SAMSUNG K4T1G084QD

K4T1G084QD
K4T1G164QD
DDR2 SDRAM
1Gb D-die DDR2 SDRAM Specification
60FBGA & 84FBGA with Pb-Free
(RoHS compliant)
INFORMATION IN THIS DOCUMENT IS PROVIDED IN RELATION TO SAMSUNG PRODUCTS,
AND IS SUBJECT TO CHANGE WITHOUT NOTICE.
NOTHING IN THIS DOCUMENT SHALL BE CONSTRUED AS GRANTING ANY LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE,
TO ANY INTELLECTUAL PROPERTY RIGHTS IN SAMSUNG PRODUCTS OR TECHNOLOGY. ALL
INFORMATION IN THIS DOCUMENT IS PROVIDED
ON AS "AS IS" BASIS WITHOUT GUARANTEE OR WARRANTY OF ANY KIND.
1. For updates or additional information about Samsung products, contact your nearest Samsung office.
2. Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar
applications where Product failure couldresult in loss of life or personal or physical harm, or any military or
defense application, or any governmental procurement to which special terms or provisions may apply.
* Samsung Electronics reserves the right to change products or specification without notice.
-1 of 29
Rev. 1.0 March 2007
K4T1G084QD
K4T1G164QD
DDR2 SDRAM
Table of Contents
1.0 Ordering Information ...................................................................................................................2
2.0 Key Features ................................................................................................................................2
3.0 Package Pinout/Mechanical Dimension & Addressing ............................................................3
3.1 x8 package pinout (Top View) : 60ball FBGA Package ......................................................................3
3.2 x16 package pinout (Top View) : 84ball FBGA Package ....................................................................4
3.3 FBGA Package Dimension (x8) ......................................................................................................5
3.4 FBGA Package Dimension (x16) ....................................................................................................6
4.0 Input/Output Functional Description .........................................................................................7
5.0 DDR2 SDRAM Addressing ..........................................................................................................8
6.0 Absolute Maximum DC Ratings ..................................................................................................9
7.0 AC & DC Operating Conditions .................................................................................................. 9
7.1 Recommended DC Operating Conditions (SSTL - 1.8) ......................................................................9
7.2 Operating Temperature Condition ...............................................................................................10
7.3 Input DC Logic Level ..................................................................................................................10
7.4 Input AC Logic Level ..................................................................................................................10
7.5 AC Input Test Conditions ...........................................................................................................10
7.6 Differential input AC logic Level ..................................................................................................11
7.7 Differential AC output parameters ...............................................................................................11
8.0 ODT DC electrical characteristics ............................................................................................12
9.0 OCD default characteristics ......................................................................................................12
10.0 IDD Specification Parameters and Test Conditions .............................................................13
11.0 DDR2 SDRAM IDD Spec Table ................................................................................................15
12.0 Input/Output capacitance ........................................................................................................16
13.0 Electrical Characteristics & AC Timing for DDR2-800/667/533/400 .....................................16
13.1 Refresh Parameters by Device Density .....................................................................................16
13.2 Speed Bins and CL, tRCD, tRP, tRC and tRAS for Corresponding Bin ...........................................16
13.3 Timing Parameters by Speed Grade .........................................................................................17
14.0 General notes, which may apply for all AC parameters .......................................................19
15.0 Specific Notes for dedicated AC parameters ........................................................................21
0 of 29
Rev. 1.0 March 2007
K4T1G084QD
K4T1G164QD
DDR2 SDRAM
Revision History
Revision
Month
Year
1.0
March
2007
History
- Initial Release
1 of 29
Rev. 1.0 March 2007
K4T1G084QD
K4T1G164QD
DDR2 SDRAM
1.0 Ordering Information
Org.
DDR2-800 5-5-5
DDR2-800 6-6-6
DDR2-667 5-5-5
DDR2-533 4-4-4
DDR2-400 3-3-3
Package
128Mx8
K4T1G084QD-ZC(L)E7 K4T1G084QD-ZC(L)F7
K4T1G084QD-ZC(L)E6
K4T1G084QD-ZC(L)D5 K4T1G084QD-ZC(L)CC
60 FBGA
64Mx16
K4T1G164QD-ZC(L)E7 K4T1G164QD-ZC(L)F7
K4T1G164QD-ZC(L)E6
K4T1G164QD-ZC(L)D5 K4T1G164QD-ZC(L)CC
84 FBGA
Note :
1. Speed bin is in order of CL-tRCD-tRP.
2. RoHS Compliant.
2.0 Key Features
Speed
DDR2-800 5-5-5
DDR2-800 6-6-6
DDR2-667 5-5-5
DDR2-533 4-4-4
DDR2-400 3-3-3
Units
CAS Latency
5
6
5
4
3
tCK
tRCD(min)
12.5
15
15
15
15
ns
tRP(min)
12.5
15
15
15
15
ns
tRC(min)
57.5
60
60
60
55
ns
• JEDEC standard 1.8V ± 0.1V Power Supply
• VDDQ = 1.8V ± 0.1V
• 200 MHz fCK for 400Mb/sec/pin, 267MHz fCK for 533Mb/sec/
pin, 333MHz fCK for 667Mb/sec/pin, 400MHz fCK for 800Mb/
sec/pin
• 8 Banks
• Posted CAS
• Programmable CAS Latency: 3, 4, 5, 6
• Programmable Additive Latency: 0, 1, 2, 3, 4, 5
• Write Latency(WL) = Read Latency(RL) -1
• Burst Length: 4 , 8(Interleave/nibble sequential)
• Programmable Sequential / Interleave Burst Mode
• Bi-directional Differential Data-Strobe (Single-ended datastrobe is an optional feature)
• Off-Chip Driver(OCD) Impedance Adjustment
• On Die Termination
• Special Function Support
- PASR(Partial Array Self Refresh)
- 50ohm ODT
- High Temperature Self-Refresh rate enable
The 1Gb DDR2 SDRAM is organized as a 16Mbit x 8 I/Os x
8banks or 8Mbit x 16 I/Os x 8 banks device. This synchronous
device achieves high speed double-data-rate transfer rates of up
to 800Mb/sec/pin (DDR2-800) for general applications.
The chip is designed to comply with the following key DDR2
SDRAM features such as posted CAS with additive latency, write
latency = read latency - 1, Off-Chip Driver(OCD) impedance
adjustment and On Die Termination.
All of the control and address inputs are synchronized with a pair
of externally supplied differential clocks. Inputs are latched at the
crosspoint of differential clocks (CK rising and CK falling). All I/Os
are synchronized with a pair of bidirectional strobes (DQS and
DQS) in a source synchronous fashion. The address bus is used
to convey row, column, and bank address information in a RAS/
CAS multiplexing style. For example, 1Gb(x8) device receive 14/
10/3 addressing.
The 1Gb DDR2 device operates with a single 1.8V ± 0.1V power
supply and 1.8V ± 0.1V VDDQ.
The 1Gb DDR2 device is available in 60ball FBGAs(x8) and in
84ball FBGAs(x16).
Note : The functionality described and the timing specifications included in
this data sheet are for the DLL Enabled mode of operation.
• Average Refresh Period 7.8us at lower than TCASE 85°C,
3.9us at 85°C < TCASE < 95 °C
• All of Lead-free products are compliant for RoHS
Note : This data sheet is an abstract of full DDR2 specification and does not cover the common features which are described in “DDR2 SDRAM Device
Operation & Timing Diagram”.
2 of 29
Rev. 1.0 March 2007
K4T1G084QD
K4T1G164QD
DDR2 SDRAM
3.0 Package Pinout/Mechanical Dimension & Addressing
3.1 x8 package pinout (Top View) : 60ball FBGA Package
1
2
3
7
8
9
VDD
NU/
RDQS
VSS
A
VSSQ
DQS
VDDQ
DQ6
VSSQ
DM/
RDQS
B
DQS
VSSQ
DQ7
VDDQ
DQ1
VDDQ
C
VDDQ
DQ0
VDDQ
DQ4
VSSQ
DQ3
D
DQ2
VSSQ
DQ5
VDDL
VREF
VSS
E
VSSDL
CK
VDD
CKE
WE
F
RAS
CK
ODT
BA0
BA1
G
CAS
CS
A10/AP
A1
H
A2
A0
A3
A5
J
A6
A4
A7
A9
K
A11
A8
A12
NC
L
NC
A13
BA2
VSS
VDD
VDD
VSS
Note:
1. Pins B3 and A2 have identical capacitance as pins B7 and A8.
2. For a read, when enabled, strobe pair RDQS & RDQS are identical in
function and timing to strobe pair DQS & DQS and input masking function
is disabled.
3. The function of DM or RDQS/RDQS are enabled by EMRS command.
4. VDDL and VSSDL are power and ground for the DLL.
Ball Locations (x8)
: Populated Ball
+ : Depopulated Ball
Top View (See the balls through the Package)
1
A
B
C
D
E
F
+
G
H
+
J
K
L
+
2
3
4
5
6
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
3 of 29
7
8
9
+
+
+
Rev. 1.0 March 2007
K4T1G084QD
K4T1G164QD
DDR2 SDRAM
3.2 x16 package pinout (Top View) : 84ball FBGA Package
1
2
3
7
8
9
VDD
NC
VSS
A
VSSQ
UDQS
DQ14
VSSQ
UDM
B
UDQS
VSSQ
DQ15
VDDQ
DQ9
VDDQ
C
VDDQ
DQ8
VDDQ
DQ12
VSSQ
DQ11
D
DQ10
VSSQ
DQ13
VDD
NC
VSS
E
VSSQ
LDQS
VDDQ
DQ6
VSSQ
LDM
F
LDQS
VSSQ
DQ7
VDDQ
DQ1
VDDQ
G
VDDQ
DQ0
VDDQ
DQ4
VSSQ
DQ3
H
DQ2
VSSQ
DQ5
VREF
VSS
J
VSSDL
CK
VDD
CKE
WE
K
RAS
CK
ODT
BA0
BA1
L
CAS
CS
A10/AP
A1
M
A2
A0
A3
A5
N
A6
A4
A7
A9
P
A11
A8
NC
R
NC
NC
VDDL
BA2
VSS
VDD
A12
VDDQ
VDD
VSS
Note :
1. VDDL and VSSDL are power and ground for the DLL.
2. In case of only 8 DQs out of 16 DQs are used, LDQS,
LDQSB and DQ0~7 must be used.
Ball Locations (x16)
: Populated Ball
+ : Depopulated Ball
Top View (See the balls through the Package)
1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
+
+
+
2
3
4
5
6
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
4 of 29
7
8
9
+
+
+
Rev. 1.0 March 2007
K4T1G084QD
K4T1G164QD
DDR2 SDRAM
3.3 FBGA Package Dimension (x8)
MOLDING AREA
# A1 INDEX MARK
9.00± 0.10
A
0.80 x 8 = 6.40
0.80
9
(Datum A)
(Datum B)
8
7
B
1.60
6
5
4
3
2
1
A
B
D
8.00
E
F
0.80
G
H
11.00 ± 0.10
C
J
K
L
(0.95)
(1.80)
60-∅0.45±0.05
A B
0.10MAX
∅0.2 M
9.00 ± 0.10
0.50±0.05
11.00 ± 0.10
#A1
0.35±0.05
1.10±0.10
5 of 29
Rev. 1.0 March 2007
K4T1G084QD
K4T1G164QD
DDR2 SDRAM
3.4 FBGA Package Dimension (x16)
9.00 ± 0.10
MOLDING AREA
# A1 INDEX MARK
A
6.40
0.80
9
(Datum A)
(Datum B)
8
7
B
1.60
6
5
4
3
2
1
A
B
C
D
E
11.20
H
0.80
J
5.60
K
L
M
13.00 ± 0.10
F
G
1.60
N
P
R
3.20
(0.95)
(1.80)
84-∅0.45±0.05
A B
0.10MAX
∅0.2 M
9.00 ± 0.10
0.50±0.05
13.00 ± 0.10
#A1
0.35±0.05
1.10±0.10
6 of 29
Rev. 1.0 March 2007
K4T1G084QD
K4T1G164QD
DDR2 SDRAM
4.0 Input/Output Functional Description
Symbol
Type
Function
CK, CK
Input
Clock: CK and CK are differential clock inputs. All address and control input signals are sampled on the crossing of the
positive edge of CK and negative edge of CK. Output (read) data is referenced to the crossings of CK and CK (both
directions of crossing).
CKE
Input
Clock Enable: CKE HIGH activates, and CKE Low deactivates, internal clock signals and device input buffers and output drivers. Taking CKE Low provides Precharge Power-Down and Self Refresh operation (all banks idle), or Active
Power-Down (row Active in any bank). CKE is synchronous for power down entry and exit, and for self refresh entry.
CKE is asynchronous for self refresh exit. After VREF has become stable during the power on and initialization
swquence, it must be maintained for proper operation of the CKE receiver. For proper self-refresh entry and exit, VREF
must be maintained to this input. CKE must be maintained high throughout read and write accesses. Input buffers,
excluding CK, CK, ODT and CKE are disabled during power-down. Input buffers, excluding CKE, are disabled during
self refresh.
CS
Input
Chip Select: All commands are masked when CS is registered HIGH. CS provides for external Rank selection on systems with multiple Ranks. CS is considered part of the command code.
ODT
Input
On Die Termination: ODT (registered HIGH) enables termination resistance internal to the DDR2 SDRAM. When
enabled, ODT is only applied to each DQ, DQS, DQS, RDQS, RDQS, and DM signal for x4/x8 configurations. For x16
configuration ODT is applied to each DQ, UDQS/UDQS, LDQS/LDQS, UDM, and LDM signal. The ODT pin will be
ignored if the Extended Mode Register (EMRS(1)) is programmed to disable ODT.
RAS, CAS, WE
Input
Command Inputs: RAS, CAS and WE (along with CS) define the command being entered.
DM
Input
Input Data Mask: DM is an input mask signal for write data. Input data is masked when DM is sampled HIGH coincident with that input data during a Write access. DM is sampled on both edges of DQS. Although DM pins are input only,
the DM loading matches the DQ and DQS loading. For x8 device, the function of DM or RDQS/RDQS is enabled by
EMRS command.
BA0 - BA2
Input
Bank Address Inputs: BA0, BA1 and BA2 define to which bank an Active, Read, Write or Precharge command is
being applied. Bank address also determines if the mode register or extended mode register is to be accessed during
a MRS or EMRS cycle.
Input
Address Inputs: Provided the row address for Active commands and the column address and Auto Precharge bit for
Read/Write commands to select one location out of the memory array in the respective bank. A10 is sampled during a
Precharge command to determine whether the Precharge applies to one bank (A10 LOW) or all banks (A10 HIGH). If
only one bank is to be precharged, the bank is selected by BA0, BA1. The address inputs also provide the op-code during Mode Register Set commands.
A0 - A13
DQ
DQS, (DQS)
(LDQS), (LDQS)
(UDQS), (UDQS)
(RDQS), (RDQS)
Input/OutData Input/ Output: Bi-directional data bus.
put
Data Strobe: output with read data, input with write data. Edge-aligned with read data, centered in write data. For the
x16, LDQS corresponds to the data on DQ0-DQ7; UDQS corresponds to the data on DQ8-DQ15. For the x8, an RDQS
option using DM pin can be enabled via the EMRS(1) to simplify read timing. The data strobes DQS, LDQS, UDQS,
and RDQS may be used in single ended mode or paired with optional complementary signals DQS, LDQS, UDQS, and
RDQS to provide differential pair signaling to the system during both reads and writes. An EMRS(1) control bit enables
or disables all complementary data strobe signals.
In this data sheet, "differential DQS signals" refers to any of the following with A10 = 0 of EMRS(1)
x4 DQS/DQS
Input/Output
x8 DQS/DQS
if EMRS(1)[A11] = 0
x8 DQS/DQS, RDQS/RDQS,
if EMRS(1)[A11] = 1
x16 LDQS/LDQS and UDQS/UDQS
"single-ended DQS signals" refers to any of the following with A10 = 1 of EMRS(1)
x4 DQS
x8 DQS if EMRS(1)[A11] = 0
x8 DQS, RDQS, if EMRS(1)[A11] = 1
x16 LDQS and UDQS
NC
No Connect: No internal electrical connection is present.
VDD/VDDQ
Supply
Power Supply: 1.8V +/- 0.1V, DQ Power Supply: 1.8V +/- 0.1V
VSS/VSSQ
Supply
Ground, DQ Ground
VDDL
Supply
DLL Power Supply: 1.8V +/- 0.1V
VSSDL
Supply
DLL Ground
VREF
Supply
Reference voltage
7 of 29
Rev. 1.0 March 2007
K4T1G084QD
K4T1G164QD
DDR2 SDRAM
5.0 DDR2 SDRAM Addressing
1Gb Addressing
Configuration
256Mb x4
128Mb x 8
64Mb x16
# of Bank
8
8
8
Bank Address
BA0 ~ BA2
BA0 ~ BA2
BA0 ~ BA2
Auto precharge
A10/AP
A10/AP
A10/AP
Row Address
A0 ~ A13
A0 ~ A13
A0 ~ A12
Column Address
A0 ~ A9,A11
A0 ~ A9
A0 ~ A9
* Reference information: The following tables are address mapping information for other densities.
256Mb
Configuration
64Mb x4
32Mb x 8
16Mb x16
# of Bank
4
4
4
Bank Address
BA0,BA1
BA0,BA1
BA0,BA1
Auto precharge
A10/AP
A10/AP
A10/AP
Row Address
A0 ~ A12
A0 ~ A12
A0 ~ A12
Column Address
A0 ~ A9,A11
A0 ~ A9
A0 ~ A8
Configuration
128Mb x4
64Mb x 8
32Mb x16
512Mb
# of Bank
4
4
4
Bank Address
BA0,BA1
BA0,BA1
BA0,BA1
Auto precharge
A10/AP
A10/AP
A10/AP
Row Address
A0 ~ A13
A0 ~ A13
A0 ~ A12
Column Address
A0 ~ A9,A11
A0 ~ A9
A0 ~ A9
Configuration
512Mb x4
256Mb x 8
128Mb x16
2Gb
# of Bank
8
8
8
Bank Address
BA0 ~ BA2
BA0 ~ BA2
BA0 ~ BA2
Auto precharge
A10/AP
A10/AP
A10/AP
Row Address
A0 ~ A14
A0 ~ A14
A0 ~ A13
Column Address
A0 ~ A9,A11
A0 ~ A9
A0 ~ A9
Configuration
1 Gb x4
512Mb x 8
256Mb x16
# of Bank
8
8
8
Bank Address
BA0 ~ BA2
BA0 ~ BA2
BA0 ~ BA2
Auto precharge
A10/AP
A10/AP
A10/AP
Row Address
A0 - A15
A0 - A15
A0 - A14
Column Address/page size
A0 - A9,A11
A0 - A9
A0 - A9
4Gb
8 of 29
Rev. 1.0 March 2007
K4T1G084QD
K4T1G164QD
DDR2 SDRAM
6.0 Absolute Maximum DC Ratings
Symbol
Rating
Units
Notes
Voltage on VDD pin relative to VSS
- 1.0 V ~ 2.3 V
V
1
VDDQ
Voltage on VDDQ pin relative to VSS
- 0.5 V ~ 2.3 V
V
1
VDDL
Voltage on VDDL pin relative to VSS
- 0.5 V ~ 2.3 V
V
1
Voltage on any pin relative to VSS
- 0.5 V ~ 2.3 V
V
1
-55 to +100
°C
1, 2
VDD
VIN, VOUT
TSTG
Parameter
Storage Temperature
Note :
1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and
functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2
standard.
7.0 AC & DC Operating Conditions
7.1 Recommended DC Operating Conditions (SSTL - 1.8)
Symbol
Parameter
Rating
Min.
Typ.
Max.
Units
VDD
Supply Voltage
1.7
1.8
1.9
V
Notes
VDDL
Supply Voltage for DLL
1.7
1.8
1.9
V
4
VDDQ
Supply Voltage for Output
1.7
1.8
1.9
V
4
VREF
Input Reference Voltage
0.49*VDDQ
0.50*VDDQ
0.51*VDDQ
mV
1,2
Termination Voltage
VREF-0.04
VREF
VREF+0.04
V
3
VTT
Note : There is no specific device VDD supply voltage requirement for SSTL-1.8 compliance. However under all conditions VDDQ must be less than or equal
to VDD.
1. The value of VREF may be selected by the user to provide optimum noise margin in the system. Typically the value of VREF is expected to be about 0.5
x VDDQ of the transmitting device and VREF is expected to track variations in VDDQ.
2. Peak to peak AC noise on VREF may not exceed +/-2% VREF(DC).
3. VTT of transmitting device must track VREF of receiving device.
4. AC parameters are measured with VDD, VDDQ and VDDL tied together.
9 of 29
Rev. 1.0 March 2007
K4T1G084QD
K4T1G164QD
DDR2 SDRAM
7.2 Operating Temperature Condition
Symbol
Parameter
Rating
Units
Notes
TOPER
Operating Temperature
0 to 95
°C
1, 2
1. Operating Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to
JESD51.2 standard.
2. At 85 - 95 °C operation temperature range, doubling refresh commands in frequency to a 32ms period ( tREFI=3.9 us ) is required, and to enter to
self refresh mode at this temperature range, an EMRS command is required to change internal refresh rate.
7.3 Input DC Logic Level
Symbol
Parameter
Min.
VIH(DC)
DC input logic high
VREF + 0.125
VDDQ + 0.3
V
DC input logic low
- 0.3
VREF - 0.125
V
VIL(DC)
Max.
Units
Notes
7.4 Input AC Logic Level
Symbol
DDR2-400, DDR2-533
Parameter
DDR2-667, DDR2-800
Min.
Max.
Min.
VREF + 0.200
VIH (AC)
AC input logic high
VREF + 0.250
-
VIL (AC)
AC input logic low
-
VREF - 0.250
Max.
Units
V
VREF - 0.200
V
7.5 AC Input Test Conditions
Symbol
Condition
Value
Units
Notes
VREF
Input reference voltage
0.5 * VDDQ
V
1
VSWING(MAX)
Input signal maximum peak to peak swing
1.0
V
1
SLEW
Input signal minimum slew rate
1.0
V/ns
2, 3
Note :
1. Input waveform timing is referenced to the input signal crossing through the VIH/IL(AC) level applied to the device under test.
2. The input signal minimum slew rate is to be maintained over the range from VREF to VIH(AC) min for rising edges and the range from VREF to VIL(AC)
max for falling edges as shown in the below figure.
3. AC timings are referenced with input waveforms switching from VIL(AC) to VIH(AC) on the positive transitions and VIH(AC) to VIL(AC) on the negative
transitions.
VDDQ
VIH(AC) min
VIH(DC) min
VSWING(MAX)
VREF
VIL(DC) max
VIL(AC) max
delta TF
Falling Slew =
delta TR
VREF - VIL(AC) max
delta TF
Rising Slew =
VSS
VIH(AC) min - VREF
delta TR
< AC Input Test Signal Waveform >
10 of 29
Rev. 1.0 March 2007
K4T1G084QD
K4T1G164QD
DDR2 SDRAM
7.6 Differential input AC logic Level
Symbol
Parameter
Min.
Max.
Units
Notes
VID(AC)
AC differential input voltage
0.5
VDDQ + 0.6
V
1
VIX(AC)
AC differential cross point voltage
0.5 * VDDQ - 0.175
0.5 * VDDQ + 0.175
V
2
Note :
1. VID(AC) specifies the input differential voltage |VTR -VCP | required for switching, where VTR is the true input signal (such as CK, DQS, LDQS or UDQS)
and VCP is the complementary input signal (such as CK, DQS, LDQS or UDQS). The minimum value is equal to V IH (AC) - V IL(AC).
2. The typical value of VIX(AC) is expected to be about 0.5 * VDDQ of the transmitting device and VIX(AC) is expected to track variations in VDDQ .
VIX(AC) indicates the voltage at which differential input signals must cross.
VDDQ
VTR
Crossing point
VID
VIX or VOX
VCP
VSSQ
< Differential signal levels >
7.7 Differential AC output parameters
Symbol
VOX(AC)
Parameter
AC differential cross point voltage
Min.
Max.
Units
Note
0.5 * VDDQ - 0.125
0.5 * VDDQ + 0.125
V
1
Note :
1. The typical value of VOX(AC) is expected to be about 0.5 * VDDQ of the transmitting device and VOX(AC) is expected to track variations in VDDQ .
VOX(AC) indicates the voltage at which differential output signals must cross.
8.0 ODT DC electrical characteristics
PARAMETER/CONDITION
SYMBOL
MIN
NOM
MAX
UNITS
NOTES
Rtt effective impedance value for EMRS(A6,A2)=0,1; 75 ohm
Rtt1(eff)
60
75
90
ohm
1
Rtt effective impedance value for EMRS(A6,A2)=1,0; 150 ohm
Rtt2(eff)
120
150
180
ohm
1
50
60
ohm
1
+6
%
1
Rtt effective impedance value for EMRS(A6,A2)=1,1; 50 ohm
Rtt3(eff)
40
Deviation of VM with respect to VDDQ/2
delta VM
-6
Note1: Test condition for Rtt measurements
Measurement Definition for Rtt(eff): Apply VIH (ac) and VIL (ac) to test pin separately, then measure current I(VIH (ac)) and I( VIL (ac)) respectively. VIH
(ac), VIL (ac), and VDDQ values defined in SSTL_18
Rtt(eff) =
delta VM =
VIH (ac) - VIL (ac)
I(VIH (ac)) - I(VIL (ac))
2 x Vm
VDDQ
-1
x 100%
Measurement Definition for VM: Measure voltage (VM) at test pin (midpoint) with no load.
11 of 29
Rev. 1.0 March 2007
K4T1G084QD
K4T1G164QD
DDR2 SDRAM
9.0 OCD default characteristics
Description
Parameter
Min
Nom
Max
Normal 18ohms
See full strength default driver characteristics
Output impedance
Unit
Notes
ohms
1,2
Output impedance step size for OCD calibration
0
1.5
ohms
6
Pull-up and pull-down mismatch
0
4
ohms
1,2,3
1.5
5
V/ns
1,4,5,6,7,8
Output slew rate
Sout
Note :
1. Absolute Specifications (0°C ≤ TCASE ≤ +95°C; VDD = +1.8V ±0.1V, VDDQ = +1.8V ±0.1V)
2. Impedance measurement condition for output source dc current: VDDQ = 1.7V; VOUT = 1420mV; (VOUT-VDDQ)/Ioh must be less than 23.4 ohms for
values of VOUT between VDDQ and VDDQ- 280mV. Impedance measurement condition for output sink dc current: VDDQ = 1.7V; VOUT = 280mV;
VOUT/Iol must be less than 23.4 ohms for values of VOUT between 0V and 280mV.
3. Mismatch is absolute value between pull-up and pull-dn, both are measured at same temperature and voltage.
4. Slew rate measured from VIL(AC) to VIH(AC).
5. The absolute value of the slew rate as measured from DC to DC is equal to or greater than the slew rate as measured from AC to AC. This is
guaranteed by design and characterization.
6. This represents the step size when the OCD is near 18 ohms at nominal conditions across all process and represents only the DRAM uncertainty.
Output slew rate load :
VTT
25 ohms
Output
(VOUT)
Reference
Point
7. DRAM output slew rate specification applies to 400Mb/sec/pin, 533Mb/sec/pin, 667Mb/sec/pin and 800Mb/sec/pin speed bins.
8. Timing skew due to DRAM output slew rate mis-match between DQS / DQS and associated DQs is included in tDQSQ and tQHS specification.
12 of 29
Rev. 1.0 March 2007
K4T1G084QD
K4T1G164QD
DDR2 SDRAM
10.0 IDD Specification Parameters and Test Conditions
(IDD values are for full operating range of Voltage and Temperature, Notes 1 - 5)
Symbol
Proposed Conditions
Units
IDD0
Operating one bank active-precharge current;
tCK = tCK(IDD), tRC = tRC(IDD), tRAS = tRASmin(IDD); CKE is HIGH, CS\ is HIGH between valid commands;
Address bus inputs are SWITCHING; Data bus inputs are SWITCHING
mA
IDD1
Operating one bank active-read-precharge current;
IOUT = 0mA; BL = 4, CL = CL(IDD), AL = 0; tCK = tCK(IDD), tRC = tRC (IDD), tRAS = tRASmin(IDD), tRCD =
tRCD(IDD); CKE is HIGH, CS\ is HIGH between valid commands; Address businputs are SWITCHING; Data pattern is same as IDD4W
mA
IDD2P
Precharge power-down current;
All banks idle; tCK = tCK(IDD); CKE is LOW; Other control and address bus inputs are STABLE; Data bus inputs are
FLOATING
mA
IDD2Q
Precharge quiet standby current;
All banks idle; tCK = tCK(IDD); CKE is HIGH, CS\ is HIGH; Other control and address bus inputsare STABLE; Data
bus inputs are FLOATING
mA
IDD2N
Precharge standby current;
All banks idle; tCK = tCK(IDD); CKE is HIGH, CS\ is HIGH; Other control and address bus inputs are SWITCHING;
Data bus inputs are SWITCHING
mA
IDD3P
Active power-down current;
Fast PDN Exit MRS(12) = 0mA
All banks open; tCK = tCK(IDD); CKE is LOW; Other control and address bus
Slow PDN Exit MRS(12) = 1mA
inputs are STABLE; Data bus inputs are FLOATING
IDD3N
Active standby current;
All banks open; tCK = tCK(IDD), tRAS = tRASmax(IDD), tRP = tRP(IDD); CKE is HIGH, CS\ is HIGH between valid
commands; Other control and address bus inputs are SWITCHING; Data bus inputs are SWITCHING
mA
IDD4W
Operating burst write current;
All banks open, Continuous burst writes; BL = 4, CL = CL(IDD), AL = 0; tCK = tCK(IDD), tRAS = tRASmax(IDD), tRP
= tRP(IDD); CKE is HIGH, CS\ is HIGH between valid commands; Address bus inputs are SWITCHING; Data bus
inputs are SWITCHING
mA
IDD4R
Operating burst read current;
All banks open, Continuous burst reads, IOUT = 0mA; BL = 4, CL = CL(IDD), AL = 0; tCK = tCK(IDD), tRAS = tRASmax(IDD), tRP = tRP(IDD); CKE is HIGH, CS\ is HIGH between valid commands; Address bus inputs are SWITCHING; Data pattern is same as IDD4W
mA
IDD5B
Burst auto refresh current;
tCK = tCK(IDD); Refresh command at every tRFC(IDD) interval; CKE is HIGH, CS\ is HIGH between valid commands; Other control and address bus inputs are SWITCHING; Data bus inputs are SWITCHING
mA
IDD6
Self refresh current;
CK and CK\ at 0V; CKE ≤ 0.2V; Other control and address bus inputs are
FLOATING; Data bus inputs are FLOATING
IDD7
Operating bank interleave read current;
All bank interleaving reads, IOUT = 0mA; BL = 4, CL = CL(IDD), AL = tRCD(IDD)-1*tCK(IDD); tCK = tCK(IDD), tRC
= tRC(IDD), tRRD = tRRD(IDD), tFAW = tFAW(IDD), tRCD = 1*tCK(IDD); CKE is HIGH, CS\ is HIGH between valid
commands; Address bus inputs are STABLE during DESELECTs; Data pattern is same as IDD4R; Refer to the following page for detailed timing conditions
13 of 29
Notes
mA
mA
Normal
mA
Low Power
mA
mA
Rev. 1.0 March 2007
K4T1G084QD
K4T1G164QD
DDR2 SDRAM
Note :
1. IDD specifications are tested after the device is properly initialized
2. Input slew rate is specified by AC Parametric Test Condition
3. IDD parameters are specified with ODT disabled.
4. Data bus consists of DQ, DM, DQS, DQS\, RDQS, RDQS\, LDQS, LDQS\, UDQS, and UDQS\. IDD values must be met with all combinations of EMRS
bits 10 and 11.
5. Definitions for IDD
LOW is defined as Vin ≤ VILAC(max)
HIGH is defined as Vin ≥ VIHAC(min)
STABLE is defined as inputs stable at a HIGH or LOW level
FLOATING is defined as inputs at VREF = VDDQ/2
SWITCHING is defined as:
inputs changing between HIGH and LOW every other clock cycle (once per two clocks) for address and control
signals, and
inputs changing between HIGH and LOW every other data transfer (once per clock) for DQ signals not including
masks or strobes.
For purposes of IDD testing, the following parameters are utilized
DDR2-800
DDR2-800
DDR2-667
DDR2-533
DDR2-400
Parameter
5-5-5
6-6-6
5-5-5
4-4-4
3-3-3
CL(IDD)
5
6
5
4
3
tCK
tRCD(IDD)
12.5
15
15
15
15
ns
tRC(IDD)
57.5
60
60
60
55
ns
tRRD(IDD)-x4/x8
7.5
7.5
7.5
7.5
7.5
ns
tRRD(IDD)-x16
10
10
10
10
10
ns
tCK(IDD)
2.5
2.5
3
3.75
5
ns
tRASmin(IDD)
45
45
45
45
40
ns
tRP(IDD)
12.5
15
15
15
15
ns
tRFC(IDD)
127.5
127.5
127.5
127.5
127.5
ns
Units
Detailed IDD7
The detailed timings are shown below for IDD7.
Legend: A = Active; RA = Read with Autoprecharge; D = Deselect
IDD7: Operating Current: All Bank Interleave Read operation
All banks are being interleaved at minimum tRC(IDD) without violating tRRD(IDD) and tFAW(IDD) using a burst length of 4. Control and address bus
inputs are STABLE during DESELECTs. IOUT = 0mA
Timing Patterns for 8bank devices x4/ x8
-DDR2-400 3/3/3 : A0 RA0 A1 RA1 A2 RA2 A3 RA3 A4 RA4 A5 RA5 A6 RA6 A7 RA7
-DDR2-533 4/4/4 : A0 RA0 A1 RA1 A2 RA2 A3 RA3 D D A4 RA4 A5 RA5 A6 RA6 A7 RA7 D D
-DDR2-667 5/5/5 : A0 RA0 D A1 RA1 D A2 RA2 D A3 RA3 D D A4 RA4 D A5 RA5 D A6 RA6 D A7 RA7 D D
-DDR2-800 6/6/6 : A0 RA0 D A1 RA1 D A2 RA2 D A3 RA3 D D D A4 RA4 D A5 RA5 D A6 RA6 D A7 RA7 D D D
-DDR2-800 5/5/5 : A0 RA0 D A1 RA1 D A2 RA2 D A3 RA3 D D D A4 RA4 D A5 RA5 D A6 RA6 D A7 RA7 D D D
Timing Patterns for 8bank devices x16
-DDR2-400 3/3/3 : A0 RA0 A1 RA1 A2 RA2 A3 RA3 D D A4 RA4 A5 RA5 A6 RA6 A7 RA7 D D
-DDR2-533 4/4/4 : A0 RA0 D A1 RA1 D A2 RA2 D A3 RA3 D D D A4 RA4 D A5 RA5 D A6 RA6 D A7 RA7 D D D
-DDR2-667 5/5/5 : A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D A4 RA4 D D A5 RA5 D D A6 RA6 D D A7 RA7 D D D
-DDR2-800 6/6/6 : A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D A4 RA4 D D A5 RA5 D D A6 RA6 D D A7 RA7 D D D D
-DDR2-800 5/5/5 : A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D A4 RA4 D D A5 RA5 D D A6 RA6 D D A7 RA7 D D D D
14 of 29
Rev. 1.0 March 2007
K4T1G084QD
K4T1G164QD
DDR2 SDRAM
11.0 DDR2 SDRAM IDD Spec Table
(TA=0oC, VDD= 1.9V)
128Mx8 (K4T1G084QD)
Symbol
800@CL=5
CE7
IDD0
CF7
90
IDD1
IDD2P
LE7
800@CL=6
LF7
CE6
90
100
15
667@CL=5
15
CD5
85
100
8
LE6
533@CL=4
15
CCC
80
95
8
LD5
400@CL=3
15
mA
85
8
15
mA
8
mA
IDD2Q
40
40
40
40
35
mA
IDD2N
50
50
45
45
40
mA
IDD3P-F
40
40
40
35
35
mA
IDD3P-S
18
18
18
18
18
mA
IDD3N
65
65
60
60
55
mA
IDD4W
145
145
130
120
105
mA
IDD4R
155
155
140
130
115
mA
IDD5
155
155
150
150
145
mA
IDD6
15
IDD7
6
15
265
6
15
260
6
15
240
6
15
240
Notes
LCC
75
90
8
Unit
6
225
mA
mA
(TA=0oC, VDD= 1.9V)
64Mx16 (K4T1G164QD)
Symbol
800@CL=5
CE7
LE7
800@CL=6
CF7
LF7
667@CL=5
CE6
LE6
533@CL=4
CD5
LD5
Unit
400@CL=3
CCC
IDD0
100
100
95
90
90
mA
IDD1
110
110
105
100
100
mA
IDD2P
15
8
15
8
15
8
15
8
15
8
mA
IDD2Q
40
40
40
40
35
mA
IDD2N
50
50
45
45
40
mA
IDD3P-F
40
40
40
35
35
mA
IDD3P-S
18
18
18
18
18
mA
IDD3N
65
65
60
60
55
mA
IDD4W
175
175
150
130
120
mA
IDD4R
195
195
175
150
135
mA
IDD5
IDD6
IDD7
155
15
155
6
280
15
150
6
280
15
150
6
255
15 of 29
15
145
6
245
Notes
LCC
15
mA
6
245
mA
mA
Rev. 1.0 March 2007
K4T1G084QD
K4T1G164QD
DDR2 SDRAM
12.0 Input/Output capacitance
Parameter
DDR2-400
DDR2-533
Symbol
Min
Input capacitance, CK and CK
Input capacitance delta, CK and CK
Input/output capacitance, DQ, DM, DQS, DQS
Input/output capacitance delta, DQ, DM, DQS, DQS
Max
Min
DDR2-800
Max
Min
Units
Max
CCK
1.0
2.0
1.0
2.0
1.0
2.0
pF
CDCK
x
0.25
x
0.25
x
0.25
pF
Input capacitance, all other input-only pins
Input capacitance delta, all other input-only pins
DDR2-667
CI
1.0
2.0
1.0
2.0
1.0
1.75
pF
CDI
x
0.25
x
0.25
x
0.25
pF
CIO
2.5
4.0
2.5
3.5
2.5
3.5
pF
CDIO
x
0.5
x
0.5
x
0.5
pF
Units
13.0 Electrical Characteristics & AC Timing for DDR2-800/667/533/400
(0 °C < TOPER < 95 °C; VDDQ = 1.8V + 0.1V; VDD = 1.8V + 0.1V)
13.1 Refresh Parameters by Device Density
Parameter
Symbol
Refresh to active/Refresh command time
256Mb
512Mb
1Gb
2Gb
4Gb
tRFC
Average periodic refresh interval
tREFI
75
105
127.5
195
327.5
ns
0 °C ≤ TCASE ≤ 85°C
7.8
7.8
7.8
7.8
7.8
µs
85 °C < TCASE ≤ 95°C
3.9
3.9
3.9
3.9
3.9
µs
13.2 Speed Bins and CL, tRCD, tRP, tRC and tRAS for Corresponding Bin
Speed
DDR2-800(E7)
Bin (CL - tRCD - tRP)
Parameter
DDR2-800(F7)
5-5-5
DDR2-667(E6)
6-6-6
min
max
min
tCK, CL=3
5
8
-
tCK, CL=4
3.75
8
3.75
tCK, CL=5
2.5
8
3
tCK, CL=6
-
-
2.5
tRCD
12.5
-
tRP
12.5
-
tRC
57.5
-
tRAS
45
70000
DDR2-533(D5)
5-5-5
max
DDR2-400(CC)
4-4-4
min
max
-
5
8
3.75
8
8
15
15
3-3-3
Units
min
max
min
max
8
5
8
5
8
ns
8
3.75
8
5
8
ns
3
8
3.75
8
-
-
ns
-
-
-
-
-
-
ns
-
15
-
15
-
15
-
ns
-
15
-
15
-
15
-
ns
60
-
60
-
60
-
55
-
ns
45
70000
45
70000
45
70000
40
70000
ns
16 of 29
Rev. 1.0 March 2007
K4T1G084QD
K4T1G164QD
DDR2 SDRAM
13.3 Timing Parameters by Speed Grade
(Refer to notes for informations related to this table at the bottom)
Parameter
Symbol
DDR2-800
DDR2-667
DDR2-533
DDR2-400
min
max
min
max
min
max
min
max
400
-450
+450
-500
+500
-600
+600
Units
Notes
DQ output access time from CK/CK
tAC
- 400
ps
DQS output access time from CK/CK
tDQSCK
- 350
350
-400
+400
-450
+450
-500
+500
ps
CK high-level width
tCH
0.45
0.55
0.45
0.55
0.45
0.55
0.45
0.55
tCK
CK low-level width
tCL
0.45
0.55
0.45
0.55
0.45
0.55
0.45
0.55
tCK
CK half period
tHP
min(tCL,t
CH)
x
min(tCL,
tCH)
x
min(tCL,
tCH)
x
min(tCL,
tCH)
x
ps
Clock cycle time, CL=x
tCK
2500
8000
3000
8000
3750
8000
5000
8000
ps
24
20,21
DQ and DM input hold time
tDH(base)
125
x
175
x
225
x
275
x
ps
15,16,
17,20
DQ and DM input setup time
tDS(base)
50
x
100
x
100
x
150
x
ps
15,16,
17,21
Control & Address input pulse width for each input tIPW
0.6
x
0.6
x
0.6
x
0.6
x
tCK
DQ and DM input pulse width for each input
tDIPW
0.35
x
0.35
x
0.35
x
0.35
x
tCK
Data-out high-impedance time from CK/CK
tHZ
x
tAC max
x
tAC max
x
tAC max
x
tAC max
ps
DQS low-impedance time from CK/CK
tLZ(DQS)
tAC min
tAC max
tAC min
tAC max
tAC min
tAC max
tAC min
tAC max
ps
27
tLZ(DQ)
2* tAC
min
tAC max
2*tAC
min
tAC max
ps
27
x
200
x
240
x
350
ps
22
x
21
DQ low-impedance time from CK/CK
DQS-DQ skew for DQS and associated DQ sigtDQSQ
nals
DQ hold skew factor
DQ/DQS output hold time from DQS
tQHS
tQH
First DQS latching transition to associated clock
tDQSS
edge
tAC max 2* tACmin tAC max 2* tACmin
x
300
300
x
340
x
400
x
450
ps
tHP tQHS
x
tHP tQHS
x
tHP tQHS
x
tHP tQHS
x
ps
- 0.25
0.25
-0.25
0.25
-0.25
0.25
-0.25
0.25
tCK
DQS input high pulse width
tDQSH
0.35
x
0.35
x
0.35
x
0.35
x
tCK
DQS input low pulse width
tDQSL
0.35
x
0.35
x
0.35
x
0.35
x
tCK
DQS falling edge to CK setup time
tDSS
0.2
x
0.2
x
0.2
x
0.2
x
tCK
DQS falling edge hold time from CK
tDSH
0.2
x
0.2
x
0.2
x
0.2
x
tCK
Mode register set command cycle time
tMRD
2
x
2
x
2
x
2
x
tCK
Write postamble
tWPST
0.4
0.6
0.4
0.6
0.4
0.6
0.4
0.6
tCK
Write preamble
tWPRE
0.35
x
0.35
x
0.35
x
0.35
x
tCK
Address and control input hold time
tIH(base)
250
x
275
x
375
x
475
x
ps
14,16,
18,23
Address and control input setup time
tIS(base)
175
x
200
x
250
x
350
x
ps
14,16,
18,22
Read preamble
tRPRE
0.9
1.1
0.9
1.1
0.9
1.1
0.9
1.1
tCK
28
Read postamble
tRPST
0.4
0.6
0.4
0.6
0.4
0.6
0.4
0.6
tCK
28
Active to active command period for 1KB page
tRRD
size products
7.5
x
7.5
x
7.5
x
7.5
x
ns
12
Active to active command period for 2KB page
tRRD
size products
10
x
10
x
10
x
10
x
ns
12
Four Activate Window for 1KB page size products tFAW
35
37.5
37.5
37.5
Four Activate Window for 2KB page size products tFAW
45
50
50
50
ns
CAS to CAS command delay
tCCD
2
x
2
2
2
tCK
Write recovery time
tWR
15
x
15
x
15
x
15
x
ns
Auto precharge write recovery + precharge time
tDAL
WR+tRP
x
WR+tRP
x
WR+tRP
x
WR+tRP
x
tCK
23
Internal write to read command delay
tWTR
7.5
7.5
x
7.5
x
10
x
ns
33
Internal read to precharge command delay
tRTP
7.5
7.5
7.5
7.5
ns
11
Exit self refresh to a non-read command
tXSNR
tRFC + 10
tRFC + 10
tRFC + 10
tRFC + 10
ns
Exit self refresh to a read command
tXSRD
200
x
200
200
200
tCK
Exit precharge power down to any non-read comtXP
mand
2
x
2
x
2
x
2
x
tCK
Exit active power down to read command
tXARD
2
x
2
x
2
x
2
x
tCK
9
Exit active power down to read command
(slow exit, lower power)
tXARDS
tCK
9, 10
8 - AL
7 - AL
17 of 29
6 - AL
6 - AL
19
ns
Rev. 1.0 March 2007
K4T1G084QD
K4T1G164QD
DDR2 SDRAM
Parameter
Symbol
DDR2-800
min
CKE minimum pulse width
(high and low pulse width)
t
CKE
3
ODT turn-on delay
tAOND
2
2
ODT turn-on
t
tAC(min)
tAC(max)
+ 0.7
ODT turn-on(Power-Down mode)
tAONPD
ODT turn-off delay
tAOFD
ODT turn-off
t
ODT turn-off (Power-Down mode)
tAOFPD
ODT to power down entry latency
tANPD
3
ODT power down exit latency
tAXPD
8
OCD drive mode output delay
tOIT
0
AON
AOF
Minimum time clocks remains ON after CKE asyntDelay
chronously drops LOW
DDR2-667
max
min
DDR2-533
max
3
min
max
3
36
2tCK +
2tCK+tA
tAC(min)+
tAC(min)+ 2tCK+tAC tAC(min)+
tAC(min)+ 2tCK+tAC
tAC(max)
C(max)+
2
2
(max)+1
2
2
(max)+1
+1
1
ns
tAC(min)
2.5
tAC(min)
tAC(max)
+ 0.6
tAC(max)
tAC(min)
+1
2.5
2.5
tCK
tAC(min)
tAC(max)
+ 0.6
ns
2.5tCK +
2.5tCK+t
2.5tCK+
2.5tCK+
tAC(min)+
tAC(min)+
tAC(min)+
tAC(min)+
tAC(max)
AC(max)
tAC(max)
tAC(max)
2
2
2
2
+1
+1
+1
+1
ns
tIS+tCK
+tIH
2.5
2
tCK
ns
tAC(min)
2
Notes
tCK
2.5
tAC(min)
2
3
Units
2
tAC(max)
+ 0.6
2
tAC(max)
+0.7
max
tAC(max)
+1
2.5
2
DDR2-400
min
3
0
tIS+tCK
+tIH
18 of 29
2.5
tAC(min)
tAC(max)
+ 0.6
3
8
12
2.5
3
8
12
0
tIS+tCK
+tIH
0
tIS+tCK
+tIH
26
tCK
8
12
13, 25
tCK
12
ns
ns
24
Rev. 1.0 March 2007
K4T1G084QD
K4T1G164QD
DDR2 SDRAM
14.0 General notes, which may apply for all AC parameters
1. Slew Rate Measurement Levels
a. Output slew rate for falling and rising edges is measured between VTT - 250 mV and VTT + 250 mV for
single ended signals. For differential signals (e.g. DQS - DQS) output slew rate is measured between DQS - DQS = -500 mV and DQS - DQS =
+500mV. Output slew rate is guaranteed by design, but is not necessarily tested on each device.
b. Input slew rate for single ended signals is measured from dc-level to ac-level: from VIL(dc) to VIH(ac) for rising edges and from VIH(dc) and VIL(ac)
for falling edges.
For differential signals (e.g. CK - CK) slew rate for rising edges is measured from CK - CK = -250 mV to CK - CK = +500 mV (250mV to -500 mV
for falling edges).
c. VID is the magnitude of the difference between the input voltage on CK and the input voltage on CK, or between DQS and DQS for differential strobe.
2. DDR2 SDRAM AC timing reference load
Following figure represents the timing reference load used in defining the relevant timing parameters of the part. It is not intended to be either a precise
representation of the typical system environment or a depiction of the actual load presented by a production tester. System designers will use IBIS or
other simulation tools to correlate the timing reference load to a system environment. Manufacturers will correlate to their production test conditions
(generally a coaxial transmission line terminated at the tester electronics).
VDDQ
DUT
DQ
DQS
DQS
RDQS
RDQS
Output
Timing
reference
point
VTT = VDDQ/2
25Ω
<AC Timing Reference Load>
The output timing reference voltage level for single ended signals is the crosspoint with VTT. The output timing reference voltage level for differential
signals is the crosspoint of the true (e.g. DQS) and the complement (e.g. DQS) signal.
3. DDR2 SDRAM output slew rate test load
Output slew rate is characterized under the test conditions as shown in the following figure.
VDDQ
DUT
DQ
DQS, DQS
RDQS, RDQS
Output
VTT = VDDQ/2
Test point
25W
<Slew Rate Test Load>
19 of 29
Rev. 1.0 March 2007
K4T1G084QD
K4T1G164QD
DDR2 SDRAM
4. Differential data strobe
DDR2 SDRAM pin timings are specified for either single ended mode or differential mode depending on the setting of the EMRS “Enable DQS” mode
bit; timing advantages of differential mode are realized in system design. The method by which the DDR2 SDRAM pin timings are measured is mode
dependent. In single ended mode, timing relationships are measured relative to the rising or falling edges of DQS crossing at VREF. In differential
mode, these timing relationships are measured relative to the crosspoint of DQS and its complement, DQS. This distinction in timing methods is guaranteed by design and characterization. Note that when differential data strobe mode is disabled via the EMRS, the complementary pin, DQS, must be
tied externally to VSS through a 20 ohm to 10 K ohm resisor to insure proper operation.
tDQSH
DQS
DQS/
DQS
tDQSL
DQS
tWPRE
tWPST
VIH(dc)
VIH(ac)
DQ
D
D
VIL(dc)
VIL(ac)
tDS
DM
D
D
DMin
tDH
tDS
VIH(ac)
tDH
VIH(dc)
DMin
DMin
DMin
VIL(ac)
VIL(dc)
<Data input (write) timing>
tCH
tCL
CK
CK/CK
CK
DQS
DQS/DQS
DQS
tRPRE
tRPST
DQ
Q
Q
tDQSQmax
Q
Q
tDQSQmax
tQH
tQH
<Data output (read) timing>
5. AC timings are for linear signal transitions.
6. These parameters guarantee device behavior, but they are not necessarily tested on each device. They may be guaranteed by device design or tester
correlation.
7. All voltages are referenced to VSS.
8. Tests for AC timing, IDD, and electrical (AC and DC) characteristics, may be conducted at nominal reference/supply voltage levels, but the related
specifications and device operation are guaranteed for the full voltage range specified.
20 of 29
Rev. 1.0 March 2007
K4T1G084QD
K4T1G164QD
DDR2 SDRAM
15.0 Specific Notes for dedicated AC parameters
9. User can choose which active power down exit timing to use via MRS(bit 12). tXARD is expected to be used for fast active power down exit timing.
tXARDS is expected to be used for slow active power down exit timing.
10. AL = Additive Latency
11. This is a minimum requirement. Minimum read to precharge timing is AL + BL/2 providing the tRTP and tRAS(min) have been satisfied.
12. For DDR2-533/400, A minimum of two clocks (2*tCK) is required irrespective of operating frequency.
For DDR2-800/667, tnPARAM=RU{tPARAM / tCK(avg)}, which is in clock cycles, assuming all input clock jitter specification are satisfied.
13. Timings are guaranteed with command/address input slew rate of 1.0 V/ns.
14. These parameters guarantee device behavior, but they are not necessarily tested on each device. They may be guaranteed by device design or tester
correlation.
15. Timings are guaranteed with data, mask, and (DQS/RDQS in singled ended mode) input slew rate of 1.0 V/ns.
16. Timings are guaranteed with CK/CK differential slew rate of 2.0 V/ns. Timings are guaranteed for DQS signals with a differential slew rate of 2.0 V/ns
in differential strobe mode and a slew rate of 1V/ns in single ended mode.
17. tDS and tDH derating Values
∆tDS, ∆tDH Derating Values of DDR2-400, DDR2-533 (ALL units in ‘ps’, Note 1 applies to entire Table)
DQS,DQS Differential Slew Rate
4.0 V/ns
DQ
Siew
rate
V/ns
3.0 V/ns
2.0 V/ns
1.8 V/ns
1.6 V/ns
1.4V/ns
1.2V/ns
1.0V/ns
0.8V/ns
∆tDS
∆tDH
∆tDS
∆tDH
∆tDS
∆tDH
∆tDS
∆tDH
∆tDS
∆tDH
∆tDS
∆tDH
∆tDS
∆tDH
∆tDS
∆tDH
∆tDS
∆tDH
2.0
125
45
125
45
125
45
-
-
-
-
-
-
-
-
-
-
-
-
1.5
83
21
83
21
83
21
95
33
-
-
-
-
-
-
-
-
-
-
1.0
0
0
0
0
0
0
12
12
24
24
-
-
-
-
-
-
-
-
0.9
-
-
-11
-14
-11
-14
1
-2
13
10
25
22
-
-
-
-
-
-
0.8
-
-
-
-
-25
-31
-13
-19
-1
-7
11
5
23
17
-
-
-
-
0.7
-
-
-
-
-
-
-31
-42
-19
-30
-7
-18
5
-6
17
6
-
-
0.6
-
-
-
-
-
-
-
-
-43
-59
-31
-47
-19
-35
-7
-23
5
-11
0.5
-
-
-
-
-
-
-
-
-
-
-74
-89
-62
-77
-50
-65
-38
-53
0.4
-
-
-
-
-
-
-
-
-
-
-
-
-127
-140
-115
-128
-103
-116
∆tDS, ∆tDH Derating Values for DDR2-667, DDR2-800 (ALL units in ‘ps’, Note 1 applies to entire Table)
DQS,DQS Differential Slew Rate
4.0 V/ns
DQ
Slew
rate
V/ns
3.0 V/ns
2.0 V/ns
1.8 V/ns
1.6 V/ns
1.4V/ns
1.2V/ns
1.0V/ns
0.8V/ns
∆tDS
∆tDH
∆tDS
∆tDH
∆tDS
∆tDH
∆tDS
∆tDH
∆tDS
∆tDH
∆tDS
∆tDH
∆tDS
∆tDH
∆tDS
∆tDH
∆tDS
∆tDH
2.0
100
45
100
45
100
45
-
-
-
-
-
-
-
-
-
-
-
-
1.5
67
21
67
21
67
21
79
33
-
-
-
-
-
-
-
-
-
-
1.0
0
0
0
0
0
0
12
12
24
24
-
-
-
-
-
-
-
-
0.9
-
-
-5
-14
-5
-14
7
-2
19
10
31
22
-
-
-
-
-
-
0.8
-
-
-
-
-13
-31
-1
-19
11
-7
23
5
35
17
-
-
-
-
0.7
-
-
-
-
-
-
-10
-42
2
-30
14
-18
26
-6
38
6
-
-
0.6
-
-
-
-
-
-
-
-
-10
-59
2
-47
14
-35
26
-23
38
-11
0.5
-
-
-
-
-
-
-
-
-
-
-24
-89
-12
-77
0
-65
12
-53
0.4
-
-
-
-
-
-
-
-
-
-
-
-
-52
-140
-40
-128
-28
-116
For all input signals the total tDS (setup time) and tDH(hold time) required is calculated by adding the datasheet tDS(base) and tDH(base) value to the
delta tDS and delta tDH derating value respectively. Example: tDS(total setup time)= tDS(base) + delta tDS.
21 of 29
Rev. 1.0 March 2007
K4T1G084QD
K4T1G164QD
DDR2 SDRAM
∆tDS1, ∆tDH1 Derating Values for DDR2-400, DDR2-533(All units in ‘ps’; the note applies to the entire table)
DQS Single-ended Slew Rate
2.0 V/ns
DQ
Slew
rate
V/ns
1.5 V/ns
1.0 V/ns
0.9 V/ns
0.8 V/ns
0.7 V/ns
0.6 V/ns
0.5 V/ns
0.4 V/ns
∆tDS
1
∆tDH
1
∆tDS
1
∆tDH
1
∆tDS
1
∆tDH
1
∆tDS
1
∆tDH
1
∆tDS
1
∆tDH
1
∆tDS
1
∆tDH
1
∆tDS
1
∆tDH
1
∆tDS
1
∆tDH
1
∆tDS
1
∆tDH
1
2.0
188
188
167
146
125
63
-
-
-
-
-
-
-
-
-
-
-
-
1.5
146
167
125
125
83
42
81
43
-
-
-
-
-
-
-
-
-
-
1.0
63
125
42
83
0
0
-2
1
-7
-13
-
-
-
-
-
-
-
-
0.9
-
-
31
69
-11
-14
-13
-13
-18
-27
-29
-45
-
-
-
-
-
-
0.8
-
-
-
-
-25
-31
-27
-30
-32
-44
-43
-62
-60
-86
-
-
-
-
0.7
-
-
-
-
-
-
-45
-53
-50
-67
-61
-85
-78
-109
-108
-152
-
-
0.6
-
-
-
-
-
-
-
-
-74
-96
-85
-114
-102
-138
-138
-181
-183
-246
0.5
-
-
-
-
-
-
-
-
-
-
-128
-156
-145
-180
-175
-223
-226
-288
0.4
-
-
-
-
-
-
-
-
-
-
-
-
-210
-243
-240
-286
-291
-351
For all input signals the total tDS (setup time) and tDH (hold time) required is calculated by adding the data sheet tDS(base) and tDH(base) value to the
∆tDS and ∆tDH derating value respectively. Example: tDS (total setup time) = tDS(base) + ∆tDS.
22 of 29
Rev. 1.0 March 2007
K4T1G084QD
K4T1G164QD
DDR2 SDRAM
18. tIS and tIH (input setup and hold) derating.
∆tIS, ∆tIH Derating Values for DDR2-400, DDR2-533
CK, CK Differential Slew Rate
2.0 V/ns
Command/
Address Slew
rate(V/ns)
1.5 V/ns
1.0 V/ns
Units
Notes
+154
ps
1
+239
+149
ps
1
+227
+143
ps
1
∆tIS
∆tIH
∆tIS
∆tIH
∆tIS
∆tIH
4.0
+187
+94
+217
+124
+247
3.5
+179
+89
+209
+119
3.0
+167
+83
+197
+113
2.5
+150
+75
+180
+105
+210
+135
ps
1
2.0
+125
+45
+155
+75
+185
+105
ps
1
1.5
+83
+21
+113
+51
+143
+81
ps
1
1.0
0
0
+30
+30
+60
+60
ps
1
0.9
-11
-14
+19
+16
+49
+46
ps
1
0.8
-25
-31
+5
-1
+35
+29
ps
1
0.7
-43
-54
-13
-24
+17
+6
ps
1
0.6
-67
-83
-37
-53
-7
-23
ps
1
0.5
-110
-125
-80
-95
-50
-65
ps
1
0.4
-175
-188
-145
-158
-115
-128
ps
1
0.3
-285
-292
-255
-262
-225
-232
ps
1
0.25
-350
-375
-320
-345
-290
-315
ps
1
0.2
-525
-500
-495
-470
-465
-440
ps
1
0.15
-800
-708
-770
-678
-740
-648
ps
1
Units
Notes
∆tIS and ∆tIH Derating Values for DDR2-667, DDR2-800
CK, CK Differential Slew Rate
2.0 V/ns
Command/
Address Slew
rate(V/ns)
1.5 V/ns
1.0 V/ns
∆tIS
∆tIH
∆tIS
∆tIH
∆tIS
∆tIH
4.0
+150
+94
+180
+124
+210
+154
ps
1
3.5
+143
+89
+173
+119
+203
+149
ps
1
3.0
+133
+83
+163
+113
+193
+143
ps
1
2.5
+120
+75
+150
+105
+180
+135
ps
1
2.0
+100
+45
+130
+75
+160
+105
ps
1
1.5
+67
+21
+97
+51
+127
+81
ps
1
1.0
0
0
+30
+30
+60
+60
ps
1
0.9
-5
-14
+25
+16
+55
+46
ps
1
0.8
-13
-31
+17
-1
+47
+29
ps
1
0.7
-22
-54
+8
-24
+38
+6
ps
1
0.6
-34
-83
-4
-53
+26
-23
ps
1
0.5
-60
-125
-30
-95
0
-65
ps
1
0.4
-100
-188
-70
-158
-40
-128
ps
1
0.3
-168
-292
-138
-262
-108
-232
ps
1
0.25
-200
-375
-170
-345
-140
-315
ps
1
0.2
-325
-500
-295
-470
-265
-440
ps
1
0.15
-517
-708
-487
-678
-457
-648
ps
1
0.1
-1000
-1125
-970
-1095
-940
-1065
ps
1
For all input signals the total tIS (setup time) and tIH(hold time) required is calculated by adding the datasheet tIS(base) and tIH(base) value to the delta
tIS and delta tIH derating value respectively. Example: tIS(total setup time)= tIS(base) + delta tIS.
23 of 29
Rev. 1.0 March 2007
K4T1G084QD
K4T1G164QD
DDR2 SDRAM
19. The maximum limit for this parameter is not a device limit. The device will operate with a greater value for this parameter, but system performance
(bus turnaround) will degrade accordingly.
20. MIN ( tCL, tCH) refers to the smaller of the actual clock low time and the actual clock high time as provided to the device (i.e. this value can be greater
than the minimum specification limits for tCL and tCH). For example, tCL and tCH are = 50% of the period, less the half period jitter ( tJIT(HP)) of the
clock source, and less the half period jitter due to crosstalk ( tJIT(crosstalk)) into the clock traces.
21. tQH = tHP – tQHS, where:
tHP = minimum half clock period for any given cycle and is defined by clock high or clock low ( tCH, tCL).
tQHS accounts for:
1) The pulse duration distortion of on-chip clock circuits; and
2) The worst case push-out of DQS on one transition followed by the worst case pull-in of DQ on the next transition, both of which are, separately,
due to data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers.
22. tDQSQ: Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as output slew rate
mismatch between DQS / DQS and associated DQ in any given cycle.
23. tDAL = WR + RU{tRP(ns)/tCK(ns)}, where RU stands for round up.
WR refers to the tWR parameter stored in the MRS. For tRP, if the result of the division is not already an integer, round up to the next highest integer.
tCK refers to the application clock period.
Example: For DDR533 at tCK = 3.75ns with tWR programmed to 4 clocks.
tDAL = 4 + (15 ns / 3.75 ns) clocks = 4 + (4) clocks = 8 clocks.
24. The clock frequency is allowed to change during self–refresh mode or precharge power-down mode. In case of clock frequency change during precharge power-down, a specific procedure is required as described in DDR2 device operation
25. ODT turn on time min is when the device leaves high impedance and ODT resistance begins to turn on.
ODT turn on time max is when the ODT resistance is fully on. Both are measured from tAOND.
26. ODT turn off time min is when the device starts to turn off ODT resistance.
ODT turn off time max is when the bus is in high impedance. Both are measured from tAOFD.
27. tHZ and tLZ transitions occur in the same access time as valid data transitions. These parameters are referenced to a specific voltage level which
specifies when the device output is no longer driving (tHZ), or begins driving (tLZ). Following figure shows a method to calculate the point when
device is no longer driving (tHZ), or begins driving (tLZ) by measuring the signal at two different voltages. The actual voltage measurement points are
not critical as long as the calculation is consistent.
28. tRPST end point and tRPRE begin point are not referenced to a specific voltage level but specify when the device output is no longer driving (tRPST),
or begins driving (tRPRE). Following figure shows a method to calculate these points when the device is no longer driving (tRPST), or begins driving
(tRPRE) by measuring the signal at two different voltages. The actual voltage measurement points are not critical as long as the calculation is consistent.
These notes are referenced in the “Timing parameters by speed grade” tables for DDR2-400/533/667 and DDR2-800.
VOH + x mV
VTT + 2x mV
VOH + 2x mV
VTT + x mV
tLZ
tHZ
tRPRE begin point
tRPST end point
T2
T1
VOL + 2x mV
VTT - x mV
VOL + x mV
VTT - 2x mV
tHZ,tRPST end point = 2*T1-T2
T1
T2
tLZ,tRPRE begin point = 2*T1-T2
<Test method for tLZ, tHZ, tRPRE and tRPST>
24 of 29
Rev. 1.0 March 2007
K4T1G084QD
K4T1G164QD
DDR2 SDRAM
29. Input waveform timing with differential data strobe enabled MR[bit10]=0, is referenced from the input signal crossing at the VIH(ac) level to the differential data strobe crosspoint for a rising signal, and from the input signal crossing at the VIL(ac) level to the differential data strobe crosspoint for a falling
signal applied to the device under test.
30. Input waveform timing with differential data strobe enabled MR[bit10]=0, is referenced from the input signal crossing at the VIH(dc) level to the differential data strobe crosspoint for a rising signal and VIL(dc) to the differential data strobe crosspoint for a falling signal applied to the device under test.
DQS
DQS
tDS
tDH
tDH
tDS
VDDQ
VIH(ac) min
VIH(dc) min
VREF(dc)
VIL(dc) max
VIL(ac) max
VSS
< Differential Input waveform timing >
31. Input waveform timing is referenced from the input signal crossing at the VIH(ac) level for a rising signal and VIL(ac) for a falling signal applied to the
device under test.
32. Input waveform timing is referenced from the input signal crossing at the VIL(dc) level for a rising signal and VIH(dc) for a falling signal applied to the
device under test.
CK
CK
tIS
tIH
tIS
tIH
VDDQ
VIH(ac) min
VIH(dc) min
VREF(dc)
VIL(dc) max
VIL(ac) max
VSS
33. tWTR is at lease two clocks (2 * tCK) independent of operation frequency.
34. Input waveform timing with single-ended data strobe enabled MR[bit10] = 1, is referenced from the input signal crossing at the VIH(ac) level to the
single-ended data strobe crossing VIH/L(dc) at the start of its transition for a rising signal, and from the input signal crossing at the VIL(ac) level to the
single-ended data strobe crossing VIH/L(dc) at the start of its transition for a falling signal applied to the device under test. The DQS signal must be
monotonic between Vil(dc)max and Vih(dc)min.
35. Input waveform timing with single-ended data strobe enabled MR[bit10] = 1, is referenced from the input signal crossing at the VIH(dc) level to the
single-ended data strobe crossing VIH/L(ac) at the end of its transition for a rising signal, and from the input signal crossing at the VIL(dc) level to the
single-ended data strobe crossing VIH/L(ac) at the end of its transition for a falling signal applied to the device under test. The DQS signal must be
monotonic between Vil(dc)max and Vih(dc)min.
36. tCKEmin of 3 clocks means CKE must be registered on three consecutive positive clock edges. CKE must remain at the valid input level the entire
time it takes to achieve the 3 clocks of registeration. Thus, after any cKE transition, CKE may not transitioin from its valid level during the time period
of tIS + 2*tCK + tIH.
25 of 29
Rev. 1.0 March 2007