EPCOS B66285K0000X187

Ferrites and accessories
EELP 22, EILP 22
Core set (with and without clamp recess)
Series/Type:
B66285G, B66285K, B65804, B66455G, B66455K
Date:
June 2013
Data Sheet
 EPCOS AG 2013. Reproduction, publication and dissemination of this data sheet and the
information contained therein without EPCOS’ prior express consent is prohibited.
ELP 22/6/16
Core (with clamp recess)
B66285
Core set EELP 22

Combination: ELP 22/6/16 with ELP 22/6/16
ELP 22/6/16
■ To IEC 62317-9
■ Delivery mode: single units
Magnetic characteristics (per set)
 l/A
le
Ae
Amin
Ve
= 0.41 mm–1
= 32.5 mm
= 78.3 mm2
= 77.9 mm2
= 2540 mm3
Approx. weight 13 g/set
Ungapped
Material AL value
nH
e
BS*
mT
PV
W/set
Ordering code
(per piece)
N49
3100 25%
1010
250
< 0.65 ( 50 mT, 500 kHz, 100 °C) B66285G0000X149
N92
3400 25%
1110
350
< 1.65 (200 mT, 100 kHz, 100 °C) B66285G0000X192
N87
4500 25%
1470
300
< 1.50 (200 mT, 100 kHz, 100 °C) B66285G0000X187
N97
4600 25%
1520
310
< 1.20 (200 mT, 100 kHz, 100 °C) B66285G0000X197
* H = 250 A/m; f = 10 kHz; T = 100 °C
Calculation factors (for formulas, see “E cores: general information” )
EELP 22:
Material
N87
Validity range:
Relationship between
air gap – AL value
Calculation of saturation current
K1 (25 °C)
K2 (25 °C)
K3 (25 °C)
K4 (25 °C)
K3 (100 °C) K4 (100 °C)
126
– 0.814
232
– 0.796
200
K1, K2: 0.10 mm < s < 1.50 mm
K3, K4: 100 nH < AL < 700 nH
Please read Cautions and warnings and
Important notes at the end of this document.
2
06/13
– 0.873
ELP 22/6/16 with I 22/2.5/16
Core and accessories (with clamp recess)
Core set EILP 22

Combination:
ELP 22/6/16 with I 22/2.5/16
B66285
ELP 22/6/16
I 22/2.5/16
■ To IEC 62317-9
■ Delivery mode: single units
Magnetic characteristics (per set)
 l/A
le
Ae
Amin
Ve
= 0.33 mm–1
= 26.1 mm
= 78.5 mm2
= 77.9 mm2
= 2050 mm3
Approx. weight 10.5 g/set
Ungapped
Mate- AL value e
rial
nH
BS*
mT
PV
W/set
Ordering code
(per piece)
N49
3700
25%
960 250
< 0.50 ( 50 mT, 500 kHz, 100 °C) B66285G0000X149 (ELP core)
B66285K0000X149 (I core)**
N92
4000
25%
1050 350
< 1.38 (200 mT, 100 kHz, 100 °C) B66285G0000X192 (ELP core)
B66285K0000X192 (I core)**
N87
5200
25%
1360 300
< 1.25 (200 mT, 100 kHz, 100 °C) B66285G0000X187 (ELP core)
B66285K0000X187 (I core)**
N97
5250
25%
1390 310
< 1.00 (200 mT, 100 kHz, 100 °C) B66285G0000X197 (ELP core)
B66285K0000X197 (I core)**
* H = 250 A/m; f = 10 kHz; T = 100 °C
** Plate-type tool type
Please read Cautions and warnings and
Important notes at the end of this document.
3
06/13
ELP 22/6/16 with I 22/2.5/16
Core and accessories (with clamp recess)
B65804
Calculation factors (for formulas, see “E cores: general information” )
EILP 22:
Material
N87
Validity range:
Relationship between
air gap – AL value
Calculation of saturation current
K1 (25 °C)
K2 (25 °C)
K3 (25 °C)
K4 (25 °C)
K3 (100 °C) K4 (100 °C)
134
– 0.806
243
– 0.796
206
K1, K2: 0.10 mm < s < 1.50 mm
K3, K4: 100 nH < AL < 700 nH
Clamp
Ordering code per piece, 2 pieces required
Ordering code: B65804P2204X000
Please read Cautions and warnings and
Important notes at the end of this document.
4
06/13
– 0.873
ELP 22/6/16
Core (without clamp recess)
B66455
Core set EELP 22

Combination: ELP 22/6/16 with ELP 22/6/16
ELP 22/6/16
■ To IEC 62317-9
■ Delivery mode: single units
Magnetic characteristics (per set)
 l/A
le
Ae
Amin
Ve
= 0.41 mm–1
= 32.5 mm
= 78.3 mm2
= 77.9 mm2
= 2540 mm3
Approx. weight 13 g/set
Ungapped
Material AL value
nH
e
BS*
mT
PV
W/set
Ordering code
(per piece)
N49
3100 25%
1010
250
< 0.65 ( 50 mT, 500 kHz, 100 °C) B66455G0000X149
N92
3400 25%
1110
350
< 1.65 (200 mT, 100 kHz, 100 °C) B66455G0000X192
N87
4500 25%
1470
300
< 1.50 (200 mT, 100 kHz, 100 °C) B66455G0000X187
N97
4600 25%
1520
310
< 1.20 (200 mT, 100 kHz, 100 °C) B66455G0000X197
* H = 250 A/m; f = 10 kHz; T = 100 °C
Calculation factors (for formulas, see “E cores: general information” )
EELP 22:
Material
N87
Validity range:
Relationship between
air gap – AL value
Calculation of saturation current
K1 (25 °C)
K2 (25 °C)
K3 (25 °C)
K4 (25 °C)
K3 (100 °C) K4 (100 °C)
126
– 0.814
232
– 0.796
200
K1, K2: 0.10 mm < s < 1.50 mm
K3, K4: 100 nH < AL < 700 nH
Please read Cautions and warnings and
Important notes at the end of this document.
5
06/13
– 0.873
ELP 22/6/16 with I 22/2.5/16
Core (without clamp recess)
B66455
Core set EILP 22

Combination:
ELP 22/6/16 with I 22/2.5/16
ELP 22/6/16
I 22/2.5/16
■ To IEC 62317-9
■ Delivery mode: single units
Magnetic characteristics (per set)
 l/A
le
Ae
Amin
Ve
= 0.33 mm–1
= 26.1 mm
= 78.5 mm2
= 77.9 mm2
= 2050 mm3
Approx. weight 10.5 g/set
Ungapped
Mate- AL value e
rial
nH
BS*
mT
PV
W/set
Ordering code
(per piece)
N49
3700
25%
960 250
< 0.50 ( 50 mT, 500 kHz, 100 °C) B66455G0000X149 (ELP core)
B66455K0000X149 (I core)**
N92
4000
25%
1050 350
< 1.38 (200 mT, 100 kHz, 100 °C) B66455G0000X192 (ELP core)
B66455K0000X192 (I core)**
N87
5200
25%
1360 300
< 1.25 (200 mT, 100 kHz, 100 °C) B66455G0000X187 (ELP core)
B66455K0000X187 (I core)**
N97
5250
25%
1390 310
< 1.00 (200 mT, 100 kHz, 100 °C) B66455G0000X197 (ELP core)
B66455K0000X197 (I core)**
* H = 250 A/m; f = 10 kHz; T = 100 °C
** Plate-type tool type
Calculation factors (for formulas, see “E cores: general information” )
EILP 22:
Material
N87
Validity range:
Relationship between
air gap – AL value
Calculation of saturation current
K1 (25 °C)
K2 (25 °C)
K3 (25 °C)
K4 (25 °C)
K3 (100 °C) K4 (100 °C)
134
– 0.806
243
– 0.796
206
K1, K2: 0.10 mm < s < 1.50 mm
K3, K4: 100 nH < AL < 700 nH
Please read Cautions and warnings and
Important notes at the end of this document.
6
06/13
– 0.873
Ferrites and accessories
Cautions and warnings
Cautions and warnings
Mechanical stress and mounting
Ferrite cores have to meet mechanical requirements during assembling and for a growing number
of applications. Since ferrites are ceramic materials one has to be aware of the special behavior
under mechanical load.
As valid for any ceramic material, ferrite cores are brittle and sensitive to any shock, fast changing
or tensile load. Especially high cooling rates under ultrasonic cleaning and high static or cyclic loads
can cause cracks or failure of the ferrite cores.
For detailed information see chapter “Definitions”, section 8.1.
Effects of core combination on AL value
Stresses in the core affect not only the mechanical but also the magnetic properties. It is apparent
that the initial permeability is dependent on the stress state of the core. The higher the stresses are
in the core, the lower is the value for the initial permeability. Thus the embedding medium should
have the greatest possible elasticity.
For detailed information see chapter “Definitions”, section 8.2.
Heating up
Ferrites can run hot during operation at higher flux densities and higher frequencies.
NiZn-materials
The magnetic properties of NiZn-materials can change irreversible in high magnetic fields.
Processing notes
– The start of the winding process should be soft. Else the flanges may be destroid.
– To strong winding forces may blast the flanges or squeeze the tube that the cores can no more
be mount.
– To long soldering time at high temperature (>300 °C) may effect coplanarity or pin arrangement.
– Not following the processing notes for soldering of the J-leg terminals may cause solderability
problems at the transformer because of pollution with Sn oxyd of the tin bath or burned insulation
of the wire. For detailed information see chapter “Processing notes”, section 8.2.
– The dimensions of the hole arrangement have fixed values and should be understood as
a recommendation for drilling the printed circuit board. For dimensioning the pins, the group
of holes can only be seen under certain conditions, as they fit into the given hole arrangement.
To avoid problems when mounting the transformer, the manufacturing tolerances for positioning
the customers’ drilling process must be considered by increasing the hole diameter.
7
06/13
Ferrites and accessories
Symbols and terms
Symbols and terms
Symbol
Meaning
Unit
A
Ae
AL
AL1
Amin
AN
AR
B
B
ˆ
B
Bˆ 
BDC
BR
BS
C0
CDF
DF
d
Ea
f
fcutoff
fmax
fmin
fr
fCu
g
H
ˆ
H
HDC
Hc
h
h/i 2
I
IDC
ˆI 
J
k
k3
k3c
L
Cross section of coil
Effective magnetic cross section
Inductance factor; AL = L/N2
Minimum inductance at defined high saturation ( a)
Minimum core cross section
Winding cross section
Resistance factor; AR = RCu /N2
RMS value of magnetic flux density
Flux density deviation
Peak value of magnetic flux density
Peak value of flux density deviation
DC magnetic flux density
Remanent flux density
Saturation magnetization
Winding capacitance
Core distortion factor
Relative disaccommodation coefficient DF = d/i
Disaccommodation coefficient
Activation energy
Frequency
Cut-off frequency
Upper frequency limit
Lower frequency limit
Resonance frequency
Copper filling factor
Air gap
RMS value of magnetic field strength
Peak value of magnetic field strength
DC field strength
Coercive field strength
Hysteresis coefficient of material
Relative hysteresis coefficient
RMS value of current
Direct current
Peak value of current
Polarization
Boltzmann constant
Third harmonic distortion
Circuit third harmonic distortion
Inductance
mm2
mm2
nH
nH
mm2
mm2
 = 10–6
Vs/m2, mT
Vs/m2, mT
Vs/m2, mT
Vs/m2, mT
Vs/m2, mT
Vs/m2, mT
Vs/m2, mT
F = As/ V
mm–4.5


J
s–1, Hz
s–1, Hz
s–1, Hz
s–1, Hz
s–1, Hz

mm
A/m
A/m
A/m
A/m
10–6 cm/A
10–6 cm/A
A
A
A
Vs/m2
J/K


H = Vs/A
8
06/13
Ferrites and accessories
Symbols and terms
Symbol
Meaning
Unit
L/L
L0
LH
Lp
Lrev
Ls
le
lN
N
PCu
Ptrans
PV
PF
Q
R
RCu
Rh
Rh
Ri
Rp
Rs
Rth
RV
s
T
T
TC
t
tv
tan
tanL
tanr
tane
tanh
tan/i
U
Û
Ve
Z
Zn
Relative inductance change
Inductance of coil without core
Main inductance
Parallel inductance
Reversible inductance
Series inductance
Effective magnetic path length
Average length of turn
Number of turns
Copper (winding) losses
Transferrable power
Relative core losses
Performance factor
Quality factor (Q = L/Rs = 1/tanL)
Resistance
Copper (winding) resistance (f = 0)
Hysteresis loss resistance of a core
Rh change
Internal resistance
Parallel loss resistance of a core
Series loss resistance of a core
Thermal resistance
Effective loss resistance of a core
Total air gap
Temperature
Temperature difference
Curie temperature
Time
Pulse duty factor
Loss factor
Loss factor of coil
(Residual) loss factor at H  0
Relative loss factor
Hysteresis loss factor
Relative loss factor of material at H  0
RMS value of voltage
Peak value of voltage
Effective magnetic volume
Complex impedance
Normalized impedance |Z|n = |Z| /N 2   (le /Ae)
H
H
H
H
H
H
mm
mm

W
W
mW/g

9
06/13








K/W

mm
°C
K
°C
s







V
V
mm3

/mm
Ferrites and accessories
Symbols and terms
Symbol
Meaning
Unit

F
e
r


B
i
s

0
a
app
e
i
p'
p"
r
rev
s'
s"
tot
Temperature coefficient (TK)
Relative temperature coefficient of material
Temperature coefficient of effective permeability
Relative permittivity
Magnetic flux
Efficiency of a transformer
Hysteresis material constant
Hysteresis core constant
Magnetostriction at saturation magnetization
Relative complex permeability
Magnetic field constant
Relative amplitude permeability
Relative apparent permeability
Relative effective permeability
Relative initial permeability
Relative real (inductive) component of  (for parallel components)
Relative imaginary (loss) component of  (for parallel components)
Relative permeability
Relative reversible permeability
Relative real (inductive) component of  (for series components)
Relative imaginary (loss) component of  (for series components)
Relative total permeability
derived from the static magnetization curve
Resistivity
Magnetic form factor
DC time constant Cu = L/RCu = AL/AR
Angular frequency; = 2 f
1/K
1/K
1/K

Vs

mT-1
A–1H–1/2


Vs/Am












m–1
mm–1
s
s–1


l/A
Cu

All dimensions are given in mm.
Surface-mount device
10
06/13
Important notes
The following applies to all products named in this publication:
1. Some parts of this publication contain statements about the suitability of our products for
certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We
nevertheless expressly point out that such statements cannot be regarded as binding
statements about the suitability of our products for a particular customer application.
As a rule, EPCOS is either unfamiliar with individual customer applications or less familiar
with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether an EPCOS product with the properties described in the product specification is suitable for use in a particular customer application.
2. We also point out that in individual cases, a malfunction of electronic components or
failure before the end of their usual service life cannot be completely ruled out in the
current state of the art, even if they are operated as specified. In customer applications
requiring a very high level of operational safety and especially in customer applications in
which the malfunction or failure of an electronic component could endanger human life or
health (e.g. in accident prevention or lifesaving systems), it must therefore be ensured by
means of suitable design of the customer application or other action taken by the customer
(e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by
third parties in the event of malfunction or failure of an electronic component.
3. The warnings, cautions and product-specific notes must be observed.
4. In order to satisfy certain technical requirements, some of the products described in this
publication may contain substances subject to restrictions in certain jurisdictions (e.g.
because they are classed as hazardous). Useful information on this will be found in our Material Data Sheets on the Internet (www.epcos.com/material). Should you have any more detailed questions, please contact our sales offices.
5. We constantly strive to improve our products. Consequently, the products described in this
publication may change from time to time. The same is true of the corresponding product
specifications. Please check therefore to what extent product descriptions and specifications
contained in this publication are still applicable before or when you place an order. We also
reserve the right to discontinue production and delivery of products. Consequently, we
cannot guarantee that all products named in this publication will always be available. The
aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products.
6. Unless otherwise agreed in individual contracts, all orders are subject to the current version
of the "General Terms of Delivery for Products and Services in the Electrical Industry"
published by the German Electrical and Electronics Industry Association (ZVEI).
7. The trade names EPCOS, BAOKE, Alu-X, CeraDiode, CeraLink, CSMP, CSSP, CTVS,
DeltaCap, DigiSiMic, DSSP, FilterCap, FormFit, MiniBlue, MiniCell, MKD, MKK, MLSC,
MotorCap, PCC, PhaseCap, PhaseCube, PhaseMod, PhiCap, SIFERRIT, SIFI, SIKOREL,
SilverCap, SIMDAD, SiMic, SIMID, SineFormer, SIOV, SIP5D, SIP5K, ThermoFuse,
WindCap are trademarks registered or pending in Europe and in other countries. Further
information will be found on the Internet at www.epcos.com/trademarks.
11
06/13