FREESCALE MC9S12DT256

DOCUMENT NUMBER
9S12DT256DGV3/D
MC9S12DT256
Device User Guide
V03.07
Covers also
MC9S12A256, MC9S12DJ256
MC9S12DG256,
Original Release Date: 24 March 2003
Revised: 2 January 2006
Freescale Semiconductor, Inc
1
DOCUMENT NUMBER
9S12DT256DGV3/D
Revision History
Version Revision Effective
Number
Date
Date
V03.00
V03.01
V03.02
24 March
2003
30 June
2003
24 July
2003
Author
Description of Changes
Initial version for Maskset L91N , based on MC9S12DP256B
V02.11.
•
added new HCS12 core documentation
•
added cumulative program/erase cycle limitation
to Table A-12 for EEPROM
•
•
updated Table 0-2 Document References
removed cumulative program/erase cycle
limitation from Table A-12 for EEPROM
•
V03.03
26 July
2003
•
added LRAE generic load and execute info to
section 15
Added MC9S12DT256 in QFP 80 to Table 0-1
V03.04
15 March
2004
•
Added Masksets 0L01Y and 4L91N
V03.05
4 April
2005
•
V03.06
12 Oct
2005
Changed NVM data retention specification
Table A-12
Corrected Flash Burst Programming Time Table
A-11,
•
V03.07
02 Jan
2006
•
•
NVM Reliability Spec Table A-12 ,Figure A-2
Corrected Flash Burst Programming Time Table
A-11,
Motorola reserves the right to make changes without further notice to any products herein to improve reliability, function or
design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein;
neither does it convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended,
or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to
support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where
personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized
application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was
negligent regarding the design or manufacture of the part.
2
MC9S12DT256 Device User Guide — 9S12DT256DGV3/D V03.07
3
MC9S12DT256 Device User Guide — 9S12DT256DGV3/D V03.07
4
MC9S12DT256 Device User Guide — V03.07
Table of Contents
Section 1 IntroductionMC9S12DT256
1.1
1.2
1.3
1.4
1.5
1.6
1.7
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
Device Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
Detailed Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
Part ID Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50
Section 2 Signal Description
2.1
Device Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51
2.2
Signal Properties Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
2.3
Detailed Signal Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
2.3.1
EXTAL, XTAL — Oscillator Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
2.3.2
RESET — External Reset Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
2.3.3
TEST — Test Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
2.3.4
VREGEN — Voltage Regulator Enable Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
2.3.5
XFC — PLL Loop Filter Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
2.3.6
BKGD / TAGHI / MODC — Background Debug, Tag High, and Mode Pin . . . . . . . .57
2.3.7
PAD15 / AN15 / ETRIG1 — Port AD Input Pin of ATD1 . . . . . . . . . . . . . . . . . . . . . .57
2.3.8
PAD[14:08] / AN[14:08] — Port AD Input Pins of ATD1 . . . . . . . . . . . . . . . . . . . . . .57
2.3.9
PAD7 / AN07 / ETRIG0 — Port AD Input Pin of ATD0 . . . . . . . . . . . . . . . . . . . . . . .58
2.3.10 PAD[06:00] / AN[06:00] — Port AD Input Pins of ATD0 . . . . . . . . . . . . . . . . . . . . . .58
2.3.11 PA[7:0] / ADDR[15:8] / DATA[15:8] — Port A I/O Pins . . . . . . . . . . . . . . . . . . . . . . .58
2.3.12 PB[7:0] / ADDR[7:0] / DATA[7:0] — Port B I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . .58
2.3.13 PE7 / NOACC / XCLKS — Port E I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
2.3.14 PE6 / MODB / IPIPE1 — Port E I/O Pin 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
2.3.15 PE5 / MODA / IPIPE0 — Port E I/O Pin 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
2.3.16 PE4 / ECLK — Port E I/O Pin 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
2.3.17 PE3 / LSTRB / TAGLO — Port E I/O Pin 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
2.3.18 PE2 / R/W — Port E I/O Pin 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
2.3.19 PE1 / IRQ — Port E Input Pin 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
2.3.20 PE0 / XIRQ — Port E Input Pin 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
5
MC9S12DT256 Device User Guide — V03.07
2.3.21
2.3.22
2.3.23
2.3.24
2.3.25
2.3.26
2.3.27
2.3.28
2.3.29
2.3.30
2.3.31
2.3.32
2.3.33
2.3.34
2.3.35
2.3.36
2.3.37
2.3.38
2.3.39
2.3.40
2.3.41
2.3.42
2.3.43
2.3.44
2.3.45
2.3.46
2.3.47
2.3.48
2.3.49
2.3.50
2.3.51
2.3.52
2.3.53
2.3.54
2.3.55
2.3.56
6
PH7 / KWH7 / SS2 — Port H I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
PH6 / KWH6 / SCK2 — Port H I/O Pin 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
PH5 / KWH5 / MOSI2 — Port H I/O Pin 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
PH4 / KWH4 / MISO2 — Port H I/O Pin 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
PH3 / KWH3 / SS1 — Port H I/O Pin 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
PH2 / KWH2 / SCK1 — Port H I/O Pin 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
PH1 / KWH1 / MOSI1 — Port H I/O Pin 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
PH0 / KWH0 / MISO1 — Port H I/O Pin 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
PJ7 / KWJ7 / TXCAN4 / SCL — PORT J I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . . . .62
PJ6 / KWJ6 / RXCAN4 / SDA — PORT J I/O Pin 6 . . . . . . . . . . . . . . . . . . . . . . . . . .62
PJ[1:0] / KWJ[1:0] — Port J I/O Pins [1:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
PK7 / ECS / ROMONE — Port K I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
PK[5:0] / XADDR[19:14] — Port K I/O Pins [5:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
PM7 / TXCAN4 — Port M I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
PM6 / RXCAN4 — Port M I/O Pin 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
PM5 / TXCAN0 / TXCAN4 / SCK0 — Port M I/O Pin 5 . . . . . . . . . . . . . . . . . . . . . . .63
PM4 / RXCAN0 / RXCAN4/ MOSI0 — Port M I/O Pin 4 . . . . . . . . . . . . . . . . . . . . . .63
PM3 / TXCAN1 / TXCAN0 / SS0 — Port M I/O Pin 3 . . . . . . . . . . . . . . . . . . . . . . . .63
PM2 / RXCAN1 / RXCAN0 / MISO0 — Port M I/O Pin 2 . . . . . . . . . . . . . . . . . . . . . .63
PM1 / TXCAN0 / TXB — Port M I/O Pin 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64
PM0 / RXCAN0 / RXB — Port M I/O Pin 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64
PP7 / KWP7 / PWM7 / SCK2 — Port P I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . . . . .64
PP6 / KWP6 / PWM6 / SS2 — Port P I/O Pin 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64
PP5 / KWP5 / PWM5 / MOSI2 — Port P I/O Pin 5. . . . . . . . . . . . . . . . . . . . . . . . . . .64
PP4 / KWP4 / PWM4 / MISO2 — Port P I/O Pin 4. . . . . . . . . . . . . . . . . . . . . . . . . . .64
PP3 / KWP3 / PWM3 / SS1 — Port P I/O Pin 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64
PP2 / KWP2 / PWM2 / SCK1 — Port P I/O Pin 2 . . . . . . . . . . . . . . . . . . . . . . . . . . .65
PP1 / KWP1 / PWM1 / MOSI1 — Port P I/O Pin 1. . . . . . . . . . . . . . . . . . . . . . . . . . .65
PP0 / KWP0 / PWM0 / MISO1 — Port P I/O Pin 0. . . . . . . . . . . . . . . . . . . . . . . . . . .65
PS7 / SS0 — Port S I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65
PS6 / SCK0 — Port S I/O Pin 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65
PS5 / MOSI0 — Port S I/O Pin 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65
PS4 / MISO0 — Port S I/O Pin 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65
PS3 / TXD1 — Port S I/O Pin 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65
PS2 / RXD1 — Port S I/O Pin 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66
PS1 / TXD0 — Port S I/O Pin 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66
MC9S12DT256 Device User Guide — V03.07
2.3.57 PS0 / RXD0 — Port S I/O Pin 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66
2.3.58 PT[7:0] / IOC[7:0] — Port T I/O Pins [7:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66
2.4
Power Supply Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66
2.4.1
VDDX,VSSX — Power & Ground Pins for I/O Drivers . . . . . . . . . . . . . . . . . . . . . . . .66
2.4.2
VDDR, VSSR — Power & Ground Pins for I/O Drivers & for Internal Voltage Regulator
66
2.4.3
VDD1, VDD2, VSS1, VSS2 — Core Power Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . .67
2.4.4
VDDA, VSSA — Power Supply Pins for ATD and VREG . . . . . . . . . . . . . . . . . . . . .67
2.4.5
VRH, VRL — ATD Reference Voltage Input Pins . . . . . . . . . . . . . . . . . . . . . . . . . . .67
2.4.6
VDDPLL, VSSPLL — Power Supply Pins for PLL . . . . . . . . . . . . . . . . . . . . . . . . . . .67
2.4.7
VREGEN — On Chip Voltage Regulator Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . .68
Section 3 System Clock Description
3.1
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69
Section 4 Modes of Operation
4.1
4.2
4.3
4.3.1
4.3.2
4.3.3
4.4
4.4.1
4.4.2
4.4.3
4.4.4
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71
Chip Configuration Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71
Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72
Securing the Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72
Operation of the Secured Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72
Unsecuring the Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73
Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73
Stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73
Pseudo Stop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73
Wait . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73
Run. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74
Section 5 Resets and Interrupts
5.1
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75
5.2
Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75
5.2.1
Vector Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75
5.3
Effects of Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77
5.3.1
I/O pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77
5.3.2
Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77
Section 6 HCS12 Core Block Description
7
MC9S12DT256 Device User Guide — V03.07
6.1
6.2
6.2.1
6.3
6.3.1
6.4
6.5
6.6
CPU12 Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79
HCS12 Module Mapping Control (MMC) Block Description . . . . . . . . . . . . . . . . . . . . . .79
Device specific information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79
HCS12 Multiplexed External Bus Interface (MEBI) Block Description . . . . . . . . . . . . . .79
Device specific information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79
HCS12 Interrupt (INT) Block description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79
HCS12 Background Debug (BDM) Block Description . . . . . . . . . . . . . . . . . . . . . . . . . .79
HCS12 Breakpoint (BKP) Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80
Section 7 Clock and Reset Generator (CRG) Block Description
7.1
Device-specific information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80
7.1.1
XCLKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80
Section 8 Enhanced Capture Timer (ECT) Block Description
Section 9 Analog to Digital Converter (ATD) Block Description
Section 10 Inter-IC Bus (IIC) Block Description
Section 11 Serial Communications Interface (SCI) Block Description
Section 12 Serial Peripheral Interface (SPI) Block Description
Section 13 J1850 (BDLC) Block Description
Section 14 Pulse Width Modulator (PWM) Block Description
Section 15 Flash EEPROM 256K Block Description
Section 16 EEPROM 4K Block Description
Section 17 RAM Block Description
Section 18 MSCAN Block Description
Section 19 Port Integration Module (PIM) Block Description
Section 20 Voltage Regulator (VREG) Block Description
8
MC9S12DT256 Device User Guide — V03.07
Appendix A Electrical Characteristics
A.1 General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89
A.1.1
Parameter Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89
A.1.2
Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89
A.1.3
Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90
A.1.4
Current Injection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91
A.1.5
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91
A.1.6
ESD Protection and Latch-up Immunity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92
A.1.7
Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93
A.1.8
Power Dissipation and Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .93
A.1.9
I/O Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95
A.1.10 Supply Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97
A.2 ATD Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99
A.2.1
ATD Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99
A.2.2
Factors influencing accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99
A.2.3
ATD accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101
A.3 NVM, Flash and EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103
A.3.1
NVM timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103
A.3.2
NVM Reliability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105
A.4 Voltage Regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109
A.5 Reset, Oscillator and PLL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111
A.5.1
Startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111
A.5.2
Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112
A.5.3
Phase Locked Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113
A.6 MSCAN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117
A.7 SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119
A.7.1
Master Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119
A.7.2
Slave Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121
A.8 External Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123
A.8.1
General Muxed Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123
Appendix B Package Information
B.1
B.2
B.3
General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127
112-pin LQFP package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .128
80-pin QFP package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129
9
MC9S12DT256 Device User Guide — V03.07
10
MC9S12DT256 Device User Guide — V03.07
List of Figures
Figure 0-1
Figure 1-1
Figure 1-2
Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6
Figure 3-1
Figure 20-1
Figure 20-2
Figure 20-3
Figure 20-4
Figure A-1
Figure A-2
Figure A-3
Figure A-4
Figure A-5
Figure A-6
Figure A-7
Figure A-8
Figure A-9
Figure A-10
Figure B-1
Figure B-2
Order Partnumber Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
MC9S12DT256 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
MC9S12DT256 Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
Pin Assignments in 112-pin LQFP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
Pin Assignments in 80-pin QFP for MC9S12DJ256 . . . . . . . . . . . . . . . . . . . . . .53
PLL Loop Filter Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
Colpitts Oscillator Connections (PE7=1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
Pierce Oscillator Connections (PE7=0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
External Clock Connections (PE7=0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
Clock Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69
Recommended PCB Layout for 112LQFP Colpitts Oscillator . . . . . . . . . . . . . . .84
Recommended PCB Layout for 80QFP Colpitts Oscillator . . . . . . . . . . . . . . . . .85
Recommended PCB Layout for 112LQFP Pierce Oscillator . . . . . . . . . . . . . . . .86
Recommended PCB Layout for 80QFP Pierce Oscillator . . . . . . . . . . . . . . . . . .87
ATD Accuracy Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Typical Endurance vs Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Basic PLL functional diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Jitter Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Maximum bus clock jitter approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
SPI Master Timing (CPHA=0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
SPI Master Timing (CPHA=1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
SPI Slave Timing (CPHA=0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
SPI Slave Timing (CPHA=1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
General External Bus Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
112-pin LQFP mechanical dimensions (case no. 987) . . . . . . . . . . . . . . . . . . 128
80-pin QFP Mechanical Dimensions (case no. 841B) . . . . . . . . . . . . . . . . . . . 129
11
MC9S12DT256 Device User Guide — V03.07
12
MC9S12DT256 Device User Guide — V03.07
List of Tables
Table 0-1
Table 0-2
Table 0-3
Table 1-1
Table 1-2
Table 1-3
Table 1-4
Table 2-1
Table 2-2
Table 4-1
Table 4-2
Table 4-3
Table 5-1
Table A-1
Table A-2
Table A-3
Table A-4
Table A-5
Table A-6
Table A-7
Table A-8
Table A-9
Table A-10
Table A-11
Table A-12
Table A-13
Table A-14
Table A-15
Table A-16
Table A-17
Table A-18
Table A-19
Table A-20
Derivative Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
Document References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Specification Change Summary for Maskset L91N . . . . . . . . . . . . . . . . . . . . . . . .17
Device Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
Detailed MSCAN Foreground Receive and Transmit Buffer Layout. . . . . . . . . . .43
Assigned Part ID Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50
Memory size registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50
Signal Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
MC9S12DP256 Power and Ground Connection Summary . . . . . . . . . . . . . . . . . .67
Mode Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71
Clock Selection Based on PE7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71
Voltage Regulator VREGEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72
Interrupt Vector Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91
ESD and Latch-up Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92
ESD and Latch-Up Protection Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .92
Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93
Thermal Package Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95
5V I/O Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96
Supply Current Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98
ATD Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99
ATD Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100
ATD Conversion Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101
NVM Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104
NVM Reliability Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106
Voltage Regulator Recommended Load Capacitances . . . . . . . . . . . . . . . . . . .109
Startup Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111
Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112
PLL Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116
MSCAN Wake-up Pulse Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117
Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119
SPI Master Mode Timing Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120
SPI Slave Mode Timing Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122
13
MC9S12DT256 Device User Guide — V03.07
Table A-21 Expanded Bus Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125
14
MC9S12DT256 Device User Guide — V03.07
Derivative Differences and Document References
Derivative Differences
Table 0-1 shows the availability of peripheral modules on the various derivatives. For details about the
compatibility within the MC9S12D-Family refer also to engineering bulletin EB386.
Table 0-1 Derivative Differences
Generic
device
MC9S12A256
MC9S12DT256
MC9S12DJ256
MC9S12DG256
# of CANs
0
3
2
2
CAN0
—
✓
✓
✓
CAN1
—
✓
—
—
CAN4
—
✓
✓
✓
J1850/BDLC
—
—
✓
—
Package
112 LQFP/80 QFP
112 LQFP/80 QFP
112 LQFP/80 QFP
112 LQFP/80 QFP
Mask set
L91N/L01Y
L91N/L01Y
L91N/L01Y
L91N/L01Y
Temp Options
C
M, V, C
M, V, C
M, V, C
Package
Code
PV/FU
PV/FU
PV/FU
PV/FU
Notes
An errata exists
contact Sales
Of ce
An errata exists
contact Sales
Of ce
An errata exists
contact Sales
Of ce
An errata exists
contact Sales
Of ce
The following figure provides an ordering number example for the MC9S12H-Family devices.
MC9S12 DT256
C FU
Package Option
Temperature Option
Device Title
Controller Family
Temperature Options
C = -40˚C to 85˚C
V = -40˚C to 105˚C
M = -40˚C to 125˚C
Package Options
FU = 80QFP
PV = 112 LQFP
Figure 0-1 Order Partnumber Example
15
MC9S12DT256 Device User Guide — V03.07
The following items should be considered when using a derivative (Table 0-1):
•
•
•
Registers
–
Do not write or read CAN0 registers (after reset: address range $0140 - $017F), if using a
derivative without CAN0.
–
Do not write or read CAN1registers (after reset: address range $0180 - $01BF), if using a
derivative without CAN1.
–
Do not write or read CAN4 registers (after reset: address range $0280 - $02BF), if using a
derivative without CAN4.
–
Do not write or read BDLC registers (after reset: address range $00E8 - $00EF), if using a
derivative without BDLC.
Interrupts
–
Fill the four CAN0 interrupt vectors ($FFB0 - $FFB7) according to your coding policies for
unused interrupts, if using a derivative without CAN0.
–
Fill the four CAN1 interrupt vectors ($FFA8 - $FFAF) according to your coding policies for
unused interrupts, if using a derivative without CAN1.
–
Fill the four CAN4 interrupt vectors ($FF90 - $FF97) according to your coding policies for
unused interrupts, if using a derivative without CAN4.
–
Fill the BDLC interrupt vector ($FFC2, $FFC3) according to your coding policies for unused
interrupts, if using a derivative without BDLC.
Ports
–
The CAN0 pin functionality (TXCAN0, RXCAN0) is not available on port PJ7, PJ6, PM5,
PM4, PM3, PM2, PM1 and PM0, if using a derivative without CAN0.
–
The CAN1 pin functionality (TXCAN1, RXCAN1) is not available on port PM3 and PM2, if
using a derivative without CAN1.
–
The CAN4 pin functionality (TXCAN4, RXCAN4) is not available on port PJ7, PJ6, PM5,
PM7, PM6, PM5 and PM4, if using a derivative without CAN0.
–
The BDLC pin functionality (TXB, RXB) is not available on port PM1 and PM0, if using a
derivative without BDLC.
–
Do not write MODRR1 and MODRR0 bits of Module Routing Register (PIM_9DP256 Block
Guide), if using a derivative without CAN0.
–
Do not write MODRR3 and MODRR2 bits of Module Routing Register (PIM_9DP256 Block
Guide), if using a derivative without CAN4.
Document References
16
MC9S12DT256 Device User Guide — V03.07
The Device Guide provides information about the MC9S12DT256 device made up of standard HCS12
blocks and the HCS12 processor core.
This document is part of the customer documentation. A complete set of device manuals also includes the
HCS12 Core User Guide and all the individual Block Guides of the implemented modules. In a effort to
reduce redundancy all module specific information is located only in the respective Block Guide. If
applicable, special implementation details of the module are given in the block description sections of this
document.
See Table 0-2 for names and versions of the referenced documents throughout the Device User Guide.
Table 0-2 Document References
User Guide
Version
Document Order Number
CPU12 Reference Manual
V04
CPU12RM/AD
HCS12 Multiplexed External Bus Interface (MEBI) Block Guide
V03
S12MEBIV3/D
HCS12 Module Mapping Control (MMC) Block Guide
V04
S12MMCV4/D
HCS12 Interrupt (INT) Block Guide
V01
S12INTV1/D
HCS12 Background Debug (BDM) Block Guide
V04
S12BDMV4/D
HCS12 Breakpoint (BKP) Block Guide
V01
S12BKPV1/D
Clock and Reset Generator (CRG) Block User Guide
V04
S12CRGV4/D
Enhanced Capture Timer (ECT_16B8C) Block User Guide
V01
S12ECT16B8CV1/D
Analog to Digital Converter 10 Bit 8 Channels (ATD_10B8C) Block User Guide
V02
S12ATD10B8CV2/D
Inter IC Bus (IIC) Block User Guide
V02
S12IICV2/D
Asynchronous Serial Interface (SCI) Block User Guide
V02
S12SCIV2/D
Serial Peripheral Interface (SPI) Block User Guide
V03
S12SPIV3/D
Pulse Width Modulator 8 Bit 8 Channel (PWM_8B8C) Block User Guide
V01
S12PWM8B8CV1/D
256 K Byte Flash (FTS256K) Block User Guide
V03
S12FTS256KV3/D
4K Byte EEPROM (EETS4K) Block User Guide
V02
S12EETS4KV2/D
Byte Level Data Link Controller -J1850 (BDLC) Block User Guide
V01
S12BDLCV1/D
Motorola Scalable CAN (MSCAN) Block User Guide
V02
S12MSCANV2/D
Voltage Regulator (VREG) Block User Guide
V01
S12VREGV1/D
Port Integration Module (PIM_9DP256) Block User Guide
V03
S12PIM9DP256V3/D
Oscillator (OSC) Block Guide
V02
S12OSCV2/D
Table 0-3 shows the Specification Change Summary for Maskset L91N.
Table 0-3 Speci cation Chang e Summary for Maskset L91N
Block
MCU_9DT256
HCS12 V1.5
HCS12 V1.5
CRG
Spec Change
removed CAN2 and CAN3
The Background Debug Module includes an Acknowledge Protocol (two
additional hardware commands ACK_ENABLE/ACK_DISABLE)
The state of PK7/ROMCTL is latched into ROMON Bit during RESET into
Emulation Mode or Normal Expanded Mode
Maskset includes an additional Pierce Oscillator
17
MC9S12DT256 Device User Guide — V03.07
Table 0-3 Speci cation Chang e Summary for Maskset L91N
Block
EETS4K/FTS256K
PIM_9DP256
18
Spec Change
Reliability Speci cation f or Non Volatile Memories
CAN0 can be routed to PORTJ
MC9S12DT256 Device User Guide — V03.07
Section 1 IntroductionMC9S12DT256
1.1 Overview
The MC9S12DT256 microcontroller unit (MCU) is a 16-bit device composed of standard on-chip
peripherals including a 16-bit central processing unit (HCS12 CPU), 256K bytes of Flash EEPROM, 12K
bytes of RAM, 4K bytes of EEPROM, two asynchronous serial communications interfaces (SCI), three
serial peripheral interfaces (SPI), an 8-channel IC/OC enhanced capture timer, two 8-channel, 10-bit
analog-to-digital converters (ADC), an 8-channel pulse-width modulator (PWM), a digital Byte Data Link
Controller (BDLC), 29 discrete digital I/O channels (Port A, Port B, Port K and Port E), 20 discrete digital
I/O lines with interrupt and wakeup capability, three CAN 2.0 A, B software compatible modules
(MSCAN12), and an Inter-IC Bus. The MC9S12DT256 has full 16-bit data paths throughout. However,
the external bus can operate in an 8-bit narrow mode so single 8-bit wide memory can be interfaced for
lower cost systems. The inclusion of a PLL circuit allows power consumption and performance to be
adjusted to suit operational requirements.
1.2 Features
•
HCS12 Core
–
16-bit HCS12 CPU
i. Upward compatible with M68HC11 instruction set
ii. Interrupt stacking and programmer’s model identical to M68HC11
iii. Instruction queue
iv. Enhanced indexed addressing
•
•
–
MEBI (Multiplexed External Bus Interface)
–
MMC (Module Mapping Control)
–
INT (Interrupt control)
–
BKP (Breakpoints)
–
BDM (Background Debug Mode)
CRG
–
Low current Colpitts or Pierce oscillator
–
PLL
–
COP watchdog
–
Real time interrupt
–
Clock Monitor
8-bit and 4-bit ports with interrupt functionality
–
Digital filtering
19
MC9S12DT256 Device User Guide — V03.07
–
•
•
•
•
•
•
•
Memory
–
256K Flash EEPROM
–
4K byte EEPROM
–
12K byte RAM
Two 8-channel Analog-to-Digital Converters
–
10-bit resolution
–
External conversion trigger capability
Three 1M bit per second, CAN 2.0 A, B software compatible modules
–
Five receive and three transmit buffers
–
Flexible identifier filter programmable as 2 x 32 bit, 4 x 16 bit or 8 x 8 bit
–
Four separate interrupt channels for Rx, Tx, error and wake-up
–
Low-pass filter wake-up function
–
Loop-back for self test operation
Enhanced Capture Timer
–
16-bit main counter with 7-bit prescaler
–
8 programmable input capture or output compare channels
–
Four 8-bit or two 16-bit pulse accumulators
8 PWM channels
–
Programmable period and duty cycle
–
8-bit 8-channel or 16-bit 4-channel
–
Separate control for each pulse width and duty cycle
–
Center-aligned or left-aligned outputs
–
Programmable clock select logic with a wide range of frequencies
–
Fast emergency shutdown input
–
Usable as interrupt inputs
Serial interfaces
–
Two asynchronous Serial Communications Interfaces (SCI)
–
Three Synchronous Serial Peripheral Interface (SPI)
Byte Data Link Controller (BDLC)
–
•
20
Programmable rising or falling edge trigger
SAE J1850 Class B Data Communications Network Interface Compatible and ISO Compatible
for Low-Speed (<125 Kbps) Serial Data Communications in Automotive Applications
Inter-IC Bus (IIC)
MC9S12DT256 Device User Guide — V03.07
•
–
Compatible with I2C Bus standard
–
Multi-master operation
–
Software programmable for one of 256 different serial clock frequencies
112-Pin LQFP package
–
I/O lines with 5V input and drive capability
–
5V A/D converter inputs
–
Operation at 50MHz equivalent to 25MHz Bus Speed
–
Development support
–
Single-wire background debug™ mode (BDM)
–
On-chip hardware breakpoints
1.3 Modes of Operation
User modes
•
•
Normal and Emulation Operating Modes
–
Normal Single-Chip Mode
–
Normal Expanded Wide Mode
–
Normal Expanded Narrow Mode
–
Emulation Expanded Wide Mode
–
Emulation Expanded Narrow Mode
Special Operating Modes
–
Special Single-Chip Mode with active Background Debug Mode
–
Special Test Mode (Motorola use only)
–
Special Peripheral Mode (Motorola use only)
Low power modes
•
Stop Mode
•
Pseudo Stop Mode
•
Wait Mode
21
MC9S12DT256 Device User Guide — V03.07
1.4 Block Diagram
Figure 1-1 shows a block diagram of the MC9S12DT256 device.
22
MC9S12DT256 Device User Guide — V03.07
Figure 1-1 MC9S12DT256 Block Diagram
PLL 2.5V
VDDPLL
VSSPLL
RXB
TXB
RXCAN
CAN0
TXCAN
RXCAN
CAN1
TXCAN
CAN4
IIC
I/O Driver 5V
VDDX
VSSX
A/D Converter 5V &
Voltage Regulator Reference
PWM
VDDA
VSSA
Voltage Regulator 5V & I/O
VDDR
VSSR
SPI1
SPI2
RXCAN
TXCAN
SDA
SCL
KWJ0
KWJ1
KWJ6
KWJ7
PWM0
PWM1
PWM2
PWM3
PWM4
PWM5
PWM6
PWM7
KWP0
KWP1
KWP2
KWP3
KWP4
KWP5
KWP6
KWP7
MISO
MOSI
SCK
SS
MISO
MOSI
SCK
SS
KWH0
KWH1
KWH2
KWH3
KWH4
KWH5
KWH6
KWH7
PM0
PM1
PM2
PM3
PM4
PM5
PM6
PM7
PJ0
PJ1
PJ6
PJ7
PP0
PP1
PP2
PP3
PP4
PP5
PP6
PP7
XADDR14
XADDR15
XADDR16
XADDR17
XADDR18
XADDR19
ECS
Signals shown in Bold are not available on the 80 Pin Package
ADDR7
ADDR6
ADDR5
ADDR4
ADDR3
ADDR2
ADDR1
ADDR0
BDLC
(J1850)
AD1
DATA7
DATA6
DATA5
DATA4
DATA3
DATA2
DATA1
DATA0
Internal Logic 2.5V
VDD1,2
VSS1,2
SPI0
PTK
PTB
PB7
PB6
PB5
PB4
PB3
PB2
PB1
PB0
PTA
MISO
MOSI
SCK
SS
PTT
Multiplexed
Narrow Bus
DDRB
DATA7
DATA6
DATA5
DATA4
DATA3
DATA2
DATA1
DATA0
Multiplexed
Wide Bus
DDRA
DATA15 ADDR15 PA7
DATA14 ADDR14 PA6
DATA13 ADDR13 PA5
DATA12 ADDR12 PA4
DATA11 ADDR11 PA3
DATA10 ADDR10 PA2
DATA9
ADDR9 PA1
DATA8
ADDR8 PA0
Multiplexed Address/Data Bus
PTS
SCI1
PS0
PS1
PS2
PS3
PS4
PS5
PS6
PS7
PTM
RXD
TXD
RXD
TXD
SCI0
TEST
PT0
PT1
PT2
PT3
PT4
PT5
PT6
PT7
PTJ
Enhanced Capture
Timer
PK0
PK1
PK2
PK3
PK4
PK5
PK7
PTP
XIRQ
IRQ
System
R/W
Integration
LSTRB
Module
ECLK
(SIM)
MODA
MODB
NOACC/XCLKS
IOC0
IOC1
IOC2
IOC3
IOC4
IOC5
IOC6
IOC7
VRH
VRL
VDDA
VSSA
PAD08
PAD09
PAD10
PAD11
PAD12
PAD13
PAD14
PAD15
PH0
PH1
PH2
PTH
Periodic Interrupt
COP Watchdog
Clock Monitor
Breakpoints
DDRK
Clock and
Reset
Generation
Module
PIX0
PIX1
PIX2
PIX3
PIX4
PIX5
ECS
DDRT
PTE
PE0
PE1
PE2
PE3
PE4
PE5
PE6
PE7
PLL
PPAGE
DDRS
XFC
VDDPLL
VSSPLL
EXTAL
XTAL
RESET
CPU12
AN0
AN1
AN2
AN3
AN4
AN5
AN6
AN7
PAD00
PAD01
PAD02
PAD03
PAD04
PAD05
PAD06
PAD07
DDRM
Single-wire Background
Debug Module
DDRE
BKGD
Voltage Regulator
VRH
VRL
VDDA
VSSA
DDRJ
VDDR
VSSR
VREGEN
VDD1,2
VSS1,2
AD0
AN0
AN1
AN2
AN3
AN4
AN5
AN6
AN7
4K Byte EEPROM
ATD1
DDRP
12K Byte RAM
VRH
VRL
VDDA
VSSA
DDRH
ATD0
Module to Port Routing
256K Byte Flash EEPROM
PH3
PH4
PH5
PH6
PH7
23
MC9S12DT256 Device User Guide — V03.07
1.5 Device Memory Map
Table 1-1 and Figure 1-2 show the device memory map of the MC9S12DT256 after reset. Note that after
reset the bottom 1k of the EEPROM ($0000 - $03FF) are hidden by the register space.
Table 1-1 Device Memory Map
Address
Module
$0000 - $0017
CORE (Ports A, B, E, Modes, Inits, Test)
$0018 - $0019
Reserved
2
$001A - $001B Device ID register (PARTID)
2
$001C - $001F CORE (MEMSIZ, IRQ, HPRIO)
4
$0020 - $0027
Reserved
8
$0028 - $002F
CORE (Background Debug Mode)
8
$0030 - $0033
CORE (PPAGE, Port K)
4
$0034 - $003F
Clock and Reset Generator (PLL, RTI, COP)
12
$0040 - $007F
Enhanced Capture Timer 16-bit 8 channels
64
$0080 - $009F
Analog to Digital Converter 10-bit 8 channels (ATD0)
32
$00A0 - $00C7 Pulse Width Modulator 8-bit 8 channels (PWM)
24
40
$00C8 - $00CF Serial Communications Interface (SCI0)
8
$00D0 - $00D7 Serial Communications Interface (SCI1)
8
$00D8 - $00DF Serial Peripheral Interface (SPI0)
8
$00E0 - $00E7 Inter IC Bus
8
$00E8 - $00EF Byte Data Link Controller (BDLC)
8
$00F0 - $00F7
Serial Peripheral Interface (SPI1)
8
$00F8 - $00FF
Serial Peripheral Interface (SPI2)
8
$0100- $010F
Flash Control Register
16
$0110 - $011B
EEPROM Control Register
12
$011C - $011F Reserved
4
$0120 - $013F
Analog to Digital Converter 10-bit 8 channels (ATD1)
32
$0140 - $017F
Motorola Scalable Can (CAN0)
64
$0180 - $01BF
Motorola Scalable Can (CAN1)
64
$01C0 - $01FF Reserved
64
$0200 - $023F
Reserved
64
$0240 - $027F
Port Integration Module (PIM)
64
$0280 - $02BF
Motorola Scalable Can (CAN4)
64
$02C0 - $03FF Reserved
$0000 - $0FFF
24
Size
(Bytes)
EEPROM array
320
4096
MC9S12DT256 Device User Guide — V03.07
Table 1-1 Device Memory Map
Address
Module
Size
(Bytes)
$1000 - $3FFF
RAM array
12288
$4000 - $7FFF
Fixed Flash EEPROM array
incl. 0.5K, 1K, 2K or 4K Protected Sector at start
16384
$8000 - $BFFF Flash EEPROM Page Window
16384
Fixed Flash EEPROM array
$C000 - $FFFF incl. 0.5K, 1K, 2K or 4K Protected Sector at end
and 256 bytes of Vector Space at $FF80 - $FFFF
16384
25
MC9S12DT256 Device User Guide — V03.07
Figure 1-2 MC9S12DT256 Memory Map
$0000
$0000
$0400
$03FF
$0000
$1000
REGISTERS
(Mappable to any 2k Block
within the first 32K)
4K Bytes EEPROM
(Mappable to any 4K Block)
$0FFF
$1000
$4000
$3FFF
$4000
12K Bytes RAM
(Mappable to any 16K
and alignable to top or
bottom)
16K Fixed Flash
Page $3E = 62
(This is dependant on the
state of the ROMHM bit)
$7FFF
$8000
$8000
16K Page Window
16 x 16K Flash EEPROM
pages
EXTERN
$BFFF
$C000
$C000
16K Fixed Flash
Page $3F = 63
$FFFF
$FF00
$FF00
VECTORS
VECTORS
VECTORS
EXPANDED*
NORMAL
SINGLE CHIP
SPECIAL
SINGLE CHIP
$FFFF
* Assuming that a ‘0’ was driven onto port K bit 7 during MCU
is reset into normal expanded wide or narrow mode.
26
$FFFF
BDM
(if active)
MC9S12DT256 Device User Guide — V03.07
1.6 Detailed Register Map
The following tables show the detailed register map of the MC9S12DT256.
$0000 - $000F
Address
Name
$0000
PORTA
$0001
PORTB
$0002
DDRA
$0003
DDRB
$0004
Reserved
$0005
Reserved
$0006
Reserved
$0007
Reserved
$0008
PORTE
$0009
DDRE
$000A
PEAR
$000B
MODE
$000C
PUCR
$000D
RDRIV
$000E
EBICTL
$000F
Reserved
$0010 - $0014
Address
Name
$0010
INITRM
$0011
INITRG
MEBI map 1 of 3 (Core User Guide)
Bit 7
Read:
Bit 7
Write:
Read:
Bit 7
Write:
Read:
Bit 7
Write:
Read:
Bit 7
Write:
Read:
0
Write:
Read:
0
Write:
Read:
0
Write:
Read:
0
Write:
Read:
Bit 7
Write:
Read:
Bit 7
Write:
Read:
NOACCE
Write:
Read:
MODC
Write:
Read:
PUPKE
Write:
Read:
RDPK
Write:
Read:
0
Write:
Read:
0
Write:
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
6
5
4
3
2
1
Bit 0
6
5
4
3
2
1
Bit 0
6
5
4
3
2
1
Bit 0
6
5
4
3
2
1
Bit 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
6
5
4
3
2
Bit 1
Bit 0
6
5
4
3
Bit 2
0
0
PIPOE
NECLK
LSTRE
RDWE
0
0
EMK
EME
PUPBE
PUPAE
RDPB
RDPA
0
MODB
MODA
0
0
0
0
0
0
0
0
0
IVIS
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Bit 2
0
Bit 1
0
Bit 0
0
0
PUPEE
RDPE
ESTR
MMC map 1 of 4 (Core User Guide)
Bit 7
Read:
RAM15
Write:
Read:
0
Write:
Bit 6
Bit 5
Bit 4
Bit 3
RAM14
RAM13
RAM12
RAM11
REG14
REG13
REG12
REG11
RAMHAL
0
27
MC9S12DT256 Device User Guide — V03.07
$0010 - $0014
Address
MMC map 1 of 4 (Core User Guide)
Name
$0012
INITEE
$0013
MISC
$0014
Reserved
Read:
Write:
Read:
Write:
Read:
Write:
$0015 - $0016
Address
ITCR
$0016
ITEST
Read:
Write:
Read:
Write:
$0017 - $0017
Address
$0017
Read:
Write:
$0018 - $001B
Address
Reserved
$0019
Reserved
$001A
PARTIDH
$001B
PARTIDL
$001C - $001D
Address
28
Name
$001C
MEMSIZ0
$001D
MEMSIZ1
Bit 4
Bit 3
EE15
EE14
EE13
EE12
EE11
0
0
0
0
0
0
0
0
Bit 2
0
Bit 1
0
Bit 0
EEON
EXSTR1 EXSTR0 ROMHM ROMON
0
0
0
0
Bit 7
0
Bit 6
0
Bit 5
0
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
WRINT
ADR3
ADR2
ADR1
ADR0
INTE
INTC
INTA
INT8
INT6
INT4
INT2
INT0
Bit 7
0
Bit 6
0
Bit 5
0
Bit 2
0
Bit 1
0
Bit 0
0
Bit 4
0
Bit 3
0
Miscellaneous Peripherals (Device User Guide,Table 1-3)
Name
$0018
Bit 5
MMC map 2 of 4 (Core User Guide)
Name
Reserved
Bit 6
INT map 1 of 2 (Core User Guide)
Name
$0015
Bit 7
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Bit 7
0
Bit 6
0
Bit 5
0
Bit 4
0
Bit 3
0
Bit 2
0
Bit 1
0
Bit 0
0
0
0
0
0
0
0
0
0
ID15
ID14
ID13
ID12
ID11
ID10
ID9
ID8
ID7
ID6
ID5
ID4
ID3
ID2
ID1
ID0
MMC map 3 of 4 (Core and Device User Guide,Table 1-4)
Bit 7
Bit 6
Bit 5
Bit 4
Read: reg_sw0
0
eep_sw1 eep_sw0
Write:
Read: rom_sw1 rom_sw0
0
0
Write:
Bit 3
0
0
Bit 2
Bit 1
Bit 0
ram_sw2 ram_sw1 ram_sw0
0
pag_sw1 pag_sw0
MC9S12DT256 Device User Guide — V03.07
$001E - $001E
Address
$001E
MEBI map 2 of 3 (Core User Guide)
Name
INTCR
Read:
Write:
$001F - $001F
Address
$001F
Read:
Write:
$0020 - $0027
Address
Reserved
$0021
Reserved
$0022
Reserved
$0023
Reserved
$0024
Reserved
$0025
Reserved
$0026
Reserved
$0027
Reserved
$0028 - $002F
Address
Name
$0028
BKPCT0
$0029
BKPCT1
$002A
BKP0X
$002B
BKP0H
$002C
BKP0L
IRQE
IRQEN
Bit 5
0
Bit 4
0
Bit 3
0
Bit 2
0
Bit 1
0
Bit 0
0
Bit 0
0
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
PSEL7
PSEL6
PSEL5
PSEL4
PSEL3
PSEL2
PSEL1
Reserved
Name
$0020
Bit 6
INT map 2 of 2 (Core User Guide)
Name
HPRIO
Bit 7
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read
Write:
Bit 7
0
Bit 6
0
Bit 5
0
Bit 4
0
Bit 3
0
Bit 2
0
Bit 1
0
Bit 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BKP (Core User Guide)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Read:
0
0
0
0
BKEN
BKFULL BKBDM BKTAG
Write:
Read:
BK0MBH BK0MBL BK1MBH BK1MBL BK0RWE BK0RW BK1RWE BK1RW
Write:
Read:
0
0
BK0V5
BK0V4
BK0V3
BK0V2
BK0V1
BK0V0
Write:
Read:
Bit 15
14
13
12
11
10
9
Bit 8
Write:
Read:
Bit 7
6
5
4
3
2
1
Bit 0
Write:
29
MC9S12DT256 Device User Guide — V03.07
$0028 - $002F
Address
BKP (Core User Guide)
Name
$002D
BKP1X
$002E
BKP1H
$002F
BKP1L
Read:
Write:
Read:
Write:
Read:
Write:
$0030 - $0031
Address
PPAGE
$0031
Reserved
Read:
Write:
Read:
Write:
$0032 - $0033
Address
PORTK
$0033
DDRK
$0034 - $003F
30
Address
Name
$0034
SYNR
$0035
REFDV
$0036
CTFLG
TEST ONLY
$0037
CRGFLG
$0038
CRGINT
$0039
CLKSEL
$003A
PLLCTL
$003B
RTICTL
$003C
COPCTL
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
BK1V5
BK1V4
BK1V3
BK1V2
BK1V1
BK1V0
Bit 15
14
13
12
11
10
9
Bit 8
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
0
Bit 6
0
0
0
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
PIX5
PIX4
PIX3
PIX2
PIX1
PIX0
0
0
0
0
0
0
MEBI map 3 of 3 (Core User Guide)
Name
$0032
Bit 6
0
MMC map 4 of 4 (Core User Guide)
Name
$0030
Bit 7
0
Read:
Write:
Read:
Write:
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
CRG (Clock and Reset Generator)
Bit 7
Read:
0
Write:
Read:
0
Write:
Read: TOUT7
Write:
Read:
RTIF
Write:
Read:
RTIE
Write:
Read:
PLLSEL
Write:
Read:
CME
Write:
Read:
0
Write:
Read:
WCOP
Write:
Bit 6
0
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
SYN5
SYN4
SYN3
SYN2
SYN1
SYN0
0
0
0
TOUT6
TOUT5
TOUT4
PROF
0
PSTP
0
0
LOCKIF
LOCKIE
SYSWAI ROAWAI
REFDV3 REFDV2 REFDV1 REFDV0
TOUT3
TOUT2
LOCK
TRACK
0
0
PLLWAI
CWAI
RTIWAI
COPWAI
PRE
PCE
SCME
RTR2
RTR1
RTR0
CR2
CR1
CR0
0
PLLON
AUTO
ACQ
RTR6
RTR5
RTR4
RTR3
0
0
0
RSBCK
TOUT1
SCMIF
SCMIE
TOUT0
SCM
0
MC9S12DT256 Device User Guide — V03.07
$0034 - $003F
Address
$003D
$003E
$003F
Name
FORBYP
TEST ONLY
CTCTL
TEST ONLY
ARMCOP
CRG (Clock and Reset Generator)
Bit 7
Bit 6
Read:
RTIBYP COPBYP
Write:
Read: TCTL7
TCTL6
Write:
Read:
0
0
Write:
Bit 7
6
$0040 - $007F
Address
TIOS
$0041
CFORC
$0042
OC7M
$0043
OC7D
$0044
TCNT (hi)
$0045
TCNT (lo)
$0046
TSCR1
$0047
TTOV
$0048
TCTL1
$0049
TCTL2
$004A
TCTL3
$004B
TCTL4
$004C
TIE
$004D
TSCR2
$004E
TFLG1
$004F
TFLG2
$0050
TC0 (hi)
$0051
TC0 (lo)
$0052
TC1 (hi)
Bit 4
PLLBYP
Bit 3
0
Bit 2
0
Bit 1
FCM
Bit 0
0
TCTL5
TCTL4
TCLT3
TCTL2
TCTL1
TCTL0
0
5
0
4
0
3
0
2
0
1
0
Bit 0
ECT (Enhanced Capture Timer 16 Bit 8 Channels)
Name
$0040
Bit 5
0
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
IOS7
IOS6
IOS5
IOS4
IOS3
IOS2
IOS1
IOS0
0
FOC7
0
FOC6
0
FOC5
0
FOC4
0
FOC3
0
FOC2
0
FOC1
0
FOC0
OC7M7
OC7M6
OC7M5
OC7M4
OC7M3
OC7M2
OC7M1
OC7M0
OC7D7
OC7D6
OC7D5
OC7D4
OC7D3
OC7D2
OC7D1
OC7D0
Bit 15
14
13
12
11
10
9
Bit 8
Bit 7
6
5
4
3
2
1
Bit 0
TEN
TSWAI
TSFRZ
TFFCA
0
0
0
0
TOV7
TOV6
TOV5
TOV4
TOV3
TOV2
TOV1
TOV0
OM7
OL7
OM6
OL6
OM5
OL5
OM4
OL4
OM3
OL3
OM2
OL2
OM1
OL1
OM0
OL0
EDG7B
EDG7A
EDG6B
EDG6A
EDG5B
EDG5A
EDG4B
EDG4A
EDG3B
EDG3A
EDG2B
EDG2A
EDG1B
EDG1A
EDG0B
EDG0A
C7I
C6I
C5I
C4I
C3I
C2I
C1I
C0I
0
0
0
TCRE
PR2
PR1
PR0
C6F
C5F
C4F
C3F
C2F
C1F
C0F
0
0
0
0
0
0
0
Bit 15
14
13
12
11
10
9
Bit 8
Bit 7
6
5
4
3
2
1
Bit 0
Bit 15
14
13
12
11
10
9
Bit 8
TOI
C7F
TOF
31
MC9S12DT256 Device User Guide — V03.07
$0040 - $007F
Address
32
Name
$0053
TC1 (lo)
$0054
TC2 (hi)
$0055
TC2 (lo)
$0056
TC3 (hi)
$0057
TC3 (lo)
$0058
TC4 (hi)
$0059
TC4 (lo)
$005A
TC5 (hi)
$005B
TC5 (lo)
$005C
TC6 (hi)
$005D
TC6 (lo)
$005E
TC7 (hi)
$005F
TC7 (lo)
$0060
PACTL
$0061
PAFLG
$0062
PACN3 (hi)
$0063
PACN2 (lo)
$0064
PACN1 (hi)
$0065
PACN0 (lo)
$0066
MCCTL
$0067
MCFLG
$0068
ICPAR
$0069
DLYCT
$006A
ICOVW
$006B
ICSYS
ECT (Enhanced Capture Timer 16 Bit 8 Channels)
Bit 7
Read:
Bit 7
Write:
Read:
Bit 15
Write:
Read:
Bit 7
Write:
Read:
Bit 15
Write:
Read:
Bit 7
Write:
Read:
Bit 15
Write:
Read:
Bit 7
Write:
Read:
Bit 15
Write:
Read:
Bit 7
Write:
Read:
Bit 15
Write:
Read:
Bit 7
Write:
Read:
Bit 15
Write:
Read:
Bit 7
Write:
Read:
0
Write:
Read:
0
Write:
Read:
Bit 7
Write:
Read:
Bit 7
Write:
Read:
Bit 7
Write:
Read:
Bit 7
Write:
Read:
MCZI
Write:
Read:
MCZF
Write:
Read:
0
Write:
Read:
0
Write:
Read:
NOVW7
Write:
Read:
SH37
Write:
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
6
5
4
3
2
1
Bit 0
14
13
12
11
10
9
Bit 8
6
5
4
3
2
1
Bit 0
14
13
12
11
10
9
Bit 8
6
5
4
3
2
1
Bit 0
14
13
12
11
10
9
Bit 8
6
5
4
3
2
1
Bit 0
14
13
12
11
10
9
Bit 8
6
5
4
3
2
1
Bit 0
14
13
12
11
10
9
Bit 8
6
5
4
3
2
1
Bit 0
14
13
12
11
10
9
Bit 8
6
5
4
3
2
1
Bit 0
PAEN
PAMOD
PEDGE
CLK1
CLK0
PAOVI
PAI
0
0
0
0
0
PAOVF
PAIF
6
5
4
3
2
1
Bit 0
6
5
4
3
2
1
Bit 0
6
5
4
3
2
1
Bit 0
6
5
4
3
2
1
Bit 0
MODMC
RDMCL
MCPR1
MCPR0
0
0
FLMC
POLF3
MCEN
0
0
ICLAT
0
POLF2
POLF1
POLF0
0
0
0
PA3EN
PA2EN
PA1EN
PA0EN
0
0
0
0
0
DLY1
DLY0
NOVW6
NOVW5
NOVW4
NOVW3
NOVW2
NOVW1
NOVW0
SH26
SH15
SH04
TFMOD
PACMX
BUFEN
LATQ
MC9S12DT256 Device User Guide — V03.07
$0040 - $007F
Address
ECT (Enhanced Capture Timer 16 Bit 8 Channels)
Name
$006C
Reserved
$006D
TIMTST
Test Only
$006E
Reserved
$006F
Reserved
$0070
PBCTL
$0071
PBFLG
$0072
PA3H
$0073
PA2H
$0074
PA1H
$0075
PA0H
$0076
MCCNT (hi)
$0077
MCCNT (lo)
$0078
TC0H (hi)
$0079
TC0H (lo)
$007A
TC1H (hi)
$007B
TC1H (lo)
$007C
TC2H (hi)
$007D
TC2H (lo)
$007E
TC3H (hi)
$007F
TC3H (lo)
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
$0080 - $009F
Address
ATD0CTL0
$0081
ATD0CTL1
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
0
0
0
0
0
0
0
0
0
0
0
PBEN
Bit 1
TCBYP
PBOVI
Bit 0
0
0
0
0
0
0
0
0
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
Bit 15
14
13
12
11
10
9
Bit 8
Bit 7
6
5
4
3
2
1
Bit 0
Bit 15
14
13
12
11
10
9
Bit 8
Bit 7
6
5
4
3
2
1
Bit 0
Bit 15
14
13
12
11
10
9
Bit 8
Bit 7
6
5
4
3
2
1
Bit 0
Bit 15
14
13
12
11
10
9
Bit 8
Bit 7
6
5
4
3
2
1
Bit 0
Bit 15
14
13
12
11
10
9
Bit 8
Bit 7
6
5
4
3
2
1
Bit 0
PBOVF
0
ATD0 (Analog to Digital Converter 10 Bit 8 Channel)
Name
$0080
Bit 7
Read:
Write:
Read:
Write:
Bit 7
0
Bit 6
0
Bit 5
0
Bit 4
0
Bit 3
0
Bit 2
0
Bit 1
0
Bit 0
0
0
0
0
0
0
0
0
0
33
MC9S12DT256 Device User Guide — V03.07
$0080 - $009F
Address
34
Name
$0082
ATD0CTL2
$0083
ATD0CTL3
$0084
ATD0CTL4
$0085
ATD0CTL5
$0086
ATD0STAT0
$0087
Reserved
$0088
ATD0TEST0
$0089
ATD0TEST1
$008A
Reserved
$008B
ATD0STAT1
$008C
Reserved
$008D
ATD0DIEN
$008E
Reserved
$008F
PORTAD0
$0090
ATD0DR0H
$0091
ATD0DR0L
$0092
ATD0DR1H
$0093
ATD0DR1L
$0094
ATD0DR2H
$0095
ATD0DR2L
$0096
ATD0DR3H
$0097
ATD0DR3L
$0098
ATD0DR4H
$0099
ATD0DR4L
$009A
ATD0DR5H
ATD0 (Analog to Digital Converter 10 Bit 8 Channel)
Bit 7
Read:
ADPU
Write:
Read:
0
Write:
Read:
SRES8
Write:
Read:
DJM
Write:
Read:
SCF
Write:
Read:
0
Write:
Read:
0
Write:
Read:
0
Write:
Read:
0
Write:
Read: CCF7
Write:
Read:
0
Write:
Read:
Bit 7
Write:
Read:
0
Write:
Read:
Bit7
Write:
Read: Bit15
Write:
Read:
Bit7
Write:
Read: Bit15
Write:
Read:
Bit7
Write:
Read: Bit15
Write:
Read:
Bit7
Write:
Read: Bit15
Write:
Read:
Bit7
Write:
Read: Bit15
Write:
Read:
Bit7
Write:
Read: Bit15
Write:
Bit 6
Bit 5
Bit 2
Bit 1
AFFC
AWAI
ETRIG
ASCIE
S8C
S4C
S2C
S1C
FIFO
FRZ1
FRZ0
SMP1
SMP0
PRS4
PRS3
PRS2
PRS1
PRS0
DSGN
SCAN
MULT
CC
CB
CA
ETORF
FIFOR
0
CC2
CC1
CC0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
CCF6
CCF5
CCF4
CCF3
CCF2
CCF1
CCF0
0
0
0
0
0
0
0
6
5
4
3
2
1
Bit 0
0
0
0
0
0
0
0
6
5
4
3
2
1
BIT 0
14
13
12
11
10
9
Bit8
Bit6
0
0
0
0
0
0
14
13
12
11
10
9
Bit8
Bit6
0
0
0
0
0
0
14
13
12
11
10
9
Bit8
Bit6
0
0
0
0
0
0
14
13
12
11
10
9
Bit8
Bit6
0
0
0
0
0
0
14
13
12
11
10
9
Bit8
Bit6
0
0
0
0
0
0
14
13
12
11
10
9
Bit8
0
Bit 4
Bit 3
ETRIGLE ETRIGP
0
Bit 0
ASCIF
SC
MC9S12DT256 Device User Guide — V03.07
$0080 - $009F
Address
Name
$009B
ATD0DR5L
$009C
ATD0DR6H
$009D
ATD0DR6L
$009E
ATD0DR7H
$009F
ATD0DR7L
$00A0 - $00C7
Address
$00A0
$00A1
$00A2
$00A3
$00A4
$00A5
$00A6
$00A7
$00A8
$00A9
$00AA
$00AB
$00AC
$00AD
$00AE
$00AF
$00B0
ATD0 (Analog to Digital Converter 10 Bit 8 Channel)
Name
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Bit 7
Bit7
Bit 6
Bit6
Bit 5
0
Bit 4
0
Bit 3
0
Bit 2
0
Bit 1
0
Bit 0
0
Bit15
14
13
12
11
10
9
Bit8
Bit7
Bit6
0
0
0
0
0
0
Bit15
14
13
12
11
10
9
Bit8
Bit7
Bit6
0
0
0
0
0
0
PWM (Pulse Width Modulator 8 Bit 8 Channel)
Bit 7
Read:
PWME7
PWME
Write:
Read:
PPOL7
PWMPOL
Write:
Read:
PCLK7
PWMCLK
Write:
Read:
0
PWMPRCLK
Write:
Read:
CAE7
PWMCAE
Write:
Read:
CON67
PWMCTL
Write:
PWMTST
Read:
0
Test Only
Write:
Read:
0
PWMPRSC
Write:
Read:
Bit 7
PWMSCLA
Write:
Read:
Bit 7
PWMSCLB
Write:
Read:
0
PWMSCNTA
Write:
Read:
0
PWMSCNTB
Write:
Read:
Bit 7
PWMCNT0
Write:
0
Read:
Bit 7
PWMCNT1
Write:
0
Read:
Bit 7
PWMCNT2
Write:
0
Read:
Bit 7
PWMCNT3
Write:
0
Read:
Bit 7
PWMCNT4
Write:
0
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
PWME6
PWME5
PWME4
PWME3
PWME2
PWME1
PWME0
PPOL6
PPOL5
PPOL4
PPOL3
PPOL2
PPOL1
PPOL0
PCLK6
PCLK5
PCLK4
PCLK3
PCLK2
PCLK1
PCLK0
PCKB2
PCKB1
PCKB0
PCKA2
PCKA1
PCKA0
CAE6
CAE5
CAE4
CAE3
CAE2
CAE1
CAE0
CON45
CON23
CON01
PSWAI
PFRZ
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
6
5
4
3
2
1
Bit 0
6
5
4
3
2
1
Bit 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
6
0
6
0
6
0
6
0
6
0
5
0
5
0
5
0
5
0
5
0
4
0
4
0
4
0
4
0
4
0
3
0
3
0
3
0
3
0
3
0
2
0
2
0
2
0
2
0
2
0
1
0
1
0
1
0
1
0
1
0
Bit 0
0
Bit 0
0
Bit 0
0
Bit 0
0
Bit 0
0
0
35
MC9S12DT256 Device User Guide — V03.07
$00A0 - $00C7
Address
36
Name
$00B1
PWMCNT5
$00B2
PWMCNT6
$00B3
PWMCNT7
$00B4
PWMPER0
$00B5
PWMPER1
$00B6
PWMPER2
$00B7
PWMPER3
$00B8
PWMPER4
$00B9
PWMPER5
$00BA
PWMPER6
$00BB
PWMPER7
$00BC
PWMDTY0
$00BD
PWMDTY1
$00BE
PWMDTY2
$00BF
PWMDTY3
$00C0
PWMDTY4
$00C1
PWMDTY5
$00C2
PWMDTY6
$00C3
PWMDTY7
$00C4
PWMSDN
$00C5
Reserved
$00C6
Reserved
$00C7
Reserved
PWM (Pulse Width Modulator 8 Bit 8 Channel)
Bit 7
Read:
Bit 7
Write:
0
Read:
Bit 7
Write:
0
Read:
Bit 7
Write:
0
Read:
Bit 7
Write:
Read:
Bit 7
Write:
Read:
Bit 7
Write:
Read:
Bit 7
Write:
Read:
Bit 7
Write:
Read:
Bit 7
Write:
Read:
Bit 7
Write:
Read:
Bit 7
Write:
Read:
Bit 7
Write:
Read:
Bit 7
Write:
Read:
Bit 7
Write:
Read:
Bit 7
Write:
Read:
Bit 7
Write:
Read:
Bit 7
Write:
Read:
Bit 7
Write:
Read:
Bit 7
Write:
Read:
PWMIF
Write:
Read:
0
Write:
Read:
0
Write:
Read:
0
Write:
Bit 6
6
0
6
0
6
0
Bit 5
5
0
5
0
5
0
Bit 4
4
0
4
0
4
0
Bit 3
3
0
3
0
3
0
Bit 2
2
0
2
0
2
0
Bit 1
1
0
1
0
1
0
Bit 0
Bit 0
0
Bit 0
0
Bit 0
0
6
5
4
3
2
1
Bit 0
6
5
4
3
2
1
Bit 0
6
5
4
3
2
1
Bit 0
6
5
4
3
2
1
Bit 0
6
5
4
3
2
1
Bit 0
6
5
4
3
2
1
Bit 0
6
5
4
3
2
1
Bit 0
6
5
4
3
2
1
Bit 0
6
5
4
3
2
1
Bit 0
6
5
4
3
2
1
Bit 0
6
5
4
3
2
1
Bit 0
6
5
4
3
2
1
Bit 0
6
5
4
3
2
1
Bit 0
6
5
4
3
2
1
Bit 0
6
5
4
3
2
1
Bit 0
6
5
4
3
2
1
Bit 0
PWMIE
0
PWMRS
PWMLVL
TRT
0
0
0
PWM7IN
0
0
PWM7IN PWM7E
L
NA
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
MC9S12DT256 Device User Guide — V03.07
$00C8 - $00CF
Address
Name
$00C8
SCI0BDH
$00C9
SCI0BDL
$00CA
SCI0CR1
$00CB
SCI0CR2
$00CC
SCI0SR1
$00CD
SCI0SR2
$00CE
SCI0DRH
$00CF
SCI0DRL
SCI0 (Asynchronous Serial Interface)
Bit 7
Bit 6
Read:
0
0
Write:
Read:
SBR7
SBR6
Write:
Read:
LOOPS SCISWAI
Write:
Read:
TIE
TCIE
Write:
Read: TDRE
TC
Write:
Read:
0
0
Write:
Read:
R8
T8
Write:
Read:
R7
R6
Write:
T7
T6
$00D0 - $00D7
Address
Name
$00D0
SCI1BDH
$00D1
SCI1BDL
$00D2
SCI1CR1
$00D3
SCI1CR2
$00D4
SCI1SR1
$00D5
SCI1SR2
$00D6
SCI1DRH
$00D7
SCI1DRL
Bit 7
Bit 6
Read:
0
0
Write:
Read:
SBR7
SBR6
Write:
Read:
LOOPS SCISWAI
Write:
Read:
TIE
TCIE
Write:
Read: TDRE
TC
Write:
Read:
0
0
Write:
Read:
R8
T8
Write:
Read:
R7
R6
Write:
T7
T6
SPI0CR1
$00D9
SPI0CR2
$00DA
SPI0BR
$00DB
SPI0SR
Bit 3
Bit 2
Bit 1
Bit 0
SBR12
SBR11
SBR10
SBR9
SBR8
SBR5
SBR4
SBR3
SBR2
SBR1
SBR0
RSRC
M
WAKE
ILT
PE
PT
RIE
ILIE
TE
RE
RWU
SBK
RDRF
IDLE
OR
NF
FE
PF
0
0
0
BRK13
TXDIR
0
0
0
0
0
0
R5
T5
R4
T4
R3
T3
R2
T2
R1
T1
R0
T0
RAF
Bit 5
0
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
SBR12
SBR11
SBR10
SBR9
SBR8
SBR5
SBR4
SBR3
SBR2
SBR1
SBR0
RSRC
M
WAKE
ILT
PE
PT
RIE
ILIE
TE
RE
RWU
SBK
RDRF
IDLE
OR
NF
FE
PF
0
0
0
BRK13
TXDIR
0
0
0
0
0
0
R5
T5
R4
T4
R3
T3
R2
T2
R1
T1
R0
T0
RAF
SPI0 (Serial Peripheral Interface)
Name
$00D8
Bit 4
SCI1 (Asynchronous Serial Interface)
$00D8 - $00DF
Address
Bit 5
0
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
SPIE
SPE
SPTIE
MSTR
CPOL
CPHA
SSOE
LSBFE
0
0
0
SPISWAI
SPC0
SPPR2
SPPR1
SPPR0
SPR2
SPR1
SPR0
0
SPTEF
MODF
0
0
0
0
SPIF
MODFEN BIDIROE
0
0
0
37
MC9S12DT256 Device User Guide — V03.07
$00D8 - $00DF
Address
SPI0 (Serial Peripheral Interface)
Name
$00DC
Reserved
$00DD
SPI0DR
$00DE
Reserved
$00DF
Reserved
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
$00E0 - $00E7
Address
IBAD
$00E1
IBFD
$00E2
IBCR
$00E3
IBSR
$00E4
IBDR
$00E5
Reserved
$00E6
Reserved
$00E7
Reserved
$00E8 - $00EF
Address
38
Name
$00E8
DLCBCR1
$00E9
DLCBSVR
$00EA
DLCBCR2
$00EB
DLCBDR
$00EC
DLCBARD
$00ED
DLCBRSR
$00EE
DLCSCR
$00EF
DLCBSTAT
Bit 6
0
Bit 5
0
Bit 4
0
Bit 3
0
Bit 2
0
Bit 1
0
Bit 0
0
Bit7
6
5
4
3
2
1
Bit0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
IIC (Inter IC Bus)
Name
$00E0
Bit 7
0
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
ADR7
ADR6
ADR5
ADR4
ADR3
ADR2
ADR1
0
IBC7
IBC6
IBC5
IBC4
IBC3
IBC2
IBC1
IBC0
IBEN
IBIE
MS/SL
TX/RX
TXAK
0
TCF
IAAS
IBB
0
0
RSTA
SRW
D7
D6
D5
D4
D3
D2
D1
D0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
IBAL
IBIF
IBSWAI
RXAK
BDLC (Bytelevel Data Link Controller J1850)
Bit 7
Read:
IMSG
Write:
Read:
0
Write:
Read:
SMRST
Write:
Read:
D7
Write:
Read:
0
Write:
0
Read:
Write:
0
Read:
Write:
0
Read:
Write:
Bit 6
Bit 5
0
Bit 4
0
Bit 3
0
Bit 2
0
Bit 1
Bit 0
IE
WCM
0
I3
I2
I1
I0
0
0
DLOOP
RX4XE
NBFS
TEOD
TSIFR
TMIFR1
TMIFR0
D6
D5
D4
D3
D2
D1
D0
0
0
BO3
BO2
BO1
BO0
R5
R4
R3
R2
R1
R0
0
0
0
0
0
0
0
IDLE
CLKS
RXPOL
0
0
0
0
0
BDLCE
0
MC9S12DT256 Device User Guide — V03.07
$00F0 - $00F7
Address
SPI1 (Serial Peripheral Interface)
Name
$00F0
SPI1CR1
$00F1
SPI1CR2
$00F2
SPI1BR
$00F3
SPI1SR
$00F4
Reserved
$00F5
SPI1DR
$00F6
Reserved
$00F7
Reserved
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
$00F8 - $00FF
Address
SPI2CR1
$00F9
SPI2CR2
$00FA
SPI2BR
$00FB
SPI2SR
$00FC
Reserved
$00FD
SPI2DR
$00FE
Reserved
$00FF
Reserved
$0100 - $010F
Address
Name
$0100
FCLKDIV
$0101
FSEC
$0102
FTSTMOD
$0103
FCNFG
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
SPIE
SPE
SPTIE
MSTR
CPOL
CPHA
SSOE
LSBFE
0
0
0
SPISWAI
SPC0
SPPR2
SPPR1
SPPR0
SPR2
SPR1
SPR0
SPIF
0
SPTEF
MODF
0
0
0
0
0
0
0
0
0
0
0
0
Bit7
6
5
4
3
2
1
Bit0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
MODFEN BIDIROE
0
0
SPI2 (Serial Peripheral Interface)
Name
$00F8
Bit 7
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
SPIE
SPE
SPTIE
MSTR
CPOL
CPHA
SSOE
LSBFE
0
0
0
SPISWAI
SPC0
SPPR2
SPPR1
SPPR0
SPR2
SPR1
SPR0
SPIF
0
SPTEF
MODF
0
0
0
0
0
0
0
0
0
0
0
0
Bit7
6
5
4
3
2
1
Bit0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
FDIV4
FDIV3
FDIV2
FDIV1
FDIV0
NV4
NV3
NV2
SEC1
SEC0
0
0
0
0
0
0
MODFEN BIDIROE
0
0
Flash Control Register (fts256k)
Bit 7
Bit 6
Bit 5
Read: FDIVLD
PRDIV8
FDIV5
Write:
Read: KEYEN1 KEYEN0
NV5
Write:
Read:
0
0
0
Write:
Read:
CBEIE
CCIE
KEYACC
Write:
WRALL
0
BKSEL1
0
BKSEL0
39
MC9S12DT256 Device User Guide — V03.07
$0100 - $010F
Address
Name
$0104
FPROT
$0105
FSTAT
$0106
FCMD
$0107
Reserved for
Factory Test
$0108
FADDRHI
$0109
FADDRLO
$010A
FDATAHI
$010B
FDATALO
$010C
Reserved
$010D
Reserved
$010E
Reserved
$010F
Reserved
$0110 - $011B
Address
40
Name
$0110
ECLKDIV
$0111
Reserved
$0112
Reserved for
Factory Test
$0113
ECNFG
$0114
EPROT
$0115
ESTAT
$0116
ECMD
$0117
Reserved for
Factory Test
$0118
EADDRHI
Flash Control Register (fts256k)
Bit 7
Bit 6
Read:
FPOPEN
NV6
Write:
Read:
CCIF
CBEIF
Write:
Read:
0
CMDB6
Write:
Read:
0
0
Write:
Read:
0
Bit 14
Write:
Read:
Bit 7
6
Write:
Read:
Bit 15
14
Write:
Read:
Bit 7
6
Write:
Read:
0
0
Write:
Read:
0
0
Write:
Read:
0
0
Write:
Read:
0
0
Write:
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
FPHDIS
FPHS1
FPHS0
FPLDIS
FPLS1
FPLS0
PVIOL
ACCERR
0
0
0
BLANK
0
0
0
0
0
0
0
0
13
12
11
10
9
Bit 8
5
4
3
2
1
Bit 0
13
12
11
10
9
Bit 8
5
4
3
2
1
Bit 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
CMDB5
CMDB2
0
CMDB0
EEPROM Control Register (eets4k)
Bit 7
Bit 6
Read: EDIVLD
PRDIV8
Write:
Read:
0
0
Write:
Read:
0
0
Write:
Read:
CBEIE
CCIE
Write:
Read:
NV6
EPOPEN
Write:
Read:
CCIF
CBEIF
Write:
Read:
0
CMDB6
Write:
Read:
0
0
Write:
Read:
0
0
Write:
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
EDIV5
EDIV4
EDIV3
EDIV2
EDIV1
EDIV0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
NV5
NV4
EPDIS
EP2
EP1
EP0
PVIOL
ACCERR
0
0
0
0
0
0
0
0
0
0
0
CMDB5
BLANK
CMDB2
0
CMDB0
0
0
0
10
9
Bit 8
MC9S12DT256 Device User Guide — V03.07
$0110 - $011B
Address
EEPROM Control Register (eets4k)
Name
$0119
EADDRLO
$011A
EDATAHI
$011B
EDATALO
Read:
Write:
Read:
Write:
Read:
Write:
$011C - $011F
Address
Reserved
$011D
Reserved
$011E
Reserved
$011F
Reserved
$0120 - $013F
Address
Name
$0120
ATD1CTL0
$0121
ATD1CTL1
$0122
ATD1CTL2
$0123
ATD1CTL3
$0124
ATD1CTL4
$0125
ATD1CTL5
$0126
ATD1STAT0
$0127
Reserved
$0128
ATD1TEST0
$0129
ATD1TEST1
$012A
Reserved
$012B
ATD1STAT1
$012C
Reserved
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
Bit 15
14
13
12
11
10
9
Bit 8
Bit 7
6
5
4
3
2
1
Bit 0
Reserved for RAM Control Register
Name
$011C
Bit 7
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Bit 7
0
Bit 6
0
Bit 5
0
Bit 4
0
Bit 3
0
Bit 2
0
Bit 1
0
Bit 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
ATD1 (Analog to Digital Converter 10 Bit 8 Channel)
Bit 7
Read:
0
Write:
Read:
0
Write:
Read:
ADPU
Write:
Read:
0
Write:
Read:
SRES8
Write:
Read:
DJM
Write:
Read:
SCF
Write:
Read:
0
Write:
Read:
0
Write:
Read:
0
Write:
Read:
0
Write:
Read: CCF7
Write:
Read:
0
Write:
Bit 6
0
Bit 5
0
Bit 4
0
Bit 3
0
Bit 2
0
Bit 1
0
Bit 0
0
0
0
0
0
0
0
0
AFFC
AWAI
ETRIG
ASCIE
S8C
S4C
S2C
S1C
FIFO
FRZ1
FRZ0
SMP1
SMP0
PRS4
PRS3
PRS2
PRS1
PRS0
DSGN
SCAN
MULT
CC
CB
CA
0
ETORF
FIFOR
0
CC2
CC1
CC0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
CCF6
CCF5
CCF4
CCF3
CCF2
CCF1
CCF0
0
0
0
0
0
0
0
ETRIGLE ETRIGP
0
0
0
ASCIF
SC
41
MC9S12DT256 Device User Guide — V03.07
$0120 - $013F
Address
Name
$012D
ATD1DIEN
$012E
Reserved
$012F
PORTAD1
$0130
ATD1DR0H
$0131
ATD1DR0L
$0132
ATD1DR1H
$0133
ATD1DR1L
$0134
ATD1DR2H
$0135
ATD1DR2L
$0136
ATD1DR3H
$0137
ATD1DR3L
$0138
ATD1DR4H
$0139
ATD1DR4L
$013A
ATD1DR5H
$013B
ATD1DR5L
$013C
ATD1DR6H
$013D
ATD1DR6L
$013E
ATD1DR7H
$013F
ATD1DR7L
$0140 - $017F
Address
42
ATD1 (Analog to Digital Converter 10 Bit 8 Channel)
Name
$0140
CAN0CTL0
$0141
CAN0CTL1
$0142
CAN0BTR0
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
0
0
0
0
0
0
0
0
Bit7
6
5
4
3
2
1
BIT 0
Bit15
14
13
12
11
10
9
Bit8
Bit7
Bit6
0
0
0
0
0
0
Bit15
14
13
12
11
10
9
Bit8
Bit7
Bit6
0
0
0
0
0
0
Bit15
14
13
12
11
10
9
Bit8
Bit7
Bit6
0
0
0
0
0
0
Bit15
14
13
12
11
10
9
Bit8
Bit7
Bit6
0
0
0
0
0
0
Bit15
14
13
12
11
10
9
Bit8
Bit7
Bit6
0
0
0
0
0
0
Bit15
14
13
12
11
10
9
Bit8
Bit7
Bit6
0
0
0
0
0
0
Bit15
14
13
12
11
10
9
Bit8
Bit7
Bit6
0
0
0
0
0
0
Bit15
14
13
12
11
10
9
Bit8
Bit7
Bit6
0
0
0
0
0
0
Bit 3
Bit 2
Bit 1
Bit 0
TIME
WUPE
SLPRQ
INITRQ
SLPAK
INITAK
BRP1
BRP0
CAN0 (Motorola Scalable CAN - MSCAN)
Bit 7
Bit 6
Read:
RXACT
RXFRM
Write:
Read:
CANE CLKSRC
Write:
Read:
SJW1
SJW0
Write:
Bit 5
CSWAI
Bit 4
SYNCH
LOOPB
LISTEN
BRP5
BRP4
0
BRP3
WUPM
BRP2
MC9S12DT256 Device User Guide — V03.07
$0140 - $017F
Address
Name
$0143
CAN0BTR1
$0144
CAN0RFLG
$0145
CAN0RIER
$0146
CAN0TFLG
$0147
CAN0TIER
$0148
CAN0TARQ
$0149
CAN0TAAK
$014A
CAN0TBSEL
$014B
CAN0IDAC
$014C
Reserved
$014D
Reserved
$014E
CAN0RXERR
$014F
CAN0TXERR
CAN0IDAR0 CAN0IDAR3
$0154 - CAN0IDMR0 $0157
CAN0IDMR3
CAN0IDAR4
$0158 $015B
CAN0IDAR7
$015C - CAN0IDMR4 $015F
CAN0IDMR7
$0150 $0153
$0160 $016F
$0170 $017F
CAN0RXFG
CAN0TXFG
CAN0 (Motorola Scalable CAN - MSCAN)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Read:
SAMP TSEG22 TSEG21 TSEG20 TSEG13 TSEG12 TSEG11
Write:
Read:
RSTAT1 RSTAT0 TSTAT1 TSTAT0
WUPIF
CSCIF
OVRIF
Write:
Read:
WUPIE
CSCIE RSTATE1 RSTATE0 TSTATE1 TSTATE0 OVRIE
Write:
Read:
0
0
0
0
0
TXE2
TXE1
Write:
Read:
0
0
0
0
0
TXEIE2 TXEIE1
Write:
Read:
0
0
0
0
0
ABTRQ2 ABTRQ1
Write:
Read:
0
0
0
0
0
ABTAK2 ABTAK1
Write:
Read:
0
0
0
0
0
TX2
TX1
Write:
Read:
0
0
0
IDHIT2
IDHIT1
IDAM1
IDAM0
Write:
Read:
0
0
0
0
0
0
0
Write:
Read:
0
0
0
0
0
0
0
Write:
Read: RXERR7 RXERR6 RXERR5 RXERR4 RXERR3 RXERR2 RXERR1
Write:
Read: TXERR7 TXERR6 TXERR5 TXERR4 TXERR3 TXERR2 TXERR1
Write:
Read:
AC7
AC6
AC5
AC4
AC3
AC2
AC1
Write:
Read:
AM7
AM6
AM5
AM4
AM3
AM2
AM1
Write:
Read:
AC7
AC6
AC5
AC4
AC3
AC2
AC1
Write:
Read:
AM7
AM6
AM5
AM4
AM3
AM2
AM1
Write:
Read:
FOREGROUND RECEIVE BUFFER see Table 1-2
Write:
Read:
FOREGROUND TRANSMIT BUFFER see Table 1-2
Write:
Bit 0
TSEG10
RXF
RXFIE
TXE0
TXEIE0
ABTRQ0
ABTAK0
TX0
IDHIT0
0
0
RXERR0
TXERR0
AC0
AM0
AC0
AM0
Table 1-2 Detailed MSCAN Foreground Receive and Transmit Buffer Layout
Address
$xxx0
$xxx1
Name
Extended ID
Standard ID
CANxRIDR0
Extended ID
Standard ID
CANxRIDR1
Read:
Read:
Write:
Read:
Read:
Write:
Bit 7
ID28
ID10
Bit 6
ID27
ID9
Bit 5
ID26
ID8
Bit 4
ID25
ID7
Bit 3
ID24
ID6
Bit 2
ID23
ID5
Bit 1
ID22
ID4
Bit 0
ID21
ID3
ID20
ID2
ID19
ID1
ID18
ID0
SRR=1
RTR
IDE=1
IDE=0
ID17
ID16
ID15
43
MC9S12DT256 Device User Guide — V03.07
Table 1-2 Detailed MSCAN Foreground Receive and Transmit Buffer Layout
Address
$xxx4$xxxB
Name
Extended ID
Standard ID
CANxRIDR2
Extended ID
Standard ID
CANxRIDR3
CANxRDSR0 CANxRDSR7
$xxxC
CANRxDLR
$xxxD
Reserved
$xxxE
CANxRTSRH
$xxxF
CANxRTSRL
$xxx2
$xxx3
$xx10
$xx10
$xx12
$xx13
44
Extended ID
CANxTIDR0
Standard ID
Extended ID
CANxTIDR1
Standard ID
Extended ID
CANxTIDR2
Standard ID
Extended ID
CANxTIDR3
Standard ID
$xx14$xx1B
CANxTDSR0 CANxTDSR7
$xx1C
CANxTDLR
$xx1D
CONxTTBPR
$xx1E
CANxTTSRH
$xx1F
CANxTTSRL
Read:
Read:
Write:
Read:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Bit 7
ID14
Bit 6
ID13
Bit 5
ID12
Bit 4
ID11
Bit 3
ID10
Bit 2
ID9
Bit 1
ID8
Bit 0
ID7
ID6
ID5
ID4
ID3
ID2
ID1
ID0
RTR
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
DLC3
DLC2
DLC1
DLC0
TSR15
TSR14
TSR13
TSR12
TSR11
TSR10
TSR9
TSR8
TSR7
TSR6
TSR5
TSR4
TSR3
TSR2
TSR1
TSR0
ID28
ID27
ID26
ID25
ID24
ID23
ID22
ID21
ID10
ID9
ID8
ID7
ID6
ID5
ID4
ID3
ID20
ID19
ID18
SRR=1
IDE=1
ID17
ID16
ID15
ID2
ID1
ID0
RTR
IDE=0
ID14
ID13
ID12
ID11
ID10
ID9
ID8
ID7
ID6
ID5
ID4
ID3
ID2
ID1
ID0
RTR
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
DLC3
DLC2
DLC1
DLC0
PRIO7
PRIO6
PRIO5
PRIO4
PRIO3
PRIO2
PRIO1
PRIO0
TSR15
TSR14
TSR13
TSR12
TSR11
TSR10
TSR9
TSR8
TSR7
TSR6
TSR5
TSR4
TSR3
TSR2
TSR1
TSR0
MC9S12DT256 Device User Guide — V03.07
$0180 - $01BF
Address
$0180
$0181
$0182
$0183
$0184
$0185
$0186
$0187
$0188
$0189
$018A
$018B
$018C
$018D
$018E
$018F
$0190
$0191
$0192
$0193
$0194
$0195
$0196
$0197
$0198
Name
Read:
CAN1CTL0
Write:
Read:
CAN1CTL1
Write:
Read:
CAN1BTR0
Write:
Read:
CAN1BTR1
Write:
Read:
CAN1RFLG
Write:
Read:
CAN1RIER
Write:
Read:
CAN1TFLG
Write:
Read:
CAN1TIER
Write:
Read:
CAN1TARQ
Write:
Read:
CAN1TAAK
Write:
Read:
CAN1TBSEL
Write:
Read:
CAN1IDAC
Write:
Read:
Reserved
Write:
Read:
Reserved
Write:
Read:
CAN1RXERR
Write:
Read:
CAN1TXERR
Write:
Read:
CAN1IDAR0
Write:
Read:
CAN1IDAR1
Write:
Read:
CAN1IDAR2
Write:
Read:
CAN1IDAR3
Write:
Read:
CAN1IDMR0
Write:
Read:
CAN1IDMR1
Write:
Read:
CAN1IDMR2
Write:
Read:
CAN1IDMR3
Write:
Read:
CAN1IDAR4
Write:
CAN1 (Motorola Scalable CAN - MSCAN)
Bit 7
RXFRM
Bit 6
RXACT
Bit 5
CSWAI
Bit 4
SYNCH
CANE
CLKSRC
LOOPB
LISTEN
SJW1
SJW0
BRP5
BRP4
SAMP
Bit 3
Bit 2
Bit 1
Bit 0
TIME
WUPE
SLPRQ
INITRQ
SLPAK
INITAK
BRP1
BRP0
0
BRP3
WUPM
BRP2
TSEG22 TSEG21 TSEG20 TSEG13 TSEG12 TSEG11 TSEG10
RSTAT1
RSTAT0
TSTAT1
WUPIF
CSCIF
WUPIE
CSCIE
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
IDAM1
IDAM0
0
0
0
0
0
0
TSTAT0
OVRIF
RXF
OVRIE
RXFIE
TXE2
TXE1
TXE0
TXEIE2
TXEIE1
TXEIE0
RSTATE1 RSTATE0 TSTATE1 TSTATE0
ABTRQ2 ABTRQ1 ABTRQ0
ABTAK2
ABTAK1
ABTAK0
TX2
TX1
TX0
0
IDHIT2
IDHIT1
IDHIT0
0
0
0
0
0
0
0
0
0
0
RXERR7 RXERR6 RXERR5 RXERR4 RXERR3 RXERR2 RXERR1 RXERR0
TXERR7 TXERR6 TXERR5 TXERR4 TXERR3 TXERR2 TXERR1 TXERR0
AC7
AC6
AC5
AC4
AC3
AC2
AC1
AC0
AC7
AC6
AC5
AC4
AC3
AC2
AC1
AC0
AC7
AC6
AC5
AC4
AC3
AC2
AC1
AC0
AC7
AC6
AC5
AC4
AC3
AC2
AC1
AC0
AM7
AM6
AM5
AM4
AM3
AM2
AM1
AM0
AM7
AM6
AM5
AM4
AM3
AM2
AM1
AM0
AM7
AM6
AM5
AM4
AM3
AM2
AM1
AM0
AM7
AM6
AM5
AM4
AM3
AM2
AM1
AM0
AC7
AC6
AC5
AC4
AC3
AC2
AC1
AC0
45
MC9S12DT256 Device User Guide — V03.07
$0180 - $01BF
Address
Name
$0199
CAN1IDAR5
$019A
CAN1IDAR6
$019B
CAN1IDAR7
$019C
CAN1IDMR4
$019D
CAN1IDMR5
$019E
CAN1IDMR6
$019F
CAN1IDMR7
$01A0 $01AF
$01B0 $01BF
CAN1 (Motorola Scalable CAN - MSCAN)
CAN1RXFG
CAN1TXFG
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
$0240 - $027F
Address
46
PTT
$0241
PTIT
$0242
DDRT
$0243
RDRT
$0244
PERT
$0245
PPST
$0246
Reserved
$0247
Reserved
$0248
PTS
$0249
PTIS
$024A
DDRS
$024B
RDRS
$024C
PERS
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
AC7
AC6
AC5
AC4
AC3
AC2
AC1
AC0
AC7
AC6
AC5
AC4
AC3
AC2
AC1
AC0
AC7
AC6
AC5
AC4
AC3
AC2
AC1
AC0
AM7
AM6
AM5
AM4
AM3
AM2
AM1
AM0
AM7
AM6
AM5
AM4
AM3
AM2
AM1
AM0
AM7
AM6
AM5
AM4
AM3
AM2
AM1
AM0
AM7
AM6
AM5
AM4
AM3
AM2
AM1
AM0
FOREGROUND RECEIVE BUFFER see Table 1-2
FOREGROUND TRANSMIT BUFFER see Table 1-2
PIM (Port Integration Module PIM_9DP256)
Name
$0240
Bit 7
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
PTT7
PTT6
PTT5
PTT4
PTT3
PTT2
PTT1
PTT0
PTIT7
PTIT6
PTIT5
PTIT4
PTIT3
PTIT2
PTIT1
PTIT0
DDRT7
DDRT7
DDRT5
DDRT4
DDRT3
DDRT2
DDRT1
DDRT0
RDRT7
RDRT6
RDRT5
RDRT4
RDRT3
RDRT2
RDRT1
RDRT0
PERT7
PERT6
PERT5
PERT4
PERT3
PERT2
PERT1
PERT0
PPST7
PPST6
PPST5
PPST4
PPST3
PPST2
PPST1
PPST0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
PTS7
PTS6
PTS5
PTS4
PTS3
PTS2
PTS1
PTS0
PTIS7
PTIS6
PTIS5
PTIS4
PTIS3
PTIS2
PTIS1
PTIS0
DDRS7
DDRS7
DDRS5
DDRS4
DDRS3
DDRS2
DDRS1
DDRS0
RDRS7
RDRS6
RDRS5
RDRS4
RDRS3
RDRS2
RDRS1
RDRS0
PERS7
PERS6
PERS5
PERS4
PERS3
PERS2
PERS1
PERS0
MC9S12DT256 Device User Guide — V03.07
$0240 - $027F
Address
PIM (Port Integration Module PIM_9DP256)
Name
$024D
PPSS
$024E
WOMS
$024F
Reserved
$0250
PTM
$0251
PTIM
$0252
DDRM
$0253
RDRM
$0254
PERM
$0255
PPSM
$0256
WOMM
$0257
MODRR
$0258
PTP
$0259
PTIP
$025A
DDRP
$025B
RDRP
$025C
PERP
$025D
PPSP
$025E
PIEP
$025F
PIFP
$0260
PTH
$0261
PTIH
$0262
DDRH
$0263
RDRH
$0264
PERH
$0265
PPSH
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
PPSS7
PPSS6
PPSS5
PPSS4
PPSS3
PPSS2
PPSS1
PPSS0
WOMS7
WOMS6
WOMS5
WOMS4
WOMS3
WOMS2
WOMS1
WOMS0
0
0
0
0
0
0
0
0
PTM7
PTM6
PTM5
PTM4
PTM3
PTM2
PTM1
PTM0
PTIM7
PTIM6
PTIM5
PTIM4
PTIM3
PTIM2
PTIM1
PTIM0
DDRM7
DDRM7
DDRM5
DDRM4
DDRM3
DDRM2
DDRM1
DDRM0
RDRM7
RDRM6
RDRM5
RDRM4
RDRM3
RDRM2
RDRM1
RDRM0
PERM7
PERM6
PERM5
PERM4
PERM3
PERM2
PERM1
PERM0
PPSM7
PPSM6
PPSM5
PPSM4
PPSM3
PPSM2
PPSM1
PPSM0
WOMM7 WOMM6 WOMM5 WOMM4 WOMM3 WOMM2 WOMM1 WOMM0
0
MODRR6 MODRR5 MODRR4 MODRR3 MODRR2 MODRR1 MODRR0
PTP7
PTP6
PTP5
PTP4
PTP3
PTP2
PTP1
PTP0
PTIP7
PTIP6
PTIP5
PTIP4
PTIP3
PTIP2
PTIP1
PTIP0
DDRP7
DDRP7
DDRP5
DDRP4
DDRP3
DDRP2
DDRP1
DDRP0
RDRP7
RDRP6
RDRP5
RDRP4
RDRP3
RDRP2
RDRP1
RDRP0
PERP7
PERP6
PERP5
PERP4
PERP3
PERP2
PERP1
PERP0
PPSP7
PPSP6
PPSP5
PPSP4
PPSP3
PPSP2
PPSP1
PPSS0
PIEP7
PIEP6
PIEP5
PIEP4
PIEP3
PIEP2
PIEP1
PIEP0
PIFP7
PIFP6
PIFP5
PIFP4
PIFP3
PIFP2
PIFP1
PIFP0
PTH7
PTH6
PTH5
PTH4
PTH3
PTH2
PTH1
PTH0
PTIH7
PTIH6
PTIH5
PTIH4
PTIH3
PTIH2
PTIH1
PTIH0
DDRH7
DDRH7
DDRH5
DDRH4
DDRH3
DDRH2
DDRH1
DDRH0
RDRH7
RDRH6
RDRH5
RDRH4
RDRH3
RDRH2
RDRH1
RDRH0
PERH7
PERH6
PERH5
PERH4
PERH3
PERH2
PERH1
PERH0
PPSH7
PPSH6
PPSH5
PPSH4
PPSH3
PPSH2
PPSH1
PPSH0
47
MC9S12DT256 Device User Guide — V03.07
$0240 - $027F
Address
Name
$0266
PIEH
$0267
PIFH
$0268
PTJ
$0269
PTIJ
$026A
DDRJ
$026B
RDRJ
$026C
PERJ
$026D
PPSJ
$026E
PIEJ
$026F
PIFJ
$0270 $027F
Reserved
$0280 - $02BF
Address
$0280
$0281
$0282
$0283
$0284
$0285
$0286
$0287
$0288
$0289
$028A
$028B
48
PIM (Port Integration Module PIM_9DP256)
Name
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
PIEH7
PIEH6
PIEH5
PIEH4
PIEH3
PIEH2
PIEH1
PIEH0
PIFH7
PIFH6
PIFH5
PIFH4
PIFH3
PIFH2
PIFH1
PIFH0
PTJ7
PTJ6
0
0
0
0
PTJ1
PTJ0
PTIJ7
PTIJ6
0
0
0
0
PTIJ1
PTIJ0
DDRJ7
DDRJ7
0
0
0
0
DDRJ1
DDRJ0
RDRJ7
RDRJ6
0
0
0
0
RDRJ1
RDRJ0
PERJ7
PERJ6
0
0
0
0
PERJ1
PERJ0
PPSJ7
PPSJ6
0
0
0
0
PPSJ1
PPSJ0
PIEJ7
PIEJ6
0
0
0
0
PIEJ1
PIEJ0
PIFJ7
PIFJ6
0
0
0
0
PIFJ1
PIFJ0
Read:
CAN4 (Motorola Scalable CAN - MSCAN)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Read:
RXACT
SYNCH
RXFRM
CSWAI
TIME
WUPE
SLPRQ INITRQ
CAN4CTL0
Write:
Read:
0
SLPAK
INITAK
CANE CLKSRC LOOPB LISTEN
WUPM
CAN4CTL1
Write:
Read:
SJW1
SJW0
BRP5
BRP4
BRP3
BRP2
BRP1
BRP0
CAN4BTR0
Write:
Read:
SAMP TSEG22 TSEG21 TSEG20 TSEG13 TSEG12 TSEG11 TSEG10
CAN4BTR1
Write:
Read:
RSTAT1 RSTAT0 TSTAT1 TSTAT0
WUPIF
CSCIF
OVRIF
RXF
CAN4RFLG
Write:
Read:
WUPIE
CSCIE RSTATE1 RSTATE0 TSTATE1 TSTATE0 OVRIE
RXFIE
CAN4RIER
Write:
Read:
0
0
0
0
0
TXE2
TXE1
TXE0
CAN4TFLG
Write:
Read:
0
0
0
0
0
TXEIE2 TXEIE1 TXEIE0
CAN4TIER
Write:
Read:
0
0
0
0
0
ABTRQ2 ABTRQ1 ABTRQ0
CAN4TARQ
Write:
Read:
0
0
0
0
0
ABTAK2 ABTAK1 ABTAK0
CAN4TAAK
Write:
Read:
0
0
0
0
0
TX2
TX1
TX0
CAN4TBSEL
Write:
Read:
0
0
0
IDHIT2
IDHIT1
IDHIT0
IDAM1
IDAM0
CAN4IDAC
Write:
MC9S12DT256 Device User Guide — V03.07
$0280 - $02BF
Address
$028C
$028D
$028E
$028F
$0290
$0291
$0292
$0293
$0294
$0295
$0296
$0297
$0298
$0299
$029A
$029B
$029C
$029D
$029E
$029F
$02A0 $02AF
$02B0 $02BF
CAN4 (Motorola Scalable CAN - MSCAN)
Name
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Read:
0
0
0
0
0
0
0
0
Reserved
Write:
Read:
0
0
0
0
0
0
0
0
Reserved
Write:
Read: RXERR7 RXERR6 RXERR5 RXERR4 RXERR3 RXERR2 RXERR1 RXERR0
CAN4RXERR
Write:
Read: TXERR7 TXERR6 TXERR5 TXERR4 TXERR3 TXERR2 TXERR1 TXERR0
CAN4TXERR
Write:
Read:
AC7
AC6
AC5
AC4
AC3
AC2
AC1
AC0
CAN4IDAR0
Write:
Read:
AC7
AC6
AC5
AC4
AC3
AC2
AC1
AC0
CAN4IDAR1
Write:
Read:
AC7
AC6
AC5
AC4
AC3
AC2
AC1
AC0
CAN4IDAR2
Write:
Read:
AC7
AC6
AC5
AC4
AC3
AC2
AC1
AC0
CAN4IDAR3
Write:
Read:
AM7
AM6
AM5
AM4
AM3
AM2
AM1
AM0
CAN4IDMR0
Write:
Read:
AM7
AM6
AM5
AM4
AM3
AM2
AM1
AM0
CAN4IDMR1
Write:
Read:
AM7
AM6
AM5
AM4
AM3
AM2
AM1
AM0
CAN4IDMR2
Write:
Read:
AM7
AM6
AM5
AM4
AM3
AM2
AM1
AM0
CAN4IDMR3
Write:
Read:
AC7
AC6
AC5
AC4
AC3
AC2
AC1
AC0
CAN4IDAR4
Write:
Read:
AC7
AC6
AC5
AC4
AC3
AC2
AC1
AC0
CAN4IDAR5
Write:
Read:
AC7
AC6
AC5
AC4
AC3
AC2
AC1
AC0
CAN4IDAR6
Write:
Read:
AC7
AC6
AC5
AC4
AC3
AC2
AC1
AC0
CAN4IDAR7
Write:
Read:
AM7
AM6
AM5
AM4
AM3
AM2
AM1
AM0
CAN4IDMR4
Write:
Read:
AM7
AM6
AM5
AM4
AM3
AM2
AM1
AM0
CAN4IDMR5
Write:
Read:
AM7
AM6
AM5
AM4
AM3
AM2
AM1
AM0
CAN4IDMR6
Write:
Read:
AM7
AM6
AM5
AM4
AM3
AM2
AM1
AM0
CAN4IDMR7
Write:
Read:
FOREGROUND RECEIVE BUFFER see Table 1-2
CAN4RXFG
Write:
Read:
FOREGROUND TRANSMIT BUFFER see Table 1-2
CAN4TXFG
Write:
49
MC9S12DT256 Device User Guide — V03.07
$02C0 - $03FF
Address
$02C0
- $03FF
Reserved space
Name
Reserved
Bit 7
0
Read:
Write:
Bit 6
0
Bit 5
0
Bit 4
0
Bit 3
0
Bit 2
0
Bit 1
0
Bit 0
0
1.7 Part ID Assignments
The part ID is located in two 8-bit registers PARTIDH and PARTIDL (addresses $001A and $001B after
reset). The read-only value is a unique part ID for each revision of the chip. Table 1-3 shows the assigned
part ID number.
Table 1-3 Assigned Part ID Numbers
Device
Mask Set Number
Part ID1
MC9S12DT256
0L91N
$0030
MC9S12DT256
MC9S12DT256
MC9S12DT256
MC9S12DT256
1L91N
3L91N
4L91N
0L01Y
$0031
$0032
$0034
$0033
NOTES:
1. The coding is as follows:
Bit 15-12: Major family identifier
Bit 11-8: Minor family identifier
Bit 7-4: Major mask set revision number including FAB transfers
Bit 3-0: Minor - non full - mask set revision
The device memory sizes are located in two 8-bit registers MEMSIZ0 and MEMSIZ1 (addresses $001C
and $001D after reset). Table 1-4 shows the read-only values of these registers. Refer to section Module
Mapping and Control (MMC) of HCS12 Core User Guide for further details.
Table 1-4 Memory size registers
50
Register name
Value
MEMSIZ0
$25
MEMSIZ1
$81
MC9S12DT256 Device User Guide — V03.07
Section 2 Signal Description
This section describes signals that connect off-chip. It includes a pinout diagram, a table of signal
properties, and detailed discussion of signals. It is built from the signal description sections of the Block
User Guides of the individual IP blocks on the device.
2.1 Device Pinout
The MC9S12DT256/MC9S12DJ256/MC9S12DG256 and MC9S12A256 is available in a 112-pin low
profile quad flat pack (LQFP) and MC9S12DJ256/MC9S12DG256 and MC9S12A256 is also available in
a 80-pin quad flat pack (QFP). Most pins perform two or more functions, as described in the Signal
Descriptions. Figure 2-1 and Figure 2-2 show the pin assignments.
51
MC9S12DT256/MC9S12A256/
MC9S12DJ256/MC9S12DG256
84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
VRH
VDDA
PAD15/AN15/ETRIG1
PAD07/AN07/ETRIG0
PAD14/AN14
PAD06/AN06
PAD13/AN13
PAD05/AN05
PAD12/AN12
PAD04/AN04
PAD11/AN11
PAD03/AN03
PAD10/AN10
PAD02/AN02
PAD09/AN09
PAD01/AN01
PAD08/AN08
PAD00/AN00
VSS2
VDD2
PA7/ADDR15/DATA15
PA6/ADDR14/DATA14
PA5/ADDR13/DATA13
PA4/ADDR12/DATA12
PA3/ADDR11/DATA11
PA2/ADDR10/DATA10
PA1/ADDR9/DATA9
PA0/ADDR8/DATA8
ADDR5/DATA5/PB5
ADDR6/DATA6/PB6
ADDR7/DATA7/PB7
SS2/KWH7/PH7
SCK2/KWH6/PH6
MOSI2/KWH5/PH5
MISO2/KWH4/PH4
XCLKS/NOACC/PE7
MODB/IPIPE1/PE6
MODA/IPIPE0/PE5
ECLK/PE4
VSSR
VDDR
RESET
VDDPLL
XFC
VSSPLL
EXTAL
XTAL
TEST
SS1/KWH3/PH3
SCK1/KWH2/PH2
MOSI1/KWH1/PH1
MISO1/KWH0/PH0
LSTRB/TAGLO/PE3
R/W/PE2
IRQ/PE1
XIRQ/PE0
SS1/PWM3/KWP3/PP3
SCK1/PWM2/KWP2/PP2
MOSI1/PWM1/KWP1/PP1
MISO1/PWM0/KWP0/PP0
XADDR17/PK3
XADDR16/PK2
XADDR15/PK1
XADDR14/PK0
IOC0/PT0
IOC1/PT1
IOC2/PT2
IOC3/PT3
VDD1
VSS1
IOC4/PT4
IOC5/PT5
IOC6/PT6
IOC7/PT7
XADDR19/PK5
XADDR18/PK4
KWJ1/PJ1
KWJ0/PJ0
MODC/TAGHI/BKGD
ADDR0/DATA0/PB0
ADDR1/DATA1/PB1
ADDR2/DATA2/PB2
ADDR3/DATA3/PB3
ADDR4/DATA4/PB4
112
111
110
109
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
PP4/KWP4/PWM4/MISO2
PP5/KPW5/PWM5/MOSI2
PP6/KWP6/PWM6/SS2
PP7/KWP7/PWM7/SCK2
PK7/ECS
VDDX
VSSX
PM0/RXCAN0/RXB
PM1/TXCAN0/TXB
PM2/RXCAN1/RXCAN0/MISO0
PM3/TXCAN1/TXCAN0/SS0
PM4/RXCAN0/RXCAN4/MOSI0
PM5/TXCAN0/TXCAN4/SCK0
PJ6/KWJ6/RXCAN4/SDA
PJ7/KWJ7/TXCAN4/SCL
VREGEN
PS7/SS0
PS6/SCK0
PS5/MOSI0
PS4/MISO0
PS3/TXD1
PS2/RXD1
PS1/TXD0
PS0/RXD0
PM6/RXCAN4
PM7/TXCAN4
VSSA
VRL
MC9S12DT256 Device User Guide — V03.07
Signals shown in Bold are not available on the 80 Pin Package
Figure 2-1 Pin Assignments in 112-pin LQFP
52
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
MC9S12DJ256
80 QFP
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
VRH
VDDA
PAD07/AN07/ETRIG0
PAD06/AN06
PAD05/AN05
PAD04/AN04
PAD03/AN03
PAD02/AN02
PAD01/AN01
PAD00/AN00
VSS2
VDD2
PA7/ADDR15/DATA15
PA6/ADDR14/DATA14
PA5/ADDR13/DATA13
PA4/ADDR12/DATA12
PA3/ADDR11/DATA11
PA2/ADDR10/DATA10
PA1/ADDR9/DATA9
PA0/ADDR8/DATA8
ADDR5/DATA5/PB5
ADDR6/DATA6/PB6
ADDR7/DATA7/PB7
XCLKS/NOACC/PE7
MODB/IPIPE1/PE6
MODA/IPIPE0/PE5
ECLK/PE4
VSSR
VDDR
RESET
VDDPLL
XFC
VSSPLL
EXTAL
XTAL
TEST
LSTRB/TAGLO/PE3
R/W/PE2
IRQ/PE1
XIRQ/PE0
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
SS1/PWM3/KWP3/PP3
SCK1/PWM2/KWP2/PP2
MOSI1/PWM1/KWP1/PP1
MISO1/PWM0/KWP0/PP0
IOC0/PT0
IOC1/PT1
IOC2/PT2
IOC3/PT3
VDD1
VSS1
IOC4/PT4
IOC5/PT5
IOC6/PT6
IOC7/PT7
MODC/TAGHI/BKGD
ADDR0/DATA0/PB0
ADDR1/DATA1/PB1
ADDR2/DATA2/PB2
ADDR3/DATA3/PB3
ADDR4/DATA4/PB4
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
PP4/KWP4/PWM4/MISO2
PP5/KWP5/PWM5/MOSI2
PP7/KWP7/PWM7/SCK2
VDDX
VSSX
PM0/RXCAN0/RXB
PM1/TXCAN0/TXB
PM2/RXCAN1/RXCAN0/MISO0
PM3/TXCAN1/TXCAN0/SS0
PM4/RXCAN0/RXCAN4/MOSI0
PM5/TXCAN0/TXCAN4/SCK0
PJ6/KWJ6/RXCAN4/SDA
PJ7/KWJ7/TXCAN4/SCL
VREGEN
PS3/TXD1
PS2/RXD1
PS1/TXD0
PS0/RXD0
VSSA
VRL
MC9S12DT256 Device User Guide — V03.07
Figure 2-2 Pin Assignments in 80-pin QFP for MC9S12DJ256
2.2 Signal Properties Summary
Table 2-1summarizes the pin functionality. Signals shown in bold are not available in the 80 pin package.
Table 2-1 Signal Properties
53
MC9S12DT256 Device User Guide — V03.07
Pin Name Pin Name Pin Name Pin Name Pin Name Power
Funct. 1
Funct. 2
Funct. 3 Funct. 4 Funct. 5 Supply
Internal Pull
Resistor
CTRL
Description
Reset
State
EXTAL
—
—
—
—
VDDPLL
NA
NA
XTAL
—
—
—
—
VDDPLL
NA
NA
RESET
—
—
—
—
VDDR
None
None
TEST
—
—
—
—
N.A.
NA
NA
Test Input
VREGEN
—
—
—
—
VDDX
NA
NA
Voltage Regulator Enable Input
XFC
—
—
—
—
VDDPLL
NA
NA
PLL Loop Filter
BKGD
TAGHI
MODC
—
—
VDDR
Always
Up
Up
Background Debug, Tag High, Mode
Input
PAD[15]
AN1[7]
ETRIG1
—
—
VDDA
None
None
Port AD Input, Analog Input AN7
of ATD1, External Trigger Input of
ATD1
PAD[14:8]
AN1[6:0]
—
—
—
VDDA
None
None
Port AD Inputs, Analog Inputs
AN[6:0] of ATD1
PAD[7]
AN0[7]
ETRIG0
—
—
VDDA
None
None
Port AD Input, Analog Input AN7 of
ATD0, External Trigger Input of ATD0
PAD[6:0]
AN0[6:0]
—
—
—
VDDA
None
None
Port AD Inputs, Analog Inputs
AN[6:0] of ATD0
PA[7:0]
ADDR[15:8]/
DATA[15:8]
—
—
—
VDDR
PUCR
Disabled
Port A I/O, Multiplexed Address/Data
PB[7:0]
ADDR[7:0]/
DATA[7:0]
—
—
—
VDDR
PUCR
Disabled
Port B I/O, Multiplexed Address/Data
PE7
NOACC
XCLKS
—
—
VDDR
PUCR
Up
PE6
IPIPE1
MODB
—
—
VDDR
While RESET
pin is low:
Down
Port E I/O, Pipe Status, Mode Input
While RESET
pin is low:
Down
Port E I/O, Pipe Status, Mode Input
Oscillator Pins
External Reset
Port E I/O, Access, Clock Select
PE5
IPIPE0
MODA
—
—
VDDR
PE4
ECLK
—
—
—
VDDR
PUCR
Up
Port E I/O, Bus Clock Output
PE3
LSTRB
TAGLO
—
—
VDDR
PUCR
Up
Port E I/O, Byte Strobe, Tag Low
PE2
R/W
—
—
—
VDDR
PUCR
Up
Port E I/O, R/W in expanded modes
PE1
IRQ
—
—
—
VDDR
PUCR
Up
Port E Input, Maskable Interrupt
PE0
XIRQ
—
—
—
VDDR
PUCR
Up
Port E Input, Non Maskable Interrupt
Disabled
Port H I/O, Interrupt, SS of SPI2
PH7
KWH7
SS2
—
—
VDDR
PERH/
PPSH
PH6
KWH6
SCK2
—
—
VDDR
PERH/
PPSH
Disabled
Port H I/O, Interrupt, SCK of SPI2
PH5
KWH5
MOSI2
—
—
VDDR
PERH/
PPSH
Disabled
Port H I/O, Interrupt, MOSI of SPI2
54
MC9S12DT256 Device User Guide — V03.07
Pin Name Pin Name Pin Name Pin Name Pin Name Power
Funct. 1
Funct. 2
Funct. 3 Funct. 4 Funct. 5 Supply
Internal Pull
Resistor
CTRL
Reset
State
Description
PH4
KWH4
MISO2
—
—
VDDR
PERH/
PPSH
Disabled
Port H I/O, Interrupt, MISO of SPI2
PH3
KWH3
SS1
—
—
VDDR
PERH/
PPSH
Disabled
Port H I/O, Interrupt, SS of SPI1
PH2
KWH2
SCK1
—
—
VDDR
PERH/
PPSH
Disabled
Port H I/O, Interrupt, SCK of SPI1
PH1
KWH1
MOSI1
—
—
VDDR
PERH/
PPSH
Disabled
Port H I/O, Interrupt, MOSI of SPI1
PH0
KWH0
MISO1
—
—
VDDR
PERH/
PPSH
Disabled
Port H I/O, Interrupt, MISO of SPI1
PJ7
KWJ7
TXCAN4
SCL
TXCAN0
VDDX
PERJ/
PPSJ
Up
Port J I/O, Interrupt, TX of CAN4,
SCL of IIC, TX of CAN0
PJ6
KWJ6
RXCAN4
SDA
RXCAN0
VDDX
PERJ/
PPSJ
Up
Port J I/O, Interrupt, RX of CAN4,
SDA of IIC, RX of CAN0
PJ[1:0]
KWJ[1:0]
—
—
—
VDDX
PERJ/
PSJ
Up
Port J I/O, Interrupts
PK7
ECS
ROMONE
—
—
VDDX
PUCR
Up
Port K I/O, Emulation Chip Select,
ROM On Enable
PK[5:0]
XADDR
[19:14]
—
—
—
VDDX
PUCR
Up
Port K I/O, Extended Addresses
PM7
TXCAN4
—
—
—
VDDX
PERM/
PPSM
Disabled
Port M I/O, TX of CAN4
PM6
RXCAN4
—
—
—
VDDX
PERM/
PPSM
Disabled
Port M I/O RX of CAN4
PM5
TXCAN0
TXCAN4
SCK0
—
VDDX
PERM/
PPSM
Disabled
Port M I/OCAN0, CAN4, SCK of
SPI0
PM4
RXCAN0
RXCAN4
MOSI0
—
VDDX
PERM/
PPSM
Disabled
Port M I/O, CAN0, CAN4, MOSI of
SPI0
PM3
TXCAN1
TXCAN0
—
SS0
VDDX
PERM/
PPSM
Disabled
Port M I/O, TX of CAN1, CAN0, SS
of SPI0
PM2
RXCAN1
RXCAN0
—
MISO0
VDDX
PERM/
PPSM
Disabled
Port M I/O, RX of CAN1, CAN0,
MISO of SPI0
PM1
TXCAN0
TXB
—
—
VDDX
PERM/
PPSM
Disabled
Port M I/O, TX of CAN0, TX of BDLC
PM0
RXCAN0
RXB
—
—
VDDX
PERM/
PPSM
Disabled
Port M I/O, RX of CAN0, RX of BDLC
PP7
KWP7
PWM7
SCK2
—
VDDX
PERP/
PPSP
Disabled
Port P I/O, Interrupt, Channel 7 of
PWM, SCK of SPI2
PP6
KWP6
PWM6
SS2
—
VDDX
PERP/
PPSP
Disabled
Port P I/O, Interrupt, Channel 6 of
PWM, SS of SPI2
PP5
KWP5
PWM5
MOSI2
—
VDDX
PERP/
PPSP
Disabled
Port P I/O, Interrupt, Channel 5 of
PWM, MOSI of SPI2
55
MC9S12DT256 Device User Guide — V03.07
Pin Name Pin Name Pin Name Pin Name Pin Name Power
Funct. 1
Funct. 2
Funct. 3 Funct. 4 Funct. 5 Supply
Internal Pull
Resistor
CTRL
Reset
State
Description
PP4
KWP4
PWM4
MISO2
—
VDDX
PERP/
PPSP
Disabled
Port P I/O, Interrupt, Channel 4 of
PWM, MISO2 of SPI2
PP3
KWP3
PWM3
SS1
—
VDDX
PERP/
PPSP
Disabled
Port P I/O, Interrupt, Channel 3 of
PWM, SS of SPI1
PP2
KWP2
PWM2
SCK1
—
VDDX
PERP/
PPSP
Disabled
Port P I/O, Interrupt, Channel 2 of
PWM, SCK of SPI1
PP1
KWP1
PWM1
MOSI1
—
VDDX
PERP/
PPSP
Disabled
Port P I/O, Interrupt, Channel 1 of
PWM, MOSI of SPI1
PP0
KWP0
PWM0
MISO1
—
VDDX
PERP/
PPSP
Disabled
Port P I/O, Interrupt, Channel 0 of
PWM, MISO2 of SPI1
PS7
SS0
—
—
—
VDDX
PERS/
PPSS
Up
Port S I/O, SS of SPI0
PS6
SCK0
—
—
—
VDDX
PERS/
PPSS
Up
Port S I/O, SCK of SPI0
PS5
MOSI0
—
—
—
VDDX
PERS/
PPSS
Up
Port S I/O, MOSI of SPI0
PS4
MISO0
—
—
—
VDDX
PERS/
PPSS
Up
Port S I/O, MISO of SPI0
PS3
TXD1
—
—
—
VDDX
PERS/
PPSS
Up
Port S I/O, TXD of SCI1
PS2
RXD1
—
—
—
VDDX
PERS/
PPSS
Up
Port S I/O, RXD of SCI1
PS1
TXD0
—
—
—
VDDX
PERS/
PPSS
Up
Port S I/O, TXD of SCI0
PS0
RXD0
—
—
—
VDDX
PERS/
PPSS
Up
Port S I/O, RXD of SCI0
PT[7:0]
IOC[7:0]
—
—
—
VDDX
PERT/
PPST
Disabled
Port T I/O, Timer channels
2.3 Detailed Signal Descriptions
2.3.1 EXTAL, XTAL — Oscillator Pins
EXTAL and XTAL are the crystal driver and external clock pins. On reset all the device clocks are derived
from the EXTAL input frequency. XTAL is the crystal output.
2.3.2 RESET — External Reset Pin
An active low bidirectional control signal, it acts as an input to initialize the MCU to a known start-up
state, and an output when an internal MCU function causes a reset.
56
MC9S12DT256 Device User Guide — V03.07
2.3.3 TEST — Test Pin
This input only pin is reserved for test.
NOTE:
The TEST pin must be tied to VSS in all applications.
2.3.4 VREGEN — Voltage Regulator Enable Pin
This input only pin enables or disables the on-chip voltage regulator.
2.3.5 XFC — PLL Loop Filter Pin
PLL loop filter. Please ask your Motorola representative for the interactive application note to compute
PLL loop filter elements. Any current leakage on this pin must be avoided.
XFC
R0
MCU
CP
CS
VDDPLL
VDDPLL
Figure 2-3 PLL Loop Filter Connections
2.3.6 BKGD / TAGHI / MODC — Background Debug, Tag High, and Mode Pin
The BKGD/TAGHI/MODC pin is used as a pseudo-open-drain pin for the background debug
communication. In MCU expanded modes of operation when instruction tagging is on, an input low on
this pin during the falling edge of E-clock tags the high half of the instruction word being read into the
instruction queue. It is used as a MCU operating mode select pin during reset. The state of this pin is
latched to the MODC bit at the rising edge of RESET. This pin has a permanently enabled pull-up device.
2.3.7 PAD15 / AN15 / ETRIG1 — Port AD Input Pin of ATD1
PAD15 is a general purpose input pin and analog input AN7 of the analog to digital converter ATD1. It
can act as an external trigger input for the ATD1.
2.3.8 PAD[14:08] / AN[14:08] — Port AD Input Pins of ATD1
PAD14 - PAD08 are general purpose input pins and analog inputs AN[6:0] of the analog to digital
converter ATD1.
57
MC9S12DT256 Device User Guide — V03.07
2.3.9 PAD7 / AN07 / ETRIG0 — Port AD Input Pin of ATD0
PAD7 is a general purpose input pin and analog input AN7 of the analog to digital converter ATD0. It can
act as an external trigger input for the ATD0.
2.3.10 PAD[06:00] / AN[06:00] — Port AD Input Pins of ATD0
PAD06 - PAD00 are general purpose input pins and analog inputs AN[6:0] of the analog to digital
converter ATD0.
2.3.11 PA[7:0] / ADDR[15:8] / DATA[15:8] — Port A I/O Pins
PA7-PA0 are general purpose input or output pins. In MCU expanded modes of operation, these pins are
used for the multiplexed external address and data bus.
2.3.12 PB[7:0] / ADDR[7:0] / DATA[7:0] — Port B I/O Pins
PB7-PB0 are general purpose input or output pins. In MCU expanded modes of operation, these pins are
used for the multiplexed external address and data bus.
2.3.13 PE7 / NOACC / XCLKS — Port E I/O Pin 7
PE7 is a general purpose input or output pin. During MCU expanded modes of operation, the NOACC
signal, when enabled, is used to indicate that the current bus cycle is an unused or “free” cycle. This signal
will assert when the CPU is not using the bus.The XCLKS is an input signal which controls whether a
crystal in combination with the internal Colpitts (low power) oscillator is used or whether Pierce
oscillator/external clock circuitry is used. The state of this pin is latched at the rising edge of RESET. If
the input is a logic low the EXTAL pin is configured for an external clock drive or a Pierce Oscillator. If
input is a logic high .a Colpitts oscillator circuit is configured on EXTAL and XTAL. Since this pin is an
input with a pull-up device during reset, if the pin is left floating, the default configuration is a Colpitts
oscillator circuit on EXTAL and XTAL.
58
MC9S12DT256 Device User Guide — V03.07
Figure 2-4 Colpitts Oscillator Connections (PE7=1)
EXTAL
CDC *
C1
MCU
Crystal or
ceramic resonator
XTAL
C2
VSSPLL
* Due to the nature of a translated ground Colpitts oscillator a
DC voltage bias is applied to the crystal
.Please contact the crystal manufacturer for crystal DC
Figure 2-5 Pierce Oscillator Connections (PE7=0)
EXTAL
C1
MCU
XTAL
RB
RS
*
Crystal or
ceramic resonator
C2
VSSPLL
* Rs can be zero (shorted) when use with higher frequency crystals.
Refer to manufacturer’s data.
59
MC9S12DT256 Device User Guide — V03.07
Figure 2-6 External Clock Connections (PE7=0)
EXTAL
CMOS-COMPATIBLE
EXTERNAL OSCILLATOR
(VDDPLL-Level)
MCU
XTAL
not connected
2.3.14 PE6 / MODB / IPIPE1 — Port E I/O Pin 6
PE6 is a general purpose input or output pin. It is used as a MCU operating mode select pin during reset.
The state of this pin is latched to the MODB bit at the rising edge of RESET. This pin is shared with the
instruction queue tracking signal IPIPE1. This pin is an input with a pull-down device which is only active
when RESET is low.
2.3.15 PE5 / MODA / IPIPE0 — Port E I/O Pin 5
PE5 is a general purpose input or output pin. It is used as a MCU operating mode select pin during reset.
The state of this pin is latched to the MODA bit at the rising edge of RESET. This pin is shared with the
instruction queue tracking signal IPIPE0. This pin is an input with a pull-down device which is only active
when RESET is low.
2.3.16 PE4 / ECLK — Port E I/O Pin 4
PE4 is a general purpose input or output pin. It can be configured to drive the internal bus clock ECLK.
ECLK can be used as a timing reference.
2.3.17 PE3 / LSTRB / TAGLO — Port E I/O Pin 3
PE3 is a general purpose input or output pin. In MCU expanded modes of operation, LSTRB can be used
for the low-byte strobe function to indicate the type of bus access and when instruction tagging is on,
TAGLO is used to tag the low half of the instruction word being read into the instruction queue.
60
MC9S12DT256 Device User Guide — V03.07
2.3.18 PE2 / R/W — Port E I/O Pin 2
PE2 is a general purpose input or output pin. In MCU expanded modes of operations, this pin drives the
read/write output signal for the external bus. It indicates the direction of data on the external bus.
2.3.19 PE1 / IRQ — Port E Input Pin 1
PE1 is a general purpose input pin and the maskable interrupt request input that provides a means of
applying asynchronous interrupt requests. This will wake up the MCU from STOP or WAIT mode.
2.3.20 PE0 / XIRQ — Port E Input Pin 0
PE0 is a general purpose input pin and the non-maskable interrupt request input that provides a means of
applying asynchronous interrupt requests. This will wake up the MCU from STOP or WAIT mode.
2.3.21 PH7 / KWH7 / SS2 — Port H I/O Pin 7
PH7 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as slave select pin SS of the Serial Peripheral Interface
2 (SPI2).
2.3.22 PH6 / KWH6 / SCK2 — Port H I/O Pin 6
PH6 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as serial clock pin SCK of the Serial Peripheral Interface
2 (SPI2).
2.3.23 PH5 / KWH5 / MOSI2 — Port H I/O Pin 5
PH5 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as master output (during master mode) or slave input
pin (during slave mode) MOSI of the Serial Peripheral Interface 2 (SPI2).
2.3.24 PH4 / KWH4 / MISO2 — Port H I/O Pin 2
PH4 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as master input (during master mode) or slave output
(during slave mode) pin MISO of the Serial Peripheral Interface 2 (SPI2).
2.3.25 PH3 / KWH3 / SS1 — Port H I/O Pin 3
PH3 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as slave select pin SS of the Serial Peripheral Interface
1 (SPI1).
61
MC9S12DT256 Device User Guide — V03.07
2.3.26 PH2 / KWH2 / SCK1 — Port H I/O Pin 2
PH2 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as serial clock pin SCK of the Serial Peripheral Interface
1 (SPI1).
2.3.27 PH1 / KWH1 / MOSI1 — Port H I/O Pin 1
PH1 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as master output (during master mode) or slave input
pin (during slave mode) MOSI of the Serial Peripheral Interface 1 (SPI1).
2.3.28 PH0 / KWH0 / MISO1 — Port H I/O Pin 0
PH0 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as master input (during master mode) or slave output
(during slave mode) pin MISO of the Serial Peripheral Interface 1 (SPI1).
2.3.29 PJ7 / KWJ7 / TXCAN4 / SCL — PORT J I/O Pin 7
PJ7 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as the transmit pin TXCAN for the Motorola Scalable
Controller Area Network controller 4 (CAN4) or the serial clock pin SCL of the IIC module.
2.3.30 PJ6 / KWJ6 / RXCAN4 / SDA — PORT J I/O Pin 6
PJ6 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as the receive pin RXCAN for the Motorola Scalable
Controller Area Network controller 4 (CAN4) or the serial data pin SDA of the IIC module.
2.3.31 PJ[1:0] / KWJ[1:0] — Port J I/O Pins [1:0]
PJ1 and PJ0 are general purpose input or output pins. They can be configured to generate an interrupt
causing the MCU to exit STOP or WAIT mode .
2.3.32 PK7 / ECS / ROMONE — Port K I/O Pin 7
PK7 is a general purpose input or output pin. During MCU expanded modes of operation, this pin is used
as the emulation chip select output (ECS). During MCU normal expanded wide and narrow modes of
operation, this pin is used to enable the Flash EEPROM memory in the memory map (ROMONE). At the
rising edge of RESET, the state of this pin is latched to the ROMON bit.
62
MC9S12DT256 Device User Guide — V03.07
2.3.33 PK[5:0] / XADDR[19:14] — Port K I/O Pins [5:0]
PK5-PK0 are general purpose input or output pins. In MCU expanded modes of operation, these pins
provide the expanded address XADDR[19:14] for the external bus.
2.3.34 PM7 / TXCAN4 — Port M I/O Pin 7
PM7 is a general purpose input or output pin. It can be configured as the transmit pin TXCAN of the
Motorola Scalable Controller Area Network controller 4 (CAN4 ).
2.3.35 PM6 / RXCAN4 — Port M I/O Pin 6
PM6 is a general purpose input or output pin. It can be configured as the receive pin RXCAN of the
Motorola Scalable Controller Area Network controller 4 (CAN4).
2.3.36 PM5 / TXCAN0 / TXCAN4 / SCK0 — Port M I/O Pin 5
PM5 is a general purpose input or output pin. It can be configured as the transmit pin TXCAN of the
Motorola Scalable Controller Area Network controllers 0 or 4 (CAN0 or CAN4). It can be configured as
the serial clock pin SCK of the Serial Peripheral Interface 0 (SPI0).
2.3.37 PM4 / RXCAN0 / RXCAN4/ MOSI0 — Port M I/O Pin 4
PM4 is a general purpose input or output pin. It can be configured as the receive pin RXCAN of the
Motorola Scalable Controller Area Network controllers 0 or 4 ( CAN0 or CAN4). It can be configured as
the master output (during master mode) or slave input pin (during slave mode) MOSI for the Serial
Peripheral Interface 0 (SPI0).
2.3.38 PM3 / TXCAN1 / TXCAN0 / SS0 — Port M I/O Pin 3
PM3 is a general purpose input or output pin. It can be configured as the transmit pin TXCAN of the
Motorola Scalable Controller Area Network controllers 1 or 0 (CAN1 or CAN0). It can be configured as
the slave select pin SS of the Serial Peripheral Interface 0 (SPI0).
2.3.39 PM2 / RXCAN1 / RXCAN0 / MISO0 — Port M I/O Pin 2
PM2 is a general purpose input or output pin. It can be configured as the receive pin RXCAN of the
Motorola Scalable Controller Area Network controllers 1 or 0 (CAN1 or CAN0). It can be configured as
the master input (during master mode) or slave output pin (during slave mode) MISO for the Serial
Peripheral Interface 0 (SPI0).
63
MC9S12DT256 Device User Guide — V03.07
2.3.40 PM1 / TXCAN0 / TXB — Port M I/O Pin 1
PM1 is a general purpose input or output pin. It can be configured as the transmit pin TXCAN of the
Motorola Scalable Controller Area Network controller 0 (CAN0). It can be configured as the transmit pin
TXB of the BDLC.
2.3.41 PM0 / RXCAN0 / RXB — Port M I/O Pin 0
PM0 is a general purpose input or output pin. It can be configured as the receive pin RXCAN of the
Motorola Scalable Controller Area Network controller 0 (CAN0). It can be configured as the receive pin
RXB of the BDLC.
2.3.42 PP7 / KWP7 / PWM7 / SCK2 — Port P I/O Pin 7
PP7 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 7 output. It
can be configured as serial clock pin SCK of the Serial Peripheral Interface 2 (SPI2).
2.3.43 PP6 / KWP6 / PWM6 / SS2 — Port P I/O Pin 6
PP6 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 6 output. It
can be configured as slave select pin SS of the Serial Peripheral Interface 2 (SPI2).
2.3.44 PP5 / KWP5 / PWM5 / MOSI2 — Port P I/O Pin 5
PP5 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 5 output. It
can be configured as master output (during master mode) or slave input pin (during slave mode) MOSI of
the Serial Peripheral Interface 2 (SPI2).
2.3.45 PP4 / KWP4 / PWM4 / MISO2 — Port P I/O Pin 4
PP4 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 4 output. It
can be configured as master input (during master mode) or slave output (during slave mode) pin MISO of
the Serial Peripheral Interface 2 (SPI2).
2.3.46 PP3 / KWP3 / PWM3 / SS1 — Port P I/O Pin 3
PP3 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 3 output. It
can be configured as slave select pin SS of the Serial Peripheral Interface 1 (SPI1).
64
MC9S12DT256 Device User Guide — V03.07
2.3.47 PP2 / KWP2 / PWM2 / SCK1 — Port P I/O Pin 2
PP2 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 2 output. It
can be configured as serial clock pin SCK of the Serial Peripheral Interface 1 (SPI1).
2.3.48 PP1 / KWP1 / PWM1 / MOSI1 — Port P I/O Pin 1
PP1 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 1 output. It
can be configured as master output (during master mode) or slave input pin (during slave mode) MOSI of
the Serial Peripheral Interface 1 (SPI1).
2.3.49 PP0 / KWP0 / PWM0 / MISO1 — Port P I/O Pin 0
PP0 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 0 output. It
can be configured as master input (during master mode) or slave output (during slave mode) pin MISO of
the Serial Peripheral Interface 1 (SPI1).
2.3.50 PS7 / SS0 — Port S I/O Pin 7
PS6 is a general purpose input or output pin. It can be configured as the slave select pin SS of the Serial
Peripheral Interface 0 (SPI0).
2.3.51 PS6 / SCK0 — Port S I/O Pin 6
PS6 is a general purpose input or output pin. It can be configured as the serial clock pin SCK of the Serial
Peripheral Interface 0 (SPI0).
2.3.52 PS5 / MOSI0 — Port S I/O Pin 5
PS5 is a general purpose input or output pin. It can be configured as master output (during master mode)
or slave input pin (during slave mode) MOSI of the Serial Peripheral Interface 0 (SPI0).
2.3.53 PS4 / MISO0 — Port S I/O Pin 4
PS4 is a general purpose input or output pin. It can be configured as master input (during master mode) or
slave output pin (during slave mode) MOSI of the Serial Peripheral Interface 0 (SPI0).
2.3.54 PS3 / TXD1 — Port S I/O Pin 3
PS3 is a general purpose input or output pin. It can be configured as the transmit pin TXD of Serial
Communication Interface 1 (SCI1).
65
MC9S12DT256 Device User Guide — V03.07
2.3.55 PS2 / RXD1 — Port S I/O Pin 2
PS2 is a general purpose input or output pin. It can be configured as the receive pin RXD of Serial
Communication Interface 1 (SCI1).
2.3.56 PS1 / TXD0 — Port S I/O Pin 1
PS1 is a general purpose input or output pin. It can be configured as the transmit pin TXD of Serial
Communication Interface 0 (SCI0).
2.3.57 PS0 / RXD0 — Port S I/O Pin 0
PS0 is a general purpose input or output pin. It can be configured as the receive pin RXD of Serial
Communication Interface 0 (SCI0).
2.3.58 PT[7:0] / IOC[7:0] — Port T I/O Pins [7:0]
PT7-PT0 are general purpose input or output pins. They can be configured as input capture or output
compare pins IOC7-IOC0 of the Enhanced Capture Timer (ECT).
2.4 Power Supply Pins
MC9S12DT256 power and ground pins are described below.
NOTE:
All VSS pins must be connected together in the application.
2.4.1 VDDX,VSSX — Power & Ground Pins for I/O Drivers
External power and ground for I/O drivers. Because fast signal transitions place high, short-duration
current demands on the power supply, use bypass capacitors with high-frequency characteristics and place
them as close to the MCU as possible. Bypass requirements depend on how heavily the MCU pins are
loaded.
2.4.2 VDDR, VSSR — Power & Ground Pins for I/O Drivers & for Internal
Voltage Regulator
External power and ground for I/O drivers and input to the internal voltage regulator. Because fast signal
transitions place high, short-duration current demands on the power supply, use bypass capacitors with
high-frequency characteristics and place them as close to the MCU as possible. Bypass requirements
depend on how heavily the MCU pins are loaded.
66
MC9S12DT256 Device User Guide — V03.07
2.4.3 VDD1, VDD2, VSS1, VSS2 — Core Power Pins
Power is supplied to the MCU through VDD and VSS. Because fast signal transitions place high,
short-duration current demands on the power supply, use bypass capacitors with high-frequency
characteristics and place them as close to the MCU as possible. This 2.5V supply is derived from the
internal voltage regulator. There is no static load on those pins allowed. The internal voltage regulator is
turned off, if VREGEN is tied to ground.
NOTE:
No load allowed except for bypass capacitors.
2.4.4 VDDA, VSSA — Power Supply Pins for ATD and VREG
VDDA, VSSA are the power supply and ground input pins for the voltage regulator and the analog to
digital converter. It also provides the reference for the internal voltage regulator. This allows the supply
voltage to the ATD and the reference voltage to be bypassed independently.
2.4.5 VRH, VRL — ATD Reference Voltage Input Pins
VRH and VRL are the reference voltage input pins for the analog to digital converter.
2.4.6 VDDPLL, VSSPLL — Power Supply Pins for PLL
Provides operating voltage and ground for the Oscillator and the Phased-Locked Loop. This allows the
supply voltage to the Oscillator and PLL to be bypassed independently.This 2.5V voltage is generated by
the internal voltage regulator.
NOTE:
No load allowed except for bypass capacitors.
Table 2-2 MC9S12DP256 Power and Ground Connection Summary
Pin Number
112-pin QFP
Nominal
Voltage
VDD1, 2
13, 65
2.5 V
VSS1, 2
14, 66
0V
VDDR
41
5.0 V
VSSR
40
0V
VDDX
107
5.0 V
VSSX
106
0V
VDDA
83
5.0 V
VSSA
86
0V
VRL
85
0V
VRH
84
5.0 V
Mnemonic
Description
Internal power and ground generated by internal regulator
External power and ground, supply to pin drivers and internal
voltage regulator.
External power and ground, supply to pin drivers.
Operating voltage and ground for the analog-to-digital
converters and the reference for the internal voltage regulator,
allows the supply voltage to the A/D to be bypassed
independently.
Reference voltages for the analog-to-digital converter.
67
MC9S12DT256 Device User Guide — V03.07
Pin Number
112-pin QFP
Nominal
Voltage
VDDPLL
43
2.5 V
VSSPLL
45
0V
VREGEN
97
5V
Mnemonic
Description
Provides operating voltage and ground for the Phased-Locked
Loop. This allows the supply voltage to the PLL to be
bypassed independently. Internal power and ground
generated by internal regulator.
Internal Voltage Regulator enable/disable
2.4.7 VREGEN — On Chip Voltage Regulator Enable
Enables the internal 5V to 2.5V voltage regulator. If this pin is tied low, VDD1,2 and VDDPLL must be
supplied externally.
68
MC9S12DT256 Device User Guide — V03.07
Section 3 System Clock Description
3.1 Overview
The Clock and Reset Generator provides the internal clock signals for the core and all peripheral modules.
Figure 3-1 shows the clock connections from the CRG to all modules.
Consult the CRG Block User Guide for details on clock generation.
BDM
S12_CORE
core clock
Flash
RAM
EEPROM
ECT
EXTAL
ATD0, 1
CRG
XTAL
bus clock
PWM
SCI0, SCI1
oscillator clock
SPI0, 1, 2
CAN0, 1, 2, 3, 4
IIC
BDLC
PIM
Figure 3-1 Clock Connections
69
MC9S12DT256 Device User Guide — V03.07
70
MC9S12DT256 Device User Guide — V03.07
Section 4 Modes of Operation
4.1 Overview
Eight possible modes determine the operating configuration of the MC9S12DT256. Each mode has an
associated default memory map and external bus configuration controlled by a further pin.
Three low power modes exist for the device.
4.2 Chip Configuration Summary
The operating mode out of reset is determined by the states of the MODC, MODB, and MODA pins during
reset (Table 4-1). The MODC, MODB, and MODA bits in the MODE register show the current operating
mode and provide limited mode switching during operation. The states of the MODC, MODB, and MODA
pins are latched into these bits on the rising edge of the reset signal. The ROMCTL signal allows the setting
of the ROMON bit in the MISC register thus controlling whether the internal Flash is visible in the
memory map. ROMON = 1 mean the Flash is visible in the memory map. The state of the ROMCTL pin
is latched into the ROMON bit in the MISC register on the rising edge of the reset signal.
Table 4-1 Mode Selection
BKGD =
MODC
PE6 =
MODB
PE5 =
MODA
PK7 =
ROMCTL
ROMON
Bit
0
0
0
X
1
0
0
1
0
1
1
0
0
1
0
X
0
0
1
1
0
1
1
0
1
0
0
X
1
1
0
1
0
0
1
1
1
1
0
X
1
1
1
1
0
0
1
1
Mode Description
Special Single Chip, BDM allowed and ACTIVE. BDM is
allowed in all other modes but a serial command is
required to make BDM active.
Emulation Expanded Narrow, BDM allowed
Special Test (Expanded Wide), BDM allowed
Emulation Expanded Wide, BDM allowed
Normal Single Chip, BDM allowed
Normal Expanded Narrow, BDM allowed
Peripheral; BDM allowed but bus operations would cause
bus con icts (m ust not be used)
Normal Expanded Wide, BDM allowed
For further explanation on the modes refer to the Core User Guide.
Table 4-2 Clock Selection Based on PE7
PE7 = XCLKS
1
Description
Colpitts Oscillator selected
71
MC9S12DT256 Device User Guide — V03.07
Table 4-2 Clock Selection Based on PE7
PE7 = XCLKS
0
Description
Pierce Oscillator/external clock selected
Table 4-3 Voltage Regulator VREGEN
VREGEN
Description
1
Internal Voltage Regulator enabled
0
Internal Voltage Regulator disabled, VDD1,2 and
VDDPLL must be supplied externally with 2.5V
4.3 Security
The device will make available a security feature preventing the unauthorized read and write of the
memory contents. This feature allows:
•
Protection of the contents of FLASH,
•
Protection of the contents of EEPROM,
•
Operation in single-chip mode,
•
Operation from external memory with internal FLASH and EEPROM disabled.
The user must be reminded that part of the security must lie with the user’s code. An extreme example
would be user’s code that dumps the contents of the internal program. This code would defeat the purpose
of security. At the same time the user may also wish to put a back door in the user’s program. An example
of this is the user downloads a key through the SCI which allows access to a programming routine that
updates parameters stored in EEPROM.
4.3.1 Securing the Microcontroller
Once the user has programmed the FLASH and EEPROM (if desired), the part can be secured by
programming the security bits located in the FLASH module. These non-volatile bits will keep the part
secured through resetting the part and through powering down the part.
The security byte resides in a portion of the Flash array.
Check the Flash Block User Guide for more details on the security configuration.
4.3.2 Operation of the Secured Microcontroller
4.3.2.1 Normal Single Chip Mode
This will be the most common usage of the secured part. Everything will appear the same as if the part was
not secured with the exception of BDM operation. The BDM operation will be blocked.
72
MC9S12DT256 Device User Guide — V03.07
4.3.2.2 Executing from External Memory
The user may wish to execute from external space with a secured microcontroller. This is accomplished
by resetting directly into expanded mode. The internal FLASH and EEPROM will be disabled. BDM
operations will be blocked.
4.3.3 Unsecuring the Microcontroller
In order to unsecure the microcontroller, the internal FLASH and EEPROM must be erased. This can be
done through an external program in expanded mode.
Once the user has erased the FLASH and EEPROM, the part can be reset into special single chip mode.
This invokes a program that verifies the erasure of the internal FLASH and EEPROM. Once this program
completes, the user can erase and program the FLASH security bits to the unsecured state. This is generally
done through the BDM, but the user could also change to expanded mode (by writing the mode bits
through the BDM) and jumping to an external program (again through BDM commands). Note that if the
part goes through a reset before the security bits are reprogrammed to the unsecure state, the part will be
secured again.
4.4 Low Power Modes
The microcontroller features three main low power modes. Consult the respective Block User Guide for
information on the module behavior in Stop, Pseudo Stop, and Wait Mode. An important source of
information about the clock system is the Clock and Reset Generator User Guide (CRG).
4.4.1 Stop
Executing the CPU STOP instruction stops all clocks and the oscillator thus putting the chip in fully static
mode. Wake up from this mode can be done via reset or external interrupts.
4.4.2 Pseudo Stop
This mode is entered by executing the CPU STOP instruction. In this mode the oscillator is still running
and the Real Time Interrupt (RTI) or Watchdog (COP) sub module can stay active. Other peripherals are
turned off. This mode consumes more current than the full STOP mode, but the wake up time from this
mode is significantly shorter.
4.4.3 Wait
This mode is entered by executing the CPU WAI instruction. In this mode the CPU will not execute
instructions. The internal CPU signals (address and databus) will be fully static. All peripherals stay active.
For further power consumption the peripherals can individually turn off their local clocks.
73
MC9S12DT256 Device User Guide — V03.07
4.4.4 Run
Although this is not a low power mode, unused peripheral modules should not be enabled in order to save
power.
74
MC9S12DT256 Device User Guide — V03.07
Section 5 Resets and Interrupts
5.1 Overview
Consult the Exception Processing section of the HCS12 Core User Guide for information on resets and
interrupts.
5.2 Vectors
5.2.1 Vector Table
Table 5-1 lists interrupt sources and vectors in default order of priority.
Table 5-1 Interrupt Vector Locations
Interrupt Source
CCR
Mask
Local Enable
HPRIO Value
to Elevate
$FFFE, $FFFF
Reset
None
None
–
$FFFC, $FFFD
Clock Monitor fail reset
None
PLLCTL (CME, SCME)
–
$FFFA, $FFFB
COP failure reset
None
COP rate select
–
$FFF8, $FFF9
Unimplemented instruction trap
None
None
–
$FFF6, $FFF7
SWI
None
None
–
$FFF4, $FFF5
XIRQ
X-Bit
None
–
$FFF2, $FFF3
IRQ
I-Bit
IRQCR (IRQEN)
$F2
$FFF0, $FFF1
Real Time Interrupt
I-Bit
CRGINT (RTIE)
$F0
$FFEE, $FFEF
Enhanced Capture Timer channel 0
I-Bit
TIE (C0I)
$EE
$FFEC, $FFED
Enhanced Capture Timer channel 1
I-Bit
TIE (C1I)
$EC
$FFEA, $FFEB
Enhanced Capture Timer channel 2
I-Bit
TIE (C2I)
$EA
$FFE8, $FFE9
Enhanced Capture Timer channel 3
I-Bit
TIE (C3I)
$E8
$FFE6, $FFE7
Enhanced Capture Timer channel 4
I-Bit
TIE (C4I)
$E6
$FFE4, $FFE5
Enhanced Capture Timer channel 5
I-Bit
TIE (C5I)
$E4
$FFE2, $FFE3
Enhanced Capture Timer channel 6
I-Bit
TIE (C6I)
$E2
$FFE0, $FFE1
Enhanced Capture Timer channel 7
I-Bit
TIE (C7I)
$E0
$FFDE, $FFDF
Enhanced Capture Timer over o w
I-Bit
TSRC2 (TOF)
$DE
$FFDC, $FFDD
Pulse accumulator A over o w
I-Bit
PACTL (PAOVI)
$DC
$FFDA, $FFDB
Pulse accumulator input edge
I-Bit
PACTL (PAI)
$DA
$FFD8, $FFD9
SPI0
I-Bit
SP0CR1 (SPIE, SPTIE)
$D8
$FFD6, $FFD7
SCI0
I-Bit
SC0CR2
(TIE, TCIE, RIE, ILIE)
$D6
$FFD4, $FFD5
SCI1
I-Bit
SC1CR2
(TIE, TCIE, RIE, ILIE)
$D4
$FFD2, $FFD3
ATD0
I-Bit
ATD0CTL2 (ASCIE)
$D2
Vector Address
75
MC9S12DT256 Device User Guide — V03.07
$FFD0, $FFD1
ATD1
I-Bit
ATD1CTL2 (ASCIE)
$D0
$FFCE, $FFCF
Port J
I-Bit
PTJIF (PTJIE)
$CE
$FFCC, $FFCD
Port H
I-Bit
PTHIF(PTHIE)
$CC
$FFCA, $FFCB
Modulus Down Counter under o w
I-Bit
MCCTL(MCZI)
$CA
$FFC8, $FFC9
Pulse Accumulator B Over o w
I-Bit
PBCTL(PBOVI)
$C8
$FFC6, $FFC7
CRG PLL lock
I-Bit
CRGINT(LOCKIE)
$C6
$FFC4, $FFC5
CRG Self Clock Mode
I-Bit
CRGINT (SCMIE)
$C4
$FFC2, $FFC3
BDLC
I-Bit
DLCBCR1(IE)
$C2
$FFC0, $FFC1
IIC Bus
I-Bit
IBCR (IBIE)
$C0
$FFBE, $FFBF
SPI1
I-Bit
SP1CR1 (SPIE, SPTIE)
$BE
$FFBC, $FFBD
SPI2
I-Bit
SP2CR1 (SPIE, SPTIE)
$BC
$FFBA, $FFBB
EEPROM
I-Bit
ECNFG (CCIE, CBEIE)
$BA
$FFB8, $FFB9
FLASH
I-Bit
FCNFG (CCIE, CBEIE)
$B8
$FFB6, $FFB7
CAN0 wake-up
I-Bit
CAN0RIER (WUPIE)
$B6
$FFB4, $FFB5
CAN0 errors
I-Bit
CAN0RIER (CSCIE, OVRIE)
$B4
$FFB2, $FFB3
CAN0 receive
I-Bit
CAN0RIER (RXFIE)
$B2
$FFB0, $FFB1
CAN0 transmit
I-Bit
CAN0TIER (TXEIE2-TXEIE0)
$B0
$FFAE, $FFAF
CAN1 wake-up
I-Bit
CAN1RIER (WUPIE)
$AE
$FFAC, $FFAD
CAN1 errors
I-Bit
CAN1RIER (CSCIE, OVRIE)
$AC
$FFAA, $FFAB
CAN1 receive
I-Bit
CAN1RIER (RXFIE)
$AA
$FFA8, $FFA9
CAN1 transmit
I-Bit
CAN1TIER (TXEIE2-TXEIE0)
$A8
$FFA6, $FFA7
$FFA4, $FFA5
$FFA2, $FFA3
$FFA0, $FFA1
Reserved
$FF9E, $FF9F
$FF9C, $FF9D
$FF9A, $FF9B
$FF98, $FF99
$FF96, $FF97
CAN4 wake-up
I-Bit
CAN4RIER (WUPIE)
$96
$FF94, $FF95
CAN4 errors
I-Bit
CAN4RIER (CSCIE, OVRIE)
$94
$FF92, $FF93
CAN4 receive
I-Bit
CAN4RIER (RXFIE)
$92
$FF90, $FF91
CAN4 transmit
I-Bit
CAN4TIER (TXEIE2-TXEIE0)
$90
$FF8E, $FF8F
Port P Interrupt
I-Bit
PTPIF (PTPIE)
$8E
$FF8C, $FF8D
PWM Emergency Shutdown
I-Bit
PWMSDN (PWMIE)
$8C
$FF80 to
$FF8B
76
Reserved
MC9S12DT256 Device User Guide — V03.07
5.3 Effects of Reset
When a reset occurs, MCU registers and control bits are changed to known start-up states. Refer to the
respective module Block User Guides for register reset states.
5.3.1 I/O pins
Refer to the HCS12 Core User Guides for mode dependent pin configuration of port A, B, E and K out of
reset.
Refer to the PIM Block User Guide for reset configurations of all peripheral module ports.
NOTE:
For devices assembled in 80-pin QFP packages all non-bonded out pins should be
configured as outputs after reset in order to avoid current drawn from floating
inputs. Refer to Table 2-1 for affected pins.
5.3.2 Memory
Refer to Table 1-1 for locations of the memories depending on the operating mode after reset.
The RAM array is not automatically initialized out of reset.
77
MC9S12DT256 Device User Guide — V03.07
78
MC9S12DT256 Device User Guide — V03.07
Section 6 HCS12 Core Block Description
6.1 CPU12 Block Description
Consult the CPU12 Reference Manual for information on the CPU.
When the CPU12 Reference Manual refers to cycles this is equivalent to Bus Clock Periods.
6.2 HCS12 Module Mapping Control (MMC) Block Description
Consult the MMC Block User Guide for information on the Module Mapping Control Block.
6.2.1 Device specific information
•
•
INITEE
–
Reset state: $01
–
Bits EE11-EE15 are writeable once in Normal and Emulation Mode
PPAGE
–
Reset state : $00
–
Register is writeable anytime in all modes
6.3 HCS12 Multiplexed External Bus Interface (MEBI) Block
Description
Consult the MEBI Block Guide for information on Multiplexed External Bus Interface.
6.3.1 Device specific information
•
PUCR
–
Reset State : $90
6.4 HCS12 Interrupt (INT) Block description
Consult the INT Block guide for information on HCS12 Interrupt block.
6.5 HCS12 Background Debug (BDM) Block Description
Consult the BDM Block guide for information on HCS12 Background Debug block
79
MC9S12DT256 Device User Guide — V03.07
6.6 HCS12 Breakpoint (BKP) Block Description
Consult the BKP Block guide for information on HCS12 breakpoint block
Section 7 Clock and Reset Generator (CRG) Block
Description
Consult the CRG Block User Guide for information about the Clock and Reset Generator module.
7.1 Device-specific information
7.1.1 XCLKS
The XCLKS input signal is active low (see 2.3.13 PE7 / NOACC / XCLKS — Port E I/O Pin 7).
Section 8 Enhanced Capture Timer (ECT) Block
Description
Consult the ECT_16B8C Block User Guide for information about the Enhanced Capture Timer module
When the ECT_16B8C Block Guide refers to freeze mode this is equivalent to active BDM mode.
Section 9 Analog to Digital Converter (ATD) Block
Description
There are two Analog to Digital Converters (ATD1 and ATD0) implemented on the MC9S12DT256.
Consult the ATD_10B8C Block User Guide for information about each Analog to Digital Converter
module.When the ATD_10B8C Block Guide refers to freeze mode this is equivalent to active BDM mode.
Section 10 Inter-IC Bus (IIC) Block Description
Consult the IIC Block User Guide for information about the Inter-IC Bus module.
Section 11 Serial Communications Interface (SCI) Block
Description
80
MC9S12DT256 Device User Guide — V03.07
There are two Serial Communications Interfaces (SCI1 and SCI0) implemented on the MC9S12DT256
device. Consult the SCI Block User Guide for information about each Serial Communications Interface
module.
Section 12 Serial Peripheral Interface (SPI) Block
Description
There are three Serial Peripheral Interfaces(SPI2, SPI1 and SPI0) implemented on MC9S12DT256.
Consult the SPI Block User Guide for information about each Serial Peripheral Interface module.
Section 13 J1850 (BDLC) Block Description
Consult the BDLC Block User Guide for information about the J1850 module.
Section 14 Pulse Width Modulator (PWM) Block
Description
Consult the PWM_8B8C Block User Guide for information about the Pulse Width Modulator module.
When the PWM _8B8CBlock Guide refers to freeze mode this is equivalent to active BDM mode
Section 15 Flash EEPROM 256K Block Description
The "S12 LRAE" is a generic Load RAM and Execute (LRAE) program which will be programmed into
the flash memory of this device during manufacture. This LRAE program will provide greater
programming flexibility to the end users by allowing the device to be programmed directly using CAN or
SCI after it is assembled on the PCB. Use of the LRAE program is at the discretion of the end user and, if
not required, it must simply be erased prior to flash programming. For more details of the S12 LRAE and
its implementation, please see the S12 LREA Application Note (AN2546/D).
It is planned that most HC9S12 devices manufactured after Q1 of 2004 will be shipped with the S12 LRAE
programmed in the Flash. Exact details of the changeover (i.e. blank to programmed) for each product will
be communicated in advance via GPCN and will be traceable by the customer via datecode marking on
the device.
Please contact Motorola SPS Sales if you have any additional questions.
Consult the FTS256K Block User Guide for information about the flash module.
Section 16 EEPROM 4K Block Description
81
MC9S12DT256 Device User Guide — V03.07
Consult the EETS4K Block User Guide for information about the EEPROM module.
Section 17 RAM Block Description
This module supports single-cycle misaligned word accesses.
Section 18 MSCAN Block Description
There are three MSCAN modules (CAN4, CAN1 and CAN0) implemented on the MC9S12DT256.
Consult the MSCAN Block User Guide for information about the Motorola Scalable CAN Module.
Section 19 Port Integration Module (PIM) Block Description
Consult the PIM_9DP256 Block User Guide for information about the Port Integration Module.
Section 20 Voltage Regulator (VREG) Block Description
Consult the VREG Block User Guide for information about the dual output linear voltage regulator.
82
MC9S12DT256 Device User Guide — V03.07
Component
Purpose
Type
Value
C1
VDD1 lter cap
ceramic X7R
100 .. 220nF
C2
VDD2 lter cap
ceramic X7R
100 .. 220nF
C3
VDDA lter cap
ceramic X7R
100nF
C4
VDDR lter cap
X7R/tantalum
>=100nF
C5
VDDPLL lter cap
ceramic X7R
100nF
C6
VDDX lter cap
X7R/tantalum
>=100nF
C7
OSC load cap
C8
OSC load cap
C9 / CS
PLL loop lter cap
C10 / CP
PLL loop lter cap
C11 / CDC
DC cutoff cap
Colpitts mode only, if recommended by
quartz manufacturer
R1 / R
PLL loop lter res
See PLL Speci cation chapter
See PLL speci cation chapter
R2 / RB
Pierce mode only
R3 / RS
Q1
Quartz
The PCB must be carefully laid out to ensure proper operation of the voltage regulator as well as of the
MCU itself. The following rules must be observed:
•
Every supply pair must be decoupled by a ceramic capacitor connected as near as possible to the
corresponding pins (C1 – C6).
•
Central point of the ground star should be the VSSR pin.
•
Use low ohmic low inductance connections between VSS1, VSS2 and VSSR.
•
VSSPLL must be directly connected to VSSR.
•
Keep traces of VSSPLL, EXTAL and XTAL as short as possible and occupied board area for C7,
C8, C11 and Q1 as small as possible.
•
Do not place other signals or supplies underneath area occupied by C7, C8, C10 and Q1 and the
connection area to the MCU.
•
Central power input should be fed in at the VDDA/VSSA pins.
83
MC9S12DT256 Device User Guide — V03.07
Figure 20-1 Recommended PCB Layout for 112LQFP Colpitts Oscillator
VREGEN
C6
VDDX
VSSX
VSSA
C3
VDDA
VDD1
C1
VSS1
VSS2
C2
VDD2
VSSR
C4
C7
C8
84
C10
C9
R1
C11
C5
VDDR
Q1
VSSPLL
VDDPLL
MC9S12DT256 Device User Guide — V03.07
Figure 20-2 Recommended PCB Layout for 80QFP Colpitts Oscillator
VREGEN
C6
VDDX
VSSX
VSSA
C3
VDDA
VDD1
VSS2
C1
C2
VSS1
VDD2
VSSR
C4
C5
VDDR
C7
C8
C11
Q1
C10
C9
R1
VSSPLL
VDDPLL
85
MC9S12DT256 Device User Guide — V03.07
Figure 20-3 Recommended PCB Layout for 112LQFP Pierce Oscillator
VREGEN
C6
VDDX
VSSX
VSSA
C3
VDDA
VDD1
C1
VSS1
VSS2
C2
VDD2
VSSR
VSSPLL
C4
R3
C5
VDDR
R2
Q1
C7
86
C8
R1
C10
C9
VDDPLL
MC9S12DT256 Device User Guide — V03.07
Figure 20-4 Recommended PCB Layout for 80QFP Pierce Oscillator
VREGEN
C6
VDDX
VSSX
VSSA
C3
VDDA
VDD1
VSS2
C1
C2
VSS1
VDD2
VSSPLL
VSSR
C4
R3
C5
VDDR
R2
Q1
C7
C8
C10
C9
R1
VSSPLL
VDDPLL
87
MC9S12DT256 Device User Guide — V03.07
88
MC9S12DT256 Device User Guide — V03.07
Appendix A Electrical Characteristics
A.1 General
NOTE:
The electrical characteristics given in this section are preliminary and should be
used as a guide only. Values cannot be guaranteed by Motorola and are subject to
change without notice.
This supplement contains the most accurate electrical information for the MC9S12DT256 microcontroller
available at the time of publication. The information should be considered PRELIMINARY and is subject
to change.
This introduction is intended to give an overview on several common topics like power supply, current
injection etc.
A.1.1 Parameter Classification
The electrical parameters shown in this supplement are guaranteed by various methods. To give the
customer a better understanding the following classification is used and the parameters are tagged
accordingly in the tables where appropriate.
NOTE:
This classification is shown in the column labeled “C” in the parameter tables
where appropriate.
P:
Those parameters are guaranteed during production testing on each individual device.
C:
Those parameters are achieved by the design characterization by measuring a statistically relevant
sample size across process variations.
T:
Those parameters are achieved by design characterization on a small sample size from typical devices
under typical conditions unless otherwise noted. All values shown in the typical column are within
this category.
D:
Those parameters are derived mainly from simulations.
A.1.2 Power Supply
The MC9S12DT256 utilizes several pins to supply power to the I/O ports, A/D converter, oscillator and
PLL as well as the digital core.
The VDDA, VSSA pair supplies the A/D converter and the resistor ladder of the internal voltage regulator.
89
MC9S12DT256 Device User Guide — V03.07
The VDDX, VSSX, VDDR and VSSR pairs supply the I/O pins, VDDR supplies also the internal voltage
regulator.
VDD1, VSS1, VDD2 and VSS2 are the supply pins for the digital logic, VDDPLL, VSSPLL supply the
oscillator and the PLL.
VSS1 and VSS2 are internally connected by metal.
VDDA, VDDX, VDDR as well as VSSA, VSSX, VSSR are connected by anti-parallel diodes for ESD
protection.
NOTE:
In the following context VDD5 is used for either VDDA, VDDR and VDDX; VSS5
is used for either VSSA, VSSR and VSSX unless otherwise noted.
IDD5 denotes the sum of the currents flowing into the VDDA, VDDX and VDDR
pins.
VDD is used for VDD1, VDD2 and VDDPLL, VSS is used for VSS1, VSS2 and
VSSPLL.
IDD is used for the sum of the currents flowing into VDD1 and VDD2.
A.1.3 Pins
There are four groups of functional pins.
A.1.3.1 5V I/O pins
Those I/O pins have a nominal level of 5V. This class of pins is comprised of all port I/O pins, the analog
inputs, BKGD and the RESET pins.The internal structure of all those pins is identical, however some of
the functionality may be disabled. E.g. for the analog inputs the output drivers, pull-up and pull-down
resistors are disabled permanently.
A.1.3.2 Analog Reference
This group is made up by the VRH and VRL pins.
A.1.3.3 Oscillator
The pins XFC, EXTAL, XTAL dedicated to the oscillator have a nominal 2.5V level. They are supplied
by VDDPLL.
A.1.3.4 TEST
This pin is used for production testing only.
A.1.3.5 VREGEN
This pin is used to enable the on chip voltage regulator.
90
MC9S12DT256 Device User Guide — V03.07
A.1.4 Current Injection
Power supply must maintain regulation within operating VDD5 or VDD range during instantaneous and
operating maximum current conditions. If positive injection current (Vin > VDD5) is greater than IDD5, the
injection current may flow out of VDD5 and could result in external power supply going out of regulation.
Ensure external VDD5 load will shunt current greater than maximum injection current. This will be the
greatest risk when the MCU is not consuming power; e.g. if no system clock is present, or if clock rate is
very low which would reduce overall power consumption.
A.1.5 Absolute Maximum Ratings
Absolute maximum ratings are stress ratings only. A functional operation under or outside those maxima
is not guaranteed. Stress beyond those limits may affect the reliability or cause permanent damage of the
device.
This device contains circuitry protecting against damage due to high static voltage or electrical fields;
however, it is advised that normal precautions be taken to avoid application of any voltages higher than
maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused
inputs are tied to an appropriate logic voltage level (e.g., either VSS5 or VDD5).
Table A-1 Absolute Maximum Ratings1
Num
Rating
Symbol
Min
Max
Unit
1
I/O, Regulator and Analog Supply Voltage
VDD5
-0.3
6.0
V
2
Digital Logic Supply Voltage 2
VDD
-0.3
3.0
V
3
PLL Supply Voltage 2
VDDPLL
-0.3
3.0
V
4
Voltage difference VDDX to VDDR and VDDA
∆VDDX
-0.3
0.3
V
5
Voltage difference VSSX to VSSR and VSSA
∆VSSX
-0.3
0.3
V
6
Digital I/O Input Voltage
VIN
-0.3
6.0
V
7
Analog Reference
VRH, VRL
-0.3
6.0
V
8
XFC, EXTAL, XTAL inputs
VILV
-0.3
3.0
V
9
TEST input
VTEST
-0.3
10.0
V
10
Instantaneous Maximum Current
Single pin limit for all digital I/O pins 3
ID
-25
+25
mA
11
Instantaneous Maximum Current
Single pin limit for XFC, EXTAL, XTAL4
IDL
-25
+25
mA
12
Instantaneous Maximum Current
Single pin limit for TEST 5
IDT
-0.25
0
mA
13
Storage Temperature Range
T
– 65
155
°C
stg
NOTES:
1. Beyond absolute maximum ratings device might be damaged.
91
MC9S12DT256 Device User Guide — V03.07
2. The device contains an internal voltage regulator to generate the logic and PLL supply out of the I/O supply.
The absolute maximum ratings apply when the device is powered from an external source.
3. All digital I/O pins are internally clamped to VSSX and VDDX, VSSR and VDDR or VSSA and VDDA.
4. Those pins are internally clamped to VSSPLL and VDDPLL.
5. This pin is clamped low to VSSR, but not clamped high. This pin must be tied low in applications.
A.1.6 ESD Protection and Latch-up Immunity
All ESD testing is in conformity with CDF-AEC-Q100 Stress test qualification for Automotive Grade
Integrated Circuits. During the device qualification ESD stresses were performed for the Human Body
Model (HBM), the Machine Model (MM) and the Charge Device Model.
A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device
specification. Complete DC parametric and functional testing is performed per the applicable device
specification at room temperature followed by hot temperature, unless specified otherwise in the device
specification.
Table A-2 ESD and Latch-up Test Conditions
Model
Human Body
Machine
Latch-up
Description
Symbol
Value
Unit
Series Resistance
R1
1500
Ohm
Storage Capacitance
C
100
pF
Number of Pulse per pin
positive
negative
-
3
3
Series Resistance
R1
0
Ohm
Storage Capacitance
C
200
pF
Number of Pulse per pin
positive
negative
-
3
3
Minimum input voltage limit
-2.5
V
Maximum input voltage limit
7.5
V
Table A-3 ESD and Latch-Up Protection Characteristics
Num C
92
Rating
Symbol
Min
Max
Unit
1
C Human Body Model (HBM)
VHBM
2000
-
V
2
C Machine Model (MM)
VMM
200
-
V
3
C Charge Device Model (CDM)
VCDM
500
-
V
4
Latch-up Current at TA = 125°C
C positive
negative
ILAT
+100
-100
-
mA
5
Latch-up Current at TA = 27°C
C positive
negative
ILAT
+200
-200
-
mA
MC9S12DT256 Device User Guide — V03.07
A.1.7 Operating Conditions
This chapter describes the operating conditions of the device. Unless otherwise noted those conditions
apply to all the following data.
NOTE:
Please refer to the temperature rating of the device (C, V, M) with regards to the
ambient temperature TA and the junction temperature TJ. For power dissipation
calculations refer to Section A.1.8 Power Dissipation and Thermal
Characteristics.
Table A-4 Operating Conditions
Rating
Symbol
Min
Typ
Max
Unit
I/O, Regulator and Analog Supply Voltage
VDD5
4.5
5
5.25
V
Digital Logic Supply Voltage 1
VDD
2.35
2.5
2.75
V
PLL Supply Voltage 1
VDDPLL
2.35
2.5
2.75
V
Voltage Difference VDDX to VDDR and VDDA
∆VDDX
-0.1
0
0.1
V
Voltage Difference VSSX to VSSR and VSSA
∆VSSX
-0.1
0
0.1
V
Oscillator
fosc
0.5
-
16
MHz
Bus Frequency
fbus
0.5
-
25
MHz
TJ
-40
-
100
°C
T
A
-40
27
85
°C
Operating Junction Temperature Range
TJ
-40
-
120
°C
Operating Ambient Temperature Range 2
TA
-40
27
105
°C
Operating Junction Temperature Range
TJ
-40
-
140
°C
Operating Ambient Temperature Range 2
TA
-40
27
125
°C
MC9S12DT256C
Operating Junction Temperature Range
Operating Ambient Temperature Range 2
MC9S12DT256V
MC9S12DT256M
NOTES:
1. The device contains an internal voltage regulator to generate the logic and PLL supply out of the I/O supply. The
absolute maximum ratings apply when this regulator is disabled and the device is powered from an external
source.
2. Please refer to Section A.1.8 Power Dissipation and Thermal Characteristics for more details about the relation between ambient temperature TA and device junction temperature TJ.
A.1.8 Power Dissipation and Thermal Characteristics
Power dissipation and thermal characteristics are closely related. The user must assure that the maximum
operating junction temperature is not exceeded. The average chip-junction temperature (TJ) in °C can be
obtained from:
93
MC9S12DT256 Device User Guide — V03.07
T J = T A + ( P D • Θ JA )
T J = Junction Temperature, [°C ]
T A = Ambient Temperature, [°C ]
P D = Total Chip Power Dissipation, [W]
Θ JA = Package Thermal Resistance, [°C/W]
The total power dissipation can be calculated from:
P D = P INT + P IO
P INT = Chip Internal Power Dissipation, [W]
Two cases with internal voltage regulator enabled and disabled must be considered:
1. Internal Voltage Regulator disabled
P INT = I DD ⋅ V DD + I DDPLL ⋅ V DDPLL + I DDA ⋅ V DDA
2
P IO =
R DSON ⋅ I IO
i
i
∑
PIO is the sum of all output currents on I/O ports associated with VDDX and VDDR.
For RDSON is valid:
V OL
R DSON = ------------ ;for outputs driven low
I OL
respectively
V DD5 – V OH
R DSON = ------------------------------------ ;for outputs driven high
I OH
2. Internal voltage regulator enabled
P INT = I DDR ⋅ V DDR + I DDA ⋅ V DDA
IDDR is the current shown in Table A-7 and not the overall current flowing into VDDR, which
additionally contains the current flowing into the external loads with output high.
2
P IO =
R DSON ⋅ I IO
i
i
∑
PIO is the sum of all output currents on I/O ports associated with VDDX and VDDR.
94
MC9S12DT256 Device User Guide — V03.07
Table A-5 Thermal Package Characteristics1
Num C
Rating
Symbol
Min
Typ
Max
Unit
1
T Thermal Resistance LQFP112, single sided PCB2
θJA
-
-
54
oC/W
2
T
Thermal Resistance LQFP112, double sided PCB
with 2 internal planes3
θJA
-
-
41
o
3
T Thermal Resistance LQFP 80, single sided PCB
θJA
-
-
51
oC/W
4
T
θJA
-
-
41
oC/W
Thermal Resistance LQFP 80, double sided PCB
with 2 internal planes
C/W
NOTES:
1. The values for thermal resistance are achieved by package simulations
2. PC Board according to EIA/JEDEC Standard 51-2
3. PC Board according to EIA/JEDEC Standard 51-7
A.1.9 I/O Characteristics
This section describes the characteristics of all 5V I/O pins. All parameters are not always applicable, e.g.
not all pins feature pull up/down resistances.
95
MC9S12DT256 Device User Guide — V03.07
Table A-6 5V I/O Characteristics
Conditions are shown in Table A-4 unless otherwise noted
Num C
1
2
Rating
Symbol
Min
Typ
Max
Unit
0.65*VDD5
-
-
V
P Input High Voltage
V
T Input High Voltage
VIH
-
-
VDD5 + 0.3
V
P Input Low Voltage
V
-
-
0.35*VDD5
V
T Input Low Voltage
VIL
VSS5 - 0.3
-
-
V
3
C Input Hysteresis
4
Input Leakage Current (pins in high impedance input
P mode)1
Vin = VDD5 or VSS5
5
C
6
IH
IL
V
250
HYS
mV
I
in
–2.5
-
2.5
µA
Output High Voltage (pins in output mode)
Partial Drive IOH = –2mA
V
OH
VDD5 – 0.8
-
-
V
P
Output High Voltage (pins in output mode)
Full Drive IOH = –10mA
VOH
VDD5 – 0.8
-
-
V
7
C
Output Low Voltage (pins in output mode)
Partial Drive IOL = +2mA
VOL
-
-
0.8
V
8
P
Output Low Voltage (pins in output mode)
Full Drive IOL = +10mA
VOL
-
-
0.8
V
9
Internal Pull Up Device Current,
P tested at V Max.
IPUL
-
-
-130
µA
10
Internal Pull Up Device Current,
C tested at V Min.
IPUH
-10
-
-
µA
11
Internal Pull Down Device Current,
P tested at V Min.
IPDH
-
-
130
µA
12
Internal Pull Down Device Current,
C tested at V Max.
IPDL
10
-
-
µA
13
D Input Capacitance
Cin
6
-
pF
14
Injection current2
T Single Pin limit
Total Device Limit. Sum of all injected currents
IICS
IICP
-
2.5
25
mA
15
P Port H, J, P Interrupt Input Pulse ltered 3
tPULSE
3
µs
16
P Port H, J, P Interrupt Input Pulse passed3
tPULSE
IL
IH
IH
IL
-2.5
-25
10
µs
NOTES:
1. Maximum leakage current occurs at maximum operating temperature. Current decreases by approximately one-half for
each 8 C to 12 C in the temperature range from 50 C to 125 C.
2. Refer to Section A.1.4 Current Injection, for more details
3. Parameter only applies in STOP or Pseudo STOP mode.
96
MC9S12DT256 Device User Guide — V03.07
A.1.10 Supply Currents
This section describes the current consumption characteristics of the device as well as the conditions for
the measurements.
A.1.10.1 Measurement Conditions
All measurements are without output loads. Unless otherwise noted the currents are measured in single
chip mode, internal voltage regulator enabled and at 25MHz bus frequency using a 4MHz oscillator in
Colpitts mode. Production testing is performed using a square wave signal at the EXTAL input.
A.1.10.2 Additional Remarks
In expanded modes the currents flowing in the system are highly dependent on the load at the address, data
and control signals as well as on the duty cycle of those signals. No generally applicable numbers can be
97
MC9S12DT256 Device User Guide — V03.07
given. A very good estimate is to take the single chip currents and add the currents due to the external
loads.
Table A-7 Supply Current Characteristics
Conditions are shown in Table A-4 unless otherwise noted
Num C
Rating
Symbol
Run supply currents
Single Chip, Internal regulator enabled
IDD5
65
IDDW
40
5
1
P
2
P
P
All modules enabled, PLL on
only RTI enabled 1
C
P
C
C
P
C
P
C
P
Pseudo Stop Current (RTI and COP disabled) 1, 2
-40°C
27°C
70°C
85°C
"C" Temp Option 100°C
105°C
"V" Temp Option 120°C
125°C
"M" Temp Option 140°C
C
C
C
C
C
C
C
Pseudo Stop Current (RTI and COP enabled) 1, 2
-40°C
27°C
70°C
85°C
105°C
125°C
140°C
Min
Typ
Max
Unit
mA
Wait Supply current
3
4
5
C
P
C
C
P
C
P
C
P
IDDPS
Stop Current 2
-40°C
27°C
70°C
85°C
"C" Temp Option 100°C
105°C
"V" Temp Option 120°C
125°C
"M" Temp Option 140°C
NOTES:
1. PLL off
2. At those low power dissipation levels TJ = TA can be assumed
98
IDDPS
IDDS
370
400
450
550
600
650
800
850
1200
500
1600
µA
2100
5000
570
600
650
750
850
1200
1500
12
25
100
130
160
200
350
400
600
mA
µA
100
1200
1700
5000
µA
MC9S12DT256 Device User Guide — V03.07
A.2 ATD Characteristics
This section describes the characteristics of the analog to digital converter.
A.2.1 ATD Operating Characteristics
The Table A-8 shows conditions under which the ATD operates.
The following constraints exist to obtain full-scale, full range results:
VSSA ≤ VRL ≤ VIN ≤ VRH ≤ VDDA. This constraint exists since the sample buffer amplifier can not drive
beyond the power supply levels that it ties to. If the input level goes outside of this range it will effectively
be clipped.
Table A-8 ATD Operating Characteristics
Conditions are shown in Table A-4 unless otherwise noted
Num C
Rating
Reference Potential
Low
High
Symbol
Min
VRL
VRH
VSSA
VDDA/2
Typ
Max
Unit
VDDA/2
VDDA
V
V
5.25
V
1
D
2
C Differential Reference Voltage1
VRH-VRL
4.50
3
D ATD Clock Frequency
fATDCLK
0.5
2.0
MHz
4
D
14
7
28
14
Cycles
µs
5
D
12
6
26
13
Cycles
µs
6
D Recovery Time (VDDA=5.0 Volts)
tREC
20
µs
7
P
Reference Supply current 2 ATD blocks on
IREF
0.750
mA
8
P
Reference Supply current 1 ATD block on
IREF
0.375
mA
5.00
ATD 10-Bit Conversion Period
Clock Cycles2 NCONV10
Conv, Time at 2.0MHz ATD Clock fATDCLK TCONV10
ATD 8-Bit Conversion Period
Clock Cycles2
Conv, Time at 2.0MHz ATD Clock fATDCLK
NCONV8
TCONV8
NOTES:
1. Full accuracy is not guaranteed when differential voltage is less than 4.50V
2. The minimum time assumes a final sample period of 2 ATD clocks cycles while the maximum time assumes a final sample
period of 16 ATD clocks.
A.2.2 Factors influencing accuracy
Three factors - source resistance, source capacitance and current injection - have an influence on the
accuracy of the ATD.
A.2.2.1 Source Resistance:
Due to the input pin leakage current as specified in Table A-6 in conjunction with the source resistance
there will be a voltage drop from the signal source to the ATD input. The maximum source resistance RS
99
MC9S12DT256 Device User Guide — V03.07
specifies results in an error of less than 1/2 LSB (2.5mV) at the maximum leakage current. If device or
operating conditions are less than worst case or leakage-induced error is acceptable, larger values of source
resistance is allowed.
A.2.2.2 Source Capacitance
When sampling an additional internal capacitor is switched to the input. This can cause a voltage drop due
to charge sharing with the external and the pin capacitance. For a maximum sampling error of the input
voltage ≤ 1LSB, then the external filter capacitor, Cf ≥ 1024 * (CINS- CINN).
A.2.2.3 Current Injection
There are two cases to consider.
1. A current is injected into the channel being converted. The channel being stressed has conversion
values of $3FF ($FF in 8-bit mode) for analog inputs greater than VRH and $000 for values less than
VRL unless the current is higher than specified as disruptive condition.
2. Current is injected into pins in the neighborhood of the channel being converted. A portion of this
current is picked up by the channel (coupling ratio K), This additional current impacts the accuracy
of the conversion depending on the source resistance.
The additional input voltage error on the converted channel can be calculated as VERR = K * RS *
IINJ, with IINJ being the sum of the currents injected into the two pins adjacent to the converted
channel.
Table A-9 ATD Electrical Characteristics
Conditions are shown in Table A-4 unless otherwise noted
Num C
Rating
Symbol
Min
Typ
Max
Unit
RS
-
-
1
KΩ
10
22
pF
2.5
mA
1
C Max input Source Resistance
2
Total Input Capacitance
T Non Sampling
Sampling
3
C Disruptive Analog Input Current
INA
4
C Coupling Ratio positive current injection
Kp
10-4
A/A
5
C Coupling Ratio negative current injection
Kn
10-2
A/A
100
CINN
CINS
-2.5
MC9S12DT256 Device User Guide — V03.07
A.2.3 ATD accuracy
Table A-10 specifies the ATD conversion performance excluding any errors due to current injection,
input capacitance and source resistance.
Table A-10 ATD Conversion Performance
Conditions are shown in Table A-4 unless otherwise noted
VREF = VRH - VRL = 5.12V. Resulting to one 8 bit count = 20mV and one 10 bit count = 5mV
fATDCLK = 2.0MHz
Num C
Rating
Symbol
Min
1
P 10-Bit Resolution
LSB
2
P 10-Bit Differential Nonlinearity
DNL
–1
3
P 10-Bit Integral Nonlinearity
INL
–2.5
4
P 10-Bit Absolute Error1
AE
-3
5
P 8-Bit Resolution
LSB
6
P 8-Bit Differential Nonlinearity
DNL
–0.5
7
P 8-Bit Integral Nonlinearity
INL
–1.0
8
P 8-Bit Absolute Error1
AE
-1.5
Typ
Max
5
Unit
mV
1
Counts
±1.5
2.5
Counts
±2.0
3
Counts
20
mV
0.5
Counts
±0.5
1.0
Counts
±1.0
1.5
Counts
NOTES:
1. These values include the quantization error which is inherently 1/2 count for any A/D converter.
For the following definitions see also Figure A-1.
Differential Non-Linearity (DNL) is defined as the difference between two adjacent switching steps.
Vi – Vi – 1
DNL ( i ) = ------------------------ – 1
1LSB
The Integral Non-Linearity (INL) is defined as the sum of all DNLs:
n
INL ( n ) =
∑
i=1
Vn – V0
DNL ( i ) = -------------------- – n
1LSB
101
MC9S12DT256 Device User Guide — V03.07
DNL
10-Bit Absolute Error Boundary
LSB
Vi-1
Vi
$3FF
8-Bit Absolute Error Boundary
$3FE
$3FD
$3FC
$FF
$3FB
$3FA
$3F9
$3F8
$FE
$3F7
$3F6
$3F4
8-Bit Resolution
10-Bit Resolution
$3F5
$FD
$3F3
9
Ideal Transfer Curve
8
2
7
10-Bit Transfer Curve
6
5
4
1
3
8-Bit Transfer Curve
2
1
0
5
10
15
20
25
30
35
40
50
5055 5060 5065 5070 5075 5080 5085 5090 5095 5100 5105 5110 5115 5120
Vin
mV
Figure A-1 ATD Accuracy Definitions
NOTE:
102
Figure A-1 shows only definitions, for specification values refer to Table A-10.
MC9S12DT256 Device User Guide V03.07
A.3 NVM, Flash and EEPROM
NOTE:
Unless otherwise noted the abbreviation NVM (Non Volatile Memory) is used for
both Flash and EEPROM.
A.3.1 NVM timing
The time base for all NVM program or erase operations is derived from the oscillator. A minimum
oscillator frequency fNVMOSC is required for performing program or erase operations. The NVM modules
do not have any means to monitor the frequency and will not prevent program or erase operation at
frequencies above or below the specified minimum. Attempting to program or erase the NVM modules at
a lower frequency a full program or erase transition is not assured.
The Flash and EEPROM program and erase operations are timed using a clock derived from the oscillator
using the FCLKDIV and ECLKDIV registers respectively. The frequency of this clock must be set within
the limits specified as fNVMOP.
The minimum program and erase times shown in Table A-11 are calculated for maximum fNVMOP and
maximum fbus. The maximum times are calculated for minimum fNVMOP and a fbus of 2MHz.
A.3.1.1 Single Word Programming
The programming time for single word programming is dependant on the bus frequency as a well as on
the frequency fNVMOP and can be calculated according to the following formula.
1
1
t swpgm = 9 ⋅ --------------------- + 25 ⋅ ---------f NVMOP
f bus
A.3.1.2 Burst Programming
This applies only to the Flash where up to 32 words in a row can be programmed consecutively using burst
programming by keeping the command pipeline filled. The time to program a consecutive word can be
calculated as:
1
1
t bwpgm = 4 ⋅ --------------------- + 9 ⋅ ---------f NVMOP
f bus
The time to program a whole row is:
t brpgm = t swpgm + 31 ⋅ t bwpgm
Burst programming is more than 2 times faster than single word programming.
103
MC9S12DT256 Device User Guide V03.07
A.3.1.3 Sector Erase
Erasing a 512 byte Flash sector or a 4 byte EEPROM sector takes:
1
t era ≈ 4000 ⋅ --------------------f NVMOP
The setup time can be ignored for this operation.
A.3.1.4 Mass Erase
Erasing a NVM block takes:
1
t mass ≈ 20000 ⋅ --------------------f NVMOP
The setup time can be ignored for this operation.
A.3.1.5 Blank Check
The time it takes to perform a blank check on the Flash or EEPROM is dependant on the location of the
first non-blank word starting at relative address zero. It takes one bus cycle per word to verify plus a setup
of the command.
t check ≈ location ⋅ t cyc + 10 ⋅ t cyc
Table A-11 NVM Timing Characteristics
Conditions are shown in Table A-4 unless otherwise noted
Num C
Rating
Symbol
Min
Typ
Max
Unit
50 1
MHz
1
D External Oscillator Clock (MC9S12DT256C< V, M)
fNVMOSC
0.5
2
D Bus frequency for Programming or Erase Operations
fNVMBUS
1
3
D Operating Frequency
fNVMOP
150
200
kHz
4
P Single Word Programming Time
tswpgm
46 2
74.5 3
µs
5
D Flash Burst Programming consecutive word 4
tbwpgm
20.4 2
31 3
µs
6
D Flash Burst Programming Time for 32 Words 4
tbrpgm
678.4 2
1035.5 3
µs
7
P Sector Erase Time
tera
20 5
26.7 3
ms
8
P Mass Erase Time
tmass
100 5
133 3
ms
9
D Blank Check Time Flash per block
tcheck
11 6
32778 7
tcyc
10
D Blank Check Time EEPROM per block
tcheck
11 6
20587
tcyc
MHz
NOTES:
1. Restrictions for oscillator in crystal mode apply!
2. Minimum Programming times are achieved under maximum NVM operating frequency fNVMOP and maximum bus frequency
fbus.
104
MC9S12DT256 Device User Guide V03.07
3. Maximum Erase and Programming times are achieved under particular combinations of fNVMOP and bus frequency fbus.
Refer to formulae in Sections A.3.1.1 - A.3.1.4 for guidance.
4. Burst Programming operations are not applicable to EEPROM
5. Minimum Erase times are achieved under maximum NVM operating frequency fNVMOP.
6. Minimum time, if first word in the array is not blank
7. Maximum time to complete check on an erased block
105
MC9S12DT256 Device User Guide V03.07
A.3.2 NVM Reliability
The reliability of the NVM blocks is guaranteed by stress test during qualification, constant process
monitors and burn-in to screen early life failures.The program/erase cycle count on the sector is
incremented every time a sector or mass erase event is executed
Table A-12 NVM Reliability Characteristics1
Conditions are shown in Table A-4 unless otherwise noted
Num C
Rating
Symbol
Min
Typ
Max
15
1002
—
20
1002
—
10,000
—
—
10,000
100,0003
—
1002
—
Unit
Flash Reliability Characteristics
Data retention after 10,000 program/erase cycles at
an average junction temperature of TJavg ≤ 85°C
1
C
2
Data retention with <100 program/erase cycles at an
C
average junction temperature TJavg ≤ 85°C
3
C
4
Number of program/erase cycles
(–40°C ≤ TJ ≤ 0°C)
tFLRET
Years
nFL
Number of program/erase cycles
C
(0°C ≤ TJ ≤ 140°C)
Cycles
EEPROM Reliability Characteristics
5
Data retention after up to 100,000 program/erase
C cycles at an average junction temperature of
TJavg ≤ 85°C
6
C
Data retention with <100 program/erase cycles at an
average junction temperature TJavg ≤ 85°C
7
C
Number of program/erase cycles
(–40°C ≤ TJ ≤ 0°C)
8
Number of program/erase cycles
C
(0°C < TJ ≤ 140°C)
15
tEEPRET
Years
20
1002
—
10,000
—
—
nEEP
Cycles
100,000
300,0003
—
NOTES:
1. TJavg will not exeed 85°C considering a typical temperature profile over the lifetime of a consumer, industrial or automotive
application.
2. Typical data retention values are based on intrinsic capability of the technology measured at high temperature and de-rated
to 25°C using the Arrhenius equation. For additional information on how Freescale defines Typical Data Retention, please
refer to Engineering Bulletin EB618.
3. Spec table quotes typical endurance evaluated at 25°C for this product family, typical endurance at various temperature can
be estimated using the graph below. For additional information on how Freescale defines Typical Endurance, please refer
to Engineering Bulletin EB619.
106
MC9S12DT256 Device User Guide V03.07
Figure A-2 Typical Endurance vs Temperature
500
Typical Endurance [103 Cycles]
450
400
350
300
250
200
150
100
50
0
-40
-20
0
20
40
60
80
100
120
140
Operating Temperature TJ [°C]
------ Flash
------ EEPROM
107
MC9S12DT256 Device User Guide V03.07
108
MC9S12DT256 Device User Guide — V03.07
A.4 Voltage Regulator
The on-chip voltage regulator is intended to supply the internal logic and oscillator circuits. No external
DC load is allowed.
Table A-13 Voltage Regulator Recommended Load Capacitances
Rating
Symbol
Min
Typ
Max
Unit
Load Capacitance on VDD1, 2
CLVDD
220
nF
Load Capacitance on VDDPLL
CLVDDfcPLL
220
nF
109
MC9S12DT256 Device User Guide — V03.07
110
MC9S12DT256 Device User Guide — V03.07
A.5 Reset, Oscillator and PLL
This section summarizes the electrical characteristics of the various startup scenarios for Oscillator and
Phase-Locked-Loop (PLL).
A.5.1 Startup
Table A-14 summarizes several startup characteristics explained in this section. Detailed description of
the startup behavior can be found in the Clock and Reset Generator (CRG) Block Guide.
Table A-14 Startup Characteristics
Conditions are shown in Table A-4 unless otherwise noted
Num C
Rating
Symbol
Min
Typ
Max
Unit
2.07
V
1
T POR release level
VPORR
2
T POR assert level
VPORA
0.97
V
3
D Reset input pulse width, minimum input time
PWRSTL
2
tosc
4
D Startup from Reset
nRST
192
5
D Interrupt pulse width, IRQ edge-sensitive mode
PWIRQ
20
6
D Wait recovery startup time
tWRS
196
nosc
ns
14
tcyc
A.5.1.1 POR
The release level VPORR and the assert level VPORA are derived from the VDD Supply. They are also valid
if the device is powered externally. After releasing the POR reset the oscillator and the clock quality check
are started. If after a time tCQOUT no valid oscillation is detected, the MCU will start using the internal self
clock. The fastest startup time possible is given by nuposc.
A.5.1.2 SRAM Data Retention
Provided an appropriate external reset signal is applied to the MCU, preventing the CPU from executing
code when VDD5 is out of specification limits, the SRAM contents integrity is guaranteed if after the reset
the PORF bit in the CRG Flags Register has not been set.
A.5.1.3 External Reset
When external reset is asserted for a time greater than PWRSTL the CRG module generates an internal
reset, and the CPU starts fetching the reset vector without doing a clock quality check, if there was an
oscillation before reset.
A.5.1.4 Stop Recovery
Out of STOP the controller can be woken up by an external interrupt. A clock quality check as after POR
is performed before releasing the clocks to the system.
111
MC9S12DT256 Device User Guide — V03.07
A.5.1.5 Pseudo Stop and Wait Recovery
The recovery from Pseudo STOP and Wait are essentially the same since the oscillator was not stopped in
both modes. The controller can be woken up by internal or external interrupts. After twrs the CPU starts
fetching the interrupt vector.
A.5.2 Oscillator
The device features an internal Colpitts and Pierce oscillator. The selection of Colpitts oscillator or Pierce
oscillator/external clock depends on the XCLKS signal which is sampled during reset.By asserting the
XCLKS input during reset this oscillator can be bypassed allowing the input of a square wave. Before
asserting the oscillator to the internal system clocks the quality of the oscillation is checked for each start
from either power-on, STOP or oscillator fail. tCQOUT specifies the maximum time before switching to the
internal self clock mode after POR or STOP if a proper oscillation is not detected. The quality check also
determines the minimum oscillator start-up time tUPOSC. The device also features a clock monitor. A
Clock Monitor Failure is asserted if the frequency of the incoming clock signal is below the Assert
Frequency fCMFA.
Table A-15 Oscillator Characteristics
Conditions are shown in Table A-4 unless otherwise noted
Num C
Rating
Symbol
Min
Typ
Max
Unit
1a
C Crystal oscillator range (Colpitts)
fOSC
0.5
16
MHz
1b
C Crystal oscillator range (Pierce) 1(4)
fOSC
0.5
40
MHz
2
P Startup Current
iOSC
100
3
C Oscillator start-up time (Colpitts)
tUPOSC
4
D Clock Quality check time-out
tCQOUT
0.45
5
P Clock Monitor Failure Assert Frequency
fCMFA
50
6
P External square wave input frequency 4
fEXT
0.5
7
D External square wave pulse width low
tEXTL
9.5
ns
8
D External square wave pulse width high
tEXTH
9.5
ns
9
D External square wave rise time
tEXTR
1
ns
10
D External square wave fall time
tEXTF
1
ns
11
D Input Capacitance (EXTAL, XTAL pins)
12
C
DC Operating Bias in Colpitts Con gur ation on
EXTAL Pin
82
100
1003
ms
2.5
s
200
KHz
50
MHz
CIN
7
pF
VDCBIAS
1.1
V
NOTES:
1. Depending on the crystal a damping series resistor might be necessary
2. fosc = 4MHz, C = 22pF.
3. Maximum value is for extreme cases using high Q, low frequency crystals
4. XCLKS =0 during reset
112
µA
MC9S12DT256 Device User Guide — V03.07
A.5.3 Phase Locked Loop
The oscillator provides the reference clock for the PLL. The PLL´s Voltage Controlled Oscillator (VCO)
is also the system clock source in self clock mode.
A.5.3.1 XFC Component Selection
This section describes the selection of the XFC components to achieve a good filter characteristics.
Cp
VDDPLL
R
Phase
Cs
fosc
fref
1
refdv+1
∆
fcmp
XFC Pin
VCO
KΦ
KV
fvco
Detector
Loop Divider
1
synr+1
1
2
Figure A-3 Basic PLL functional diagram
The following procedure can be used to calculate the resistance and capacitance values using typical
values for K1, f1 and ich from Table A-16.
The grey boxes show the calculation for fVCO = 50MHz and fref = 1MHz. E.g., these frequencies are used
for fOSC = 4MHz and a 25MHz bus clock.
The VCO Gain at the desired VCO frequency is approximated by:
KV = K1 ⋅ e
( f 1 – f vco )
----------------------K 1 ⋅ 1V
= – 100 ⋅ e
( 60 – 50 )
-----------------------– 100
= -90.48MHz/V
The phase detector relationship is given by:
K Φ = – i ch ⋅ K V
= 316.7Hz/Ω
ich is the current in tracking mode.
113
MC9S12DT256 Device User Guide — V03.07
The loop bandwidth fC should be chosen to fulfill the Gardner’s stability criteria by at least a factor of 10,
typical values are 50. ζ = 0.9 ensures a good transient response.
2 ⋅ ζ ⋅ f ref
f ref
1
f C < ------------------------------------------ ------ → f C < -------------- ;( ζ = 0.9 )
4 ⋅ 10
2 10
π ⋅ ⎛ζ + 1 + ζ ⎞
fC < 25kHz
⎝
⎠
And finally the frequency relationship is defined as
f VCO
n = ------------- = 2 ⋅ ( synr + 1 )
f ref
= 50
With the above values the resistance can be calculated. The example is shown for a loop bandwidth
fC=10kHz:
2 ⋅ π ⋅ n ⋅ fC
R = ----------------------------- = 2*π*50*10kHz/(316.7Hz/Ω)=9.9kΩ=~10kΩ
KΦ
The capacitance Cs can now be calculated as:
2
0.516
2⋅ζ
C s = ---------------------- ≈ --------------- ;( ζ = 0.9 ) = 5.19nF =~ 4.7nF
π ⋅ fC ⋅ R fC ⋅ R
The capacitance Cp should be chosen in the range of:
C s ⁄ 20 ≤ C p ≤ C s ⁄ 10
Cp = 470pF
A.5.3.2 Jitter Information
The basic functionality of the PLL is shown in Figure A-3. With each transition of the clock fcmp, the
deviation from the reference clock fref is measured and input voltage to the VCO is adjusted
accordingly.The adjustment is done continuously with no abrupt changes in the clock output frequency.
Noise, voltage, temperature and other factors cause slight variations in the control loop resulting in a clock
jitter. This jitter affects the real minimum and maximum clock periods as illustrated in Figure A-4.
114
MC9S12DT256 Device User Guide — V03.07
1
0
2
3
N-1
N
tmin1
tnom
tmax1
tminN
tmaxN
Figure A-4 Jitter Definitions
The relative deviation of tnom is at its maximum for one clock period, and decreases towards zero for larger
number of clock periods (N).
Defining the jitter as:
t min ( N ) ⎞
t max ( N )
⎛
J ( N ) = max ⎜ 1 – --------------------- , 1 – --------------------- ⎟
N ⋅ t nom
N ⋅ t nom ⎠
⎝
For N < 100, the following equation is a good fit for the maximum jitter:
j1
J ( N ) = -------- + j 2
N
J(N)
1
5
10
20
N
Figure A-5 Maximum bus clock jitter approximation
115
MC9S12DT256 Device User Guide — V03.07
This is very important to notice with respect to timers, serial modules where a pre-scaler will eliminate the
effect of the jitter to a large extent.
Table A-16 PLL Characteristics
Conditions are shown in Table A-4 unless otherwise noted
Num C
Rating
Symbol
Min
Typ
Max
Unit
1
P Self Clock Mode frequency
fSCM
1
5.5
MHz
2
D VCO locking range
fVCO
8
50
MHz
3
D
|∆trk|
3
4
%1
4
D Lock Detection
|∆Lock|
0
1.5
%(1)
5
D Un-Lock Detection
|∆unl|
0.5
2.5
%(1)
6
D
|∆unt|
6
8
%(1)
7
C PLLON Total Stabilization delay (Auto Mode) 2
tstab
0.5
ms
8
D PLLON Acquisition mode stabilization delay (2)
tacq
0.3
ms
9
D PLLON Tracking mode stabilization delay (2)
tal
0.2
ms
10
D Fitting parameter VCO loop gain
K1
-100
MHz/V
11
D Fitting parameter VCO loop frequency
f1
60
MHz
12
D Charge pump current acquisition mode
| ich |
38.5
µA
13
D Charge pump current tracking mode
| ich |
3.5
µA
14
C Jitter t par ameter 1(2)
j1
1.1
%
15
C Jitter t par ameter 2(2)
j2
0.13
%
Lock Detector transition from Acquisition to Tracking
mode
Lock Detector transition from Tracking to Acquisition
mode
NOTES:
1. % deviation from target frequency
2. fosc = 4MHz, fBUS = 25MHz equivalent fVCO = 50MHz: REFDV = #$03, SYNR = #$018, Cs = 4.7nF, Cp = 470pF, Rs = 10KΩ.
116
MC9S12DT256 Device User Guide — V03.07
A.6 MSCAN
Table A-17 MSCAN Wake-up Pulse Characteristics
Conditions are shown in Table A-4 unless otherwise noted
Num C
Rating
Symbol
1
P MSCAN Wake-up dominant pulse ltered
tWUP
2
P MSCAN Wake-up dominant pulse pass
tWUP
Min
5
Typ
Max
Unit
2
µs
µs
117
MC9S12DT256 Device User Guide — V03.07
118
MC9S12DT256 Device User Guide — V03.07
A.7 SPI
This section provides electrical parametrics and ratings for the SPI.
In Table A-18 the measurement conditions are listed.
Table A-18 Measurement Conditions
Description
Value
Unit
full drive mode
—
50
pF
(20% / 80%) VDDX
V
Drive mode
Load capacitance CLOAD,
on all outputs
Thresholds for delay
measurement points
A.7.1 Master Mode
In Figure A-6 the timing diagram for master mode with transmission format CPHA=0 is depicted.
SS1
(OUTPUT)
2
1
SCK
(CPOL = 0)
(OUTPUT)
13
12
13
3
4
SCK
(CPOL = 1)
(OUTPUT)
5
MISO
(INPUT)
6
MSB IN2
10
MOSI
(OUTPUT)
12
4
BIT 6 . . . 1
LSB IN
9
MSB OUT2
BIT 6 . . . 1
11
LSB OUT
1.if configured as an output.
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.
Figure A-6 SPI Master Timing (CPHA=0)
In Figure A-7 the timing diagram for master mode with transmission format CPHA=1 is depicted.
119
MC9S12DT256 Device User Guide — V03.07
SS1
(OUTPUT)
1
2
12
13
12
13
3
SCK
(CPOL = 0)
(OUTPUT)
4
4
SCK
(CPOL = 1)
(OUTPUT)
5
MISO
(INPUT)
6
MSB IN2
BIT 6 . . . 1
LSB IN
11
9
MOSI
(OUTPUT) PORT DATA
MASTER MSB OUT2
BIT 6 . . . 1
MASTER LSB OUT
PORT DATA
1.If configured as output
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.
Figure A-7 SPI Master Timing (CPHA=1)
In Table A-19 the timing characteristics for master mode are listed.
Table A-19 SPI Master Mode Timing Characteristics
Num
Characteristic
Symbol
Min
Typ
Max
Unit
1
SCK Frequency
fsck
1/2048
—
1/2
fbus
1
SCK Period
tsck
2
—
2048
tbus
2
Enable Lead Time
tlead
—
1/2
—
tsck
3
Enable Lag Time
tlag
—
1/2
—
tsck
4
Clock (SCK) High or Low Time
twsck
—
1/2
—
tsck
5
Data Setup Time (Inputs)
tsu
8
—
—
ns
6
Data Hold Time (Inputs)
thi
8
—
—
ns
9
Data Valid after SCK Edge
tvsck
—
—
30
ns
10
Data Valid after SS fall (CPHA=0)
tvss
—
—
15
ns
11
Data Hold Time (Outputs)
tho
20
—
—
ns
Rise and Fall Time Inputs
tr
—
—
8
ns
Rise and Fall Time Outputs
trfo
—
—
8
ns
12
13
120
MC9S12DT256 Device User Guide — V03.07
A.7.2 Slave Mode
In Figure A-8 the timing diagram for slave mode with transmission format CPHA=0 is depicted.
SS
(INPUT)
1
12
13
12
13
3
SCK
(CPOL = 0)
(INPUT)
4
2
4
SCK
(CPOL = 1)
(INPUT) 10
8
7
MISO
(OUTPUT)
9
see
note
SLAVE MSB
5
MOSI
(INPUT)
BIT 6 . . . 1
11
11
SLAVE LSB OUT
SEE
NOTE
6
MSB IN
BIT 6 . . . 1
LSB IN
NOTE: Not defined!
Figure A-8 SPI Slave Timing (CPHA=0)
In Figure A-9 the timing diagram for slave mode with transmission format CPHA=1 is depicted.
121
MC9S12DT256 Device User Guide — V03.07
SS
(INPUT)
3
1
2
12
13
12
13
SCK
(CPOL = 0)
(INPUT)
4
4
SCK
(CPOL = 1)
(INPUT)
see
note
SLAVE
7
MSB OUT
5
MOSI
(INPUT)
8
11
9
MISO
(OUTPUT)
BIT 6 . . . 1
SLAVE LSB OUT
6
MSB IN
BIT 6 . . . 1
LSB IN
NOTE: Not defined!
Figure A-9 SPI Slave Timing (CPHA=1)
In Table A-20 the timing characteristics for slave mode are listed.
Table A-20 SPI Slave Mode Timing Characteristics
Num
Characteristic
Symbol
Min
Typ
Max
Unit
1
SCK Frequency
fsck
DC
—
1/4
fbus
1
SCK Period
tsck
4
—
∞
tbus
2
Enable Lead Time
tlead
4
—
—
tbus
3
Enable Lag Time
tlag
4
—
—
tbus
4
Clock (SCK) High or Low Time
twsck
4
—
—
tbus
5
Data Setup Time (Inputs)
tsu
8
—
—
ns
6
Data Hold Time (Inputs)
thi
8
—
—
ns
Slave Access Time (time to data active)
ta
—
—
20
ns
Slave MISO Disable Time
tdis
—
—
22
7
8
9
Data Valid after SCK Edge
tvsck
—
—
ns
30 + tbus
1
ns
30 + tbus
1
ns
10
Data Valid after SS fall
tvss
—
—
11
Data Hold Time (Outputs)
tho
20
—
—
ns
12
Rise and Fall Time Inputs
tr
—
—
8
ns
13
Rise and Fall Time Outputs
trfo
—
—
8
ns
NOTES:
1. tbus added due to internal synchronization delay
122
MC9S12DT256 Device User Guide — V03.07
A.8 External Bus Timing
A timing diagram of the external multiplexed-bus is illustrated in Figure A-10 with the actual timing
values shown on table Table A-21. All major bus signals are included in the diagram. While both a data
write and data read cycle are shown, only one or the other would occur on a particular bus cycle.
A.8.1 General Muxed Bus Timing
The expanded bus timings are highly dependent on the load conditions. The timing parameters shown
assume a balanced load across all outputs.
123
MC9S12DT256 Device User Guide — V03.07
1, 2
3
4
ECLK
PE4
5
9
Addr/Data
(read)
PA, PB
6
data
16
15
7
data
8
14
13
data
addr
17
11
data
addr
12
Addr/Data
(write)
PA, PB
10
19
18
Non-Multiplexed
Addresses
PK5:0
20
21
22
23
ECS
PK7
24
25
26
27
28
29
30
31
32
33
34
R/W
PE2
LSTRB
PE3
NOACC
PE7
35
36
IPIPO0
IPIPO1, PE6,5
Figure A-10 General External Bus Timing
124
MC9S12DT256 Device User Guide — V03.07
Table A-21 Expanded Bus Timing Characteristics
Conditions are shown in Table A-4 unless otherwise noted, CLOAD = 50pF
Num C
Rating
Symbol
Min
Typ
Max
Unit
fo
0
25.0
MHz
tcyc
40
ns
1
P Frequency of operation (E-clock)
2
P Cycle time
3
D Pulse width, E low
PWEL
19
ns
4
D Pulse width, E high1
PWEH
19
ns
5
D Address delay time
tAD
6
D Address valid time to E rise (PWEL–tAD)
tAV
11
ns
7
D Muxed address hold time
tMAH
2
ns
8
D Address hold to data valid
tAHDS
7
ns
9
D Data hold to address
tDHA
2
ns
10
D Read data setup time
tDSR
13
ns
11
D Read data hold time
tDHR
0
ns
12
D Write data delay time
tDDW
13
D Write data hold time
tDHW
2
ns
14
D Write data setup time1 (PWEH–tDDW)
tDSW
12
ns
15
D Address access time1 (tcyc–tAD–tDSR)
tACCA
19
ns
16
D E high access time1 (PWEH–tDSR)
tACCE
6
ns
17
D Non-multiplexed address delay time
tNAD
18
D Non-muxed address valid to E rise (PWEL–tNAD)
tNAV
15
ns
19
D Non-multiplexed address hold time
tNAH
2
ns
20
D Chip select delay time
tCSD
21
D Chip select access time1 (tcyc–tCSD–tDSR)
tACCS
11
ns
22
D Chip select hold time
tCSH
2
ns
23
D Chip select negated time
tCSN
8
ns
24
D Read/write delay time
tRWD
25
D Read/write valid time to E rise (PWEL–tRWD)
tRWV
14
ns
26
D Read/write hold time
tRWH
2
ns
27
D Low strobe delay time
tLSD
28
D Low strobe valid time to E rise (PWEL–tLSD)
tLSV
14
ns
29
D Low strobe hold time
tLSH
2
ns
30
D NOACC strobe delay time
tNOD
31
D NOACC valid time to E rise (PWEL–tNOD)
tNOV
8
7
6
16
7
7
7
14
ns
ns
ns
ns
ns
ns
ns
ns
125
MC9S12DT256 Device User Guide — V03.07
Table A-21 Expanded Bus Timing Characteristics
Conditions are shown in Table A-4 unless otherwise noted, CLOAD = 50pF
Num C
Rating
Symbol
Min
32
D NOACC hold time
tNOH
2
33
D IPIPO[1:0] delay time
tP0D
2
34
D IPIPO[1:0] valid time to E rise (PWEL–tP0D)
tP0V
11
35
D IPIPO[1:0] delay time1 (PWEH-tP1V)
tP1D
2
36
D IPIPO[1:0] valid time to E fall
tP1V
11
Typ
NOTES:
1. Affected by clock stretch: add N x tcyc where N=0,1,2 or 3, depending on the number of clock stretches.
126
Max
Unit
ns
7
ns
ns
25
ns
ns
MC9S12DT256 Device User Guide — V03.07
Appendix B Package Information
B.1 General
This section provides the physical dimensions of the MC9S12DT256 packages.
127
MC9S12DT256 Device User Guide — V03.07
B.2 112-pin LQFP package
4X
PIN 1
IDENT
0.20 T L-M N
4X 28 TIPS
112
J1
0.20 T L-M N
85
4X
P
J1
1
CL
84
VIEW Y
108X
G
X
X=L, M OR N
VIEW Y
B
L
M
28
B1
V
F
D
57
29
56
0.13
N
S1
A
S
C2
VIEW AB
θ2
0.050
0.10 T
112X
SEATING
PLANE
θ3
T
θ
R
R2
R
0.25
R1
GAGE PLANE
(K)
C1
E
(Y)
VIEW AB
(Z)
M
T L-M N
θ1
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ASME Y14.5M, 1994.
2. DIMENSIONS IN MILLIMETERS.
3. DATUMS L, M AND N TO BE DETERMINED AT
SEATING PLANE, DATUM T.
4. DIMENSIONS S AND V TO BE DETERMINED AT
SEATING PLANE, DATUM T.
5. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION. ALLOWABLE
PROTRUSION IS 0.25 PER SIDE. DIMENSIONS
A AND B INCLUDE MOLD MISMATCH.
6. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL NOT CAUSE THE D
DIMENSION TO EXCEED 0.46.
DIM
A
A1
B
B1
C
C1
C2
D
E
F
G
J
K
P
R1
R2
S
S1
V
V1
Y
Z
AA
θ
θ1
θ2
θ3
MILLIMETERS
MAX
MIN
20.000 BSC
10.000 BSC
20.000 BSC
10.000 BSC
--1.600
0.050
0.150
1.350
1.450
0.270
0.370
0.450
0.750
0.270
0.330
0.650 BSC
0.090
0.170
0.500 REF
0.325 BSC
0.100
0.200
0.100
0.200
22.000 BSC
11.000 BSC
22.000 BSC
11.000 BSC
0.250 REF
1.000 REF
0.090
0.160
8 °
0°
7 °
3 °
13
°
11 °
11 °
13 °
Figure B-1 112-pin LQFP mechanical dimensions (case no. 987)
128
BASE
METAL
SECTION J1-J1
ROTATED 90 ° COUNTERCLOCKWISE
A1
C
AA
J
V1
MC9S12DT256 Device User Guide — V03.07
B.3 80-pin QFP package
L
60
41
61
D
S
M
V
-A-,-B-,-DDETAIL A
DETAIL A
21
80
1
A
H A-B
M
S
F
20
-D0.20
D
S
0.05 A-B
J
S
0.20
C A-B
M
S
D
M
C
D
DETAIL C
-H-
DATUM
PLANE
0.20
M
C A-B
S
D
S
SECTION B-B
VIEW ROTATED 90 °
0.10
H
SEATING
PLANE
N
S
E
-C-
P
B
C A-B
D
0.20
M
B
B
0.20
L
H A-B
-B-
0.05 D
-A-
S
S
S
40
M
G
U
T
DATUM
PLANE
-H-
R
K
W
X
DETAIL C
Q
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DATUM PLANE -H- IS LOCATED AT BOTTOM OF
LEAD AND IS COINCIDENT WITH THE
LEAD WHERE THE LEAD EXITS THE PLASTIC
BODY AT THE BOTTOM OF THE PARTING LINE.
4. DATUMS -A-, -B- AND -D- TO BE
DETERMINED AT DATUM PLANE -H-.
5. DIMENSIONS S AND V TO BE DETERMINED
AT SEATING PLANE -C-.
6. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION. ALLOWABLE
PROTRUSION IS 0.25 PER SIDE. DIMENSIONS
A AND B DO INCLUDE MOLD MISMATCH
AND ARE DETERMINED AT DATUM PLANE -H-.
7. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.08 TOTAL IN
EXCESS OF THE D DIMENSION AT MAXIMUM
MATERIAL CONDITION. DAMBAR CANNOT
BE LOCATED ON THE LOWER RADIUS OR
THE FOOT.
DIM
A
B
C
D
E
F
G
H
J
K
L
M
N
P
Q
R
S
T
U
V
W
X
MILLIMETERS
MIN
MAX
13.90
14.10
13.90
14.10
2.15
2.45
0.22
0.38
2.00
2.40
0.22
0.33
0.65 BSC
--0.25
0.13
0.23
0.65
0.95
12.35 REF
5°
10 °
0.13
0.17
0.325 BSC
0°
7°
0.13
0.30
16.95
17.45
0.13
--0°
--16.95
17.45
0.35
0.45
1.6 REF
Figure B-2 80-pin QFP Mechanical Dimensions (case no. 841B)
129
MC9S12DT256 Device User Guide — V03.07
130
MC9S12DT256 Device User Guide — V03.07
User Guide End Sheet
131
How to Reach Us:
Home Page:
www.freescale.com
E-mail:
[email protected]
USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
[email protected]
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
[email protected]
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
[email protected]
Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
[email protected]
For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
[email protected]
Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners. The ARM
POWERED logo is a registered trademark of ARM Limited. ARM7TDMI-S is a
trademark of ARM Limited. Java and all other Java-based marks are trademarks or
registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries. The
Bluetooth trademarks are owned by their proprietor and used by Freescale
Semiconductor, Inc. under license.
© Freescale Semiconductor, Inc. 2006. All rights reserved.