
Figure 18. Definition of tAOFPD
Begin point : Rising edge of CK - CK
defined by the end point of ODTLcnw
Begin point : Rising edge of CK - CK defined by
the end point of ODTLcwn4 or ODTLcwn8
CK
VTT
CK
tADC
VRTT_Nom
DQ, DM
DQS , DQS
TDQS , TDQS
tADC
End point Extrapolated point at VRTT_Nom
End point
Extrapolated point
at VRTT_Nom
VRTT_Nom
TSW21
TSW11
TSW22
VSW2
TSW12
VSW1
VRTT_Wr
End point Extrapolated point at VRTT_Wr
VSSQ
Figure 19. Definition of tADC
Page 30 of 63
Rev. 1.0 June 2007
1Gb DDR3 SDRAM
K4B1G04(08/16)46C
10.0 Idd Specification Parameters and Test Conditions
10.1 IDD Measurement Conditions
Within the tables provided further down, an overview about the IDD measurement conditions is provided as follows:
[ Table 30 ] Overview of Tables providing IDD Measurement Conditions and DRAM Behavior
Table number
Measurement Conditions
Table 34
IDD0 and IDD1
Table 35
IDD2N, IDD2Q, IDD2P(0), IDD2P(1)
Table 36
IDD3N and IDD3P
Table 37
IDD4R, IDD4W, IDD7
Table 38
IDD7 for different speed grades and different tRRD, tFAW conditions
Table 39
IDD5B
Table 40
IDD6, IDD6ET
Within the tables about IDD measurement conditions, the following definitions are used:
• LOW is defined as VIN <= VILAC(max.); HIGH is defined as VIN >= VIHAC(min.);
• STABLE is defined as inputs are stable at a HIGH or LOW level
• FLOATING is defined as inputs are VREF = VDDQ / 2
• SWITCHING is defined as described in the following 2 tables.
[ Table 31 ] Definition of SWITCHING for Address and Command Input Signals
SWITCHING for Address (row, column) and Command Signals (CS, RAS, CAS, WE) is defined as:
Address
(Row, Column):
If not otherwise mentioned the inputs are stable at HIGH or LOW during 4 clocks
and change then to the opposite value
(e.g. Ax Ax Ax Ax Ax Ax Ax Ax Ax Ax Ax Ax .....
please see each IDDx definition for details
Bank address:
If not otherwise mentioned the bank addresses should be switched like the row/
column addresses - please see each IDDx definition for details
Define D = {CS, RAS, CAS, WE } := {HIGH, LOW, LOW, LOW}
Define D = {CS, RAS, CAS, WE } := {HIGH, HIGH,HIGH,HIGH}
Command
(CS, RAS, CAS, WE):
Define Command Background Pattern = D D D D D D D D D D D D ...
If other commands are necessary (e.g. ACT for IDD0 or Read for IDD4R) the
Background Pattern Command is substituted by the respective CS, RAS, CAS, WE
levels of the necessary command.
See each IDDx definition for details and figures 1,2,3 as examples.
[ Table 32 ] Definition of SWITCHING for Data (DQ)
SWITCHING for Data (DQ) is defined as
Data
(DQ)
Data DQ is changing between HIGH and LOW every other data transfer (once per clock) for DQ signals, which means
that data DQ is stable during one clock; see each IDDx definition for exceptions from this rule and for further details.
See figures 1,2,3 as examples.
Data Masking (DM)
NO Switching; DM must be driven LOW all the time
Page 31 of 63
Rev. 1.0 June 2007
1Gb DDR3 SDRAM
K4B1G04(08/16)46C
Timing parameters are listed in the following table:
[ Table 33 ] For IDD testing the following parameters are utilized.
Parameter
DDR3-800
Bin
DDR3-1066
6-6-6
tCKmin(IDD)
7-7-7
2.5
DDR3-1333
8-8-8
8-8-8
1.875
9-9-9
1.5
Unit
ns
CL(IDD)
6
7
8
8
9
tRCDmin(IDD)
15
13.13
15
12
13.5
ns
tRCmin(IDD)
52.5
50.63
52.50
48
49.5
ns
tRASmin(IDD)
37.5
37.5
37.5
36
36
ns
tRPmin(IDD)
15
13.13
15
12
13.5
ns
x4/x8
40
37.5
37.5
30
30
ns
x16
50
50
50
45
45
ns
x4/x8
10
7.5
7.5
6.0
6.0
ns
tFAW(IDD)
tRRD(IDD)
tRFC(IDD) - 1Gb
x16
10
10
10
7.5
7.5
ns
110
110
110
110
110
110
The following conditions apply:
1. IDD specifications are tested after the device is properly initialized.
2. Input slew rate is specified by AC Parametric test conditions.
3. IDD parameters are specified with ODT and output buffer disabled (MR1 Bit A12).
Page 32 of 63
Rev. 1.0 June 2007
1Gb DDR3 SDRAM
K4B1G04(08/16)46C
[ Table 34 ] IDD Measurement Conditions for IDD0 and IDD1
Current
Name
IDD0
IDD1
Operating Current 1
-> One Bank Activate
-> Read
-> Precharge
Operating Current 0
-> One Bank Activate
-> Precharge
Measurement Condition
Timing Diagram Example
Figure 1
CKE
HIGH
HIGH
on
on
tCK
tCKmin(IDD)
tCKmin(IDD)
tRC
tRCmin(IDD)
tRCmin(IDD)
tRAS
tRASmin(IDD)
tRASmin(IDD)
tRCD
n.a.
tRCDmin(IDD)
External Clock
tRRD
n.a.
n.a.
CL
n.a.
CL(IDD)
AL
CS
Command Inputs (CS, RAS, CAS, WE)
n.a.
0
HIGH between. Activate and Precharge Commands
HIGH between Activate, Read and Precharge
SWITCHING as described in Table 2;
only exceptions are Activate and Precharge commands; example of IDD0 pattern:
SWITCHING as described in Table 2;
only exceptions are Activate, Read and Precharge
commands; example of IDD1 pattern:
A0 D D D D D D D D D D D P0
(DDR3-800: tRAS = 37.5ns between (A)ctivate and
(P)recharge to bank 0 ; Definition of D and D: see
Table 2)
A0 D D D D R0 D D D DD D D DD D P0
(DDR3-800 -555: tRCD = 12.5ns between (A)ctivate
and (R)ead to bank 0 ; Definition of D and D: see Table
2)
Definition of D and D: See table ##.
Definition of D and D: See table ##.
Row, Column Addresses
Row addresses SWITCHING as described in Table 2; Row addresses SWITCHING as described in Table 2;
Address Input A10 must be LOW all the time!
Address Input A10 must be LOW all the time!
Bank Addresses
bank address is fixed (bank 0)
bank address is fixed (bank 0)
Data I/O
SWITCHING as described in Table 3
Read Data: output data switches every clock, which
means that Read data is stable during one clock cycle.
To achieve Iout = 0mA the output buffer should be
switched off by MR1 Bit A12 set to "1".
When there is no read data burst from DRAM the DQ
I/O should be FLOATING.
Output Buffer DQ,DQS / MR1 bit A12
off / 1
off / 1
Rtt_NOM, Rtt_WR
disabled
disabled
Burst length
n.a.
8 fixed / MR0 Bits [A1, A0] = {0,0}
Active banks
one ACT-PRE loop
one ACT-RD-PRE loop
Idle banks
all other
all other
Precharge Power Down Mode /
Mode Register Bit 12
n.a.
n.a.
Page 33 of 63
Rev. 1.0 June 2007
1Gb DDR3 SDRAM
K4B1G04(08/16)46C
T0
T1
T2
T3
T4
T5
T6
T7
T8
T9
T10
T11
T12
T13
T14
T15
T16
T17
T18
D
D
D
CK
BA[2:0]
ADDR_a[9:0]
000
000
3FF
000
3FF
000
000
111
000
111
000
ADDR_b[10]
ADDR_c[13:11]
CS
RAS
CAS
WE
CMD
ACT
D
D
D
D
RD
D
D
D
D
D
DQ
D
D
0
0
D
1
1
D
0
0
PRE
1
1
DM
IDD1 Measurement Loop
Figure 20.
IDD1 Example (DDR3-800-666, 1Gb x8): Data DQ is shown but the output buffer should be switched off (per MR1 Bit A12 ="1") to
achieve Iout = 0mA. Address inputs are split into 3 parts.
Page 34 of 63
Rev. 1.0 June 2007
1Gb DDR3 SDRAM
K4B1G04(08/16)46C
[ Table 35 ] IDD Measurement Conditions for IDD2N, IDD2P(1), IDD2P(0) and IDD2Q
Current
IDD2N
IDD2P(1) a
Precharge Power
Down Current
Fast Exit MRS A12 Bit = 1
Precharge
Standby Current
Name
IDD2P(0)
IDD2Q
Precharge Power
Down Current
Slow Exit MRS A12 Bit = 0
Precharge Quiet
Standby Current
Measurement Condition
Timing Diagram Example
Figure 2
CKE
HIGH
LOW
LOW
LOW
on
on
on
on
tCK
tCKmin(IDD)
tCKmin(IDD)
tCKmin(IDD)
tCKmin(IDD)
tRC
n.a.
n.a.
n.a.
n.a.
tRAS
n.a.
n.a.
n.a.
n.a.
tRCD
n.a.
n.a.
n.a.
n.a.
tRRD
n.a.
n.a.
n.a.
n.a.
External Clock
CL
n.a.
n.a.
n.a.
n.a.
AL
n.a.
n.a.
n.a.
n.a.
HIGH
STABLE
HIGH
STABLE
STABLE
STABLE
STABLE
SWITCHING
FLOATING
FLOATING
FLOATING
off / 1
off / 1
off / 1
off / 1
CS
Bank Address, Row Addr. and
Command Inputs
SWITCHING as
described in Table 2
Data inputs
Output Buffer DQ,DQS / MR1 bit A12
Rtt_NOM, Rtt_WE
disabled
disabled
disabled
disabled
Burst length
n.a.
n.a.
n.a.
n.a.
Active banks
none
none
none
none
all
all
all
all
Idle banks
Precharge Power
Fast Exit / 1
(any valid command after
n.a.
Down Mode / Mode Register Bit a
tXP1)
Slow Exit / 0
Slow exit (RD and ODT
commands must satisfy
tXPDLL-AL)
n.a.
Note :
1. In DDR3 the MRS Bit 12 defines DLL on/off behavior ONLY for precharge power down. There are 2 different Precharge Power Down states possible
: one with DLL on (fast exit, bit 12 = 1) and one with DLL off (slow exit, bit 12 = 0).
2. Because it is an exit after precharge power down the valid commands are: Activate, Refresh, Mode-Register Set, Enter - Self Refresh.
T0
T1
T2
T3
T4
T5
T6
T7
T8
T9
T10
D
D
D
CK
BA[2:0]
ADDR[13:0]
0
7
0
0000
3FFF
0000
CS
RAS
CAS
WE
CMD
DQ[7:0]
D
D
D
D
D
D
D
D
FF 00 00 FF FF 00 00 FF FF 00 00 FF FF 00 00 FF FF 00 00 FF FF 00
DM
IDD2N /IDD3N Measurement Loop
Figure 21. IDD2N /IDD3N Example (DDR3-800-666, 1Gb X8)
Page 35 of 63
Rev. 1.0 June 2007
1Gb DDR3 SDRAM
K4B1G04(08/16)46C
[ Table36 ] IDD Measurement Conditions for IDD3N and IDD3P(fast exit)
Current
Name
IDD3N
Active Standby Current
IDD3P
Active Power-Down Currenta
Always Fast Exit
Measurement Condition
Timing Diagram Example
Figure 2
CKE
HIGH
External Clock
LOW
on
on
tCK
tCKmin(IDD)
tCKmin(IDD)
tRC
n.a.
n.a.
tRAS
n.a.
n.a.
tRCD
n.a.
n.a.
tRRD
n.a.
n.a.
CL
n.a.
n.a.
AL
n.a.
n.a.
CS
HIGH
STABLE
Addr. and cmd Inputs
SWITCHING as described in Table 2
STABLE
Data inputs
SWITCHING as described in Table 3
FLOATING
Output Buffer DQ,DQS / MR1 bit A12
off / 1
off / 1
disabled
disabled
Burst length
n.a.
n.a.
Active banks
all
all
Rtt_NOM, Rtt_WE
Idle banks
none
Precharge Power
n.a.
Down Mode / Mode Register Bit a
none
n.a. (Active Power Down
Mode is always "Fast Exit" with DLL on
Note :
1. DDR3 will offer only ONE active power down mode with DLL on (-> fast exit). MRS bit 12 will not be used for active power down. Instead bit A12 will be used to switch
between two different precharge power down modes.
Page 36 of 63
Rev. 1.0 June 2007
1Gb DDR3 SDRAM
K4B1G04(08/16)46C
[ Table 37 ] IDD Measurement Conditions for IDD4R, IDD4W and IDD7
Current
Name
IDD4R
IDD4W
Operating Current Burst Read
Operating Current Burst Write
IDD7
All Bank Interleave Read Current
Measurement Condition
Timing Diagram Example
CKE
External Clock
Figure 3
HIGH
HIGH
HIGH
on
on
on
tCK
tCKmin(IDD)
tCKmin(IDD)
tCKmin(IDD)
tRC
n.a.
n.a.
tRCmin(IDD)
tRAS
n.a.
n.a.
tRASmin(IDD)
tRCD
n.a.
n.a.
tRCDmin(IDD)
tRRD
n.a.
n.a.
tRRDmin(IDD)
CL
CL(IDD)
CL(IDD)
CL(IDD)
AL
0
0
tRCDmin-1tCK
HIGH btw. valid cmds
HIGH btw. valid cmds
CS
HIGH btw. valid cmds
Command Inputs
(CS, RAS, CAS, WE)
SWITCHING as described in Table 2;
exceptions are Read commands =>
IDD4R Pattern:
R0DDDR1DDDR3DDDR3DDDR4 .....
Rx = Read from bank x;
Definition of D and D: see Table 2
SWITCHING as described in Table 2;
exceptions are Write commands =>
IDD4W Pattern:
W0DDDW1DDDW2DDDW3DDD W4 ...
Wx = Write to bank x;
Definition of D and D: see Table 2
Row, Column Addresses
column addresses
SWITCHING as described in Table 2;
Address Input A10 must be LOW all the
time!
column addresses
SWITCHING as described in Table 2;
Address Input A10 must be LOW all the
time!
STABLE during
DESELECTs
Bank Addresses
bank address cycling (0 ->1 -> 2 -> 3 ...)
bank address cycling (0 ->1 -> 2 -> 3 ...)
bank address cycling (0 ->1 -> 2 -> 3 ...),
see pattern in Table 9
DQ I/O
Seamless Read Data Burst (BL8): output
data switches every clock, which means
that Read data is stable
during one clock cycle.
To achieve Iout = 0mA the output buffer
should be switched off by MR1 Bit A12 set
to "1".
Seamless Write Data Burst (BL8): input
data switches every clock, which means
that Write data is stable during one clock
cycle.
DM is low all the time.
Output Buffer DQ,DQS / MR1 bit A12
Rtt_NOM, Rtt_WE
Burst length
Active banks
Idle banks
Precharge Power Down Mode
/ Mode Register Bit
off / 1
off / 1
disabled
disabled
8 fixed / MR0 Bits [A1, A0] = {0,0}
8 fixed / MR0 Bits [A1, A0] = {0,0}
For patterns see Table 9
Read Data (BL8): output data switches
every clock, which means that Read
data is stable during one clock cycle.
To achieve Iout = 0mA the output buffer
should be switched off by MR1 Bit
A12 set to "1".
off / 1
disabled
8 fixed / MR0 Bits [A1, A0] = {0,0}
all
all
all
none
none
none
n.a.
n.a.
n.a.
Page 37 of 63
Rev. 1.0 June 2007
1Gb DDR3 SDRAM
K4B1G04(08/16)46C
T0
T1
T2
T3
T4
T5
T6
T7
T8
T9
T10
T11
T12
T13
RD
D
CK
BA[2:0]
000
001
010
001
ADDR_a[9:0]
000
3FF
000
3FF
000
111
000
111
ADDR_b[10]
ADDR_c[13:11]
CS
RAS
CAS
WE
RD
CMD[2:0]
D
D
RD
D
DQ[7:0]
D
D
RD
D
D
D
D
00 00 FF FF 00 00 FF FF 00 00 FF FF 00 00
DM
Start of Measurement Loop
Figure 22
IDD4R Example (DDR3-800-666,1Gb x8): data DQ is shown but the output buffer should be switched off
(per MR1 Bit A12="1") to achieve Iout = 0mA. Address inputs are split into 3 parts.
[ Table 38 ] IDD7 Pattern for different Speed Grades and different tRRD, tFAW conditions
Speed
Bin
Mb/s
Org.
tFAW
tFAW
tRRD
tRRD
[ns]
[CLK]
[ns]
[CLK]
IDD7 Patterna
all
x4/x8
40
16
10
4
A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 DD A4 RA4 D D A5 RA5 D D A6
RA6 D D A7 RA7D D
all
x16
50
20
10
4
A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 DD D D D D A4 RA4 D D A5 RA5
D D A6 RA6 DD A7 RA7 D D D D D D
all
x4/x8
37.5
20
7.5
4
A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 DD D D D D A4 RA4 D D A5 RA5
D D A6 RA6 DD A7 RA7 D D D D D D
all
x16
50
27
10
6
A0 RA0 D D D D A1 RA1 D D D D A2 RA2 D DD D A3 RA3 D D D D D D D A4
RA4 D D D D A5RA5 D D D D A6 RA6 D D D D A7 RA7 D D D DD D D
all
x4/x8
30
20
6
4
A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 DD D D D D A4 RA4 D D A5 RA5
D D A6 RA6 DD A7 RA7 D D D D D D
all
x16
45
30
7.5
5
A0 RA0 D D D A1 RA1 D D D A2 RA2 D D D A3RA3 D D D D D D D D D D D D D
A4 RA4 D D DA5 RA5 D D D A6 RA6 D D D A7 RA7 D D D DD D D D D D D D D
all
x4/x8
30
24
6
5
A0 RA0 D D D A1 RA1 D D D A2 RA2 D D D A3RA3 D D D D D D D A4 RA4 D D
D A5 RA5 D DD A6 RA6 D D D A7 RA7 D D D D D D D
all
x16
40
32
7.5
6
A0 RA0 D D D D A1 RA1 D D D D A2 RA2 D DD D A3 RA3 D D D D D D D D D D
D D A4 RA4D D D D A5 RA5 D D D D A6 RA6 D D D D A7RA7 D D D D D D D D
DDDD
800
1066
1333
1600
Note :
1. A0 = Activation of Bank 0; RA0 = Read with Auto-Precharge of Bank 0; D = Deselect
Page 38 of 63
Rev. 1.0 June 2007
1Gb DDR3 SDRAM
K4B1G04(08/16)46C
[ Table 39 ] IDD Measurement Conditions for IDD5B
Current
Name
IDD5B
Burst Refresh Current
Measurement Condition
CKE
External Clock
HIGH
on
tCK
tCKmin(IDD)
tRC
n.a.
tRAS
n.a.
tRCD
n.a.
tRRD
n.a.
tRFC
tRFCmin(IDD)
CL
n.a.
AL
n.a.
CS
HIGH btw. valid cmds
Addr. and cmd Inputs
SWITCHING
Data inputs
SWITCHING
Output Buffer DQ,DQS / MR1 bit A12
Rtt_NOM, Rtt_WE
off / 1
disabled
Burst length
n.a.
Active banks
Refresh command every tRFC=tRFCmin
Idle banks
Precharge Power Down Mode
/ Mode Register Bit
none
n.a.
Page 39 of 63
Rev. 1.0 June 2007
1Gb DDR3 SDRAM
K4B1G04(08/16)46C
[ Table 40 ] IDD Measurement Conditions for IDD6 and IDD6ET
Current
IDD6
IDD6ET
Name
Self-Refresh Current Normal Temperature Range
TCASE = 0 .. 85°C
Self-Refresh Current Extended Temperature
Range a TCASE = 0 .. 95°C
TCASE = 85°C
TCASE = 95°C
Disabled / "0"
Disabled / "0"
Normal / "0"
Enabled / "1"
Measurement Condition
Temperature
Auto Self Refresh(ASR) / MR2 Bit A6
Self Refresh Temperature Range
(SRT) / MR2 Bit A7
CKE
LOW
LOW
OFF; CK and CK at LOW
OFF; CK and CK at LOW
tCK
n.a.
n.a.
tRC
n.a.
n.a.
tRAS
n.a.
n.a.
tRCD
n.a.
n.a.
tRRD
n.a.
n.a.
CL
n.a.
n.a.
External Clock
AL
n.a.
n.a.
CS
FLOATING
FLOATING
Command Inputs
(CS, RAS, CAS, WE)
FLOATING
FLOATING
Row, Column Addresses
FLOATING
FLOATING
Bank Addresses
FLOATING
FLOATING
Data I/O
FLOATING
FLOATING
off / 1
off / 1
Output Buffer DQ,DQS / MR1 bit A12
Rtt_NOM, Rtt_WR
disabled
disabled
Burst length
n.a.
n.a.
Active banks
all during self-refresh actions
all during self-refresh actions
Idle banks
all btw. Self-Refresh actions
all btw. Self-Refresh actions
n.a.
n.a.
Precharge Power Down Mode
/ Mode Register Bit 12
Note :
1 .Users should refer to the DRAM supplier datasheet and/or the DIMM SPD to determine if DDR3 SDRAM devices support the following options referred to in this material
[ Table 41 ] IDD6 current definition
Symbol
Parameter/Condition
IDD6
Normal Temperature Range Self-Refresh Current : CKE< 0.2V; external clock off, CK and CK at 0V; Other control and address
inputs are FLOATING; Data Bus inputs are FLOATING, PASR disabled. Applicable for MR2 setting A6=0 and A7=0.
IDD6ET
Extended Temperature Range SElf-Refresh Current: CKE<0.2V; external clock off, CK and CK at 0V; Other control and
address inputs are FLOATING; Data Bus inputs are FLOATING, PASR disabled. Applicable for MR2 settings A6=0 and A7=1.
Page 40 of 63
Rev. 1.0 June 2007
1Gb DDR3 SDRAM
K4B1G04(08/16)46C
10.2 IDD Specifications
(IDD values are for full operating range of Voltage and Temperature)
Symbol
IDD0
IDD1
Conditions
Units
Operating one bank active-precharge current;
tCK = tCK(IDD), tRC = tRC(IDD), tRAS = tRASmin(IDD);
Notes
mA
CKE is HIGH, CS is HIGH between valid commands;
Address bus inputs are SWITCHING; Data bus inputs are SWITCHING
Operating one bank active-read-precharge current;
IOUT = 0mA; BL = 8, CL = CL(IDD), AL = 0; tCK = tCK(IDD), tRC = tRC (IDD), tRAS = tRASmin(IDD), tRCD =
tRCD(IDD); CKE is HIGH, CS is HIGH between valid commands;
mA
Address bus inputs are SWITCHING; Data pattern is same as IDD4W
IDD2P
Precharge power-down current;
All banks idle; tCK = tCK(IDD); CKE is LOW;
mA
Other control and address bus inputs are STABLE; Data bus inputs are FLOATING
IDD2Q
Precharge quiet standby current;
All banks idle; tCK = tCK(IDD); CKE is HIGH, CS is HIGH;
mA
Other control and address bus inputs are STABLE; Data bus inputs are FLOATING
IDD2N
Precharge standby current;
All banks idle; tCK = tCK(IDD); CKE is HIGH, CS is HIGH;
mA
Other control and address bus inputs are SWITCHING; Data bus inputs are SWITCHING
IDD3P
IDD3N
Active power-down current;
All banks open; tCK = tCK(IDD); CKE is LOW; Other control and address bus inputs are STABLE; Data bus inputs
are FLOATING
Active standby current;
All banks open; tCK = tCK(IDD), tRAS = tRASmax(IDD), tRP = tRP(IDD);
mA
mA
CKE is HIGH, CS is HIGH between valid commands;
Other control and address bus inputs are SWITCHING; Data bus inputs are SWITCHING
Operating burst write current;
IDD4W
All banks open, Continuous burst writes; BL = 8, CL = CL(IDD), AL = 0; tCK = tCK(IDD), tRAS = tRASmax(IDD),
tRP = tRP(IDD); CKE is HIGH, CS is HIGH between valid commands; Address bus inputs are SWITCHING;Data
bus inputs are SWITCHING
mA
Operating burst read current;
IDD4R
All banks open, Continuous burst reads, IOUT = 0mA; BL = 8, CL = CL(IDD), AL = 0; tCK = tCK(IDD), tRAS = tRASmax(IDD), tRP = tRP(IDD); CKE is HIGH, CS is HIGH between valid commands; Address bus inputs are SWITCH-
mA
ING; Data pattern is same as IDD4W
IDD5B
Burst refresh current;
tCK = tCK(IDD); Refresh command at every tRFC(IDD) interval;
mA
CKE is HIGH, CS is HIGH between valid commands;
Other control and address bus inputs are SWITCHING; Data bus inputs are SWITCHING
IDD6
Self refresh current;
CK and CK at 0V; CKE ≤ 0.2V;
Other control and address bus inputs are FLOATING; Data bus inputs are FLOATING
mA
IDD6ET
Extended Temperature Range Self-Refresh Current;
CK and CK at 0V; CKE ≤ 0.2V;
Other control and address inputs are FLOATING; Data Bus inputs are FLOATING, PASR disabled, Applicable for
MR2 setting A6=0 and A7=1
mA
Operating bank interleave read current;
All bank interleaving reads, IOUT = 0mA; BL = 8, CL = CL(IDD), AL = tRCD(IDD)-1*tCK(IDD); tCK = tCK(IDD), tRC
IDD7
= tRC(IDD), tRRD = tRRD(IDD), tRCD = 1*tCK(IDD);
CKE is HIGH, CS is HIGH between valid commands;
Address bus inputs are STABLE during DESELECTs; Data pattern is same as IDD4R;
mA
[ Table 42 ] IDD Specification
Page 41 of 63
Rev. 1.0 June 2007
1Gb DDR3 SDRAM
K4B1G04(08/16)46C
1Gb DDR3 SDRAM E-die IDD Spec Table
256Mx4 (K4B1G0446C)
Symbol
800Mbps
1066Mbps
1333Mbps
Unit
6-6-6
7-7-7
8-8-8
8-8-8
9-9-9
IDD0
TBD
TBD
TBD
TBD
TBD
IDD1
TBD
TBD
TBD
TBD
TBD
mA
IDD2P-F
TBD
TBD
TBD
TBD
TBD
mA
IDD2P-S
TBD
TBD
TBD
TBD
TBD
mA
IDD2N
TBD
TBD
TBD
TBD
TBD
mA
Notes
mA
IDD2Q
TBD
TBD
TBD
TBD
TBD
mA
IDD3P-F
TBD
TBD
TBD
TBD
TBD
mA
IDD3N
TBD
TBD
TBD
TBD
TBD
mA
IDD4R
TBD
TBD
TBD
TBD
TBD
mA
IDD4W
TBD
TBD
TBD
TBD
TBD
mA
IDD5
TBD
TBD
TBD
TBD
TBD
mA
IDD6
TBD
TBD
TBD
TBD
TBD
mA
IDD6ET
TBD
TBD
TBD
TBD
TBD
mA
IDD7
TBD
TBD
TBD
TBD
TBD
mA
Symbol
800Mbps
128Mx8 (K4B1G0846C)
1066Mbps
1333Mbps
Unit
6-6-6
7-7-7
8-8-8
8-8-8
9-9-9
IDD0
TBD
TBD
TBD
TBD
TBD
Notes
mA
IDD1
TBD
TBD
TBD
TBD
TBD
mA
IDD2P-F
TBD
TBD
TBD
TBD
TBD
mA
IDD2P-S
TBD
TBD
TBD
TBD
TBD
mA
IDD2N
TBD
TBD
TBD
TBD
TBD
mA
IDD2Q
TBD
TBD
TBD
TBD
TBD
mA
IDD3P-F
TBD
TBD
TBD
TBD
TBD
mA
IDD3N
TBD
TBD
TBD
TBD
TBD
mA
IDD4R
TBD
TBD
TBD
TBD
TBD
mA
IDD4W
TBD
TBD
TBD
TBD
TBD
mA
IDD5
TBD
TBD
TBD
TBD
TBD
mA
IDD6
TBD
TBD
TBD
TBD
TBD
mA
IDD6ET
TBD
TBD
TBD
TBD
TBD
mA
IDD7
TBD
TBD
TBD
TBD
TBD
mA
Symbol
800Mbps
64Mx16 (K4B1G1646C)
1066Mbps
1333Mbps
Unit
6-6-6
7-7-7
8-8-8
8-8-8
9-9-9
IDD0
TBD
TBD
TBD
TBD
TBD
Notes
mA
IDD1
TBD
TBD
TBD
TBD
TBD
mA
IDD2P-F
TBD
TBD
TBD
TBD
TBD
mA
IDD2P-S
TBD
TBD
TBD
TBD
TBD
mA
IDD2N
TBD
TBD
TBD
TBD
TBD
mA
IDD2Q
TBD
TBD
TBD
TBD
TBD
mA
IDD3P-F
TBD
TBD
TBD
TBD
TBD
mA
IDD3N
TBD
TBD
TBD
TBD
TBD
mA
IDD4R
TBD
TBD
TBD
TBD
TBD
mA
IDD4W
TBD
TBD
TBD
TBD
TBD
mA
IDD5
TBD
TBD
TBD
TBD
TBD
mA
IDD6
TBD
TBD
TBD
TBD
TBD
mA
IDD6ET
TBD
TBD
TBD
TBD
TBD
mA
IDD7
TBD
TBD
TBD
TBD
TBD
mA
[ Table 43 ] IDD Specification for 1Gb DDR3 C-die
Page 42 of 63
Rev. 1.0 June 2007
1Gb DDR3 SDRAM
K4B1G04(08/16)46C
11.0 Input/Output Capacitance
DDR3-1066
DDR3-1333
DDR3-1600
Min
Max
Min
Max
Min
Max
Min
Max
CIO
1.5
3.0
1.5
3.0
1.5
2.5
TBD
CCK
0.8
1.6
0.8
1.6
0.8
1.4
CDCK
0
0.15
0
0.15
0
CI
0.75
1.5
0.75
1.5
CDDQS
0
0.2
0
CDI_CTRL
-0.5
0.3
CDI_ADD_CMD
-0.5
Input/output capacitance delta
(DQ, DM, DQS, DQS, TDQS, TDQS)
CDIO
Input/output capacitance of ZQ pin
CZQ
Parameter
Symbol
Input/output capacitance
(DQ, DM, DQS, DQS, TDQS, TDQS)
Input capacitance
(CK and CK)
Input capacitance delta
(CK and CK)
Input capacitance
(All other input-only pins)
Input capacitance delta
(DQS and DQS)
Input capacitance delta
(All control input-only pins)
Input capacitance delta
(all ADD and CMD input-onlypins)
DDR3-800
Units
Notes
TBD
pF
1,2,3
0.8
1.4
pF
2,3,5
0.15
0
0.15
pF
2,3,4
0.75
1.3
0.75
1.3
pF
2,3,6
0.2
0
0.15
0
0.15
pF
2,3,12
-0.5
0.3
-0.4
0.2
-0.4
0.2
pF
2,3,7,8
0.5
-0.5
0.5
-0.4
0.4
-0.4
0.4
pF
2,3,9,10
-0.5
0.3
-0.5
0.3
-0.5
0.3
-0.5
0.3
pF
2,3,11
-
3
-
3
-
3
-
3
pF
2, 3, 13
[ Table 44 ] Input / Output Capacitance
Note :
1. Although the DM, TDQS and TDQS# pins have different functions, the loading matches DQ and DQS
2. This parameter is not subject to production test. It is verified by design and characterization.
The capacitance is measured according to JEP147("PROCEDURE FOR MEASURING INPUT CAPACITANCE USING A VECTOR NETWORK
ANALYZER( VNA)") with VDD, VDDQ, VSS, VSSQ applied and all other pins floating (except the pin under test, CKE, RESET# and ODT as necessary).
VDD=VDDQ=1.5V, VBIAS=VDD/2 and on-die termination off.
3. This parameter applies to monolithic devices only; stacked/dual-die devices are not covered here
4. Absolute value of CCK-CCK#
5. Absolute value of CIO(DQS)-CIO(DQS#)
6. CI applies to ODT, CS#, CKE, A0-A15, BA0-BA2, RAS#, CAS#, WE#.
7. CDI_CTRL applies to ODT, CS# and CKE
8. CDI_CTRL=CI(CTRL)-0.5*(CI(CLK)+CI(CLK#))
9. CDI_ADD_CMD applies to A0-A15, BA0-BA2, RAS#, CAS# and WE#
10. CDI_ADD_CMD=CI(ADD_CMD) - 0.5*(CI(CLK)+CI(CLK#))
11. CDIO=CIO(DQ,DM) - 0.5*(CIO(DQS)+CIO(DQS#))
Page 43 of 63
Rev. 1.0 June 2007
1Gb DDR3 SDRAM
K4B1G04(08/16)46C
12.0 Electrical Characteristics and AC timing for DDR3-800 to DDR3-1600
12.1 Clock specification
Parameter
Symbol
Average clock
period
tCK(avg)
Clock period
tCK(abs)
DDR3-800
DDR3-1066
DDR3-1333
DDR3-1600
min
max
min
max
min
max
min
max
2500
3333
1875
3333
1500
3333
1250
3333
tCK(avg)min tCK(avg)max tCK(avg)min tCK(avg)max tCK(avg)min tCK(avg)max tCK(avg)min tCK(avg)max
+
+
+
+
+
+
+
+
tJIT(per)min tJIT(per)max tJIT(per)min tJIT(per)max tJIT(per)min tJIT(per)max tJIT(per)min tJIT(per)max
Units
ps
ps
[ Table 45 ] Clock specification
Add note fot tCK(avg)
tCK(avg) is calculated as the average clock period across any consecutive 200 cycle window, where each clock period is calculated from rising edge to
rising edge.
∑
N
tCKj
N
N=200
j=1
Add note fot tCK(abs)
tCK(abs) is the absolute clock period, as measured from one rising edge to the next consecutive rising edge.
Page 44 of 63
Rev. 1.0 June 2007
1Gb DDR3 SDRAM
K4B1G04(08/16)46C
12.2 Clock Jitter Specification
Parameter
Symbol
Clock period jitter
DDR3-800
DDR3-1066
DDR3-1333
DDR3-1600
Units
min
max
min
max
min
max
min
max
tJIT(per)
-100
100
-90
90
-80
80
-70
70
ps
Clock period jitter during DLL locking period
tJIT(per,lck)
-90
90
-80
80
-70
70
-60
60
ps
Cycle to cycle clock period jitter
tJIT(cc)
200
180
160
140
ps
Cycle to cycle clock period jitter
during DLL locking period
tJIT(cc,lck)
180
160
140
120
ps
Cumulative error across n cycles
tERR(nper)
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
ps
Average high pulse width
tCH(avg)
0.47
0.53
0.47
0.53
0.47
0.53
0.47
0.53
tCK(avg)
Average low pulse width
tCL(avg)
0.47
0.53
0.47
0.53
0.47
0.53
0.47
0.53
tCK(avg)
Duty cycle jitter
tJIT(duty)
-100
100
-75
75
-60
60
-50
50
ps
[ Table 46 ] Clock Jitter specification
Note : The jitter specified is a random jitter meeting a Gaussian distribution. Input clocks violating the min/max values may result in malfunction of the
DDR3 SDRAM device.
Add note for tCH(avg) and tCL(avg)
tCH(avg) is defined as the average high pulse width, as calculated across any consecutive 200 high pulses:
tCL(avg) is defined as the average low pulse width, as calculated across any consecutive 200 low pulses:
N
∑
N
tCHj
N x tCK(avg)
N=200
j=1
∑
tCLj
N x tCK(avg)
N=200
j=1
Add note for tJIT(duty)
tJIT(duty) is defined as the cumulative set of tCH jitter and tCL jitter. tCH jitter is the largest deviation of any single tCH form tCH(avg). tCL jitter is the
largest deviation of any single tCL from tCL(avg)
tJIT(duty) = min/max of {tJIT(CH), tJIT(CL)}, where:
tJIT(CH) = {tCHi-tCH(avg) where i=1 to 200}, tJIT(CL) = {tCLi-tCL(avg) where i=1 to 200},
Add note for tJIT(per), tJIT(per,lck)
tJIT(per) is defined as the largest deviation of any single tCK from tCK(avg). tJIT(per) = min/max of {tCKi-tCK(avg) where i=1 to 200}
tJIT(per) defines the single period jitter when the DLL is already locked.
tJIT(per,lck) uses the same definition for single period jitter, during the DLL locking period only.
tJIT(per) and tJIT(per,lck) are not guaranteed through final production testing
Add note for tJIT(cc), tJIT(cc,lck)
tJIT(cc) is defined as the absolute difference in clock period between two consecutive clock cycles: tJIT(cc) = Max of {tCKi+1-tCKi}
tJIT(cc) defines the cycle to cycle jitter when the DLL is already locked.
tJIT(cc,lck) uses the same definition for cycle to cycle jitter, during the DLL locking period only.
tJIT(cc) and tJIT(cc,lck) are not guaranteed through final production testing
Add note for tERR(nper)
tERR is defined as the cumulative error across n multiple consecutive cycles from tCK(avg). This definition is TBD.
Page 45 of 63
Rev. 1.0 June 2007
1Gb DDR3 SDRAM
K4B1G04(08/16)46C
12.3 Refresh Parameters by Device Density
Parameter
All Bank Refresh to active/refresh cmd time
Average periodic refresh interval
tREFI
Symbol
512Mb
1Gb
2Gb
4Gb
8Gb
Units
tRFC
90
110
160
300
350
ns
0 °C ≤ TCASE ≤ 85°C
7.8
7.8
7.8
7.8
7.8
µs
85 °C < TCASE ≤ 95°C
3.9
3.9
3.9
3.9
3.9
µs
[ Table 47 ] Refresh parameters by device density
12.4 Standard Speed Bins
DDR3 SDRAM Standard Speed Bins include tCK, tRCD, tRP, tRAS and tRC for each corresponding bin.
[ Table 48 ] DDR3-800 Speed Bins
Speed
DDR3-800
CL-nRCD-nRP
Parameter
Intermal read command to first data
6-6-6
Units
Symbol
min
max
Note
tAA
15
20
ns
tRCD
15
-
ns
PRE command period
tRP
15
-
ns
ACT to ACT or REF command period
tRC
52.5
-
ns
ACT to PRE command period
tRAS
37.5
9*tREFI
ns
8
ns
1,2,3,4
ns
1,2,3
ACT to internal read or write delay time
CL = 5 / CWL = 5
tCK(AVG)
CL = 6 / CWL = 5
tCK(AVG)
Reserved
2.5
3.3
Supported CL Settings
6
nCK
Supported CWL Settings
5
nCK
[ Table 49 ] DDR3-1066 Speed Bins
Speed
DDR3-1066
CL-nRCD-nRP
7-7-7
Parameter
Intermal read command to first data
DDR3-1066
8-8-8
Units
Symbol
min
max
min
max
Note
tAA
13.125
20
15
20
ns
tRCD
13.125
-
15
-
ns
PRE command period
tRP
13.125
-
15
-
ns
ACT to ACT or REF command period
tRC
50.625
-
52.5
-
ns
ACT to PRE command period
tRAS
37.5
9*tREFI
37.5
9*tREFI
ns
8
ns
1,2,3,4,6
ACT to internal read or write delay time
CL = 5
CL = 6
CL = 7
CL = 8
Supported CL Settings
Supported CWL Settings
CWL = 5
tCK(AVG)
Reserved
CWL = 6
tCK(AVG)
CWL = 5
tCK(AVG)
CWL = 6
tCK(AVG)
Reserved
CWL = 5
tCK(AVG)
Reserved
CWL = 6
tCK(AVG)
CWL = 5
tCK(AVG)
CWL = 6
tCK(AVG)
Reserved
Reserved
2.5
Reserved
3.3
1.875
<2.5
Reserved
1.875
<2.5
ns
4
ns
1,2,3,6
Reserved
ns
1,2,3,4
Reserved
ns
4
Reserved
ns
1,2,3,4
Reserved
ns
4
ns
1,2,3
2.5
3.3
1.875
<2.5
6,7,8
6,8
nCK
5,6
5,6
nCK
Page 46 of 63
Rev. 1.0 June 2007
1Gb DDR3 SDRAM
K4B1G04(08/16)46C
[ Table 50 ] DDR3-1333 Speed Bins
Speed
DDR3-1333
CL-nRCD-nRP
8-8-8
Parameter
Intermal read command to first data
DDR3-1333
9 -9 - 9
Units
Symbol
min
max
min
max
Note
tAA
12
20
13.5
20
ns
tRCD
12
-
13.5
-
ns
PRE command period
tRP
12
-
13.5
-
ns
ACT to ACT or REF command period
tRC
48
-
49.5
-
ns
ACT to PRE command period
tRAS
36
9*tREFI
36
9*tREFI
ns
8
CWL = 5
tCK(AVG)
2.5
3.3
ns
1,2,3,4,7
CWL = 6,7
tCK(AVG)
CWL = 5
tCK(AVG)
CWL = 6
tCK(AVG)
Reserved
CWL = 7
tCK(AVG)
Reserved
CWL = 5
tCK(AVG)
Reserved
CWL = 6
tCK(AVG)
CWL = 7
tCK(AVG)
CWL = 5
tCK(AVG)
CWL = 6
tCK(AVG)
1.875
<2.5
1.5
<1.875
ACT to internal read or write delay time
CL = 5
CL = 6
CL = 7
CL = 8
CL = 9
CL = 10
Supported CL Settings
Supported CWL Settings
CWL = 7
tCK(AVG)
CWL = 5,6
tCK(AVG)
CWL = 7
tCK(AVG)
CWL = 5,6
tCK(AVG)
CWL = 7
tCK(AVG)
Reserved
Reserved
ns
4
ns
1,2,3,7
Reserved
ns
1,2,3,4,7
Reserved
ns
4
Reserved
ns
4
Reserved
ns
1,2,3,4,7
Reserved
Reserved
ns
1,2,3,4,
Reserved
Reserved
ns
4
ns
1,2,3,7
Reserved
ns
1,2,3,4,
Reserved
ns
4
ns
1,2,3,4
2.5
Reserved
3.3
1.875
2.5
<2.5
1.875
Reserved
1.5
<1.875
<1.875
<2.5
1.5
Reserved
1.5
3.3
<1.875
Reserved
1.5
<1.875
ns
4
ns
1,2,3
5
(Optional)
(Optional)
ns
5,6,7,8,9
6,8,9
nCK
5,6,7
5,6,7
nCK
NOTES:
Absolute Specification (TOPER;VDDQ=VDD=1.5V +/- 0.075V);
1. The CL setting and CWL setting result in tCK(AVG).MIN and tCK(AVG).MAX requirements. When making a selection of tCK(AVG), both need to be fulfiled: Requirements from CL setting as well as requirements from CWL setting.
2. tCK(AVG).MIN limits: Since CAS Latency is not purely analog - data and strobe output are synchronized by the DLL - all possible intermediate frequencies may not be guaranteed. An application should use the next smaller JEDEC standard tCK(AVG) value (2.5, 1.875, 1.5, or 1.25 ns) when calculating CL [nCK] = tAA [ns] / tCK(AVG) [ns], rounding up to the next ’Supported CL’.
3. tCK(AVG).MAX limits: Calculate tCK(AVG) = tAA.MAX / CLSELECTED and round the resulting tCK(AVG) down to the next valid speed bin limit (i.e.
3.3ns or 2.5ns or 1.875 ns or 1.25 ns). This result is tCK(AVG).MAX corresponding to CLSELECTED.
4. ’Reserved’ settings are not allowed. User must program a different value.
5. ’Optional’ settings allow certain devices in the industry to support this setting, however, it is not a mandatory feature. Refer to supplier’s data sheet and
SPD information if and how this setting is supported.
6. Any DDR3-1066 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but
verified by Design/Characterization.
7. Any DDR3-1333 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but
verified by Design/Characterization.
8. tREFI depends on TOPER
Page 47 of 63
Rev. 1.0 June 2007
1Gb DDR3 SDRAM
K4B1G04(08/16)46C
13.0 Timing Parameters by Speed Grade
[ Table 51 ] Timing Parameters by Speed Bin
Speed
Parameter
DDR3-800
DDR3-1066
Symbol
MIN
MAX
tCK(DLL_OFF)
8
-
DDR3-1333
MIN
MAX
MIN
MAX
8
-
8
-
Units
Note
Clock Timing
Minimum Clock Cycle Time (DLL off mode)
ns
6
tCK(avg)
See Speed Bins Table
ps
f
Clock Period
tCK(abs)
tCK(avg)min + tCK(avg)max + tCK(avg)min + tCK(avg)max + tCK(avg)min + tCK(avg)max +
tJIT(per)min
tJIT(per)max
tJIT(per)min
tJIT(per)max
tJIT(per)min
tJIT(per)max
ps
Average high pulse width
tCH(avg)
0.47
0.53
0.47
0.53
0.47
0.53
tCK(avg)
f
Average low pulse width
tCL(avg)
0.47
0.53
0.47
0.53
0.47
0.53
tCK(avg)
f
Clock Period Jitter
tJIT(per)
-100
100
-90
90
-80
80
ps
tJIT(per, lck)
-90
90
-80
80
-70
70
ps
Average Clock Period
Clock Period Jitter during DLL locking period
Cycle to Cycle Period Jitter
tJIT(cc)
200
180
160
Cycle to Cycle Period Jitter during DLL locking period
tJIT(cc, lck)
180
160
140
ps
Cumulative error across 2 cycles
tERR(2per)
- 147
147
- 132
132
- 118
118
ps
Cumulative error across 3 cycles
tERR(3per)
- 175
175
- 157
157
- 140
140
ps
Cumulative error across 4 cycles
tERR(4per)
- 194
194
- 175
175
- 155
155
ps
Cumulative error across 5 cycles
tERR(5per)
- 209
209
- 188
188
- 168
168
ps
Cumulative error across 6 cycles
tERR(6per)
- 222
222
- 200
200
- 177
177
ps
Cumulative error across 7 cycles
tERR(7per)
- 232
232
- 209
209
- 186
186
ps
Cumulative error across 8 cycles
tERR(8per)
- 241
241
- 217
217
- 193
193
ps
Cumulative error across 9 cycles
tERR(9per)
- 249
249
- 224
224
- 200
200
ps
Cumulative error across 10 cycles
tERR(10per)
- 257
257
- 231
231
- 205
205
ps
Cumulative error across 11 cycles
tERR(11per)
- 263
263
- 237
237
- 210
210
ps
Cumulative error across 12 cycles
tERR(12per)
- 269
269
- 242
242
- 215
215
PS
Cumulative error across n = 13, 14 ... 49, 50 cycles
tERR(nper)
ps
tERR(nper)min = (1 + 0.68ln(n))*tJIT(per)min
tERR(nper)max = (1 = 0.68ln(n))*tJIT(per)max
Absolute clock HIGH pulse width
tCH(abs)
0.43
0.43
0.43
tCK(avg)
25
Absolute clock Low pulse width
tCL(abs)
0.43
0.43
0.43
tCK(avg)
26
12,13
Data Timing
DQS,DQS to DQ skew, per group, per access
tDQSQ
-
200
-
150
-
125
ps
DQ output hold time from DQS, DQS
tQH
0.38
-
0.38
-
0.38
-
tCK(avg)
12,13
DQ low-impedance time from CK, CK
tLZ(DQ)
-800
400
-600
300
-500
250
ps
13,14, a
DQ high-impedance time from CK, CK
tHZ(DQ)
-
400
-
300
-
250
ps
13,14, a
Data setup time to DQS, DQS referenced to Vih(ac)Vil(ac)
levels
tDS(base)
75
-
25
-
-10
-
ps
d, 17
Data hold time to DQS, DQS referenced to Vih(ac)Vil(ac)
levels
tDH(base)
150
-
100
-
65
-
ps
d, 17
DQS, DQS READ Preamble
tRPRE
0.9
-
0.9
-
0.9
-
tCK
13, 19, b
DQS, DQS differential READ Postamble
tRPST
0.3
NOTE1
0.3
NOTE1
0.3
NOTE1
tCK
11, 13, b
DQS, DQS output high time
tQSH
0.38
-
0.38
-
0.4
-
tCK(avg)
13, b
DQS, DQS output low time
tQSL
0.38
-
0.38
-
0.4
-
tCK(avg)
13, b
DQS, DQS WRITE Preamble
tWPRE
0.9
-
0.9
-
0.9
-
tCK
1
DQS, DQS WRITE Postamble
tWPST
0.3
-
0.3
-
0.3
-
tCK
1
DQS, DQS rising edge output access time from rising CK,
CK
tDQSCK
-400
400
-300
300
-255
255
ps
12,13
DQS, DQS low-impedance time (Referenced from RL-1)
tLZ(DQS)
-800
400
-600
300
-500
250
ps
12,13,14
DQS, DQS high-impedance time (Referenced from RL+BL/
2)
tHZ(DQS)
-
400
-
300
-
250
ps
12,13,14
DQS, DQS differential input low pulse width
tDQSL
0.4
0.6
0.4
0.6
0.4
0.6
tCK
DQS, DQS differential input high pulse width
tDQSH
0.4
0.6
0.4
0.6
0.4
0.6
tCK
DQS, DQS rising edge to CK, CK rising edge
tDQSS
-0.25
0.25
-0.25
0.25
-0.25
0.25
tCK(avg)
c
DQS,DQS faling edge setup time to CK, CK rising edge
tDSS
0.2
-
0.2
-
0.2
-
tCK(avg)
c
DQS,DQS faling edge hold time to CK, CK rising edge
tDSH
0.2
-
0.2
-
0.2
-
tCK(avg)
c
Data Strobe Timing
Page 48 of 63
Rev. 1.0 June 2007
1Gb DDR3 SDRAM
K4B1G04(08/16)46C
[ Table 51 ] Timing Parameters by Speed Bin (Cont.)
Speed
Parameter
DDR3-800
Symbol
DDR3-1066
MIN
MAX
tDLLK
512
internal READ Command to PRECHARGE Command delay
tRTP
max
(4tCK,7.5ns)
Delay from start of internal write transaction to internal read
command
tWTR
WRITE recovery time
Mode Register Set command cycle time
Mode Register Set command update delay
DDR3-1333
MIN
MAX
-
512
-
max
(4tCK,7.5ns)
max
(4tCK,7.5ns)
-
tWR
15
tMRD
4
tMOD
tCCD
Units
Note
MIN
MAX
-
512
-
-
max
(4tCK,7.5ns)
-
e
max
(4tCK,7.5ns)
-
max
(4tCK,7.5ns)
-
e,18
-
15
-
15
-
ns
-
4
-
4
-
tCK(avg)
max
(12tCK,15ns)
-
max
(12tCK,15ns)
-
max
(12tCK,15ns)
-
4
-
4
-
4
-
Command and Address Timing
DLL locking time
CAS# to CAS# command delay
Auto precharge write recovery + precharge time
Multi-Purpose Register Recovery Time
tDAL(min)
WR + roundup (tRP / tCK(AVG))
nCK
e
nCK
nCK
tMPRR
1
-
1
-
1
-
nCK
tRAS
37.5
70,000
37.5
70,000
36
70,000
ns
ACTIVE to ACTIVE command period for 1KB page size
tRRD
max
(4tCK,10ns)
-
max
(4tCK,7.5ns)
-
max
(4tCK,6ns)
-
e
ACTIVE to ACTIVE command period for 2KB page size
tRRD
max
(4tCK,10ns)
-
max
(4tCK,10ns)
-
max
(4tCK,7.5ns)
-
e
Four activate window for 1KB page size
tFAW
40
-
37.5
-
30
-
ns
e
Four activate window for 2KB page size
tFAW
50
-
50
-
45
-
ns
e
Command and Address setup time to CK, CK referenced to
Vih(ac) / Vil(ac) levels
tIS(base)
200
-
125
-
65
-
ps
b,16
Command and Address hold time from CK, CK referenced to
Vih(ac) / Vil(ac) levels
tIH(base)
275
-
200
-
140
-
ps
b,16
512Mb REFRESH to REFRESH OR REFRESH to ACTIVE
command interval
tRFC
90
-
90
-
90
-
ns
1Gb REFRESH to REFRESH OR REFRESH to ACTIVE
command interval
tRFC
110
-
110
-
110
-
ns
2Gb REFRESH to REFRESH OR REFRESH to ACTIVE
command interval
tRFC
160
-
160
-
160
-
ns
4Gb REFRESH to REFRESH OR REFRESH to ACTIVE
command interval
tRFC
300
-
300
-
300
-
ns
8Gb REFRESH to REFRESH OR REFRESH to ACTIVE
command interval
tRFC
350
-
350
-
350
-
ns
Average periodic refresh interval (0°C ≤ TCASE ≤ 85 °C)
tREFI
7.8
7.8
7.8
us
Average periodic refresh interval (85°C ≤ TCASE ≤ 95 °C)
tREFI
3.9
3.9
3.9
us
ACTIVE to PRECHARGE command period
e
Refresh Timing
Calibration Timing
Power-up and RESET calibration time
tZQinitI
512
-
512
-
512
-
tCK
Normal operation Full calibration time
tZQoper
256
-
256
-
256
-
tCK
Normal operation short calibration time
tZQCS
64
-
64
-
64
-
tCK
tXPR
max(5tCK, tRFC
+ 10ns)
-
max(5tCK, tRFC
+ 10ns)
-
max(5tCK, tRFC
+ 10ns)
-
tXS
max(5tCK,tRFC
+ 10ns)
-
max(5tCK,tRFC
+ 10ns)
-
max(5tCK,tRFC
+ 10ns)
-
23
Reset Timing
Exit Reset from CKE HIGH to a valid command
Self Refresh Timing
Exit Self Refresh to commands not requiring a locked DLL
Exit Self Refresh to commands requiring a locked DLL
tXSDLL
tDLLK(min)
-
tDLLK(min)
-
tDLLK(min)
-
Minimum CKE low width for Self refresh entry to exit timing
tCKESR
tCKE(min) +
1tCK
-
tCKE(min) +
1tCK
-
tCKE(min) +
1tCK
-
Valid Clock Requirement after Self Refresh Entry (SRE)
tCKSRE
max(5tCK,10ns)
-
max(5tCK,10ns)
-
max(5tCK,10ns)
-
Valid Clock Requirement before Self Refresh Exit (SRX)
tCKSRX
max(5tCK,10ns)
-
max(5tCK,10ns)
-
max(5tCK,10ns)
-
Page 49 of 63
tCK
Rev. 1.0 June 2007
1Gb DDR3 SDRAM
K4B1G04(08/16)46C
[ Table 51 ] Timing Parameters by Speed Bin (Cont.)
Speed
Parameter
DDR3-800
DDR3-1066
DDR3-1333
Symbol
MIN
MAX
MIN
MAX
MIN
MAX
tXP
max
(3tCK,7.5ns)
-
max
(3tCK,7.5ns)
-
max
(3tCK,6ns)
-
tXPDLL
max
(10tCK,24ns)
-
max
(10tCK,24ns)
-
max
(10tCK,24ns)
-
tCKE
max
(3tCK,7.5ns)
-
max
(3tCK,5.625ns)
-
max
(3tCK,5.625ns)
-
Units
Note
Power Down Timing
Exit Power Down with DLL on to any valid command;Exit
Percharge Power Down with DLL
frozen to commands not requiring a locked DLL
Exit Precharge Power Down with DLL frozen to commands
requiring a locked DLL
CKE minimum pulse width
Command pass disable delay
2
tCPDED
1
-
1
-
1
-
tPD
tCKE(min)
9*tREFI
tCKE(min)
9*tREFI
tCKE(min)
9*tREFI
tCK
15
Timing of ACT command to Power Down entry
tACTPDEN
1
-
1
-
1
-
nCK
20
Timing of PRE command to Power Down entry
tPRPDEN
1
-
1
-
1
-
nCK
20
Timing of RD/RDA command to Power Down entry
tRDPDEN
RL + 4 +1
-
RL + 4 +1
-
RL + 4 +1
-
Timing of WR command to Power Down entry
(BL8OTF, BL8MRS, BL4OTF)
tWRPDEN
WL + 4 +(tWR/
tCK)
-
WL + 4 +(tWR/
tCK)
-
WL + 4 +(tWR/
tCK)
-
nCK
9
Timing of WRA command to Power Down entry
(BL8OTF, BL8MRS, BL4OTF)
tWRAPDEN
WL + 4 +WR +1
-
WL + 4 +WR +1
-
WL + 4 +WR +1
-
nCK
10
Timing of WR command to Power Down entry
(BL4MRS)
tWRPDEN
WL + 2 +(tWR/
tCK)
-
WL + 2 +(tWR/
tCK)
-
WL + 2 +(tWR/
tCK)
-
nCK
9
Timing of WRA command to Power Down entry
(BL4MRS)
tWRAPDEN
WL +2 +WR +1
-
WL +2 +WR +1
-
WL +2 +WR +1
-
nCK
10
Power Down Entry to Exit Timing
nCK
Timing of REF command to Power Down entry
tREFPDEN
1
-
1
-
1
-
Timing of MRS command to Power Down entry
tMRSPDEN
tMOD(min)
-
tMOD(min)
-
tMOD(min)
-
tCK
20,21
ODT high time without write command or with wirte command and BC4
ODTH4
4
-
4
-
4
-
nCK
ODT high time with Write command and BL8
ODTH8
6
-
6
-
6
-
nCK
Asynchronous RTT tum-on delay (Power-Down with DLL
frozen)
tAONPD
1
9
1
9
1
9
ns
Asynchronous RTT tum-off delay (Power-Down with DLL
frozen)
tAOFPD
1
9
1
9
1
9
ns
ODT turn-on
tAON
-400
400
-300
30
-250
250
ps
7,12
RTT_NOM and RTT_WR turn-off time from ODTLoff reference
tAOF
0.3
0.7
0.3
0.7
0.3
0.7
tCK(avg)
8,12
RTT dynamic change skew
tADC
0.3
0.7
0.3
0.7
0.3
0.7
tCK(avg)
12
First DQS pulse rising edge after tDQSS margining mode is
programmed
tWLMRD
40
-
40
-
40
-
tCK
3
DQS/DQS delay after tDQS margining mode is programmed
tWLDQSEN
25
-
25
-
25
-
tCK
3
tWLS
325
-
245
-
195
-
ps
Hold time of tDQSS latch
tWLH
325
-
245
-
195
-
ps
Write leveling output delay
tWLO
0
9
0
9
0
9
ns
Write leveling output error
tWLOE
0
2
0
2
0
2
ns
ODT Timing
Write Leveling Timing
Setup time for tDQSS latch
Page 50 of 63
Rev. 1.0 June 2007
1Gb DDR3 SDRAM
K4B1G04(08/16)46C
Jitter Notes
Specific Note a
When the device is operated with input clock jitter, this parameter needs to be derated by the actual tERR(mper),act of the input clock, where 2 <= m <=
12. (output deratings are relative to the SDRAM input clock.)
For example, if the measured jitter into a DDR3-800 SDRAM has tERR(mper),act,min = - 172 ps and tERR(mper),act,max = + 193 ps, then
tDQSCK,min(derated) = tDQSCK,min - tERR(mper),act,max = - 400 ps - 193 ps = - 593 ps and tDQSCK,max(derated) = tDQSCK,max tERR(mper),act,min = 400 ps + 172 ps = + 572 ps. Similarly, tLZ(DQ) for DDR3-800 derates to tLZ(DQ),min(derated) = - 800 ps - 193 ps = - 993 ps and
tLZ(DQ),max(derated) = 400 ps + 172 ps = + 572 ps. (Caution on the min/max usage!)
Note that tERR(mper),act,min is the minimum measured value of tERR(nper) where 2 <= n <= 12, and tERR(mper),act,max is the maximum measured
value of tERR(nper) where 2 <= n <= 12
Specific Note b
When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT(per),act of the input clock. (output deratings are
relative to the SDRAM input clock.)
For example, if the measured jitter into a DDR3-800 SDRAM has tCK(avg),act = 2500 ps, tJIT(per),act,min = - 72 ps and tJIT(per),act,max = + 93 ps, then
tRPRE,min(derated) = tRPRE,min + tJIT(per),act,min = 0.9 x tCK(avg),act + tJIT(per),act,min = 0.9 x 2500 ps - 72 ps = + 2178 ps. Similarly, tQH,min(derated) = tQH,min + tJIT(per),act,min = 0.38 x tCK(avg),act + tJIT(per),act,min = 0.38 x 2500 ps - 72 ps = + 878 ps. (Caution on the min/max usage!)
Specific Note c
These parameters are measured from a data strobe signal (DQS(L/U), DQS(L/U)) crossing to its respective clock signal (CK, CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT(per), tJIT(cc), etc.), as these are relative to the clock signal crossing.
That is, these parameters should be met whether clock jitter is present or not.
Specific Note d
These parameters are measured from a data signal (DM(L/U), DQ(L/U)0, DQ(L/U)1, etc.) transition edge to its respective data strobe signal (DQS(L/U),
DQS(L/U)) crossing.
Specific Note e
For these parameters, the DDR3 SDRAM device supports tnPARAM [nCK] = RU{ tPARAM [ns] / tCK(avg) [ns] }, which is in clock cycles, assuming all
input clock jitter specifications are satisfied.
For example, the device will support tnRP = RU{tRP / tCK(avg)}, which is in clock cycles, if all input clock jitter specifications are met. This means: For
DDR3-800 6-6-6, of which tRP = 15ns, the device will support tnRP = RU{tRP / tCK(avg)} = 6, as long as the input clock jitter specifications are met, i.e.
Precharge command at Tm and Active command at Tm+6 is valid even if (Tm+6 - Tm) is less than 15ns due to input clock jitter.
Page 51 of 63
Rev. 1.0 June 2007
1Gb DDR3 SDRAM
K4B1G04(08/16)46C
Timing Parameter Notes
1. Actual value dependant upon measurement level definitions which are TBD.
2. Commands requiring a locked DLL are: READ (and RAP) and synchronous ODT commands.
3. The max values are system dependent.
4. WR as programmed in mode register
5. Value must be rounded-up to next higher integer value
6. There is no maximum cycle time limit besides the need to satisfy the refresh interval, tREFI.
7. For definition of RTT turn-on time tAON see "Device Operation"
8. For definition of RTT turn-off time tAOF see "Device Operation".
9. tWR is defined in ns, for calculation of tWRPDEN it is necessary to round up tWR / tCK to the next integer.
10. WR in clock cycles as programmed in MR0
11. The maximum postamble is bound by tHZDQS(max)
12. Output timing deratings are relative to the SDRAM input clock. When the device is operated with input clock jitter, this parameter needs to be derated
by TBD
13. Value is only valid for RON34
14. Single ended signal parameter. Refer to chapter <TBD> for definition and measurement method.
15. tREFI depends on TOPER
16. tIS(base) and tIH(base) values are for 1V/ns CMD/ADD single-ended slew rate and 2V/ns CK, CK differential slew rate, Note for DQ and DM signals,
VREF(DC) = VrefDQ(DC). FOr input only pins except RESET, VRef(DC)=VRefCA(DC).
See "Address/ Command Setup, Hold and Derating" on page 53.
17. tDS(base) and tDH(base) values are for 1V/ns DQ single-ended slew rate and 2V/ns DQS, DQS differential slew rate. Note for DQ and DM signals,
VREF(DC)= VRefDQ(DC). For input only pins except RESET, VRef(DC)=VRefCA(DC).
See "Data Setup, Hold and Slew Rate Derating" on page 59.
18. Start of internal write transaction is definited as follows ;
For BL8 (fixed by MRS and on-the-fly) : Rising clock edge 4 clock cycles after WL.
For BC4 (on-the-fly) : Rising clock edge 4 clock cycles after WL
For BC4 (fixed by MRS) : Rising clock edge 2 clock cycles after WL
19. The maximum preamble is bound by tLZDQS(max)
20. CKE is allowed to be registered low while operations such as row activation, precharge, autoprecharge or refresh are in progress, but power-down
IDD spec will not be applied until finishing those operations.
21. Altough CKE is allowed to be registered LOW after a REFRESH command once tREFPDEN(min) is satisfied, there are cases where additional time
such as tXPDLL(min) is also required. See "Device Operation".
22. Defined between end of MPR read burst and MRS which reloads MPR or disables MPR function.
23. One ZQCS command can effectively correct a minimum of 0.5 % (ZQCorrection) of RON and RTT impedance error within 64 nCK for all speed bins
assuming the maxi-mum sensitivities specified in the ’Output Driver Voltage and Temperature Sensitivity’ and ’ODT Voltage and Temperature Sensitivity’
tables. The appropriate interval between ZQCS commands can be determined from these tables and other applicationspecific One method for calculating
the interval between ZQCS commands, given the temperature (Tdriftrate) and voltage (Vdriftrate) drift rates that the SDRAM is subject to in the application, is illustrated. The interval could be defined by the following formula:
ZQCorrection
(TSens x Tdriftrate) + (VSens x Vdriftrate)
where TSens = max(dRTTdT, dRONdTM) and VSens = max(dRTTdV, dRONdVM) For example, if TSens = 1.5% /°C, VSens = 0.15% / mV, Tdriftrate =
1°C / sec and Vdriftrate = 15 mV / sec, then the interval between ZQCS commands is calculated as:
0.5
(1.5 x 1) + (0.15 x 15)
= 0.133 ~
~ 128ms
24. n = from 13 cycles to 50 cycles. This row defines 38 parameters.
25. tCH(abs) is the absolute instantaneous clock high pulse width, as measured from one rising edge to the following falling edge.
26. tCL(abs) is the absolute instantaneous clock low pulse width, as measured from one falling edge to the following rising edge.
27. The tIS(base) AC150 specifications are adjusted from the tIS(base) specification by adding an additional 100 ps of derating to accommodate for the
lower alternate threshold of 150 mV and another 25 ps to account for the earlier reference point [(175 mv - 150 mV) / 1 V/ns].
Page 52 of 63
Rev. 1.0 June 2007
1Gb DDR3 SDRAM
K4B1G04(08/16)46C
Address / Command Setup, Hold and Derating:
For all input signals the total tIS (setup time) and tIH (hold time) required is calculated by adding the data sheet tIS(base) and tIH(base) value (see Table
53) to the ∆tIS and ∆tIH derating value (see Table 54) respectively.
Example: tIS (total setup time) = tIS(base) + ∆tIS Setup (tIS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of
VREF(dc) and the first crossing of VIH(ac)min. Setup (tIS) nominal slew rate for a falling signal is defined as
the slew rate between the last crossing of VREF(dc) and the first crossing of Vil(ac)max. If the actual signal is always earlier than the nominal slew rate
line between shaded ’VREF(dc) to ac region’, use nominal slew rate for derating value (see Figure 23). If the actual signal is later than the nominal slew
rate line anywhere between shaded ’VREF(dc) to ac region’, the slew rate of a tangent line to the actual signal from the ac level to dc level is used for
derating value (see Figure 25).
Hold (tIH) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of Vil(dc)max and the first crossing of VREF(dc). Hold
(tIH) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of Vih(dc)min and the first crossing of VREF(dc). If the
actual signal is always later than the nominal slew rate line between shaded ’dc to VREF(dc) region’, use nominal slew rate for derating value (see Figure
24). If the actual signal is earlier than the nominal slew rate line anywhere between shaded ’dc to VREF(dc) region’, the slew rate of a tangent line to the
actual signal from the dc level to VREF(dc) level is used for derating value (see Figure 26).
For a valid transition the input signal has to remain above/below VIH/IL(ac) for some time tVAC (see Table 55).
Although for slow slew rates the total setup time might be negative (i.e. a valid input signal will not have reached VIH/IL(ac) at the time of the rising clock
transition) a valid input signal is still required to complete the transition and reach VIH/IL(ac).
For slew rates in between the values listed in Table 54, the derating values may obtained by linear interpolation.
These values are typically not subject to production test. They are verified by design and characterization.
[ Table 53 ] ADD/CMD Setup and Hold Base-Values for 1V/ns
[ps]
DDR3-800
DDR3-1066
DDR3-1333
DDR3-1600
reference
tIS(base)
200
125
65
TBD
VIH/L(ac)
tIH(base)
275
200
140
TBD
VIH/L(dc)
tIS(base)-AC150
-
-
65+125
TBD+125
VIH/L(ac)
Note : AC/DC referenced for 1V/ns DQ-slew rate and 2V/ns DQS slew rate
Note : The tIS(base)-AC150 specifications are further adjusted to add an addi-tional 100ps of derating to accommodate for the lower alternate thresh-old
of 150mV and another 25ps to acccount for the earlier reference point [(175mv-150mV)/1 V/ns].
[ Table 54 ] Derating values DDR3-800/1066 tIS/tIH-ac/dc based
∆tIS, ∆tIH Derating [ps] AC/DC based
AC175 Threshold -> VIH(ac) = VREF(dc) + 175mV, VIL(ac) = VREF(dc) - 175mV
CLK,CLK Differential Slew Rate
4.0 V/ns
CMD/
ADD
Slew
rate
V/ns
3.0 V/ns
2.0 V/ns
1.8 V/ns
1.6 V/ns
1.4V/ns
1.2V/ns
1.0V/ns
∆tIS
∆tIH
∆tIS
∆tIH
∆tIS
∆tIH
∆tIS
∆tIH
∆tIS
∆tIH
∆tIS
∆tIH
∆tIS
∆tIH
∆tIS
∆tIH
2.0
88
50
88
50
88
50
96
58
104
66
112
74
120
84
128
100
1.5
59
34
59
34
59
34
67
42
75
50
83
58
91
68
99
74
1.0
0
0
0
0
0
0
8
8
16
16
24
24
32
34
40
50
0.9
-2
-4
-2
-4
-2
-4
6
4
14
12
20
20
30
30
38
46
0.8
-6
-10
-6
-10
-6
-10
2
-2
10
6
13
14
26
24
34
40
0.7
-11
-16
-11
-16
-11
-16
-3
-8
5
0
13
8
21
18
29
34
0.6
-17
-26
-17
-26
-17
-26
-9
-18
-1
-10
7
-2
15
8
23
24
0.5
-35
-40
-35
-40
-35
-40
-27
-32
-19
-24
-11
-16
-2
-6
6
10
0.4
-62
-60
-62
-60
-60
-60
-54
-52
-46
-44
-38
-36
-30
-26
-22
-10
Page 53 of 63
Rev. 1.0 June 2007
1Gb DDR3 SDRAM
K4B1G04(08/16)46C
[ Table 55 ] Derating values DDR3-1333/1600 tIS/tIH-ac/dc based - Alternate AC150 Threshold
∆tIS, ∆tIH Derating [ps] AC/DC based
Alternate AC150 Threshold -> VIH(ac) = VREF(dc) + 150mV, VIL(ac) = VREF(dc) - 150mV
CLK,CLK Differential Slew Rate
4.0 V/ns
CMD/
ADD
Slew
rate
V/ns
3.0 V/ns
2.0 V/ns
1.8 V/ns
1.6 V/ns
1.4V/ns
1.2V/ns
1.0V/ns
∆tIS
∆tIH
∆tIS
∆tIH
∆tIS
∆tIH
∆tIS
∆tIH
∆tIS
∆tIH
∆tIS
∆tIH
∆tIS
∆tIH
∆tIS
∆tIH
2.0
70
50
75
50
75
50
83
58
91
66
99
74
107
84
115
100
1.5
50
34
50
34
50
34
58
42
66
50
74
58
82
68
90
84
1.0
0
0
0
0
0
0
8
8
16
16
24
24
32
34
40
50
0.9
0
-4
0
-4
0
-4
8
4
16
12
24
20
32
30
40
46
0.8
0
-10
0
-10
0
-10
8
-2
16
6
24
14
32
24
40
40
0.7
0
-16
0
-16
0
-16
8
-8
16
0
24
8
32
18
40
34
0.6
-1
-26
-1
-26
-1
-26
7
-18
15
-10
23
-2
31
8
39
24
0.5
-10
-40
-10
-40
-10
-40
-2
-32
6
-24
14
-16
22
-6
30
10
0.4
-25
-60
-25
-60
-25
-60
-17
-52
-9
-44
-1
-36
7
-26
15
-10
[ Table 56 ] Required time tVAC above VIH(ac) {blow VIL(ac)} for valid transition
tVAC @175mV [ps]
Slew Rate[V/ns]
tVAC @50mV [ps]
min
max
min
max
>2.0
75
-
175
-
2.0
57
-
170
-
1.5
50
-
167
-
1.0
38
-
163
-
0.9
34
-
162
-
0.8
29
-
161
-
0.7
22
-
159
-
0.6
13
-
155
-
0.5
0
-
150
-
< 0.5
0
-
150
-
Page 54 of 63
Rev. 1.0 June 2007
1Gb DDR3 SDRAM
K4B1G04(08/16)46C
Note :Clock and Strobe are drawn on a different time scale.
tIS
tIH
tIS
tIH
tDS
tDH
tDS
tDH
CK
CK
DQS
DQS
VDDQ
tVAC
VIH(ac) min
VREF to ac
region
VIH(dc) min
nominal
slew rate
VREF(dc)
nominal slew
rate
VIL(dc) max
VREF to ac
region
VIL(ac) max
tVAC
VSS
Delta TF
Delta TR
Setup Slew Rate= VREF(dc) - Vil(ac)max
Falling Signal
Delta TF
Setup Slew Rate Vih(ac)min - VREF(dc)
=
Rising Signal
Delta TR
Figure 21 - Illustration of nominal slew rate and tVAC for setup time tDS (for DQ with respect to strobe) and tIS
(for ADD/CMD with respect to clock).
Page 55 of 63
Rev. 1.0 June 2007
1Gb DDR3 SDRAM
K4B1G04(08/16)46C
Note :Clock and Strobe are drawn on a different time scale.
tIS
tIH
tIS
tIH
tDS
tDH
tDS
tDH
CK
CK
DQS
DQS
VDDQ
VIH(ac) min
VIH(dc) min
dc to VREF
region
nominal
slew rate
VREF(dc)
dc to VREF
region
nominal
slew rate
dc to VREF
region
VIL(dc) max
VIL(ac) max
VSS
Delta TR
Hold Slew Rate VREF(dc) - Vil(dc)max
Rising Signal =
Delta TR
Delta TF
Hold Slew Rate Vih(dc)min - VREF(dc)
Falling Signal =
Delta TF
Figure 22 - Illustration of nominal slew rate for hold time tDH (for DQ with respect to strobe) and tIH
(for ADD/CMD with respect to clock).
Page 56 of 63
Rev. 1.0 June 2007
1Gb DDR3 SDRAM
K4B1G04(08/16)46C
Note :Clock and Strobe are drawn on a different time scale.
tIS
tIH
tIS
tIH
tDS
tDH
tDS
tDH
CK
CK
DQS
DQS
VDDQ
nominal
line
tVAC
VIH(ac) min
VREF to ac
region
VIH(dc) min
tangent
line
VREF(dc)
tangent
line
VIL(dc) max
VREF to ac
region
VIL(ac) max
nominal
line
Delta TR
VSS
Delta TF
Setup Slew Rate tangent line[Vih(ac)min - VREF(dc)]
Rising Signal=
Delta TR
Setup Slew Rate tangent line[VREF(dc) - Vil(ac)max]
Falling Signal =
Delta TF
Figure 23. Illustration of tangent line for setup time tDS (for DQ with respect to strobe) and tIS
(for ADD/CMD with respect to clock)
Page 57 of 63
Rev. 1.0 June 2007
1Gb DDR3 SDRAM
K4B1G04(08/16)46C
Note :Clock and Strobe are drawn on a different time scale.
tIS
tIH
tIS
tIH
tDS
tDH
tDS
tDH
CK
CK
DQS
DQS
VDDQ
VIH(ac) min
nominal
line
VIH(dc) min
dc to VREF
region
tangent
line
VREF(dc)
dc to VREF
region
tangent
line
nominal
line
VIL(dc) max
VIL(ac) max
VSS
Delta TR
Delta TF
Hold Slew Rate tangent line [ VREF(dc) - Vil(dc)max ]
Rising Signal =
Delta TR
Hold Slew Rate tangent line [ Vih(dc)min - VREF(dc) ]
Falling Signal =
Delta TF
Figure 24 - Illustration of tangent line for hold time tDH (for DQ with respect to strobe) and tIH
(for ADD/CMD with respect to clock)
Page 58 of 63
Rev. 1.0 June 2007
1Gb DDR3 SDRAM
K4B1G04(08/16)46C
Data Setup, Hold and Slew Rate Derating:
For all input signals the total tDS (setup time) and tDH (hold time) required is calculated by adding the data sheet tDS(base) and tDH(base) value (see
Table 57) to the ∆ tDS and ∆tDH (see Table 58) derating value respectively. Example: tDS (total setup time) = tDS(base) + ∆tDS.
Setup (tDS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VREF(dc) and the first crossing of VIH(ac)min.
Setup (tDS) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of VREF(dc) and the first crossing of VIL(ac)max
(see Figure 27). If the actual signal is always earlier than the nominal slew rate line between shaded ’VREF(dc) to ac region’, use nominal slew rate for
derating value. If the actual signal is later than the nominal slew rate line anywhere
between shaded ’VREF(dc) to ac region’, the slew rate of a tangent line to the actual signal from the ac level to dc level is used for derating value (see
Figure 29).
Hold (tDH) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VIL(dc)max and the first crossing of VREF(dc).
Hold (tDH) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of VIH(dc)min and the first crossing of VREF(dc)
(see Figure 28). If the actual signal is always later than the nominal slew rate line between shaded ’dc level to VREF(dc) region’, use nominal slew rate for
derating value. If the actual signal is earlier than the nominal slew rate line anywhere between shaded ’dc to VREF(dc) region’, the slew rate of a tangent
line to the actual signal from the dc level to VREF(dc) level is used for derating value (see Figure 30).
For a valid transition the input signal has to remain above/below VIH/IL(ac) for some time tVAC (see Table 59).
Although for slow slew rates the total setup time might be negative (i.e. a valid input signal will not have reached VIH/IL(ac) at the time of the rising clock
transition) a valid input signal is still required to complete the transition and reach VIH/IL(ac).
For slew rates in between the values listed in the tables the derating values may obtained by linear interpolation.
These values are typically not subject to production test. They are verified by design and characterization
[ Table 57 ] Data Setup and Hold Base-Value
[ps]
DDR3-800
DDR3-1066
DDR3-1333
DDR3-1600
reference
tDS(base)
75
25
-10
TBD
VIH/L(ac)
tDH(base)
150
100
65
TBD
VIH/L(dc)
Note : AC/DC referenced for 1V/ns DQ-slew rate and 2 V/ns DQS slew rate)
[ Table 58 ] Derating values DDR3-800/1066 tIS/tIH-ac/dc based
∆tDS, ∆tDH Derating [ps] AC/DC baseda
DQS,DQS Differential Slew Rate
4.0 V/ns
DQ
Slew
rate
V/ns
3.0 V/ns
2.0 V/ns
1.8 V/ns
1.6 V/ns
1.4V/ns
1.2V/ns
1.0V/ns
∆tDS
∆tDH
∆tDS
∆tDH
∆tDS
∆tDH
∆tDS
∆tDH
∆tDS
∆tDH
∆tDS
∆tDH
∆tDS
∆tDH
∆tDS
2.0
88
50
88
50
88
50
-
-
-
-
-
-
-
-
-
∆tDH
-
1.5
59
34
59
34
59
34
67
45
-
-
-
-
-
-
-
-
1.0
0
0
0
0
0
0
8
8
16
16
-
-
-
-
-
-
0.9
-
-
-2
-4
-2
-4
6
4
14
12
22
20
-
-
-
-
0.8
-
-
-
-
-6
-10
2
-2
10
6
18
14
26
24
-
-
0.7
-
-
-
-
-
-
-3
-8
5
0
13
8
21
18
29
34
0.6
-
-
-
-
-
-
-
-
-1
-10
7
-2
15
8
23
24
0.5
-
-
-
-
-
-
-
-
-
-
-11
-16
-2
-6
6
10
0.4
-
-
-
-
-
-
-
-
-
-
-
-
-30
-26
-22
-10
Note : a. Cell contents shaded in red are defined as ’not supported’.
[ Table 59 ] Required time tVAC above VIH(ac) {blow VIL(ac)} for valid transition
Slew Rate[V/ns]
tVAC[ps]
min
max
>2.0
75
-
2.0
57
-
1.5
50
-
1.0
38
-
0.9
34
-
0.8
29
-
0.7
22
-
0.6
13
-
0.5
0
-
<0.5
0
-
Page 59 of 63
Rev. 1.0 June 2007
1Gb DDR3 SDRAM
K4B1G04(08/16)46C
Note :Clock and Strobe are drawn on a different time scale.
tIS
tIH
tIS
tIH
tDS
tDH
tDS
tDH
CK
CK
DQS
DQS
VDDQ
tVAC
VIH(ac) min
VREF to ac
region
VIH(dc) min
nominal
slew rate
VREF(dc)
nominal slew
rate
VIL(dc) max
VREF to ac
region
VIL(ac) max
tVAC
VSS
Delta TF
Delta TR
Setup Slew Rate= VREF(dc) - Vil(ac)max
Falling Signal
Delta TF
Setup Slew Rate Vih(ac)min - VREF(dc)
Rising Signal =
Delta TR
Figure 27 - Illustration of nominal slew rate and tVAC for setup time tDS (for DQ with respect to strobe) and tIS
(for ADD/CMD with respect to clock).
Page 60 of 63
Rev. 1.0 June 2007
1Gb DDR3 SDRAM
K4B1G04(08/16)46C
Note :Clock and Strobe are drawn on a different time scale.
tIS
tIH
tIS
tIH
tDS
tDH
tDS
tDH
CK
CK
DQS
DQS
VDDQ
VIH(ac) min
VIH(dc) min
dc to VREF
region
nominal
slew rate
VREF(dc)
dc to VREF
region
nominal
slew rate
dc to VREF
region
VIL(dc) max
VIL(ac) max
VSS
Delta TR
Hold Slew Rate VREF(dc) - Vil(dc)max
Rising Signal =
Delta TR
Delta TF
Hold Slew Rate Vih(dc)min - VREF(dc)
=
Falling Signal
Delta TF
Figure 28 - Illustration of nominal slew rate for hold time tDH (for DQ with respect to strobe) and tIH
(for ADD/CMD with respect to clock).
Page 61 of 63
Rev. 1.0 June 2007
1Gb DDR3 SDRAM
K4B1G04(08/16)46C
Note :Clock and Strobe are drawn on a different time scale.
tIS
tIH
tIS
tIH
tDS
tDH
tDS
tDH
CK
CK
DQS
DQS
VDDQ
nominal
line
tVAC
VIH(ac) min
VREF to ac
region
VIH(dc) min
tangent
line
VREF(dc)
tangent
line
VIL(dc) max
VREF to ac
region
VIL(ac) max
nominal
line
Delta TR
VSS
Delta TF
Setup Slew Rate tangent line[Vih(ac)min - VREF(dc)]
Rising Signal=
Delta TR
Setup Slew Rate tangent line[VREF(dc) - Vil(ac)max]
Falling Signal =
Delta TF
Figure 29 - Illustration of tangent line for setup time tDS (for DQ with respect to strobe) and tIS
(for ADD/CMD with respect to clock)
Page 62 of 63
Rev. 1.0 June 2007
1Gb DDR3 SDRAM
K4B1G04(08/16)46C
Note :Clock and Strobe are drawn on a different time scale.
tIS
tIH
tIS
tIH
tDS
tDH
tDS
tDH
CK
CK
DQS
DQS
VDDQ
VIH(ac) min
nominal
line
VIH(dc) min
dc to VREF
region
tangent
line
VREF(dc)
dc to VREF
region
tangent
line
nominal
line
VIL(dc) max
VIL(ac) max
VSS
Delta TR
Delta TF
Hold Slew Rate tangent line [ VREF(dc) - Vil(dc)max ]
Rising Signal =
Delta TR
Hold Slew Rate tangent line [ Vih(dc)min - VREF(dc) ]
Falling Signal =
Delta TF
Figure 30 - Illustration of tangent line for hold time tDH (for DQ with respect to strobe) and tIH
(for ADD/CMD with respect to clock)
Page 63 of 63
Rev. 1.0 June 2007