EPCOS B65815E0000R049

Ferrites and accessories
RM 12, RM 12 LP
Cores and accessories
Series/Type:
B65815, B65816
Date:
June 2013
Data Sheet
 EPCOS AG 2013. Reproduction, publication and dissemination of this data sheet and the
information contained therein without EPCOS’ prior express consent is prohibited.
RM 12
Core and accessories
Individual parts
Part no.
Page
Core
B65815
3
Clamps
B65816
6
Coil former
B65816
4
Core
B65815
3
Coil former for
power applications

B65816

5

RM 12 low-profile:


Core
B65815P
7
Example of an assembly set
Also available:
Please read Cautions and warnings and
Important notes at the end of this document.
2
06/13
RM 12
Core
B65815
■ To IEC 62317-4
■ Optimized core cross section and increased

thickness of base for power applications
■ Without center hole
■ Delivery mode: sets
Magnetic characteristics (per set)
 l/A
le
Ae
Amin
Ve
= 0.39 mm–1
= 57 mm
= 146 mm2
= 125 mm2
= 8320 mm3
Approx. weight 45 g/set
Gapped
Material
AL value

nH
s
approx.
mm
e
Ordering code

-E without center hole
N41
160 3%
250 3%
400 5%
1000 5%
1.30
0.70
0.35
0.12
50
78
124
311
B65815E0160A041
B65815E0250A041
B65815E0400J041
B65815E1000J041
AL value

nH
e
N30
8700 +30/–20%
2700
B65815E0000R030
N49
3700 +30/–20%
1150
< 1.41 ( 50 mT, 500 kHz, 100 C) B65815E0000R049
N87
5300 +30/–20%
1640
< 4.50 (200 mT, 100 kHz, 100 C) B65815E0000R087
N97
5300 +30/–20%
1640
< 3.60 (200 mT, 100 kHz, 100 C) B65815E0000R097
N41
6000 +30/–20%
1860
< 1.50 (200 mT, 25 kHz, 100 C) B65815E0000R041
Ungapped
Material
PV
Ordering code

-E without center hole

W/set
Please read Cautions and warnings and
Important notes at the end of this document.
3
06/13
RM 12
Accessories
B65816
Coil former
Material:
GFR thermosetting plastic (UL 94 V-0, insulation class to IEC 60085:
H max. operating temperature 180 C), color code black
Sumikon PM 9630 ® E41429 (M), SUMITOMO BAKELITE CO LTD
Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 C, 2 s
Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 C, 3.5 s
Winding:
see Data Book 2013, chapter “Processing notes, 2.1”
Squared pins.
For matching clamp see page 6.
Sections
AN
mm2
lN
mm
AR value

Pins
Ordering code
1
73
61
28.7
12
11
B65816N1012D001
B65816N1011D001
12 pins
pin 9 omitted in the 11-pin version
Ground Ø 1.3+0.1
Hole arrangement
View in mounting direction
Please read Cautions and warnings and
Important notes at the end of this document.
4
06/13
RM 12
Accessories
B65816
Coil former for power applications
Material:
GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085:
F max. operating temperature 155 C), color code black
Valox 420-SE0 ® E45329 (M), GE PLASTICS B V
Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 C, 2 s
Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 C, 3.5 s
Winding:
see Data Book 2013, chapter “Processing notes, 2.1”
For matching clamp see page 6.
Sections
AN
mm2
lN
mm
AR value

Pins
Ordering code
1
72
61
28.7
12
B65816C1512T001
Marking of pin 1
Ground Ø 1.3+0.1
Hole arrangement
View in mounting direction
(Note half pitch!)
Please read Cautions and warnings and
Important notes at the end of this document.
5
06/13
RM 12
Accessories
B65816
Clamp
■ With ground terminal, made of spring steel (tinned), 0.45 mm thick
■ Solderability to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 C, 2 s
Ordering code
Clamp (ordering code per piece, 2 are required)
Please read Cautions and warnings and
Important notes at the end of this document.
B65816A2002X000
6
06/13
RM 12 »Low Profile«
Core
■
■
■
■
B65815P
To IEC 62317-4
For compact transformers
Without center hole
Delivery mode: sets
Magnetic characteristics (per set)
 l/A
le
Ae
Amin
Ve
= 0.29 mm–1
= 42 mm
= 147.5 mm2
= 124.7 mm2
= 6195 mm3
Approx. weight 33.6 g/set
Ungapped
Material
AL value
e
PV


nH
W/set
Ordering code
N49
4500 +30/–20%
1020
< 1.21 ( 50 mT, 500 kHz, 100 C)
B65815P0000R049
N92
4800 +30/–20%
1090
< 3.70 (200 mT, 100 kHz, 100 C)
B65815P0000R092
N87
6300 +30/–20%
1430
< 3.36 (200 mT, 100 kHz, 100 C)
B65815P0000R087
Please read Cautions and warnings and
Important notes at the end of this document.
7
06/13
Ferrites and accessories
Cautions and warnings
Cautions and warnings
Mechanical stress and mounting
Ferrite cores have to meet mechanical requirements during assembling and for a growing number
of applications. Since ferrites are ceramic materials one has to be aware of the special behavior
under mechanical load.
As valid for any ceramic material, ferrite cores are brittle and sensitive to any shock, fast changing
or tensile load. Especially high cooling rates under ultrasonic cleaning and high static or cyclic loads
can cause cracks or failure of the ferrite cores.
For detailed information see chapter “Definitions”, section 8.1.
Effects of core combination on AL value
Stresses in the core affect not only the mechanical but also the magnetic properties. It is apparent
that the initial permeability is dependent on the stress state of the core. The higher the stresses are
in the core, the lower is the value for the initial permeability. Thus the embedding medium should
have the greatest possible elasticity.
For detailed information see chapter “Definitions”, section 8.2.
Heating up
Ferrites can run hot during operation at higher flux densities and higher frequencies.
NiZn-materials
The magnetic properties of NiZn-materials can change irreversible in high magnetic fields.
Processing notes
– The start of the winding process should be soft. Else the flanges may be destroid.
– To strong winding forces may blast the flanges or squeeze the tube that the cores can no more
be mount.
– To long soldering time at high temperature (>300 °C) may effect coplanarity or pin arrangement.
– Not following the processing notes for soldering of the J-leg terminals may cause solderability
problems at the transformer because of pollution with Sn oxyd of the tin bath or burned insulation
of the wire. For detailed information see chapter “Processing notes”, section 8.2.
– The dimensions of the hole arrangement have fixed values and should be understood as
a recommendation for drilling the printed circuit board. For dimensioning the pins, the group
of holes can only be seen under certain conditions, as they fit into the given hole arrangement.
To avoid problems when mounting the transformer, the manufacturing tolerances for positioning
the customers’ drilling process must be considered by increasing the hole diameter.
8
06/13
Ferrites and accessories
Symbols and terms
Symbols and terms
Symbol
Meaning
Unit
A
Ae
AL
AL1
Amin
AN
AR
B
B
ˆ
B
Bˆ 
BDC
BR
BS
C0
CDF
DF
d
Ea
f
fcutoff
fmax
fmin
fr
fCu
g
H
ˆ
H
HDC
Hc
h
h/i 2
I
IDC
ˆI 
J
k
k3
k3c
L
Cross section of coil
Effective magnetic cross section
Inductance factor; AL = L/N2
Minimum inductance at defined high saturation ( a)
Minimum core cross section
Winding cross section
Resistance factor; AR = RCu /N2
RMS value of magnetic flux density
Flux density deviation
Peak value of magnetic flux density
Peak value of flux density deviation
DC magnetic flux density
Remanent flux density
Saturation magnetization
Winding capacitance
Core distortion factor
Relative disaccommodation coefficient DF = d/i
Disaccommodation coefficient
Activation energy
Frequency
Cut-off frequency
Upper frequency limit
Lower frequency limit
Resonance frequency
Copper filling factor
Air gap
RMS value of magnetic field strength
Peak value of magnetic field strength
DC field strength
Coercive field strength
Hysteresis coefficient of material
Relative hysteresis coefficient
RMS value of current
Direct current
Peak value of current
Polarization
Boltzmann constant
Third harmonic distortion
Circuit third harmonic distortion
Inductance
mm2
mm2
nH
nH
mm2
mm2
 = 10–6
Vs/m2, mT
Vs/m2, mT
Vs/m2, mT
Vs/m2, mT
Vs/m2, mT
Vs/m2, mT
Vs/m2, mT
F = As/ V
mm–4.5


J
s–1, Hz
s–1, Hz
s–1, Hz
s–1, Hz
s–1, Hz

mm
A/m
A/m
A/m
A/m
10–6 cm/A
10–6 cm/A
A
A
A
Vs/m2
J/K


H = Vs/A
9
06/13
Ferrites and accessories
Symbols and terms
Symbol
Meaning
Unit
L/L
L0
LH
Lp
Lrev
Ls
le
lN
N
PCu
Ptrans
PV
PF
Q
R
RCu
Rh
Rh
Ri
Rp
Rs
Rth
RV
s
T
T
TC
t
tv
tan
tanL
tanr
tane
tanh
tan/i
U
Û
Ve
Z
Zn
Relative inductance change
Inductance of coil without core
Main inductance
Parallel inductance
Reversible inductance
Series inductance
Effective magnetic path length
Average length of turn
Number of turns
Copper (winding) losses
Transferrable power
Relative core losses
Performance factor
Quality factor (Q = L/Rs = 1/tanL)
Resistance
Copper (winding) resistance (f = 0)
Hysteresis loss resistance of a core
Rh change
Internal resistance
Parallel loss resistance of a core
Series loss resistance of a core
Thermal resistance
Effective loss resistance of a core
Total air gap
Temperature
Temperature difference
Curie temperature
Time
Pulse duty factor
Loss factor
Loss factor of coil
(Residual) loss factor at H  0
Relative loss factor
Hysteresis loss factor
Relative loss factor of material at H  0
RMS value of voltage
Peak value of voltage
Effective magnetic volume
Complex impedance
Normalized impedance |Z|n = |Z| /N 2   (le /Ae)
H
H
H
H
H
H
mm
mm

W
W
mW/g

10
06/13








K/W

mm
°C
K
°C
s







V
V
mm3

/mm
Ferrites and accessories
Symbols and terms
Symbol
Meaning
Unit

F
e
r


B
i
s

0
a
app
e
i
p'
p"
r
rev
s'
s"
tot
Temperature coefficient (TK)
Relative temperature coefficient of material
Temperature coefficient of effective permeability
Relative permittivity
Magnetic flux
Efficiency of a transformer
Hysteresis material constant
Hysteresis core constant
Magnetostriction at saturation magnetization
Relative complex permeability
Magnetic field constant
Relative amplitude permeability
Relative apparent permeability
Relative effective permeability
Relative initial permeability
Relative real (inductive) component of  (for parallel components)
Relative imaginary (loss) component of  (for parallel components)
Relative permeability
Relative reversible permeability
Relative real (inductive) component of  (for series components)
Relative imaginary (loss) component of  (for series components)
Relative total permeability
derived from the static magnetization curve
Resistivity
Magnetic form factor
DC time constant Cu = L/RCu = AL/AR
Angular frequency; = 2 f
1/K
1/K
1/K

Vs

mT-1
A–1H–1/2


Vs/Am












m–1
mm–1
s
s–1


l/A
Cu

All dimensions are given in mm.
Surface-mount device
11
06/13
Important notes
The following applies to all products named in this publication:
1. Some parts of this publication contain statements about the suitability of our products for
certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We
nevertheless expressly point out that such statements cannot be regarded as binding
statements about the suitability of our products for a particular customer application.
As a rule, EPCOS is either unfamiliar with individual customer applications or less familiar
with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether an EPCOS product with the properties described in the product specification is suitable for use in a particular customer application.
2. We also point out that in individual cases, a malfunction of electronic components or
failure before the end of their usual service life cannot be completely ruled out in the
current state of the art, even if they are operated as specified. In customer applications
requiring a very high level of operational safety and especially in customer applications in
which the malfunction or failure of an electronic component could endanger human life or
health (e.g. in accident prevention or lifesaving systems), it must therefore be ensured by
means of suitable design of the customer application or other action taken by the customer
(e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by
third parties in the event of malfunction or failure of an electronic component.
3. The warnings, cautions and product-specific notes must be observed.
4. In order to satisfy certain technical requirements, some of the products described in this
publication may contain substances subject to restrictions in certain jurisdictions (e.g.
because they are classed as hazardous). Useful information on this will be found in our Material Data Sheets on the Internet (www.epcos.com/material). Should you have any more detailed questions, please contact our sales offices.
5. We constantly strive to improve our products. Consequently, the products described in this
publication may change from time to time. The same is true of the corresponding product
specifications. Please check therefore to what extent product descriptions and specifications
contained in this publication are still applicable before or when you place an order. We also
reserve the right to discontinue production and delivery of products. Consequently, we
cannot guarantee that all products named in this publication will always be available. The
aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products.
6. Unless otherwise agreed in individual contracts, all orders are subject to the current version
of the "General Terms of Delivery for Products and Services in the Electrical Industry"
published by the German Electrical and Electronics Industry Association (ZVEI).
7. The trade names EPCOS, BAOKE, Alu-X, CeraDiode, CeraLink, CSMP, CSSP, CTVS,
DeltaCap, DigiSiMic, DSSP, FilterCap, FormFit, MiniBlue, MiniCell, MKD, MKK, MLSC,
MotorCap, PCC, PhaseCap, PhaseCube, PhaseMod, PhiCap, SIFERRIT, SIFI, SIKOREL,
SilverCap, SIMDAD, SiMic, SIMID, SineFormer, SIOV, SIP5D, SIP5K, ThermoFuse,
WindCap are trademarks registered or pending in Europe and in other countries. Further
information will be found on the Internet at www.epcos.com/trademarks.
12
06/13