TL064 TL064A - TL064B LOW POWER J-FET QUAD OPERATIONAL AMPLIFIERS ■ VERY LOW POWER CONSUMPTION : 200µA ■ WIDE COMMON-MODE (UP TO VCC+) AND DIFFERENTIAL VOLTAGE RANGES ■ LOW INPUT BIAS AND OFFSET CURRENTS ■ OUTPUT SHORT-CIRCUIT PROTECTION ■ HIGH INPUT IMPEDANCE J-FET INPUT N DIP14 (Plastic Package) STAGE ■ INTERNAL FREQUENCY COMPENSATION ■ LATCH UP FREE OPERATION ■ HIGH SLEW RATE : 3.5V/µs D SO14 (Plastic Micropackage) ORDER CODE DESCRIPTION Package The TL064, TL064A and TL064B are high speed J-FET input quad operational amplifiers. Each of these J-FET input operational amplifiers incorporates well matched, high voltage J-FET and bipolar transistors in a monolithic integrated circuit. The device features high slew rate, low input bias and offset currents, and low offset voltage temperature coefficient. Part Number Temperature Range TL064M/AM/BM TL064I/AI/BI TL064C/AC/BC Example : TL064IN -55°C, +125°C -40°C, +105°C 0°C, +70°C N D • • • • • • N = Dual in Line Package (DIP) D = Small Outline Package (SO) - also available in Tape & Reel (DT) PIN CONNECTIONS (top view) Output 1 1 14 Output 4 Inverting Input 1 2 - - 13 Inverting Input 4 Non-inverting Input 1 3 + + 12 Non-inverting Input 4 11 VCC - VCC + 4 Non-inverting Input 2 5 + + 10 Non-inverting Input 3 Inverting Input 2 6 - - 9 Inverting Input 3 8 Output 3 Output 2 7 November 2001 1/10 TL064 - TL064A - TL064B SCHEMATIC DIAGRAM VCC 220Ω Inverting Input Non-inverting Input 64Ω 1/4 TL064 Output 45k Ω 270Ω 4.2k Ω 3.2k Ω 100Ω V CC ABSOLUTE MAXIMUM RATINGS Symbol VCC Vi Parameter TL064M, AM, BM Supply voltage - note 1) Input Voltage - note 2) Vid Differential Input Voltage - note Ptot Power Dissipation 3) Output Short-circuit Duration - note 4) Toper Operating Free-air Temperature Range Tstg Storage Temperature Range 1. 2. 3. 4. 2/10 TL064I, AI, BI TL064C, AC, BC Unit ±18 V ±15 V ±30 V 680 mW Infinite -55 to +125 -40 to +105 -65 to +150 0 to +70 °C °C All voltage values, except differential voltage, are with respect to the zero reference level (ground) of the supply voltages where the zero reference level is the midpoint between VCC + and VCC -. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal. The output may be shorted to ground or to either supply. Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded TL064- TL064A - TL064B ELECTRICAL CHARACTERISTICS VCC = ±15V, Tamb = +25°C (unless otherwise specified) TL064M Symbol DVio Input Offset Voltage (Rs = 50Ω) Tamb = 25°C Tmin ≤ Tamb ≤ Tmax Typ. Max. Min. Typ. Max. Min. Typ. Max. mV 3 Temperature Coefficient of Input Offset Voltage (Rs = 50Ω) 6 15 3 10 6 9 3 10 15 20 µV/°C 10 Iio Input Offset Current - note 1) Tamb = 25°C Tmin ≤ Tamb ≤ Tmax 5 100 20 5 100 10 5 200 5 pA nA Iib Input Bias Current - note 1 Tamb = 25°C Tmin ≤ Tamb ≤ Tmax 30 200 50 30 200 20 30 400 10 pA nA Vicm Input Common Mode Voltage Range Vopp Output Voltage Swing (RL = 10kΩ) Tamb = 25°C Tmin ≤ Tamb ≤ Tmax Avd Large Signal Voltage Gain RL = 10kΩ, Vo = ±10V, Tamb = 25°C Tmin ≤ Tamb ≤ Tmax GBP Gain Bandwith Product Tamb = 25°C, RL =10kΩ, CL = 100pF Ri ±11.5 +15 -12 ±11.5 +15 -12 ±11 +15 -12 20 20 27 27 20 20 27 V/mV 4 4 6 4 4 6 3 3 6 MHz Input Resistance 1 1 1 1012 1012 1012 Common Mode Rejection Ratio RS = 50Ω 80 86 80 86 70 76 SVR Supply Voltage Rejection Ratio RS = 50Ω 80 95 80 95 70 95 dB µA 200 Channel Separation Vo1/Vo2 Av = 100, Tamb = 25°C Total Power Consumption Tamb = 25°C, no load, no signal SR Slew Rate Vi = 10V, RL = 10kΩ, CL = 100pF, Av = 1 tr Kov en Rise Time 5 (see figure 1) Vi = 20mV, RL = 10kΩ, CL = 100pF, Av = 1 Ω dB Supply Current, Per Amplifier Tamb = 25°C, no load, no signal PD V V 20 20 CMR ICC 1. TL064C Unit Min. Vio TL064I Parameter 250 200 250 200 250 dB 120 120 120 mW 6 7.5 6 7.5 6 7.5 V/µs 1.5 3.5 1.5 3.5 1.5 3.5 µs 0.2 0.2 0.2 Overshoot Factor (see figure 1) Vi = 20mV, RL = 10kΩ, CL = 100pF, Av = 1 (see figure 1) 10 10 10 Equivalent Input Noise Voltage RS = 100Ω, f = 1KHz 42 42 42 % nV -----------Hz The input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive. Pulse techniques must be used that will maintain the junction temperature as close to the ambient temperature as possible. 3/10 TL064 - TL064A - TL064B ELECTRICAL CHARACTERISTICS VCC = ±15V, Tamb = +25°C (unless otherwise specified) Symbol Vio DVio TL064BC, BI, BM Min. Min. Unit Typ. Max. Input Offset Voltage (Rs = 50Ω) Tamb = 25°C Tmin ≤ Tamb ≤ Tmax 3 6 7.5 Temperature Coefficient of Input Offset Voltage (Rs = 50Ω) 10 Typ. Max. 2 3 5 mV Input Offset Current - note Tamb = 25°C Tmin ≤ Tamb ≤ Tmax Iib Input Bias Current - note 1 Tamb = 25°C Tmin ≤ Tamb ≤ Tmax Vicm Input Common Mode Voltage Range Vopp Output Voltage Swing (RL = 10kΩ) Tamb = 25°C Tmin ≤ Tamb ≤ Tmax Avd Large Signal Voltage Gain RL = 10kΩ, Vo = ±10V, Tamb = 25°C Tmin ≤ Tamb ≤ Tmax 5 100 3 5 100 3 pA nA 30 200 7 30 200 7 pA nA ±11.5 +15 -12 ±11.5 +15 -12 20 20 27 20 20 27 V/mV 4 4 Gain Bandwidth Product Tamb = 25°C, RL =10kΩ, CL = 100pF 6 4 4 6 MHz 1 1 1012 1012 Input Resistance Common Mode Rejection Ratio CMR RS = 50Ω 80 86 80 86 Supply Voltage Rejection Ratio RS = 50Ω 80 95 80 95 ICC Vo1/Vo2 dB µA 200 Channel Separation Av = 100, Tamb = +25°C 120 Total Power Consumption (Each Amplifier) Tamb = 25°C, no load, no signal SR Slew Rate Vi = 10V, RL = 10kΩ, CL = 100pF, Av = 1 250 200 dB 6 7.5 6 7.5 mW V/µs 1.5 3.5 1.5 3.5 µs Rise Time Vi = 20mV, RL = 10kΩ, CL = 100pF, Av = 1 0.2 0.2 Kov Overshoot Factor (see figure 1) Vi = 20mV, RL = 10kΩ, CL = 100pF, Av = 1 10 10 en Equivalent Input Noise Voltage RS = 100Ω, f = 1KHz 42 42 4/10 250 120 tr 1. Ω dB Supply Current (Per Amplifier) Tamb = +25°C, no load, no signal PD V V Ri SVR µV/°C 10 1) Iio GBP TL064AC, AI, AM Parameter % The input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive. Pulse techniques must be used that will maintain the junction temperature as close to the ambient temperature as possible. nV -----------Hz TL064- TL064A - TL064B MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE versus FREE AIR TEMPERATURE MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE versus LOAD RESISTANCE MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE versus FREQUENCY DIFFERENTIAL VOLTAGE AMPLIFICATION versus FREE AIR TEMPERATURE LARGE SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT versus FREQUENCY 10 6 10 7 105 DIFFERENTIAL VOLTAGE AMPLIFICATION (V/V) DIFFERENTIAL VOLTAGE AMPLIFICATION (V/mV) MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE versus SUPPLY VOLTAGE 4 2 VCC = 15V R L = 10k Ω VCC = 5V to 15V RL = 2kΩ Tamb = +25˚ C 4 10 102 101 PHASE SHIFT (right scale) -50 0 25 -25 50 75 100 FREE AIR TEMPERATURE (˚C) 125 1 10 100 45 90 135 1 -75 0 DIFFERENTIAL VOLTAGE AMPLIFICATION (left scale) 3 10 1k 10k 100k 1M 180 10M FREQUENCY (Hz) 5/10 TL064 - TL064A - TL064B SUPPLY CURRENT PER AMPLIFIER versus SUPPLY VOLTAGE SUPPLY CURRENT PER AMPLIFIER versus FREE AIR TEMPERATURE 250 SUPPLY CURRENT (µA) SUPPLY CURRENT (µA) 250 200 150 100 T amb = +25˚C No signal No load 50 200 150 100 VCC = 15V No signal No load 50 0 0 0 2 4 10 12 6 8 SUPPLY VOLTAGE ( V) 14 -75 16 TOTAL POWER DISSIPATED versus FREE AIR TEMPERATURE 20 15 VCC = 15V No signal No load 0 -75 -50 -25 0 25 50 75 100 125 COMMON MODE REJECTION RATIO (dB) TOTAL POWER DISSIPATED (mW) 87 25 5 50 75 100 125 -25 0 25 FREE AIR TEMPERATURE (˚C) COMMON MODE REJECTION RATIO versus FREE AIR TEMPERATURE 30 10 -50 86 85 84 83 V C C = 1 5V R L = 1 0kΩ 82 81 -75 -50 -25 0 25 50 75 100 125 FREE AIR TEMPERATURE (˚C) FREE AIR TEMPERATURE (˚C) INPUT BIAS CURRENT versus FREE AIR TEMPERATURE NORMALIZED UNITY GAIN BANDWIDTH SLEW RATE, AND PHASE SHIFT versus TEMPERATURE UNITY -GAIN-BANDWIDTH (left sc ale) 1.1 SLEW RAT E (left scale) 1 0.9 0.8 -25 0 1.02 1.01 1 0.99 VCC = 15V R L = 10kΩ f = B 1for phase shift 0.7 -75 -50 1.03 0.98 25 50 0.97 75 100 125 FREE AIR TEMPERATURE (˚C) INPUT BIAS CURRENT (nA) 1.2 PHASE SH IFT (right scale) NORMALIZED PHASE SHIFT NORMALIZED UNITY-GAIN BANDWIDTH AND SLEW RATE 100 1.3 VCC = 15V 10 1 0.1 0.01 -50 -25 0 25 50 75 100 FREE AIR TEMPERATURE (˚C) 6/10 125 TL064- TL064A - TL064B OUTPUT VOLTAGE versus ELAPSED TIME 6 28 INPUT 4 24 OUTPUT 0 -2 VCC = 15V R L = 10kΩ CL = 100pF -4 Tamb = +25˚C OVERSHOOT OUTPUT VOLTAGE (mV) 2 20 90% 16 12 8 V 4 tr 0 -6 0 2 4 6 TIME (µs) 8 0.2 CC = 15V R L = 10k Ω Tamb = +25˚C 10% 0 -4 0.4 0.6 0.8 1 12 14 TIME ( µs) 10 EQUIVALENT INPUT NOISE VOLTAGE versus FREQUENCY 100 EQUIVALENT INPUT NOISE VOLTAGE (nV/VHz) INPUT AND OUTPUT VOLTAGES (V) VOLTAGE FOLLOWER LARGE SIGNAL PULSE RESPONSE 90 80 70 60 50 40 30 VC C = 15V R S = 100Ω T a m b = +25˚ C 20 10 0 40 10 100 400 1k 4k 10k 40k 100k FREQUENCY (Hz) 7/10 TL064 - TL064A - TL064B PARAMETER MEASUREMENT INFORMATION Figure 1 : Voltage Follower Figure 2 : Gain-of-10 Inverting Amplifier 10k Ω 10k Ω 1k Ω 1k Ω - eI - eI 1/4 1/4 eo TL064 RL eo TL064 RL CL = 100pF CL = 100pF TYPICAL APPLICATIONS AUDIO DISTRIBUTOR AMPLIFIER fO = 100kHz 1M Ω 1/4 TL064 Output A 1/4 TL064 Output B 1/4 TL064 Output C 1µF 1/4 TL064 - Input 100k Ω 1OO µF 8/10 100k Ω 100k Ω 100k Ω V CC+ - TL064- TL064A - TL064B PACKAGE MECHANICAL DATA 14 PINS - PLASTIC DIP Millimeters Inches Dimensions Min. a1 B b b1 D E e e3 F i L Z Typ. 0.51 1.39 Max. Min. 1.65 0.020 0.055 0.5 0.25 Typ. 0.065 0.020 0.010 20 0.787 8.5 2.54 15.24 0.335 0.100 0.600 7.1 5.1 0.280 0.201 3.3 1.27 Max. 0.130 2.54 0.050 0.100 9/10 TL064 - TL064A - TL064B PACKAGE MECHANICAL DATA 14 PINS - PLASTIC MICROPACKAGE (SO) G c1 s e3 b1 e a1 b A a2 C L E D M 8 1 7 F 14 Millimeters Inches Dimensions Min. A a1 a2 b b1 C c1 D (1) E e e3 F (1) G L M S Typ. Max. Min. 1.75 0.2 1.6 0.46 0.25 0.1 0.35 0.19 Typ. 0.004 0.014 0.007 0.5 Max. 0.069 0.008 0.063 0.018 0.010 0.020 45° (typ.) 8.55 5.8 8.75 6.2 0.336 0.228 1.27 7.62 3.8 4.6 0.5 0.344 0.244 0.050 0.300 4.0 5.3 1.27 0.68 0.150 0.181 0.020 0.157 0.208 0.050 0.027 8° (max.) Note : (1) D and F do not include mold flash or protrusions - Mold flash or protrusions shall not exceed 0.15mm (.066 inc) ONLY FOR DATA BOOK. Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. © The ST logo is a registered trademark of STMicroelectronics © 2001 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom © http://www.st.com 10/10