TS431I Adjustable Precision Shunt Regulator TO-92 SOT-89 Pin Definition: 1. Reference 2. Anode 3. Cathode SOT-23 Pin Definition: 1. Reference 2. Cathode 3. Anode SOP-8 Pin Definition: 1. Cathode 8. Reference 2. Anode 7. Anode 3. Anode 6. Anode 4. N/C 5. N/C General Description The TS431I/431AI/431BI integrated circuits are three-terminal programmable shunt regulator diodes. These monolithic IC voltage references operate as a low temperature coefficient zener which is programmable from Vref to 36 volts with two external resistors. These devices exhibit a wide operating current range of 1.0 to 100mA with a typical dynamic impedance of 0.22Ω. The characteristics of these references make them excellent replacements for zener diodes in many applications such as digital voltmeters, power supplies, and op amp circuitry. The 2.5volt reference makes it convenient to obtain a stable reference from 5.0volt logic supplies, and since The TS431I/431AI/431BI operates as a shunt regulator, it can be used as either a positive or negative stage reference. Features ● ● ● ● ● ● ● Application ● ● ● ● ● ● Ordering Information Precision Reference Voltage TS431I – 2.495V±2% TS431AI – 2.495V±1% TS431BI – 2.495V±0.5% Equivalent Full Range Temp. Coefficient: 50ppm/ ºC Programmable Output Voltage up to 36V Fast Turn-On Response Sink Current Capability of 1~100mA Low Dynamic Output Impedance: 0.2Ω Low Output Noise Part No. Package Packing TS431xIT B0 TO-92 1Kpcs / Bulk TS431xIT A3 TO-92 2Kpcs / Ammo TS431xIX RF SOT-23 3Kpcs / 7” Reel TS431xIY RM SOT-89 1Kpcs / 7” Reel TS431xIS RL SOP-8 2.5Kpcs / 2.5” Reel Note: Where xx denotes voltage tolerance Blank: ±2% A: ±1% B: ±0.5% Block Diagram Voltage Monitor Delay Timmer Constant –Current Source/Sink High-Current Shunt Regulator Crow Bar Over-Voltage / Under-Voltage Protection Absolute Maximum Rating (Ta = 25 oC unless otherwise noted) Parameter Symbol Cathode Voltage (Note 1) Continuous Cathode Current Range Reference Input Current Range Power Dissipation Vka Ik Iref Limit 37 -100 ~ +150 -0.05 ~ +10 TO-92 0.625 SOT-23 Pd 0.30 SOT-89 / SOP-8 0.50 Junction Temperature Tj +150 Operating Temperature Range Toper -40 ~ +85 Storage Temperature Range Tstg -65 ~ +150 Note 1: Voltage values are with respect to the anode terminal unless otherwise noted. 1/13 Unit V mA mA W o C C o C o Version: A07 TS431I Adjustable Precision Shunt Regulator Recommend Operating Condition Parameter Symbol Limit Unit Vka Ik Ref ~ 36 1 ~ 100 V mA Cathode Voltage (Note 1) Continuous Cathode Current Range Recommend Operating Condition Parameter TS431I TS431AI TS431BI Deviation of reference input voltage Radio of change in Vref to change in cathode Voltage Reference voltage Reference Input current Deviation of reference input current, over temp. Off-state Cathode Current Dynamic Output Impedance Symbo Vref ∆Vref ∆Vref/∆Vka Iref ∆Iref Ika(off) |Zka| Test Conditions Vka =Vref, Ik=10mA (Figure 1) o Ta=25 C Vka =Vref, Ik=10mA (Figure 1) Ta= full range Ika=10mA, Vka = 10V to Vref Vka = 36V to 10V (Figure 2) R1=10KΩ, R2= ! , Ika=10mA Ta= full range (Figure 2) R1=10KΩ, R2= ! , Ika=10mA Ta= full range (Figure 2) Vref=0V (Figure 3), Vka=36V f<1KHz, Vka=Vref Ika=1mA to 100mA (Figure 1) Min Typ Max Unit 2.450 2.475 2.487 2.495 2.550 2.525 2.513 V -- 3 17 mV --- -1.4 -1.0 -2.7 -2.0 mV/V -- 0.7 4.0 uA -- 0.4 1.2 uA -- -- 1.0 uA -- 0.22 0.5 Ω Minimum operating cathode Ika(min) Vka=Vref (Figure 1) -0.4 0.6 mA current * The deviation parameters ∆Vref and ∆Iref are defined as difference between the maximum value and minimum value obtained over the full operating ambient temperature range that applied. * The average temperature coefficient of the reference input voltage, αVref is defined as: Where: T2-T1 = full temperature change. αVref can be positive or negative depending on whether the slope is positive or negative. o o o o Example: Maximum Vref=2.496V at 30 C, minimum Vref=2.492V at 0 C, Vref=2.495V at 25 C, ΔT=70 C Because minimum Vref occurs at the lower temperature, the coefficient is possitive * The dynamic impedance ZKA is defined as: * When the device operating with two external resistors, R1 and R2, (refer to Figure 2) the total dynamic impedance of the circuit is given by: 2/13 Version: A07 TS431I Adjustable Precision Shunt Regulator Test Circuits Figure 1: Vka = Vref Figure 2: Vka > Vref Figure 3: Off-State Current Additional Information – Stability When The TS431I/431AI/431BI is used as a shunt regulator, there are two options for selection of CL, are recommended for optional stability: A) No load capacitance across the device, decouple at the load. B) Large capacitance across the device, optional decoupling at the load. The reason for this is that TS431I/431AI/431BI exhibits instability with capacitances in the range of 10nF to 1uF (approx.) at light cathode current up to 3mA (typ). The device is less stable the lower the cathode voltage has been set for. Therefore while the device will be perfectly stable operating at a cathode current of 10mA (approx.) with a 0.1uF capacitor across it, it will oscillate transiently during start up as the cathode current passes through the instability region. Select a very low capacitance, or alternatively a high capacitance (10uF) will avoid this issue altogether. Since the user will probably wish to have local decoupling at the load anyway, the most cost effective method is to use no capacitance at all directly across the device. PCB trace/via resistance and inductance prevent the local load decoupling from causing the oscillation during the transient start up phase. Note: if the TS431I/431AI/431BI is located right at the load, so the load decoupling capacitor is directly across it, then this capacitor will have to be ≤1nF or ≥10uF. Applications Examples Figure 4: Voltage Monitor Figure 5: Output Control for Three Terminal Fixed Regulator 3/13 Version: A07 TS431I Adjustable Precision Shunt Regulator Applications Examples (Continue) Figure 6: Shunt Regulator Figure 7: High Current Shunt Regulator Figure 8: Series Pass Regulator Figure 9: Constant Current Source Figure 10: TRIAC Crowbar Figure 11: SCR Crowbar 4/13 Version: A07 TS431I Adjustable Precision Shunt Regulator Applications Examples (Continue) Vin <Vref >Vref Vout V+ ≈0.74V Figure 12: Single-Supply Comparator with TemperatureCompensated Threshold Figure 13: Constant Current Sink 5/13 Figure 14: Delay Timer Version: A07 TS431I Adjustable Precision Shunt Regulator Typical Performance Characteristics Test Circuit for Voltage Amplification Figure 14: Small-Signal Voltage Gain and Phase Shirt vs. Frequency Test Circuit for Reference Impedance Figure 15: Reference Impedance vs. Frequency 6/13 Version: A07 TS431I Adjustable Precision Shunt Regulator Typical Performance Characteristics (Continue) Test Circuit for Curve A The areas under the curves represent conditions that may cause the device to oscillate. For curves B, C, and D, R2 and V+ were adjusted to establish the initial VKA and IKA conditions with C L=0. VBATT and C L then were adjusted to determine the ranges of stability. Test Circuit for Curve B, C and D Figure 16: Stability Boundary Condition Test Circuit for Pulse Response, Ik=1mA Figure 17: Pulse Response 7/13 Version: A07 TS431I Adjustable Precision Shunt Regulator Electrical Characteristics Figure 18: Reference Voltage vs. Temperature Figure 19: Reference Current vs. Temperature Figure 20: Cathode Current vs. Cathode Voltage 8/13 Version: A07 TS431I Adjustable Precision Shunt Regulator TO-92 Mechanical Drawing DIM A B C D E F G H TO-92 DIMENSION MILLIMETERS INCHES MIN MAX MIN MAX 4.30 4.70 0.169 0.185 4.30 4.70 0.169 0.185 14.30(typ) 0.563(typ) 0.43 0.49 0.017 0.019 2.19 2.81 0.086 0.111 3.30 3.70 0.130 0.146 2.42 2.66 0.095 0.105 0.37 0.43 0.015 0.017 Marking Diagram X = Tolerance Code (A = ±1%, B = ±0.5%, Blank = ±2%,) Y = Year Code M = Month Code (A=Jan, B=Feb, C=Mar, D=Apl, E=May, F=Jun, G=Jul, H=Aug, I=Sep, J=Oct, K=Nov, L=Dec) L = Lot Code 9/13 Version: A07 TS431I Adjustable Precision Shunt Regulator SOT-23 Mechanical Drawing DIM A A1 B C D E F G H I J SOT-23 DIMENSION MILLIMETERS INCHES MIN MAX MIN MAX. 0.95 BSC 0.037 BSC 1.9 BSC 0.074 BSC 2.60 3.00 0.102 0.118 1.40 1.70 0.055 0.067 2.80 3.10 0.110 0.122 1.00 1.30 0.039 0.051 0.00 0.10 0.000 0.004 0.35 0.50 0.014 0.020 0.10 0.20 0.004 0.008 0.30 0.60 0.012 0.024 5º 10º 5º 10º Marking Diagram X = Device Code (A = TS431AI, B = TS431BI, C = TS431I,) 3 = SOT-23 package Y = Year Code M = Month Code (A=Jan, B=Feb, C=Mar, D=Apl, E=May, F=Jun, G=Jul, H=Aug, I=Sep, J=Oct, K=Nov, L=Dec) L = Lot Code 10/13 Version: A07 TS431I Adjustable Precision Shunt Regulator SOT-89 Mechanical Drawing DIM A B C D E F G H I J SOT-89 DIMENSION MILLIMETERS INCHES MIN MAX MIN MAX 4.40 4.60 0.173 0.181 1.50 1.7 0.059 0.070 2.30 2.60 0.090 0.102 0.40 0.52 0.016 0.020 1.50 1.50 0.059 0.059 3.00 3.00 0.118 0.118 0.89 1.20 0.035 0.047 4.05 4.25 0.159 0.167 1.4 1.6 0.055 0.068 0.35 0.44 0.014 0.017 Marking Diagram Y M L IY = Year Code = Month Code (A=Jan, B=Feb, C=Mar, D=Apl, E=May, F=Jun, G=Jul, H=Aug, I=Sep, J=Oct, K=Nov, L=Dec) = Lot Code = Package Code 11/13 Version: A07 TS431I Adjustable Precision Shunt Regulator SOP-8 Mechanical Drawing DIM A B C D F G K M P R SOP-8 DIMENSION MILLIMETERS INCHES MIN MAX MIN MAX. 4.80 5.00 0.189 0.196 3.80 4.00 0.150 0.157 1.35 1.75 0.054 0.068 0.35 0.49 0.014 0.019 0.40 1.25 0.016 0.049 1.27BSC 0.05BSC 0.10 0.25 0.004 0.009 0º 7º 0º 7º 5.80 6.20 0.229 0.244 0.25 0.50 0.010 0.019 Marking Diagram Y M L = Year Code = Month Code (A=Jan, B=Feb, C=Mar, D=Apl, E=May, F=Jun, G=Jul, H=Aug, I=Sep, J=Oct, K=Nov, L=Dec) = Lot Code 12/13 Version: A07 TS431I Adjustable Precision Shunt Regulator Notice Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies. Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC’s terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right. The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale. 13/13 Version: A07