Freescale Semiconductor Data Sheet: Technical Data Document Number: KL05P48M48SF1 Rev. 3, 11/29/2012 KL05P48M48SF1 KL05 Sub-Family Data Sheet Supports: MKL05Z8VFK4, MKL05Z16VFK4, MKL05Z32VFK4, MKL05Z8VLC4, MKL05Z16VLC4, MKL05Z32VLC4, MKL05Z8VFM4, MKL05Z16VFM4, MKL05Z32VFM4, MKL05Z16VLF4, MKL05Z32VLF4 Features • Operating Characteristics – Voltage range: 1.71 to 3.6 V – Flash write voltage range: 1.71 to 3.6 V – Temperature range (ambient): -40 to 105°C • Performance – Up to 48 MHz ARM® Cortex-M0+ core • Memories and memory interfaces – Up to 32 KB program flash memory – Up to 4 KB RAM • Clocks – 32 kHz to 40 kHz or 3 MHz to 32 MHz crystal oscillator – Multi-purpose clock source • System peripherals – Nine low-power modes to provide power optimization based on application requirements – 4-channel DMA controller, supporting up to 63 request sources – COP Software watchdog – Low-leakage wakeup unit – SWD interface and Micro Trace buffer – Bit Manipulation Engine (BME) • Security and integrity modules – 80-bit unique identification (ID) number per chip • Human-machine interface – Low-power hardware touch sensor interface (TSI) – General-purpose input/output • Analog modules – 12-bit SAR ADC – 12-bit DAC – Analog comparator (CMP) containing a 6-bit DAC and programmable reference input • Timers – Two 2-channel Timer/PWM (TPM) – Periodic interrupt timers – 16-bit low-power timer (LPTMR) – Real-time clock • Communication interfaces – One 8-bit SPI module – I2C module – One low power UART module Freescale reserves the right to change the detail specifications as may be required to permit improvements in the design of its products. © 2012 Freescale Semiconductor, Inc. Table of Contents 1 Ordering parts...........................................................................3 5.3 Switching specifications.....................................................21 1.1 Determining valid orderable parts......................................3 5.3.1 Device clock specifications...................................21 2 Part identification......................................................................3 5.3.2 General Switching Specifications..........................21 2.1 Description.........................................................................3 5.4 Thermal specifications.......................................................22 2.2 Format...............................................................................3 5.4.1 Thermal operating requirements...........................22 2.3 Fields.................................................................................3 5.4.2 Thermal attributes.................................................22 2.4 Example............................................................................4 6 Peripheral operating requirements and behaviors....................23 3 Terminology and guidelines......................................................4 6.1 Core modules....................................................................23 3.1 Definition: Operating requirement......................................4 6.1.1 SWD Electricals ...................................................23 3.2 Definition: Operating behavior...........................................4 6.2 System modules................................................................24 3.3 Definition: Attribute............................................................5 6.3 Clock modules...................................................................24 3.4 Definition: Rating...............................................................5 6.3.1 MCG specifications...............................................24 3.5 Result of exceeding a rating..............................................6 6.3.2 Oscillator electrical specifications.........................25 3.6 Relationship between ratings and operating requirements......................................................................6 6.4 Memories and memory interfaces.....................................28 6.4.1 Flash electrical specifications................................28 3.7 Guidelines for ratings and operating requirements............7 6.5 Security and integrity modules..........................................29 3.8 Definition: Typical value.....................................................7 6.6 Analog...............................................................................29 3.9 Typical Value Conditions...................................................8 6.6.1 ADC electrical specifications.................................29 4 Ratings......................................................................................8 6.6.2 CMP and 6-bit DAC electrical specifications.........33 4.1 Thermal handling ratings...................................................8 6.6.3 12-bit DAC electrical characteristics.....................34 4.2 Moisture handling ratings..................................................9 6.7 Timers................................................................................37 4.3 ESD handling ratings.........................................................9 6.8 Communication interfaces.................................................37 4.4 Voltage and current operating ratings...............................9 6.8.1 SPI switching specifications..................................37 5 General.....................................................................................9 6.8.2 I2C.........................................................................41 5.1 AC electrical characteristics..............................................9 6.8.3 UART....................................................................41 5.2 Nonswitching electrical specifications...............................10 6.9 Human-machine interfaces (HMI)......................................42 5.2.1 Voltage and current operating requirements.........10 6.9.1 TSI electrical specifications...................................42 5.2.2 LVD and POR operating requirements.................11 7 Dimensions...............................................................................42 5.2.3 Voltage and current operating behaviors..............12 7.1 Obtaining package dimensions.........................................42 5.2.4 Power mode transition operating behaviors..........12 8 Pinout........................................................................................42 5.2.5 Power consumption operating behaviors..............13 8.1 KL05 signal multiplexing and pin assignments..................42 5.2.6 Designing with radiated emissions in mind...........20 8.2 KL05 Pinouts.....................................................................44 5.2.7 Capacitance attributes..........................................20 9 Revision History........................................................................48 KL05 Sub-Family Data Sheet Data Sheet, Rev. 3, 11/29/2012. 2 Freescale Semiconductor, Inc. Ordering parts 1 Ordering parts 1.1 Determining valid orderable parts Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to www.freescale.com and perform a part number search for the following device numbers: PKL05 and MKL05 2 Part identification 2.1 Description Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received. 2.2 Format Part numbers for this device have the following format: Q KL## A FFF R T PP CC N 2.3 Fields This table lists the possible values for each field in the part number (not all combinations are valid): Field Description Values Q Qualification status • M = Fully qualified, general market flow • P = Prequalification KL## Kinetis family • KL05 A Key attribute • Z = Cortex-M0+ FFF Program flash memory size • 8 = 8 KB • 16 = 16 KB • 32 = 32 KB R Silicon revision • (Blank) = Main • A = Revision after main Table continues on the next page... KL05 Sub-Family Data Sheet Data Sheet, Rev. 3, 11/29/2012. Freescale Semiconductor, Inc. 3 Terminology and guidelines Field Description Values T Temperature range (°C) • V = –40 to 105 PP Package identifier • • • • CC Maximum CPU frequency (MHz) • 4 = 48 MHz N Packaging type • R = Tape and reel • (Blank) = Trays FK = 24 QFN (4 mm x 4 mm) LC = 32 LQFP (7 mm x 7 mm) FM = 32 QFN (5 mm x 5 mm) LF = 48 LQFP (7 mm x 7 mm) 2.4 Example This is an example part number: MKL05Z8VLC4 3 Terminology and guidelines 3.1 Definition: Operating requirement An operating requirement is a specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip. 3.1.1 Example This is an example of an operating requirement, which you must meet for the accompanying operating behaviors to be guaranteed: Symbol VDD Description 1.0 V core supply voltage Min. 0.9 Max. Unit 1.1 V KL05 Sub-Family Data Sheet Data Sheet, Rev. 3, 11/29/2012. 4 Freescale Semiconductor, Inc. Terminology and guidelines 3.2 Definition: Operating behavior An operating behavior is a specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions. 3.2.1 Example This is an example of an operating behavior, which is guaranteed if you meet the accompanying operating requirements: Symbol IWP Description Min. Digital I/O weak pullup/ 10 pulldown current Max. 130 Unit µA 3.3 Definition: Attribute An attribute is a specified value or range of values for a technical characteristic that are guaranteed, regardless of whether you meet the operating requirements. 3.3.1 Example This is an example of an attribute: Symbol CIN_D Description Input capacitance: digital pins Min. — Max. 7 Unit pF 3.4 Definition: Rating A rating is a minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure: • Operating ratings apply during operation of the chip. • Handling ratings apply when the chip is not powered. KL05 Sub-Family Data Sheet Data Sheet, Rev. 3, 11/29/2012. Freescale Semiconductor, Inc. 5 Terminology and guidelines 3.4.1 Example This is an example of an operating rating: Symbol VDD Description Min. 1.0 V core supply voltage Max. –0.3 Unit 1.2 V 3.5 Result of exceeding a rating 40 Failures in time (ppm) 30 The likelihood of permanent chip failure increases rapidly as soon as a characteristic begins to exceed one of its operating ratings. 20 10 0 Operating rating Measured characteristic 3.6 Relationship between ratings and operating requirements ra pe tin gr g tin ( in. t (m ) n. mi a gr tin ra pe ) O O t (m e ir qu e n me gr tin O ra pe ax .) e ir qu e n me a gr tin ra pe g tin ax (m .) O Fatal range Degraded operating range Normal operating range Degraded operating range Fatal range Expected permanent failure - No permanent failure - Possible decreased life - Possible incorrect operation - No permanent failure - Correct operation - No permanent failure - Possible decreased life - Possible incorrect operation Expected permanent failure –∞ ∞ Operating (power on) n Ha ng dli ng ati ) in. (m r nd Ha g lin ing rat ax (m .) Fatal range Handling range Fatal range Expected permanent failure No permanent failure Expected permanent failure –∞ ∞ Handling (power off) KL05 Sub-Family Data Sheet Data Sheet, Rev. 3, 11/29/2012. 6 Freescale Semiconductor, Inc. Terminology and guidelines 3.7 Guidelines for ratings and operating requirements Follow these guidelines for ratings and operating requirements: • Never exceed any of the chip’s ratings. • During normal operation, don’t exceed any of the chip’s operating requirements. • If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible. 3.8 Definition: Typical value A typical value is a specified value for a technical characteristic that: • Lies within the range of values specified by the operating behavior • Given the typical manufacturing process, is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions Typical values are provided as design guidelines and are neither tested nor guaranteed. 3.8.1 Example 1 This is an example of an operating behavior that includes a typical value: Symbol IWP Description Digital I/O weak pullup/pulldown current Min. 10 Typ. 70 Max. 130 Unit µA 3.8.2 Example 2 This is an example of a chart that shows typical values for various voltage and temperature conditions: KL05 Sub-Family Data Sheet Data Sheet, Rev. 3, 11/29/2012. Freescale Semiconductor, Inc. 7 Ratings 5000 4500 4000 TJ IDD_STOP (μA) 3500 150 °C 3000 105 °C 2500 25 °C 2000 –40 °C 1500 1000 500 0 0.90 0.95 1.00 1.05 1.10 VDD (V) 3.9 Typical Value Conditions Typical values assume you meet the following conditions (or other conditions as specified): Symbol Description Value Unit TA Ambient temperature 25 °C VDD 3.3 V supply voltage 3.3 V 4 Ratings 4.1 Thermal handling ratings Symbol Description Min. Max. Unit Notes TSTG Storage temperature –55 150 °C 1 TSDR Solder temperature, lead-free — 260 °C 2 1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life. 2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices. KL05 Sub-Family Data Sheet Data Sheet, Rev. 3, 11/29/2012. 8 Freescale Semiconductor, Inc. General 4.2 Moisture handling ratings Symbol MSL Description Moisture sensitivity level Min. Max. Unit Notes — 3 — 1 1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices. 4.3 ESD handling ratings Symbol Description Min. Max. Unit Notes VHBM Electrostatic discharge voltage, human body model -2000 +2000 V 1 VCDM Electrostatic discharge voltage, charged-device model -500 +500 V 2 Latch-up current at ambient temperature of 105°C -100 +100 mA ILAT 1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM). 2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components. 4.4 Voltage and current operating ratings Symbol Description Min. Max. Unit VDD Digital supply voltage –0.3 3.8 V IDD Digital supply current — 120 mA –0.3 VDD + 0.3 V –0.3 VDD + 0.3 V –25 25 mA VDD – 0.3 VDD + 0.3 V VDIO VAIO ID VDDA Digital pin input voltage (except RESET) Analog pins1and RESET pin input voltage Instantaneous maximum current single pin limit (applies to all port pins) Analog supply voltage 1. Analog pins are defined as pins that do not have an associated general purpose I/O port function. 5 General KL05 Sub-Family Data Sheet Data Sheet, Rev. 3, 11/29/2012. Freescale Semiconductor, Inc. 9 General 5.1 AC electrical characteristics Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure. Figure 1. Input signal measurement reference All digital I/O switching characteristics, unless otherwise specified, assume: 1. output pins • have CL=30pF loads, • are slew rate disabled, and • are normal drive strength 5.2 Nonswitching electrical specifications 5.2.1 Voltage and current operating requirements Table 1. Voltage and current operating requirements Symbol Description Min. Max. Unit VDD Supply voltage 1.71 3.6 V VDDA Analog supply voltage 1.71 3.6 V VDD – VDDA VDD-to-VDDA differential voltage –0.1 0.1 V VSS – VSSA VSS-to-VSSA differential voltage –0.1 0.1 V • 2.7 V ≤ VDD ≤ 3.6 V 0.7 × VDD — V • 1.7 V ≤ VDD ≤ 2.7 V 0.75 × VDD — V • 2.7 V ≤ VDD ≤ 3.6 V — 0.35 × VDD V • 1.7 V ≤ VDD ≤ 2.7 V — 0.3 × VDD V 0.06 × VDD — V VIH VIL VHYS Notes Input high voltage Input low voltage Input hysteresis Table continues on the next page... KL05 Sub-Family Data Sheet Data Sheet, Rev. 3, 11/29/2012. 10 Freescale Semiconductor, Inc. General Table 1. Voltage and current operating requirements (continued) Symbol IICIO Description Min. Notes 1 mA • VIN > VDD+0.3V (Positive current injection) Contiguous pin DC injection current —regional limit, includes sum of negative injection currents or sum of positive injection currents of 16 contiguous pins • Negative current injection • Positive current injection VRAM Unit I/O pin DC injection current — single pin • VIN < VSS-0.3V (Negative current injection) IICcont Max. VDD voltage required to retain RAM -3 — — +3 -25 — — +25 1.2 — mA V 1. All analog pins are internally clamped to VSS and VDD through ESD protection diodes. If VIN is greater than VAIO_MIN (=VSS-0.3V) and VIN is less than VAIO_MAX(=VDD+0.3V) is observed, then there is no need to provide current limiting resistors at the pads. If these limits cannot be observed then a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as R=(VAIO_MIN-VIN)/|IIC|. The positive injection current limiting resistor is calcualted as R=(VIN-VAIO_MAX)/|IIC|. Select the larger of these two calculated resistances. 5.2.2 LVD and POR operating requirements Table 2. VDD supply LVD and POR operating requirements Symbol Description Min. Typ. Max. Unit VPOR Falling VDD POR detect voltage 0.8 1.1 1.5 V VLVDH Falling low-voltage detect threshold — high range (LVDV=01) 2.48 2.56 2.64 V Low-voltage warning thresholds — high range 1 VLVW1H • Level 1 falling (LVWV=00) 2.62 2.70 2.78 V VLVW2H • Level 2 falling (LVWV=01) 2.72 2.80 2.88 V VLVW3H • Level 3 falling (LVWV=10) 2.82 2.90 2.98 V VLVW4H • Level 4 falling (LVWV=11) 2.92 3.00 3.08 V — ±60 — mV 1.54 1.60 1.66 V VHYSH Low-voltage inhibit reset/recover hysteresis — high range VLVDL Falling low-voltage detect threshold — low range (LVDV=00) Low-voltage warning thresholds — low range 1 VLVW1L • Level 1 falling (LVWV=00) 1.74 1.80 1.86 V VLVW2L • Level 2 falling (LVWV=01) 1.84 1.90 1.96 V VLVW3L • Level 3 falling (LVWV=10) 1.94 2.00 2.06 V VLVW4L • Level 4 falling (LVWV=11) 2.04 2.10 2.16 V — ±40 — mV VHYSL Low-voltage inhibit reset/recover hysteresis — low range Notes Table continues on the next page... KL05 Sub-Family Data Sheet Data Sheet, Rev. 3, 11/29/2012. Freescale Semiconductor, Inc. 11 General Table 2. VDD supply LVD and POR operating requirements (continued) Symbol Description Min. Typ. Max. Unit VBG Bandgap voltage reference 0.97 1.00 1.03 V tLPO Internal low power oscillator period — factory trimmed 900 1000 1100 μs Notes 1. Rising thresholds are falling threshold + hysteresis voltage 5.2.3 Voltage and current operating behaviors Table 3. Voltage and current operating behaviors Symbol VOH VOH Description Min. VDD – 0.5 — V • 1.71 V ≤ VDD ≤ 2.7 V, IOH = -1.5 mA VDD – 0.5 — V Output high voltage — High drive pad 1 • 2.7 V ≤ VDD ≤ 3.6 V, IOH = -18 mA VDD – 0.5 — V • 1.71 V ≤ VDD ≤ 2.7 V, IOH = -6 mA VDD – 0.5 — V — 100 mA VOL Output low voltage — Normal drive pad Notes 1 • 2.7 V ≤ VDD ≤ 3.6 V, IOH = -5 mA Output high current total for all ports IOLT Unit Output high voltage — Normal drive pad IOHT VOL Max. 1 • 2.7 V ≤ VDD ≤ 3.6 V, IOL = 5 mA — 0.5 V • 1.71 V ≤ VDD ≤ 2.7 V, IOL = 1.5 mA — 0.5 V Output low voltage — High drive pad 1 • 2.7 V ≤ VDD ≤ 3.6 V, IOL = 18 mA — 0.5 V • 1.71 V ≤ VDD ≤ 2.7 V, IOL = 6 mA — 0.5 V Output low current total for all ports — 100 mA IIN Input leakage current (per pin) for full temperature range — 1 μA 2 IIN Input leakage current (per pin) at 25 °C — 0.025 μA 2 IIN Input leakage current (total all pins) for full temperature range — 41 μA 2 IOZ Hi-Z (off-state) leakage current (per pin) — 1 μA RPU Internal pullup resistors 20 50 kΩ 3 1. PTA12, PTA13, PTB0 and PTB1 I/O have both high drive and normal drive capability selected by the associated PTx_PCRn[DSE] control bit. All other GPIOs are normal drive only. 2. Measured at VDD = 3.6 V 3. Measured at VDD supply voltage = VDD min and Vinput = VSS KL05 Sub-Family Data Sheet Data Sheet, Rev. 3, 11/29/2012. 12 Freescale Semiconductor, Inc. General 5.2.4 Power mode transition operating behaviors All specifications except tPOR and VLLSx→RUN recovery times in the following table assume this clock configuration: • CPU and system clocks = 48 MHz • Bus and flash clock = 24 MHz • FEI clock mode Table 4. Power mode transition operating behaviors Symbol tPOR Description After a POR event, amount of time from the point VDD reaches 1.8 V to execution of the first instruction across the operating temperature range of the chip. Min. Typ. Max. Unit — — 300 μs — 95 115 μs — 93 115 μs — 42 53 μs — 4 4.6 μs — 4 4.4 μs — 4 4.4 μs Notes • VLLS0 → RUN • VLLS1 → RUN • VLLS3 → RUN • LLS → RUN • VLPS → RUN • STOP → RUN 5.2.5 Power consumption operating behaviors Table 5. Power consumption operating behaviors Symbol IDDA Description Analog supply current Min. Typ. Max. Unit Notes — — See note mA 1 IDD_RUNCO Run mode current in compute operation - 48 MHz core / 24 MHz flash / bus clock disabled, code of while(1) loop executing from flash — • at 3.0 V IDD_RUN 2 4.1 5.2 mA Run mode current - 48 MHz core / 24 MHz bus and flash, all peripheral clocks disabled, code of while(1) loop executing from flash 2 — • at 3.0 V 4.9 5.6 mA Table continues on the next page... KL05 Sub-Family Data Sheet Data Sheet, Rev. 3, 11/29/2012. Freescale Semiconductor, Inc. 13 General Table 5. Power consumption operating behaviors (continued) Symbol Description Min. IDD_RUN Run mode current - 48 MHz core / 24 MHz bus and flash, all peripheral clocks enabled, code of while(1) loop executing from flash Typ. Max. Unit Notes 2, 3 • at 3.0 V • at 25 °C • at 125 °C IDD_WAIT IDD_WAIT Wait mode current - core disabled / 48 MHz system / 24 MHz bus / flash disabled (flash doze enabled), all peripheral clocks disabled • at 3.0 V Wait mode current - core disabled / 24 MHz system / 24 MHz bus / flash disabled (flash doze enabled), all peripheral clocks disabled • at 3.0 V IDD_PSTOP2 Stop mode current with partial stop 2 clocking option - core and system disabled / 10.5 MHz bus • at 3.0 V IDD_VLPRCO Very-low-power run mode current in compute operation - 4 MHz core / 0.8 MHz flash / bus clock disabled, code of while(1) loop executing from flash • at 3.0 V IDD_VLPR IDD_VLPR IDD_VLPW Very-low-power run mode current - 4 MHz core / 0.8 MHz bus and flash, all peripheral clocks disabled, code of while(1) loop executing from flash • at 3.0 V Very-low-power run mode current - 4 MHz core / 0.8 MHz bus and flash, all peripheral clocks enabled, code of while(1) loop executing from flash • at 3.0 V Very-low-power wait mode current - core disabled / 4 MHz system / 0.8 MHz bus / flash disabled (flash doze enabled), all peripheral clocks disabled • at 3.0 V — 5.6 6.8 mA — 6 7.2 mA 2 — 3.0 4.2 mA 2 — 2.4 3.36 mA 2 — 2.25 3.38 mA 4 — 182 522 μA 4 — 213.33 577.8 μA 3, 4 — 242.8 631.8 μA — 106.1 399.42 μA 4 Table continues on the next page... KL05 Sub-Family Data Sheet Data Sheet, Rev. 3, 11/29/2012. 14 Freescale Semiconductor, Inc. General Table 5. Power consumption operating behaviors (continued) Symbol Description IDD_STOP Stop mode current • at 3.0 V • at 25 °C • at 50 °C • at 70 °C • at 85 °C • at 105 °C IDD_VLPS • at 50 °C • at 70 °C • at 85 °C • at 105 °C Max. — 273 441 — 281.2 620 — 301.6 647.64 — 331 710.64 — 406.6 1001.84 — 3.08 16.01 — 5.46 34.73 — 12.08 46.73 — 22.89 77.37 — 53.24 190.28 — 1.7 3.69 — 3 22 — 5.8 28.19 — 10.4 40.29 — 24 65.5 Unit Notes μA μA Low-leakage stop mode current • at 3.0 V • at 25 °C • at 50 °C • at 70 °C • at 85 °C • at 105 °C IDD_VLLS3 Typ. Very-low-power stop mode current • at 3.0 V • at 25 °C IDD_LLS Min. Very-low-leakage stop mode 3 current • at 3.0 V μA μA • at 25 °C • at 50 °C • at 70 °C • at 85 °C • at 105 °C IDD_VLLS1 — 1.3 3 — 2.3 11.04 — 4.4 13.68 — 8 20.14 — 18.6 37.82 — 0.78 1.6 — 1.5 13.61 — 3.3 15.59 — 6.3 16.68 — 15.2 26.40 Very-low-leakage stop mode 1 current • at 3.0 V • at 25°C • at 50°C • at 70°C • at 85°C • at 105°C μA Table continues on the next page... KL05 Sub-Family Data Sheet Data Sheet, Rev. 3, 11/29/2012. Freescale Semiconductor, Inc. 15 General Table 5. Power consumption operating behaviors (continued) Symbol IDD_VLLS0 Description Min. Typ. Max. Unit — 449.6 959.2 nA — 1200 12155.08 — 2900 15323.29 — 5900 16384.55 — 14800 26773.45 Notes Very-low-leakage stop mode 0 current (SMC_STOPCTRL[PORPO] = 0) • at 3.0 V • at 25 °C • at 50 °C • at 70 °C • at 85 °C • at 105 °C IDD_VLLS0 Very-low-leakage stop mode 0 current (SMC_STOPCTRL[PORPO] = 1) • at 3.0 V 5 • at 25 °C • at 50 °C • at 70 °C • at 85 °C • at 105 °C — 221.7 894.24 — 1000 3784.55 — 2600 12018.39 — 5600 18722.23 — 14400 24665.06 nA 1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See each module's specification for its supply current. 2. MCG configured for FEI mode. 3. Incremental current consumption from peripheral activity is not included. 4. MCG configured for BLPI mode. 5. No brownout Table 6. Low power mode peripheral adders — typical value Symbol Description Temperature (°C) Unit -40 25 50 70 85 105 IIREFSTEN4MHz 4 MHz internal reference clock (IRC) adder. Measured by entering STOP or VLPS mode with 4 MHz IRC enabled. 56 56 56 56 56 56 µA IIREFSTEN32KHz 32 kHz internal reference clock (IRC) adder. Measured by entering STOP mode with the 32 kHz IRC enabled. 52 52 52 52 52 52 µA IEREFSTEN4MHz External 4 MHz crystal clock adder. Measured by entering STOP or VLPS mode with the crystal enabled. 206 228 237 245 251 258 uA Table continues on the next page... KL05 Sub-Family Data Sheet Data Sheet, Rev. 3, 11/29/2012. 16 Freescale Semiconductor, Inc. General Table 6. Low power mode peripheral adders — typical value (continued) Symbol IEREFSTEN32KHz Description Temperature (°C) Unit -40 25 50 70 85 105 440 490 540 560 570 580 440 490 540 560 570 580 490 490 540 560 570 680 510 560 560 560 610 680 510 560 560 560 610 680 External 32 kHz crystal clock adder by means of the OSC0_CR[EREFSTEN and EREFSTEN] bits. Measured by entering all modes with the crystal enabled. VLLS1 VLLS3 LLS VLPS STOP nA ICMP CMP peripheral adder measured by placing the device in VLLS1 mode with CMP enabled using the 6-bit DAC and a single external input for compare. Includes 6-bit DAC power consumption. 22 22 22 22 22 22 µA IRTC RTC peripheral adder measured by placing the device in VLLS1 mode with external 32 kHz crystal enabled by means of the RTC_CR[OSCE] bit and the RTC ALARM set for 1 minute. Includes ERCLK32K (32 kHz external crystal) power consumption. 432 357 388 475 532 810 nA IUART UART peripheral adder measured by placing the device in STOP or VLPS mode with selected clock source waiting for RX data at 115200 baud rate. Includes selected clock source power consumption. 66 66 66 66 66 66 µA 214 237 246 254 260 268 MCGIRCLK (4 MHz internal reference clock) OSCERCLK (4 MHz external crystal) ITPM TPM peripheral adder measured by placing the device in STOP or VLPS mode with selected clock source configured for output compare generating 100 Hz clock signal. No load is placed on the I/O generating the clock signal. Includes selected clock source and I/O switching currents. MCGIRCLK (4 MHz internal reference clock) OSCERCLK (4 MHz external crystal) IBG Bandgap adder when BGEN bit is set and device is placed in VLPx, LLS, or VLLSx mode. µA 86 86 86 86 86 86 235 256 265 274 280 287 45 45 45 45 45 45 µA Table continues on the next page... KL05 Sub-Family Data Sheet Data Sheet, Rev. 3, 11/29/2012. Freescale Semiconductor, Inc. 17 General Table 6. Low power mode peripheral adders — typical value (continued) Symbol IADC 5.2.5.1 Description ADC peripheral adder combining the measured values at VDD and VDDA by placing the device in STOP or VLPS mode. ADC is configured for low power mode using the internal clock and continuous conversions. Temperature (°C) Unit -40 25 50 70 85 105 366 366 366 366 366 366 µA Diagram: Typical IDD_RUN operating behavior The following data was measured under these conditions: • • • • MCG in FBE for run mode, and BLPE for VLPR mode No GPIOs toggled Code execution from flash with cache enabled For the ALLOFF curve, all peripheral clocks are disabled except FTFA KL05 Sub-Family Data Sheet Data Sheet, Rev. 3, 11/29/2012. 18 Freescale Semiconductor, Inc. General Run Mode Current VS Core Frequency Temperature = 25, VDD = 3, CACHE = Enable, Code Residence = Flash, Clocking Mode = FBE 7.00E-03 6.00E-03 Current Consumption on VDD (A) 5.00E-03 4.00E-03 All Peripheral CLK Gates All Off All On 3.00E-03 2.00E-03 1.00E-03 000.00E+00 '1-1 '1-1 '1-1 '1-1 '1-1 '1-1 '1-1 '1-2 1 2 3 4 6 12 24 48 CLK Ratio Flash-Core Core Freq (MHz) Figure 2. Run mode supply current vs. core frequency KL05 Sub-Family Data Sheet Data Sheet, Rev. 3, 11/29/2012. Freescale Semiconductor, Inc. 19 General VLPR Mode Current VS Core Frequency Temperature = 25, VDD = 3, CACHE = Enable, Code Residence = Flash, Clocking Mode = BLPE 350.00E-06 300.00E-06 Current Consumption on VDD (A) 250.00E-06 200.00E-06 All Peripheral CLK Gates All Off All On 150.00E-06 100.00E-06 50.00E-06 000.00E+00 '1-1 '1-2 1 '1-2 '1-4 2 4 CLK Ratio Flash-Core Core Freq (MHz) Figure 3. VLPR mode current vs. core frequency 5.2.6 Designing with radiated emissions in mind To find application notes that provide guidance on designing your system to minimize interference from radiated emissions: 1. Go to www.freescale.com. 2. Perform a keyword search for “EMC design.” 5.2.7 Capacitance attributes Table 7. Capacitance attributes Symbol Description Min. Max. Unit CIN_A Input capacitance: analog pins — 7 pF CIN_D Input capacitance: digital pins — 7 pF KL05 Sub-Family Data Sheet Data Sheet, Rev. 3, 11/29/2012. 20 Freescale Semiconductor, Inc. General 5.3 Switching specifications 5.3.1 Device clock specifications Symbol Description Min. Max. Unit Notes Normal run mode fSYS System and core clock — 48 MHz fBUS Bus clock — 24 MHz fFLASH Flash clock — 24 MHz fLPTMR LPTMR clock — 24 MHz VLPR mode1 fSYS System and core clock — 4 MHz fBUS Bus clock — 1 MHz fFLASH Flash clock — 1 MHz fLPTMR LPTMR clock — 24 MHz fERCLK External reference clock — 16 MHz LPTMR clock — 24 MHz — 16 MHz Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x) — 16 MHz TPM asynchronous clock — 8 MHz UART0 asynchronous clock — 8 MHz fLPTMR_pin fLPTMR_ERCL LPTMR external reference clock K fosc_hi_2 fTPM fUART0 1. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for any other module. 5.3.2 General Switching Specifications These general purpose specifications apply to all signals configured for GPIO, UART, and I2C signals. Symbol Description Min. Max. Unit Notes GPIO pin interrupt pulse width (digital glitch filter disabled) — Synchronous path 1.5 — Bus clock cycles 1 External RESET and NMI pin interrupt pulse width — Asynchronous path 100 — ns 2 GPIO pin interrupt pulse width — Asynchronous path 16 — ns 2 Port rise and fall time 3 — 36 ns KL05 Sub-Family Data Sheet Data Sheet, Rev. 3, 11/29/2012. Freescale Semiconductor, Inc. 21 General 1. The greater synchronous and asynchronous timing must be met. 2. This is the shrtest pulse that is guaranteed to be recognized. 3. 75 pF load 5.4 Thermal specifications 5.4.1 Thermal operating requirements Table 8. Thermal operating requirements Symbol Description Min. Max. Unit TJ Die junction temperature –40 125 °C TA Ambient temperature –40 105 °C 5.4.2 Thermal attributes Table 9. Thermal attributes Board type Symbol Single-layer (1S) RθJA Four-layer (2s2p) Description 48 LQFP 32 LQFP 32 QFN 24 QFN Unit Notes Thermal resistance, junction to ambient (natural convection) 82 88 97 110 °C/W 1 RθJA Thermal resistance, junction to ambient (natural convection) 58 59 34 42 °C/W Single-layer (1S) RθJMA Thermal resistance, junction to ambient (200 ft./min. air speed) 70 74 81 92 °C/W Four-layer (2s2p) RθJMA Thermal resistance, junction to ambient (200 ft./min. air speed) 52 52 28 36 °C/W — RθJB Thermal resistance, junction to board 36 35 13 18 °C/W 2 — RθJC Thermal resistance, junction to case 27 26 2.3 3.7 °C/W 3 — ΨJT Thermal characterization parameter, junction to package top outside center (natural convection) 8 8 8 10 °C/W 4 1. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions —Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method Environmental Conditions—Forced Convection (Moving Air). 2. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions —Junction-to-Board. KL05 Sub-Family Data Sheet Data Sheet, Rev. 3, 11/29/2012. 22 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors 3. Determined according to Method 1012.1 of MIL-STD 883, Test Method Standard, Microcircuits, with the cold plate temperature used for the case temperature. The value includes the thermal resistance of the interface material between the top of the package and the cold plate. 4. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions —Natural Convection (Still Air). 6 Peripheral operating requirements and behaviors 6.1 Core modules 6.1.1 SWD Electricals Table 10. SWD full voltage range electricals Symbol J1 Description Min. Max. Unit Operating voltage 1.71 3.6 V 0 25 MHz 1/J1 — ns 20 — ns SWD_CLK frequency of operation • Serial wire debug J2 SWD_CLK cycle period J3 SWD_CLK clock pulse width • Serial wire debug J4 SWD_CLK rise and fall times — 3 ns J9 SWD_DIO input data setup time to SWD_CLK rise 10 — ns J10 SWD_DIO input data hold time after SWD_CLK rise 0 — ns J11 SWD_CLK high to SWD_DIO data valid — 32 ns J12 SWD_CLK high to SWD_DIO high-Z 5 — ns J2 J3 J3 SWD_CLK (input) J4 J4 Figure 4. Serial wire clock input timing KL05 Sub-Family Data Sheet Data Sheet, Rev. 3, 11/29/2012. Freescale Semiconductor, Inc. 23 Peripheral operating requirements and behaviors SWD_CLK J9 SWD_DIO J10 Input data valid J11 SWD_DIO Output data valid J12 SWD_DIO J11 SWD_DIO Output data valid Figure 5. Serial wire data timing 6.2 System modules There are no specifications necessary for the device's system modules. 6.3 Clock modules 6.3.1 MCG specifications Table 11. MCG specifications Symbol Description fints_ft Internal reference frequency (slow clock) — factory trimmed at nominal VDD and 25 °C fints_t Internal reference frequency (slow clock) — user trimmed Δfdco_res_t Resolution of trimmed average DCO output frequency at fixed voltage and temperature — using SCTRIM and SCFTRIM Δfdco_t Total deviation of trimmed average DCO output frequency over voltage and temperature Min. Typ. Max. Unit Notes — 32.768 — kHz 31.25 — 39.0625 kHz — ± 0.3 ± 0.6 %fdco 1 — +0.5/-0.7 ±3 %fdco 1, 2 Table continues on the next page... KL05 Sub-Family Data Sheet Data Sheet, Rev. 3, 11/29/2012. 24 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 11. MCG specifications (continued) Symbol Description Min. Typ. Max. Unit Notes Δfdco_t Total deviation of trimmed average DCO output frequency over fixed voltage and temperature range of 0 - 70 °C — ± 0.4 ± 1.5 %fdco 1, 2 Internal reference frequency (fast clock) — factory trimmed at nominal VDD and 25 °C — 4 — MHz Δfintf_ft Frequency deviation of internal reference clock (fast clock) over temperature and voltage — factory trimmed at nominal VDD and 25 °C — +1/-2 ±3 %fintf_ft fintf_t Internal reference frequency (fast clock) — user trimmed at nominal VDD and 25 °C 3 — 5 MHz fintf_ft 2 floc_low Loss of external clock minimum frequency — RANGE = 00 (3/5) x fints_t — — kHz floc_high Loss of external clock minimum frequency — RANGE = 01, 10, or 11 (16/5) x fints_t — — kHz 31.25 — 39.0625 kHz 20 20.97 25 MHz 40 41.94 48 MHz — 23.99 — MHz — 47.97 — MHz — 180 — ps 7 — — 1 ms 8 FLL ffll_ref fdco FLL reference frequency range DCO output frequency range Low range (DRS = 00) 3, 4 640 × ffll_ref Mid range (DRS = 01) 1280 × ffll_ref fdco_t_DMX32 DCO output frequency Low range (DRS = 00) 5, 6 732 × ffll_ref Mid range (DRS = 01) 1464 × ffll_ref Jcyc_fll FLL period jitter • fVCO = 48 MHz tfll_acquire FLL target frequency acquisition time 1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock mode). 2. The deviation is relative to the factory trimmed frequency at nominal VDD and 25 °C, fints_ft. 3. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32 = 0. 4. The resulting system clock frequencies must not exceed their maximum specified values. The DCO frequency deviation (Δfdco_t) over voltage and temperature must be considered. 5. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32 = 1. 6. The resulting clock frequency must not exceed the maximum specified clock frequency of the device. 7. This specification is based on standard deviation (RMS) of period or frequency. 8. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed, DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running. 6.3.2 Oscillator electrical specifications This section provides the electrical characteristics of the module. KL05 Sub-Family Data Sheet Data Sheet, Rev. 3, 11/29/2012. Freescale Semiconductor, Inc. 25 Peripheral operating requirements and behaviors 6.3.2.1 Oscillator DC electrical specifications Table 12. Oscillator DC electrical specifications Symbol Description Min. Typ. Max. Unit VDD Supply voltage 1.71 — 3.6 V IDDOSC IDDOSC Supply current — low-power mode (HGO=0) Notes 1 • 32 kHz — 500 — nA • 4 MHz — 200 — μA • 8 MHz (RANGE=01) — 300 — μA • 16 MHz — 950 — μA • 24 MHz — 1.2 — mA • 32 MHz — 1.5 — mA Supply current — high gain mode (HGO=1) 1 • 32 kHz — 25 — μA • 4 MHz — 400 — μA • 8 MHz (RANGE=01) — 500 — μA • 16 MHz — 2.5 — mA • 24 MHz — 3 — mA • 32 MHz — 4 — mA Cx EXTAL load capacitance — — — 2, 3 Cy XTAL load capacitance — — — 2, 3 RF Feedback resistor — low-frequency, low-power mode (HGO=0) — — — MΩ Feedback resistor — low-frequency, high-gain mode (HGO=1) — 10 — MΩ Feedback resistor — high-frequency, low-power mode (HGO=0) — — — MΩ Feedback resistor — high-frequency, high-gain mode (HGO=1) — 1 — MΩ Series resistor — low-frequency, low-power mode (HGO=0) — — — kΩ Series resistor — low-frequency, high-gain mode (HGO=1) — 200 — kΩ Series resistor — high-frequency, low-power mode (HGO=0) — — — kΩ — 0 — kΩ RS 2, 4 Series resistor — high-frequency, high-gain mode (HGO=1) Table continues on the next page... KL05 Sub-Family Data Sheet Data Sheet, Rev. 3, 11/29/2012. 26 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 12. Oscillator DC electrical specifications (continued) Symbol Vpp5 Description Min. Typ. Max. Unit Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, low-power mode (HGO=0) — 0.6 — V Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, high-gain mode (HGO=1) — VDD — V Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, low-power mode (HGO=0) — 0.6 — V Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, high-gain mode (HGO=1) — VDD — V Notes 1. VDD=3.3 V, Temperature =25 °C 2. See crystal or resonator manufacturer's recommendation 3. Cx,Cy can be provided by using the integrated capacitors when the low frequency oscillator (RANGE = 00) is used. For all other cases external capacitors must be used. 4. When low power mode is selected, RF is integrated and must not be attached externally. 5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other devices. 6.3.2.2 Symbol Oscillator frequency specifications Table 13. Oscillator frequency specifications Description Min. Typ. Max. Unit fosc_lo Oscillator crystal or resonator frequency — low frequency mode (MCG_C2[RANGE]=00) 32 — 40 kHz fosc_hi_1 Oscillator crystal or resonator frequency — high frequency mode (low range) (MCG_C2[RANGE]=01) 3 — 8 MHz fosc_hi_2 Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x) 8 — 32 MHz fec_extal Input clock frequency (external clock mode) — — 48 MHz tdc_extal Input clock duty cycle (external clock mode) 40 50 60 % Crystal startup time — 32 kHz low-frequency, low-power mode (HGO=0) — — ms Crystal startup time — 32 kHz low-frequency, high-gain mode (HGO=1) — — ms Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), low-power mode (HGO=0) — 0.6 — ms Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), high-gain mode (HGO=1) — 1 — ms tcst Notes 1, 2 3, 4 1. Other frequency limits may apply when external clock is being used as a reference for the FLL or PLL. 2. When transitioning from FBE to FEI mode, restrict the frequency of the input clock so that, when it is divided by FRDIV, it remains within the limits of the DCO input clock frequency. KL05 Sub-Family Data Sheet Data Sheet, Rev. 3, 11/29/2012. Freescale Semiconductor, Inc. 27 Peripheral operating requirements and behaviors 3. Proper PC board layout procedures must be followed to achieve specifications. 4. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register being set. NOTE The 32 kHz oscillator works in low power mode by default and cannot be moved into high power/gain mode. 6.4 Memories and memory interfaces 6.4.1 Flash electrical specifications This section describes the electrical characteristics of the flash memory module. 6.4.1.1 Flash timing specifications — program and erase The following specifications represent the amount of time the internal charge pumps are active and do not include command overhead. Table 14. NVM program/erase timing specifications Symbol Description Min. Typ. Max. Unit thvpgm4 thversscr Notes Longword Program high-voltage time — 7.5 18 μs Sector Erase high-voltage time — 13 113 ms 1 1. Maximum time based on expectations at cycling end-of-life. 6.4.1.2 Flash timing specifications — commands Table 15. Flash command timing specifications Symbol Description Min. Typ. Max. Unit Notes trd1sec1k Read 1s Section execution time (flash sector) — — 60 μs 1 tpgmchk Program Check execution time — — 45 μs 1 trdrsrc Read Resource execution time — — 30 μs 1 tpgm4 Program Longword execution time — 65 145 μs tersscr Erase Flash Sector execution time — 14 114 ms trd1all Read 1s All Blocks execution time — — 0.5 ms trdonce Read Once execution time — — 25 μs Program Once execution time — 65 — μs tersall Erase All Blocks execution time — 55 465 ms 2 tvfykey Verify Backdoor Access Key execution time — — 30 μs 1 tpgmonce 2 1 1. Assumes 25 MHz flash clock frequency. KL05 Sub-Family Data Sheet Data Sheet, Rev. 3, 11/29/2012. 28 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors 2. Maximum times for erase parameters based on expectations at cycling end-of-life. 6.4.1.3 Flash high voltage current behaviors Table 16. Flash high voltage current behaviors Symbol Description IDD_PGM IDD_ERS 6.4.1.4 Symbol Min. Typ. Max. Unit Average current adder during high voltage flash programming operation — 2.5 6.0 mA Average current adder during high voltage flash erase operation — 1.5 4.0 mA Reliability specifications Table 17. NVM reliability specifications Description Min. Typ.1 Max. Unit Notes Program Flash tnvmretp10k Data retention after up to 10 K cycles 5 50 — years tnvmretp1k Data retention after up to 1 K cycles 20 100 — years nnvmcycp Cycling endurance 10 K 50 K — cycles 2 1. Typical data retention values are based on measured response accelerated at high temperature and derated to a constant 25°C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering Bulletin EB619. 2. Cycling endurance represents number of program/erase cycles at -40°C ≤ Tj ≤ 125°C. 6.5 Security and integrity modules There are no specifications necessary for the device's security and integrity modules. 6.6 Analog 6.6.1 ADC electrical specifications All ADC channels meet the 12-bit single-ended accuracy specifications. KL05 Sub-Family Data Sheet Data Sheet, Rev. 3, 11/29/2012. Freescale Semiconductor, Inc. 29 Peripheral operating requirements and behaviors 6.6.1.1 12-bit ADC operating conditions Table 18. 12-bit ADC operating conditions Symbol Description Conditions Min. Typ.1 Max. Unit VDDA Supply voltage Absolute 1.71 — 3.6 V ΔVDDA Supply voltage Delta to VDD (VDD - VDDA) -100 0 +100 mV 2 ΔVSSA Ground voltage Delta to VSS (VSS - VSSA) -100 0 +100 mV 2 VREFH ADC reference voltage high 1.13 VDDA VDDA V 3 VREFL ADC reference voltage low VSSA VSSA VSSA V 3 VADIN Input voltage VREFL — VREFH V CADIN Input capacitance — 4 5 pF RADIN Input resistance — 2 5 kΩ RAS • 8-/10-/12-bit modes Analog source resistance 12-bit modes fADCK < 4 MHz — — 5 kΩ fADCK ADC conversion clock frequency ≤ 12-bit mode 1.0 — 18.0 MHz Crate ADC conversion rate ≤ 12 bit modes No ADC hardware averaging Notes 4 5 6 20.000 — 818.330 Ksps Continuous conversions enabled, subsequent conversion time 1. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production. 2. DC potential difference. 3. For packages without dedicated VREFH and VREFL pins, VREFH is internally tied to VDDA, and VREFL is internally tied to VSSA. 4. This resistance is external to MCU. The analog source resistance must be kept as low as possible to achieve the best results. The results in this data sheet were derived from a system which has < 8 Ω analog source resistance. The RAS/CAS time constant should be kept to < 1ns. 5. To use the maximum ADC conversion clock frequency, the ADHSC bit must be set and the ADLPC bit must be clear. 6. For guidelines and examples of conversion rate calculation, download the ADC calculator tool KL05 Sub-Family Data Sheet Data Sheet, Rev. 3, 11/29/2012. 30 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors SIMPLIFIED INPUT PIN EQUIVALENT CIRCUIT Z ADIN SIMPLIFIED CHANNEL SELECT CIRCUIT Pad leakage due to input protection Z AS R AS ADC SAR ENGINE R ADIN V ADIN C AS V AS R ADIN INPUT PIN R ADIN INPUT PIN R ADIN INPUT PIN C ADIN Figure 6. ADC input impedance equivalency diagram 6.6.1.2 12-bit ADC electrical characteristics Table 19. 12-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) Conditions1 Symbol Description IDDA_ADC Supply current fADACK ADC asynchronous clock source Sample Time TUE DNL INL EFS Min. Typ.2 Max. Unit Notes 0.215 — 1.7 mA 3 • ADLPC = 1, ADHSC = 0 1.2 2.4 3.9 MHz • ADLPC = 1, ADHSC = 1 2.4 4.0 6.1 MHz tADACK = 1/ fADACK • ADLPC = 0, ADHSC = 0 3.0 5.2 7.3 MHz • ADLPC = 0, ADHSC = 1 4.4 6.2 9.5 MHz LSB4 5 LSB4 5 LSB4 5 LSB4 VADIN = VDDA See Reference Manual chapter for sample times Total unadjusted error • 12-bit modes — ±4 ±6.8 • <12-bit modes — ±1.4 ±2.1 Differential nonlinearity • 12-bit modes — ±0.7 -1.1 to +1.9 Integral nonlinearity -0.3 to 0.5 • <12-bit modes — ±0.2 • 12-bit modes — ±1.0 -2.7 to +1.9 -0.7 to +0.5 Full-scale error • <12-bit modes — ±0.5 • 12-bit modes — -4 -5.4 • <12-bit modes — -1.4 -1.8 5 Table continues on the next page... KL05 Sub-Family Data Sheet Data Sheet, Rev. 3, 11/29/2012. Freescale Semiconductor, Inc. 31 Peripheral operating requirements and behaviors Table 19. 12-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued) Symbol Description EQ Quantization error EIL Input leakage error Conditions1 • 12-bit modes Min. Typ.2 Max. Unit — — ±0.5 LSB4 IIn × RAS mV Notes IIn = leakage current (refer to the MCU's voltage and current operating ratings) VTEMP25 Temp sensor slope Across the full temperature range of the device — 1.715 — mV/°C Temp sensor voltage 25 °C — 719 — mV 1. All accuracy numbers assume the ADC is calibrated with VREFH = VDDA 2. Typical values assume VDDA = 3.0 V, Temp = 25°C, fADCK = 2.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production. 3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and the ADLPC bit (low power). For lowest power operation the ADLPC bit must be set, the HSC bit must be clear with 1 MHz ADC conversion clock speed. 4. 1 LSB = (VREFH - VREFL)/2N 5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11) Figure 7. Typical ENOB vs. ADC_CLK for 12-bit single-ended mode KL05 Sub-Family Data Sheet Data Sheet, Rev. 3, 11/29/2012. 32 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors 6.6.2 CMP and 6-bit DAC electrical specifications Table 20. Comparator and 6-bit DAC electrical specifications Symbol Description Min. Typ. Max. Unit VDD Supply voltage 1.71 — 3.6 V IDDHS Supply current, high-speed mode (EN = 1, PMODE = 1) — — 200 μA IDDLS Supply current, low-speed mode (EN = 1, PMODE = 0) — — 20 μA VAIN Analog input voltage VSS — VDD V VAIO Analog input offset voltage — — 20 mV • CR0[HYSTCTR] = 00 — 5 — mV • CR0[HYSTCTR] = 01 — 10 — mV • CR0[HYSTCTR] = 10 — 20 — mV • CR0[HYSTCTR] = 11 — 30 — mV VDD – 0.5 — — V VH Analog comparator VCMPOh Output high VCMPOl hysteresis1 Output low — — 0.5 V tDHS Propagation delay, high-speed mode (EN = 1, PMODE = 1) 20 50 200 ns tDLS Propagation delay, low-speed mode (EN = 1, PMODE = 0) 80 250 600 ns Analog comparator initialization delay2 — — 40 μs IDAC6b — 7 — μA INL 6-bit DAC current adder (enabled) 6-bit DAC integral non-linearity –0.5 — 0.5 LSB3 DNL 6-bit DAC differential non-linearity –0.3 — 0.3 LSB 1. Typical hysteresis is measured with input voltage range limited to 0.7 to VDD – 0.7 V. 2. Comparator initialization delay is defined as the time between software writes to change control inputs (writes to DACEN, VRSEL, PSEL, MSEL, VOSEL) and the comparator output settling to a stable level. 3. 1 LSB = Vreference/64 KL05 Sub-Family Data Sheet Data Sheet, Rev. 3, 11/29/2012. Freescale Semiconductor, Inc. 33 Peripheral operating requirements and behaviors CMP Hysteresis vs Vinn 90.00E-03 80.00E-03 70.00E-03 CMP Hysteresis (V) 60.00E-03 HYSTCTR Setting 50.00E-03 0 1 40.00E-03 2 3 30.00E-03 20.00E-03 10.00E-03 000.00E+00 0.1 0.4 0.7 1 1.3 1.6 1.9 2.2 2.5 2.8 3.1 Vinn (V) Figure 8. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 0) CMP Hysteresis vs Vinn 180.00E-03 160.00E-03 140.00E-03 CMP Hysteresis (V) 120.00E-03 HYSTCTR Setting 100.00E-03 0 1 80.00E-03 2 3 60.00E-03 40.00E-03 20.00E-03 000.00E+00 0.1 -20.00E-03 0.4 0.7 1 1.3 1.6 1.9 2.2 2.5 2.8 3.1 Vinn (V) Figure 9. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1) 6.6.3 12-bit DAC electrical characteristics 6.6.3.1 Symbol 12-bit DAC operating requirements Table 21. 12-bit DAC operating requirements Desciption Min. VDDA Supply voltage VDACR Reference voltage 1.13 Max. Unit 3.6 V 3.6 V TA Temperature Operating temperature range of the device CL Output load capacitance — 100 pF IL Output load current — 1 mA Notes 1 °C 2 1. The DAC reference can be selected to be VDDA or the voltage output of the VREF module (VREF_OUT) 2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC KL05 Sub-Family Data Sheet Data Sheet, Rev. 3, 11/29/2012. 34 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors 6.6.3.2 Symbol 12-bit DAC operating behaviors Table 22. 12-bit DAC operating behaviors Description IDDA_DACL Supply current — low-power mode Min. Typ. Max. Unit — — 250 μA — — 900 μA Notes P IDDA_DACH Supply current — high-speed mode P tDACLP Full-scale settling time (0x080 to 0xF7F) — low-power mode — 100 200 μs 1 tDACHP Full-scale settling time (0x080 to 0xF7F) — high-power mode — 15 30 μs 1 — 0.7 1 μs 1 — — 100 mV tCCDACLP Code-to-code settling time (0xBF8 to 0xC08) — low-power mode and high-speed mode Vdacoutl DAC output voltage range low — high-speed mode, no load, DAC set to 0x000 Vdacouth DAC output voltage range high — highspeed mode, no load, DAC set to 0xFFF VDACR −100 — VDACR mV INL Integral non-linearity error — high speed mode — — ±8 LSB 2 DNL Differential non-linearity error — VDACR > 2 V — — ±1 LSB 3 DNL Differential non-linearity error — VDACR = VREF_OUT — — ±1 LSB 4 — ±0.4 ±0.8 %FSR 5 Gain error — ±0.1 ±0.6 %FSR 5 Power supply rejection ratio, VDDA ≥ 2.4 V 60 — 90 dB TCO Temperature coefficient offset voltage — 3.7 — μV/C TGE Temperature coefficient gain error — 0.000421 — %FSR/C Rop Output resistance load = 3 kΩ — — 250 SR Slew rate -80h→ F7Fh→ 80h VOFFSET Offset error EG PSRR BW 1. 2. 3. 4. 5. 6. 6 Ω V/μs • High power (SPHP) 1.2 1.7 — • Low power (SPLP) 0.05 0.12 — 3dB bandwidth kHz • High power (SPHP) 550 — — • Low power (SPLP) 40 — — Settling within ±1 LSB The INL is measured for 0 + 100 mV to VDACR −100 mV The DNL is measured for 0 + 100 mV to VDACR −100 mV The DNL is measured for 0 + 100 mV to VDACR −100 mV with VDDA > 2.4 V Calculated by a best fit curve from VSS + 100 mV to VDACR − 100 mV VDDA = 3.0 V, reference select set for VDDA (DACx_CO:DACRFS = 1), high power mode (DACx_C0:LPEN = 0), DAC set to 0x800, temperature range is across the full range of the device KL05 Sub-Family Data Sheet Data Sheet, Rev. 3, 11/29/2012. Freescale Semiconductor, Inc. 35 Peripheral operating requirements and behaviors Figure 10. Typical INL error vs. digital code KL05 Sub-Family Data Sheet Data Sheet, Rev. 3, 11/29/2012. 36 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Figure 11. Offset at half scale vs. temperature 6.7 Timers See General switching specifications. 6.8 Communication interfaces 6.8.1 SPI switching specifications The Serial Peripheral Interface (SPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The following tables provide timing characteristics for classic SPI timing modes. See the SPI chapter of the chip's Reference Manual for information about the modified transfer formats used for communicating with slower peripheral devices. KL05 Sub-Family Data Sheet Data Sheet, Rev. 3, 11/29/2012. Freescale Semiconductor, Inc. 37 Peripheral operating requirements and behaviors All timing is shown with respect to 20% VDD and 80% VDD thresholds, unless noted, as well as input signal transitions of 3 ns and a 30 pF maximum load on all SPI pins. Table 23. SPI master mode timing on slew rate disabled pads Num. Symbol Description Max. Unit Note fperiph/2048 fperiph/2 Hz 1 2 x tperiph 2048 x tperiph ns 2 1 fop 2 tSPSCK 3 tLead Enable lead time 1/2 — tSPSCK — 4 tLag Enable lag time 1/2 — tSPSCK — 5 tWSPSCK tperiph - 30 1024 x tperiph ns — 6 tSU Data setup time (inputs) 16 — ns — 7 tHI Data hold time (inputs) 0 — ns — 8 tv Data valid (after SPSCK edge) — 10 ns — 9 tHO Data hold time (outputs) 0 — ns — 10 tRI Rise time input — tperiph - 25 ns — tFI Fall time input tRO Rise time output — 25 ns — tFO Fall time output 11 Frequency of operation Min. SPSCK period Clock (SPSCK) high or low time 1. For SPI0 fperiph is the bus clock (fBUS). 2. tperiph = 1/fperiph Table 24. SPI master mode timing on slew rate enabled pads Num. Symbol 1 fop 2 tSPSCK 3 tLead 4 tLag 5 tWSPSCK 6 tSU 7 tHI 8 tv 9 10 11 Description Min. Max. Unit Note fperiph/2048 fperiph/2 Hz 1 2 x tperiph 2048 x tperiph ns 2 Enable lead time 1/2 — tSPSCK — Enable lag time 1/2 — tSPSCK — tperiph - 30 1024 x tperiph ns — Data setup time (inputs) 96 — ns — Data hold time (inputs) 0 — ns — Data valid (after SPSCK edge) — 52 ns — tHO Data hold time (outputs) 0 — ns — tRI Rise time input — tperiph - 25 ns — tFI Fall time input tRO Rise time output — 36 ns — tFO Fall time output Frequency of operation SPSCK period Clock (SPSCK) high or low time 1. For SPI0 fperiph is the bus clock (fBUS). 2. tperiph = 1/fperiph KL05 Sub-Family Data Sheet Data Sheet, Rev. 3, 11/29/2012. 38 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors SS1 (OUTPUT) 3 2 SPSCK (CPOL = 0) (OUTPUT) 10 11 10 11 4 5 5 SPSCK (CPOL = 1) (OUTPUT) 6 7 MISO (INPUT) MSB IN2 BIT 6 . . . 1 LSB IN 8 MOSI (OUTPUT) MSB OUT2 9 BIT 6 . . . 1 LSB OUT 1. If configured as an output. 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB. Figure 12. SPI master mode timing (CPHA = 0) SS1 (OUTPUT) 2 3 SPSCK (CPOL = 0) (OUTPUT) 5 SPSCK (CPOL = 1) (OUTPUT) 5 6 MISO (INPUT) 10 11 10 11 4 7 MSB IN2 BIT 6 . . . 1 8 MOSI 2 (OUTPUT)PORT DATA MASTER MSB OUT LSB IN 9 BIT 6 . . . 1 MASTER LSB OUT PORT DATA 1.If configured as output 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB. Figure 13. SPI master mode timing (CPHA = 1) Table 25. SPI slave mode timing on slew rate disabled pads Num. Symbol 1 fop 2 tSPSCK 3 tLead 4 tLag 5 tWSPSCK Description Frequency of operation Min. Max. Unit Note 0 fperiph/4 Hz 1 4 x tperiph — ns 2 Enable lead time 1 — tperiph — Enable lag time 1 — tperiph — tperiph - 30 — ns — SPSCK period Clock (SPSCK) high or low time Table continues on the next page... KL05 Sub-Family Data Sheet Data Sheet, Rev. 3, 11/29/2012. Freescale Semiconductor, Inc. 39 Peripheral operating requirements and behaviors Table 25. SPI slave mode timing on slew rate disabled pads (continued) 1. 2. 3. 4. Num. Symbol 6 tSU 7 Description Min. Max. Unit Note Data setup time (inputs) 2 — ns — tHI Data hold time (inputs) 7 — ns — 8 ta Slave access time — tperiph ns 3 9 tdis Slave MISO disable time — tperiph ns 4 10 tv Data valid (after SPSCK edge) — 22 ns — 11 tHO Data hold time (outputs) 0 — ns — 12 tRI Rise time input — tperiph - 25 ns — tFI Fall time input 13 tRO Rise time output — 25 ns — tFO Fall time output For SPI0 fperiph is the bus clock (fBUS). tperiph = 1/fperiph Time to data active from high-impedance state Hold time to high-impedance state Table 26. SPI slave mode timing on slew rate enabled pads Num. Symbol 1 fop 2 tSPSCK 3 tLead Enable lead time 4 tLag Enable lag time 5 tWSPSCK 6 tSU 7 Frequency of operation SPSCK period Min. Max. Unit Note 0 fperiph/4 Hz 1 4 x tperiph — ns 2 1 — tperiph — 1 — tperiph — tperiph - 30 — ns — Data setup time (inputs) 2 — ns — tHI Data hold time (inputs) 7 — ns — 8 ta Slave access time — tperiph ns 3 9 tdis Slave MISO disable time — tperiph ns 4 10 tv Data valid (after SPSCK edge) — 122 ns — 11 tHO Data hold time (outputs) 0 — ns — 12 tRI Rise time input — tperiph - 25 ns — tFI Fall time input tRO Rise time output — 36 ns — tFO Fall time output 13 1. 2. 3. 4. Description Clock (SPSCK) high or low time For SPI0 fperiph is the bus clock (fBUS). tperiph = 1/fperiph Time to data active from high-impedance state Hold time to high-impedance state KL05 Sub-Family Data Sheet Data Sheet, Rev. 3, 11/29/2012. 40 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors SS (INPUT) 2 SPSCK (CPOL = 0) (INPUT) 5 3 SPSCK (CPOL = 1) (INPUT) 5 13 4 12 13 9 8 MISO (OUTPUT) 12 10 see note SLAVE MSB 6 11 11 BIT 6 . . . 1 SLAVE LSB OUT SEE NOTE 7 MOSI (INPUT) BIT 6 . . . 1 MSB IN LSB IN NOTE: Not defined Figure 14. SPI slave mode timing (CPHA = 0) SS (INPUT) 4 2 3 SPSCK (CPOL = 0) (INPUT) 5 SPSCK (CPOL = 1) (INPUT) 5 see note SLAVE 8 MSB OUT 6 MOSI (INPUT) 13 12 13 9 11 10 MISO (OUTPUT) 12 BIT 6 . . . 1 SLAVE LSB OUT 7 MSB IN BIT 6 . . . 1 LSB IN NOTE: Not defined Figure 15. SPI slave mode timing (CPHA = 1) 6.8.2 I2C See General switching specifications. 6.8.3 UART See General switching specifications. KL05 Sub-Family Data Sheet Data Sheet, Rev. 3, 11/29/2012. Freescale Semiconductor, Inc. 41 Dimensions 6.9 Human-machine interfaces (HMI) 6.9.1 TSI electrical specifications Table 27. TSI electrical specifications Symbol Description Min. Type Max Unit TSI_RUNF Fixed power consumption in run mode — 100 — µA TSI_RUNV Variable power consumption in run mode (depends on oscillator's current selection) 1.0 — 128 µA TSI_EN Power consumption in enable mode — 100 — µA TSI_DIS Power consumption in disable mode — 1.2 — µA TSI_TEN TSI analog enable time — 66 — µs TSI_CREF TSI reference capacitor — 1.0 — pF TSI_DVOLT Voltage variation of VP & VM around nominal values 0.19 — 1.03 V 7 Dimensions 7.1 Obtaining package dimensions Package dimensions are provided in package drawings. To find a package drawing, go to www.freescale.com and perform a keyword search for the drawing’s document number: If you want the drawing for this package Then use this document number 24-pin QFN 98ASA00474D 32-pin QFN 98ASA00473D 32-pin LQFP 98ASH70029A 48-pin LQFP 98ASH00962A 8 Pinout KL05 Sub-Family Data Sheet Data Sheet, Rev. 3, 11/29/2012. 42 Freescale Semiconductor, Inc. Pinout 8.1 KL05 signal multiplexing and pin assignments The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin. 48 LQFP 32 QFN 32 LQFP 24 QFN Pin Name Default ALT0 ALT1 ALT2 ALT3 1 1 1 1 PTB6/ IRQ_2/ LPTMR0_ALT3 DISABLED DISABLED PTB6/ IRQ_2/ LPTMR0_ALT3 TPM0_CH3 2 2 2 2 PTB7/ IRQ_3 DISABLED DISABLED PTB7/ IRQ_3 TPM0_CH2 3 — — — PTA14 DISABLED DISABLED PTA14 TPM_CLKIN0 4 — — — PTA15 DISABLED DISABLED PTA15 CLKOUT 5 3 3 3 VDD VDD VDD 6 4 4 3 VREFH VREFH VREFH 7 5 5 4 VREFL VREFL VREFL 8 6 6 4 VSS VSS VSS 9 7 7 5 PTA3 EXTAL0 EXTAL0 PTA3 I2C0_SCL I2C0_SDA 10 8 8 6 PTA4/ LLWU_P0 XTAL0 XTAL0 PTA4/ LLWU_P0 I2C0_SDA I2C0_SCL 11 — — — VSS VSS VSS 12 — — — PTB18 DISABLED DISABLED PTB18 13 — — — PTB19 DISABLED DISABLED PTB19 14 9 9 7 PTA5/ LLWU_P1/ RTC_CLK_IN DISABLED DISABLED PTA5/ LLWU_P1/ RTC_CLK_IN TPM0_CH5 SPI0_SS_b 15 10 10 8 PTA6/ LLWU_P2 DISABLED DISABLED PTA6/ LLWU_P2 TPM0_CH4 SPI0_MISO 16 11 11 — PTB8 ADC0_SE11 ADC0_SE11 PTB8 TPM0_CH3 17 12 12 — PTB9 ADC0_SE10 ADC0_SE10 PTB9 TPM0_CH2 18 — — — PTA16/ IRQ_4 DISABLED DISABLED PTA16/ IRQ_4 19 — — — PTA17/ IRQ_5 DISABLED DISABLED PTA17/ IRQ_5 20 — — — PTA18/ IRQ_6 DISABLED DISABLED PTA18/ IRQ_6 21 13 13 9 PTB10 ADC0_SE9/ TSI0_IN7 ADC0_SE9/ TSI0_IN7 PTB10 TPM0_CH1 22 14 14 10 PTB11 ADC0_SE8/ TSI0_IN6 ADC0_SE8/ TSI0_IN6 PTB11 TPM0_CH0 23 15 15 11 PTA7/ IRQ_7/ LLWU_P3 ADC0_SE7/ TSI0_IN5 ADC0_SE7/ TSI0_IN5 PTA7/ IRQ_7/ LLWU_P3 SPI0_MISO SPI0_MOSI 24 16 16 12 PTB0/ IRQ_8/ LLWU_P4 ADC0_SE6/ TSI0_IN4 ADC0_SE6/ TSI0_IN4 PTB0/ IRQ_8/ LLWU_P4 EXTRG_IN SPI0_SCK TPM_CLKIN1 KL05 Sub-Family Data Sheet Data Sheet, Rev. 3, 11/29/2012. Freescale Semiconductor, Inc. 43 Pinout 48 LQFP 32 QFN 32 LQFP 24 QFN Pin Name Default ALT0 ALT1 ALT2 ALT3 25 17 17 13 PTB1/ IRQ_9 ADC0_SE5/ TSI0_IN3/ DAC0_OUT/ CMP0_IN3 ADC0_SE5/ TSI0_IN3/ DAC0_OUT/ CMP0_IN3 PTB1/ IRQ_9 UART0_TX UART0_RX 26 18 18 14 PTB2/ IRQ_10/ LLWU_P5 ADC0_SE4/ TSI0_IN2 ADC0_SE4/ TSI0_IN2 PTB2/ IRQ_10/ LLWU_P5 UART0_RX UART0_TX 27 19 19 15 PTA8 ADC0_SE3/ TSI0_IN1 ADC0_SE3/ TSI0_IN1 PTA8 28 20 20 16 PTA9 ADC0_SE2/ TSI0_IN0 ADC0_SE2/ TSI0_IN0 PTA9 29 — — — PTB20 DISABLED DISABLED PTB20 30 — — — VSS VSS VSS 31 — — — VDD VDD VDD 32 — — — PTB14/ IRQ_11 DISABLED DISABLED PTB14/ IRQ_11 33 21 21 — PTA10/ IRQ_12 DISABLED TSI0_IN11 PTA10/ IRQ_12 34 22 22 — PTA11/ IRQ_13 DISABLED TSI0_IN10 PTA11/ IRQ_13 35 23 23 17 PTB3/ IRQ_14 DISABLED DISABLED PTB3/ IRQ_14 I2C0_SCL UART0_TX 36 24 24 18 PTB4/ IRQ_15/ LLWU_P6 DISABLED DISABLED PTB4/ IRQ_15/ LLWU_P6 I2C0_SDA UART0_RX 37 25 25 19 PTB5/ IRQ_16 NMI_b ADC0_SE1/ CMP0_IN1 PTB5/ IRQ_16 TPM1_CH1 NMI_b 38 26 26 20 PTA12/ IRQ_17/ LPTMR0_ALT2 ADC0_SE0/ CMP0_IN0 ADC0_SE0/ CMP0_IN0 PTA12/ IRQ_17/ LPTMR0_ALT2 TPM1_CH0 TPM_CLKIN0 39 27 27 — PTA13 TSI0_IN9 TSI0_IN9 PTA13 40 28 28 — PTB12 TSI0_IN8 TSI0_IN8 PTB12 41 — — — PTA19 DISABLED DISABLED PTA19 42 — — — PTB15 DISABLED DISABLED PTB15 SPI0_MOSI SPI0_MISO 43 — — — PTB16 DISABLED DISABLED PTB16 SPI0_MISO SPI0_MOSI 44 — — — PTB17 DISABLED DISABLED PTB17 TPM_CLKIN1 SPI0_SCK 45 29 29 21 PTB13 ADC0_SE13 ADC0_SE13 PTB13 TPM1_CH1 RTC_CLKOUT 46 30 30 22 PTA0/ IRQ_0/ LLWU_P7 SWD_CLK ADC0_SE12/ CMP0_IN2 PTA0/ IRQ_0/ LLWU_P7 TPM1_CH0 SWD_CLK 47 31 31 23 PTA1/ IRQ_1/ LPTMR0_ALT1 RESET_b DISABLED PTA1/ IRQ_1/ LPTMR0_ALT1 TPM_CLKIN0 RESET_b 48 32 32 24 PTA2 SWD_DIO DISABLED PTA2 CMP0_OUT SWD_DIO EXTRG_IN SPI0_SS_b KL05 Sub-Family Data Sheet Data Sheet, Rev. 3, 11/29/2012. 44 Freescale Semiconductor, Inc. Pinout 8.2 KL05 Pinouts PTA2 PTA1/IRQ_1/LPTMR0_ALT1 PTA0/IRQ_0/LLWU_P7 PTB13 PTB17 PTB16 PTB15 PTA19 PTB12 PTA13 PTA12/IRQ_17/LPTMR0_ALT2 PTB5/IRQ_16 48 47 46 45 44 43 42 41 40 39 38 37 The following figures show the pinout diagrams for the devices supported by this document. Many signals may be multiplexed onto a single pin. To determine what signals can be used on which pin, see the previous section. VREFL 7 30 VSS VSS 8 29 PTB20 PTA3 9 28 PTA9 PTA4/LLWU_P0 10 27 PTA8 VSS 11 26 PTB2/IRQ_10/LLWU_P5 PTB18 12 25 PTB1/IRQ_9 24 VDD PTB0/IRQ_8/LLWU_P4 31 23 6 PTA7/IRQ_7/LLWU_P3 VREFH 22 PTB14/IRQ_11 PTB11 32 21 5 PTB10 VDD 20 PTA10/IRQ_12 PTA18/IRQ_6 33 19 4 PTA17/IRQ_5 PTA15 18 PTA11/IRQ_13 PTA16/IRQ_4 34 17 3 PTB9 PTA14 16 PTB3/IRQ_14 PTB8 35 15 2 PTA6/LLWU_P2 PTB7/IRQ_3 14 PTB4/IRQ_15/LLWU_P6 PTA5/LLWU_P1/RTC_CLK_IN 36 13 1 PTB19 PTB6/IRQ_2/LPTMR0_ALT3 Figure 16. KL05 48-pin LQFP pinout diagram KL05 Sub-Family Data Sheet Data Sheet, Rev. 3, 11/29/2012. Freescale Semiconductor, Inc. 45 PTA2 PTA1/IRQ_1/LPTMR0_ALT1 PTA0/IRQ_0/LLWU_P7 PTB13 PTB12 PTA13 PTA12/IRQ_17/LPTMR0_ALT2 PTB5/IRQ_16 32 31 30 29 28 27 26 25 Pinout 21 PTA10/IRQ_12 VREFL 5 20 PTA9 VSS 6 19 PTA8 PTA3 7 18 PTB2/IRQ_10/LLWU_P5 PTA4/LLWU_P0 8 17 PTB1/IRQ_9 PTA6/LLWU_P2 PTA5/LLWU_P1/RTC_CLK_IN 16 4 PTB0/IRQ_8/LLWU_P4 VREFH 15 PTA11/IRQ_13 PTA7/IRQ_7/LLWU_P3 22 14 3 PTB11 VDD 13 PTB3/IRQ_14 PTB10 23 12 2 PTB9 PTB7/IRQ_3 11 PTB4/IRQ_15/LLWU_P6 PTB8 24 10 1 9 PTB6/IRQ_2/LPTMR0_ALT3 Figure 17. KL05 32-pin LQFP pinout diagram KL05 Sub-Family Data Sheet Data Sheet, Rev. 3, 11/29/2012. 46 Freescale Semiconductor, Inc. PTA2 PTA1/IRQ_1/LPTMR0_ALT1 PTA0/IRQ_0/LLWU_P7 PTB13 PTB12 PTA13 PTA12/IRQ_17/LPTMR0_ALT2 PTB5/IRQ_16 32 31 30 29 28 27 26 25 Pinout 21 PTA10/IRQ_12 VREFL 5 20 PTA9 VSS 6 19 PTA8 PTA3 7 18 PTB2/IRQ_10/LLWU_P5 PTA4/LLWU_P0 8 17 PTB1/IRQ_9 PTA6/LLWU_P2 PTA5/LLWU_P1/RTC_CLK_IN 16 4 PTB0/IRQ_8/LLWU_P4 VREFH 15 PTA11/IRQ_13 PTA7/IRQ_7/LLWU_P3 22 14 3 PTB11 VDD 13 PTB3/IRQ_14 PTB10 23 12 2 PTB9 PTB7/IRQ_3 11 PTB4/IRQ_15/LLWU_P6 PTB8 24 10 1 9 PTB6/IRQ_2/LPTMR0_ALT3 Figure 18. KL05 32-pin QFN pinout diagram KL05 Sub-Family Data Sheet Data Sheet, Rev. 3, 11/29/2012. Freescale Semiconductor, Inc. 47 PTA2 PTA1/IRQ_1/LPTMR0_ALT1 PTA0/IRQ_0/LLWU_P7 PTB13 PTA12/IRQ_17/LPTMR0_ALT2 PTB5/IRQ_16 24 23 22 21 20 19 Revision History 3 16 PTA9 VREFL VSS 4 15 PTA8 PTA3 5 14 PTB2/IRQ_10/LLWU_P5 PTA4/LLWU_P0 6 13 PTB1/IRQ_9 PTB10 PTA6/LLWU_P2 PTA5/LLWU_P1/RTC_CLK_IN 12 VDD VREFH PTB0/IRQ_8/LLWU_P4 PTB3/IRQ_14 11 17 PTA7/IRQ_7/LLWU_P3 2 10 PTB7/IRQ_3 PTB11 PTB4/IRQ_15/LLWU_P6 9 18 8 1 7 PTB6/IRQ_2/LPTMR0_ALT3 Figure 19. KL05 24-pin QFN pinout diagram 9 Revision History The following table provides a revision history for this document. Table 28. Revision History Rev. No. Date Substantial Changes 1 7/2012 Initial NDA release. 2 9/2012 Initial public release. 3 11/2012 Completed all the TBDs. KL05 Sub-Family Data Sheet Data Sheet, Rev. 3, 11/29/2012. 48 Freescale Semiconductor, Inc. How to Reach Us: Home Page: www.freescale.com Web Support: http://www.freescale.com/support USA/Europe or Locations Not Listed: Freescale Semiconductor Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 [email protected] Asia/Pacific: Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 [email protected] Document Number: KL05P48M48SF1 Rev. 3, 11/29/2012 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductors products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claims alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative. For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp. Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © 2012 Freescale Semiconductor, Inc.