FREESCALE MKL26Z64VFT4

Freescale Semiconductor
Data Sheet: Technical Data
Document Number: KL26P64M48SF5
Rev. 2, 10/2013
KL26P64M48SF5
KL26 Sub-Family Data Sheet
Supports the following:
MKL26Z32VFM4, MKL26Z64VFM4,
MKL26Z128VFM4, MKL26Z32VFT4,
MKL26Z64VFT4, MKL26Z128VFT4,
MKL26Z32VLH4, MKL26Z64VLH4,
MKL26Z128VLH4
Features
• Operating Characteristics
– Voltage range: 1.71 to 3.6 V
– Flash write voltage range: 1.71 to 3.6 V
– Temperature range (ambient): -40 to 105°C
• Performance
– Up to 48 MHz ARM® Cortex-M0+ core
• Memories and memory interfaces
– 128 KB program flash memory
– 16 KB RAM
• Clocks
– 32 kHz to 40 kHz or 3 MHz to 32 MHz crystal
oscillator
– Multi-purpose clock source
• System peripherals
– Nine low-power modes to provide power
optimization based on application requirements
– 4-channel DMA controller, supporting up to 63
request sources
– COP Software watchdog
– Low-leakage wakeup unit
– SWD interface and Micro Trace buffer
– Bit Manipulation Engine (BME)
• Human-machine interface
– Low-power hardware touch sensor interface (TSI)
– General-purpose input/output
• Analog modules
– 16-bit SAR ADC
– 12-bit DAC
– Analog comparator (CMP) containing a 6-bit DAC
and programmable reference input
• Timers
– Six channel Timer/PWM (TPM)
– Two 2-channel Timer/PWM (TPM)
– Periodic interrupt timers
– 16-bit low-power timer (LPTMR)
– Real-time clock
• Communication interfaces
– USB full-/low-speed On-the-Go controller with onchip transceiver and 5 V to 3.3 V regulator
– Two 16-bit SPI modules
– Two I2C modules
– I2S (SAI) module
– One low power UART module
– Two UART modules
• Security and integrity modules
– 80-bit unique identification (ID) number per chip
Freescale reserves the right to change the detail specifications as may be
required to permit improvements in the design of its products.
© 2013 Freescale Semiconductor, Inc.
Table of Contents
1 Ordering parts...........................................................................3
5.3.1
Device clock specifications...................................20
1.1 Determining valid orderable parts......................................3
5.3.2
General switching specifications...........................21
2 Part identification......................................................................3
5.4 Thermal specifications.......................................................21
2.1 Description.........................................................................3
5.4.1
Thermal operating requirements...........................21
2.2 Format...............................................................................3
5.4.2
Thermal attributes.................................................21
2.3 Fields.................................................................................3
6 Peripheral operating requirements and behaviors....................22
2.4 Example............................................................................4
6.1 Core modules....................................................................22
3 Terminology and guidelines......................................................4
6.1.1
SWD electricals ....................................................22
3.1 Definition: Operating requirement......................................4
6.2 System modules................................................................23
3.2 Definition: Operating behavior...........................................4
6.3 Clock modules...................................................................24
3.3 Definition: Attribute............................................................5
6.3.1
MCG specifications...............................................24
3.4 Definition: Rating...............................................................5
6.3.2
Oscillator electrical specifications.........................25
3.5 Result of exceeding a rating..............................................6
3.6 Relationship between ratings and operating
6.4 Memories and memory interfaces.....................................28
6.4.1
Flash electrical specifications................................28
requirements......................................................................6
6.5 Security and integrity modules..........................................29
3.7 Guidelines for ratings and operating requirements............6
6.6 Analog...............................................................................29
3.8 Definition: Typical value.....................................................7
6.6.1
ADC electrical specifications.................................29
3.9 Typical value conditions....................................................8
6.6.2
CMP and 6-bit DAC electrical specifications.........34
4 Ratings......................................................................................8
6.6.3
12-bit DAC electrical characteristics.....................36
4.1 Thermal handling ratings...................................................8
6.7 Timers................................................................................39
4.2 Moisture handling ratings..................................................8
6.8 Communication interfaces.................................................39
4.3 ESD handling ratings.........................................................8
6.8.1
USB electrical specifications.................................39
4.4 Voltage and current operating ratings...............................9
6.8.2
USB VREG electrical specifications......................39
5 General.....................................................................................9
6.8.3
SPI switching specifications..................................40
5.1 AC electrical characteristics..............................................9
6.8.4
Inter-Integrated Circuit Interface (I2C) timing........44
5.2 Nonswitching electrical specifications...............................10
6.8.5
UART....................................................................45
6.8.6
I2S/SAI switching specifications............................46
5.2.1
Voltage and current operating requirements.........10
5.2.2
LVD and POR operating requirements.................11
5.2.3
Voltage and current operating behaviors..............11
5.2.4
Power mode transition operating behaviors..........12
7 Dimensions...............................................................................50
5.2.5
Power consumption operating behaviors..............13
7.1 Obtaining package dimensions.........................................50
5.2.6
EMC radiated emissions operating behaviors.......19
8 Pinout........................................................................................51
5.2.7
Designing with radiated emissions in mind...........20
8.1 KL26 Signal Multiplexing and Pin Assignments................51
5.2.8
Capacitance attributes..........................................20
8.2 KL26 pinouts.....................................................................53
6.9 Human-machine interfaces (HMI)......................................50
6.9.1
TSI electrical specifications...................................50
5.3 Switching specifications.....................................................20
KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013.
2
Freescale Semiconductor, Inc.
Ordering parts
1 Ordering parts
1.1 Determining valid orderable parts
Valid orderable part numbers are provided on the web. To determine the orderable part
numbers for this device, go to freescale.com and perform a part number search for the
following device numbers: PKL26 and MKL26
2 Part identification
2.1 Description
Part numbers for the chip have fields that identify the specific part. You can use the
values of these fields to determine the specific part you have received.
2.2 Format
Part numbers for this device have the following format:
Q KL## A FFF R T PP CC N
2.3 Fields
This table lists the possible values for each field in the part number (not all combinations
are valid):
Field
Description
Values
Q
Qualification status
• M = Fully qualified, general market flow
• P = Prequalification
KL##
Kinetis family
• KL26
A
Key attribute
• Z = Cortex-M0+
FFF
Program flash memory size
• 32 = 32 KB
• 64 = 64 KB
• 128 = 128 KB
R
Silicon revision
• (Blank) = Main
• A = Revision after main
Table continues on the next page...
KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013.
Freescale Semiconductor, Inc.
3
Terminology and guidelines
Field
Description
Values
T
Temperature range (°C)
• V = –40 to 105
PP
Package identifier
• FM = 32 QFN (5 mm x 5 mm)
• FT = 48 QFN (7 mm x 7 mm)
• LH = 64 LQFP (10 mm x 10 mm)
CC
Maximum CPU frequency (MHz)
• 4 = 48 MHz
N
Packaging type
• R = Tape and reel
2.4 Example
This is an example part number:
MKL26Z128VFM4
3 Terminology and guidelines
3.1 Definition: Operating requirement
An operating requirement is a specified value or range of values for a technical
characteristic that you must guarantee during operation to avoid incorrect operation and
possibly decreasing the useful life of the chip.
3.1.1 Example
This is an example of an operating requirement:
Symbol
VDD
Description
1.0 V core supply
voltage
Min.
0.9
Max.
Unit
1.1
V
3.2 Definition: Operating behavior
An operating behavior is a specified value or range of values for a technical
characteristic that are guaranteed during operation if you meet the operating requirements
and any other specified conditions.
KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013.
4
Freescale Semiconductor, Inc.
Terminology and guidelines
3.2.1 Example
This is an example of an operating behavior:
Symbol
IWP
Description
Min.
Digital I/O weak pullup/ 10
pulldown current
Max.
130
Unit
µA
3.3 Definition: Attribute
An attribute is a specified value or range of values for a technical characteristic that are
guaranteed, regardless of whether you meet the operating requirements.
3.3.1 Example
This is an example of an attribute:
Symbol
CIN_D
Description
Input capacitance:
digital pins
Min.
—
Max.
7
Unit
pF
3.4 Definition: Rating
A rating is a minimum or maximum value of a technical characteristic that, if exceeded,
may cause permanent chip failure:
• Operating ratings apply during operation of the chip.
• Handling ratings apply when the chip is not powered.
3.4.1 Example
This is an example of an operating rating:
Symbol
VDD
Description
1.0 V core supply
voltage
Min.
–0.3
Max.
1.2
Unit
V
KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013.
Freescale Semiconductor, Inc.
5
Terminology and guidelines
3.5 Result of exceeding a rating
40
Failures in time (ppm)
30
The likelihood of permanent chip failure increases rapidly as
soon as a characteristic begins to exceed one of its operating ratings.
20
10
0
Operating rating
Measured characteristic
3.6 Relationship between ratings and operating requirements
g(
Op
era
tin
g
in
rat
)
in.
m
m
ire
g
tin
era
Op
u
req
t
en
in.
(m
)
m
ire
Op
g
tin
era
u
req
t
en
(m
ax
.)
x.)
ma
g(
Op
g
tin
era
in
rat
Fatal range
Degraded operating range
Normal operating range
Degraded operating range
Fatal range
Expected permanent failure
- No permanent failure
- Possible decreased life
- Possible incorrect operation
- No permanent failure
- Correct operation
- No permanent failure
- Possible decreased life
- Possible incorrect operation
Expected permanent failure
–∞
∞
Operating (power on)
n
Ha
ng
dli
rat
n.)
x.)
ma
mi
(
ing
nd
Ha
g
lin
(
ing
rat
Fatal range
Handling range
Fatal range
Expected permanent failure
No permanent failure
Expected permanent failure
–∞
∞
Handling (power off)
3.7 Guidelines for ratings and operating requirements
Follow these guidelines for ratings and operating requirements:
• Never exceed any of the chip’s ratings.
• During normal operation, don’t exceed any of the chip’s operating requirements.
• If you must exceed an operating requirement at times other than during normal
operation (for example, during power sequencing), limit the duration as much as
possible.
KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013.
6
Freescale Semiconductor, Inc.
Terminology and guidelines
3.8 Definition: Typical value
A typical value is a specified value for a technical characteristic that:
• Lies within the range of values specified by the operating behavior
• Given the typical manufacturing process, is representative of that characteristic
during operation when you meet the typical-value conditions or other specified
conditions
Typical values are provided as design guidelines and are neither tested nor guaranteed.
3.8.1 Example 1
This is an example of an operating behavior that includes a typical value:
Symbol
Description
IWP
Digital I/O weak
pullup/pulldown
current
Min.
10
Typ.
70
Max.
130
Unit
µA
3.8.2 Example 2
This is an example of a chart that shows typical values for various voltage and
temperature conditions:
5000
4500
4000
TJ
IDD_STOP (μA)
3500
150 °C
3000
105 °C
2500
25 °C
2000
–40 °C
1500
1000
500
0
0.95
0.90
1.00
1.05
1.10
VDD (V)
KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013.
Freescale Semiconductor, Inc.
7
Ratings
3.9 Typical value conditions
Typical values assume you meet the following conditions (or other conditions as
specified):
Table 1. Typical value conditions
Symbol
Description
Value
Unit
TA
Ambient temperature
25
°C
VDD
3.3 V supply voltage
3.3
V
4 Ratings
4.1 Thermal handling ratings
Table 2. Thermal handling ratings
Symbol
Description
Min.
Max.
Unit
Notes
TSTG
Storage temperature
–55
150
°C
1
TSDR
Solder temperature, lead-free
—
260
°C
2
1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.
2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic
Solid State Surface Mount Devices.
4.2 Moisture handling ratings
Table 3. Moisture handling ratings
Symbol
MSL
Description
Moisture sensitivity level
Min.
Max.
Unit
Notes
—
3
—
1
1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic
Solid State Surface Mount Devices.
KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013.
8
Freescale Semiconductor, Inc.
General
4.3 ESD handling ratings
Table 4. ESD handling ratings
Symbol
Description
Min.
Max.
Unit
Notes
VHBM
Electrostatic discharge voltage, human body model
–2000
+2000
V
1
VCDM
Electrostatic discharge voltage, charged-device model
–500
+500
V
2
Latch-up current at ambient temperature of 105 °C
–100
+100
mA
3
ILAT
1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body
Model (HBM).
2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.
3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.
4.4 Voltage and current operating ratings
Table 5. Voltage and current operating ratings
Symbol
Description
Min.
Max.
Unit
VDD
Digital supply voltage
–0.3
3.8
V
IDD
Digital supply current
—
120
mA
VIO
IO pin input voltage
–0.3
VDD + 0.3
V
Instantaneous maximum current single pin limit (applies to all
port pins)
–25
25
mA
ID
VDDA
Analog supply voltage
VDD – 0.3
VDD + 0.3
V
VUSB_DP
USB_DP input voltage
–0.3
3.63
V
VUSB_DM
USB_DM input voltage
–0.3
3.63
V
USB regulator input
–0.3
6.0
V
VREGIN
5 General
5.1 AC electrical characteristics
Unless otherwise specified, propagation delays are measured from the 50% to the 50%
point, and rise and fall times are measured at the 20% and 80% points, as shown in the
following figure.
KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013.
Freescale Semiconductor, Inc.
9
General
Figure 1. Input signal measurement reference
All digital I/O switching characteristics, unless otherwise specified, assume the output
pins have the following characteristics.
• CL=30 pF loads
• Slew rate disabled
• Normal drive strength
5.2 Nonswitching electrical specifications
5.2.1 Voltage and current operating requirements
Table 6. Voltage and current operating requirements
Symbol
Description
Min.
Max.
Unit
VDD
Supply voltage
1.71
3.6
V
VDDA
Analog supply voltage
1.71
3.6
V
VDD – VDDA VDD-to-VDDA differential voltage
–0.1
0.1
V
VSS – VSSA VSS-to-VSSA differential voltage
–0.1
0.1
V
• 2.7 V ≤ VDD ≤ 3.6 V
0.7 × VDD
—
V
• 1.7 V ≤ VDD ≤ 2.7 V
0.75 × VDD
—
V
• 2.7 V ≤ VDD ≤ 3.6 V
—
0.35 × VDD
V
• 1.7 V ≤ VDD ≤ 2.7 V
—
0.3 × VDD
V
0.06 × VDD
—
V
-3
—
mA
-25
—
mA
VIH
VIL
Input high voltage
Input low voltage
VHYS
Input hysteresis
IICIO
IO pin negative DC injection current — single pin
• VIN < VSS-0.3V
IICcont
Notes
Contiguous pin DC injection current —regional limit,
includes sum of negative injection currents of 16
contiguous pins
• Negative current injection
1
Table continues on the next page...
KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013.
10
Freescale Semiconductor, Inc.
General
Table 6. Voltage and current operating requirements (continued)
Symbol
Description
Min.
Max.
Unit
Notes
VODPU
Open drain pullup voltage level
VDD
VDD
V
2
VRAM
VDD voltage required to retain RAM
1.2
—
V
1. All I/O pins are internally clamped to VSS through a ESD protection diode. There is no diode connection to VDD. If VIN
greater than VIO_MIN (= VSS-0.3 V) is observed, then there is no need to provide current limiting resistors at the pads. If this
limit cannot be observed then a current limiting resistor is required. The negative DC injection current limiting resistor is
calculated as R = (VIO_MIN - VIN)/|IICIO|.
2. Open drain outputs must be pulled to VDD.
5.2.2 LVD and POR operating requirements
Table 7. VDD supply LVD and POR operating requirements
Symbol
Description
Min.
Typ.
Max.
Unit
Notes
VPOR
Falling VDD POR detect voltage
0.8
1.1
1.5
V
—
VLVDH
Falling low-voltage detect threshold — high
range (LVDV = 01)
2.48
2.56
2.64
V
—
Low-voltage warning thresholds — high range
1
VLVW1H
• Level 1 falling (LVWV = 00)
2.62
2.70
2.78
V
VLVW2H
• Level 2 falling (LVWV = 01)
2.72
2.80
2.88
V
VLVW3H
• Level 3 falling (LVWV = 10)
2.82
2.90
2.98
V
VLVW4H
• Level 4 falling (LVWV = 11)
2.92
3.00
3.08
V
—
±60
—
mV
—
1.54
1.60
1.66
V
—
VHYSH
Low-voltage inhibit reset/recover hysteresis —
high range
VLVDL
Falling low-voltage detect threshold — low range
(LVDV=00)
Low-voltage warning thresholds — low range
1
VLVW1L
• Level 1 falling (LVWV = 00)
1.74
1.80
1.86
V
VLVW2L
• Level 2 falling (LVWV = 01)
1.84
1.90
1.96
V
VLVW3L
• Level 3 falling (LVWV = 10)
1.94
2.00
2.06
V
VLVW4L
• Level 4 falling (LVWV = 11)
2.04
2.10
2.16
V
—
±40
—
mV
—
VHYSL
Low-voltage inhibit reset/recover hysteresis —
low range
VBG
Bandgap voltage reference
0.97
1.00
1.03
V
—
tLPO
Internal low power oscillator period — factory
trimmed
900
1000
1100
μs
—
1. Rising thresholds are falling threshold + hysteresis voltage
KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013.
Freescale Semiconductor, Inc.
11
General
5.2.3 Voltage and current operating behaviors
Table 8. Voltage and current operating behaviors
Symbol
VOH
Description
Min.
Output high voltage — Normal drive pad (except
RESET_b)
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = -5 mA
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = -2.5 mA
VOH
Output high voltage — High drive pad (except
RESET_b)
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = -20 mA
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = -10 mA
IOHT
Output high current total for all ports
VOL
Output low voltage — Normal drive pad
VOL
Max.
Unit
Notes
1, 2
VDD – 0.5
—
V
VDD – 0.5
—
V
1,2
VDD – 0.5
—
V
VDD – 0.5
—
V
—
100
mA
1
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 5 mA
—
0.5
V
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 2.5 mA
—
0.5
V
Output low voltage — High drive pad
1
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 20 mA
—
0.5
V
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 10 mA
—
0.5
V
Output low current total for all ports
—
100
mA
IIN
Input leakage current (per pin) for full temperature
range
—
1
μA
3
IIN
Input leakage current (per pin) at 25 °C
—
0.025
μA
3
IIN
Input leakage current (total all pins) for full temperature
range
—
65
μA
3
IOZ
Hi-Z (off-state) leakage current (per pin)
—
1
μA
RPU
Internal pullup resistors
20
50
kΩ
IOLT
4
1. The reset pin only contains an active pull down device when configured as the RESET signal or as a GPIO. When
configured as a GPIO output, it acts as a pseudo open drain output.
2. PTB0, PTB1, PTD6, and PTD7 I/O have both high drive and normal drive capability selected by the associated
PTx_PCRn[DSE] control bit. All other GPIOs are normal drive only.
3. Measured at VDD = 3.6 V
4. Measured at VDD supply voltage = VDD min and Vinput = VSS
5.2.4 Power mode transition operating behaviors
All specifications except tPOR and VLLSx→RUN recovery times in the following table
assume this clock configuration:
• CPU and system clocks = 48 MHz
• Bus and flash clock = 24 MHz
• FEI clock mode
KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013.
12
Freescale Semiconductor, Inc.
General
POR and VLLSx→RUN recovery use FEI clock mode at the default CPU and system
frequency of 21 MHz, and a bus and flash clock frequency of 10.5 MHz.
Table 9. Power mode transition operating behaviors
Symbol
tPOR
Description
After a POR event, amount of time from the point
VDD reaches 1.8 V to execution of the first
instruction across the operating temperature
range of the chip.
Min.
Typ.
Max.
Unit
Notes
—
—
300
μs
1
—
106
120
μs
—
105
117
μs
—
47
54
μs
—
4.5
5.0
μs
—
4.5
5.0
μs
—
4.5
5.0
μs
• VLLS0 → RUN
• VLLS1 → RUN
• VLLS3 → RUN
• LLS → RUN
• VLPS → RUN
• STOP → RUN
1. Normal boot (FTFA_FOPT[LPBOOT]=11).
5.2.5 Power consumption operating behaviors
Table 10. Power consumption operating behaviors
Symbol
IDDA
Description
Analog supply current
IDD_RUNCO_ Run mode current in compute operation - 48
MHz core / 24 MHz flash / bus disabled, LPTMR
CM
running using 4 MHz internal reference clock,
CoreMark benchmark code executing from flash
Min.
Typ.
Max.
Unit
Notes
—
—
See note
mA
1
2
—
6.1
—
mA
• at 3.0 V
IDD_RUNCO Run mode current in compute operation - 48
MHz core / 24 MHz flash / bus clock disabled,
code of while(1) loop executing from flash
—
• at 3.0 V
IDD_RUN
3
3.8
5.9
mA
Run mode current - 48 MHz core / 24 MHz bus
and flash, all peripheral clocks disabled, code of
while(1) loop executing from flash
3
—
• at 3.0 V
4.6
6.1
mA
Table continues on the next page...
KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013.
Freescale Semiconductor, Inc.
13
General
Table 10. Power consumption operating behaviors (continued)
Symbol
Description
Min.
IDD_RUN
Run mode current - 48 MHz core / 24 MHz bus
and flash, all peripheral clocks enabled, code of
while(1) loop executing from flash
Typ.
Max.
Unit
Notes
3, 4
• at 3.0 V
• at 25 °C
• at 70 °C
• at 125 °C
IDD_WAIT
Wait mode current - core disabled / 48 MHz
system / 24 MHz bus / flash disabled (flash doze
enabled), all peripheral clocks disabled
• at 3.0 V
IDD_WAIT
Wait mode current - core disabled / 24 MHz
system / 24 MHz bus / flash disabled (flash doze
enabled), all peripheral clocks disabled
• at 3.0 V
IDD_PSTOP2 Stop mode current with partial stop 2 clocking
option - core and system disabled / 10.5 MHz
bus
• at 3.0 V
IDD_VLPRCO Very-low-power run mode current in compute
operation - 4 MHz core / 0.8 MHz flash / bus
_CM
clock disabled, LPTMR running with 4 MHz
internal reference clock, CoreMark benchmark
code executing from flash
• at 3.0 V
IDD_VLPRCO Very-low-power run mode current in compute
operation - 4 MHz core / 0.8 MHz flash / bus
clock disabled, code of while(1) loop executing
from flash
• at 3.0 V
IDD_VLPR
Very-low-power run mode current - 4 MHz core /
0.8 MHz bus and flash, all peripheral clocks
disabled, code of while(1) loop executing from
flash
• at 3.0 V
IDD_VLPR
Very-low-power run mode current - 4 MHz core /
0.8 MHz bus and flash, all peripheral clocks
enabled, code of while(1) loop executing from
flash
• at 3.0 V
IDD_VLPW
Very-low-power wait mode current - core
disabled / 4 MHz system / 0.8 MHz bus / flash
disabled (flash doze enabled), all peripheral
clocks disabled
• at 3.0 V
—
6.0
6.5
mA
—
6.2
6.8
mA
—
6.3
7.1
mA
—
2.7
5.7
mA
—
2.1
5.5
mA
—
2.2
4.1
mA
—
732
—
μA
—
161
367
μA
—
185
372
μA
—
256
420
μA
—
110
355
μA
3
3
3
5
6
6
4, 6
6
Table continues on the next page...
KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013.
14
Freescale Semiconductor, Inc.
General
Table 10. Power consumption operating behaviors (continued)
Symbol
Description
IDD_STOP
Stop mode current at 3.0 V
IDD_VLPS
IDD_LLS
IDD_VLLS3
IDD_VLLS1
IDD_VLLS0
Min.
Typ.
Max.
at 25 °C
—
301
428
at 50 °C
—
311
722
at 70 °C
—
342
758
at 85 °C
—
382
809
at 105 °C
—
481
929
at 25 °C
—
2.3
8.4
at 50 °C
—
5.2
18.3
at 70 °C
—
10.5
26.1
at 85 °C
—
19.3
58.5
at 105 °C
—
42.3
105.1
at 25 °C
—
1.7
3.3
at 50 °C
—
3.2
34.9
at 70 °C
—
5.8
38.5
at 85 °C
—
11.6
43.8
at 105 °C
—
26.8
61.7
at 25 °C
—
1.3
3.0
at 50 °C
—
2.3
17.6
at 70 °C
—
4.7
19.5
at 85 °C
—
8.5
24.1
at 105 °C
—
19.5
35.3
at 25°C
—
0.7
1.3
at 50°C
—
1.2
11.7
at 70°C
—
2.2
12.6
at 85°C
—
4.8
15.3
at 105°C
—
12.4
22.6
Unit
Notes
μA
Very-low-power stop mode current at 3.0 V
μA
Low-leakage stop mode current at 3.0 V
μA
Very-low-leakage stop mode 3 current at 3.0 V
μA
Very-low-leakage stop mode 1 current at 3.0V
Very-low-leakage stop mode 0 current
(SMC_STOPCTRL[PORPO] = 0) at 3.0 V
at 25 °C
at 50 °C
at 70 °C
at 85 °C
at 105 °C
μA
nA
—
310
844
—
778
3861
—
1928
13055
—
3906
15457
—
10097
23116
Table continues on the next page...
KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013.
Freescale Semiconductor, Inc.
15
General
Table 10. Power consumption operating behaviors (continued)
Symbol
IDD_VLLS0
Description
Min.
Typ.
Max.
Unit
Notes
Very-low-leakage stop mode 0 current
(SMC_STOPCTRL[PORPO] = 1) at 3.0 V
at 25 °C
at 50 °C
at 70 °C
at 85 °C
at 105 °C
7
—
139
747
—
600
3418
—
1674
11143
—
3554
13683
—
9580
20463
nA
1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See
each module's specification for its supply current.
2. MCG configured for PEE mode. CoreMark benchmark compiled using IAR 6.40 with optimization level high, optimized for
balanced.
3. MCG configured for FEI mode.
4. Incremental current consumption from peripheral activity is not included.
5. MCG configured for BLPI mode. CoreMark benchmark compiled using IAR 6.40 with optimization level high, optimized for
balanced.
6. MCG configured for BLPI mode.
7. No brownout
Table 11. Low power mode peripheral adders — typical value
Symbol
Description
Temperature (°C)
Unit
-40
25
50
70
85
105
IIREFSTEN4MHz
4 MHz internal reference clock (IRC)
adder. Measured by entering STOP or
VLPS mode with 4 MHz IRC enabled.
56
56
56
56
56
56
µA
IIREFSTEN32KHz
32 kHz internal reference clock (IRC)
adder. Measured by entering STOP
mode with the 32 kHz IRC enabled.
52
52
52
52
52
52
µA
IEREFSTEN4MHz
External 4 MHz crystal clock adder.
Measured by entering STOP or VLPS
mode with the crystal enabled.
250
262
266
268
272
274
uA
IEREFSTEN32KHz
External 32 kHz crystal clock adder by
means of the OSC0_CR[EREFSTEN
and EREFSTEN] bits. Measured by
entering all modes with the crystal
enabled.
440
490
540
560
570
580
440
490
540
560
570
580
490
490
540
560
570
680
510
560
560
560
610
680
510
560
560
560
610
680
22
22
22
22
22
22
VLLS1
VLLS3
LLS
VLPS
nA
STOP
ICMP
CMP peripheral adder measured by
placing the device in VLLS1 mode with
CMP enabled using the 6-bit DAC and a
single external input for compare.
Includes 6-bit DAC power consumption.
µA
Table continues on the next page...
KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013.
16
Freescale Semiconductor, Inc.
General
Table 11. Low power mode peripheral adders — typical value (continued)
Symbol
Description
IRTC
RTC peripheral adder measured by
placing the device in VLLS1 mode with
external 32 kHz crystal enabled by
means of the RTC_CR[OSCE] bit and
the RTC ALARM set for 1 minute.
Includes ERCLK32K (32 kHz external
crystal) power consumption.
IUART
UART peripheral adder measured by
placing the device in STOP or VLPS
mode with selected clock source waiting
for RX data at 115200 baud rate.
Includes selected clock source power
consumption.
MCGIRCLK (4 MHz internal reference
clock)
Temperature (°C)
Unit
-40
25
50
70
85
105
432
357
388
475
532
810
nA
66
66
66
66
66
66
µA
259
271
275
277
281
283
OSCERCLK (4 MHz external crystal)
ITPM
TPM peripheral adder measured by
placing the device in STOP or VLPS
mode with selected clock source
configured for output compare
generating 100 Hz clock signal. No load
is placed on the I/O generating the clock
signal. Includes selected clock source
and I/O switching currents.
MCGIRCLK (4 MHz internal reference
clock)
OSCERCLK (4 MHz external crystal)
µA
86
86
86
86
86
86
275
288
290
295
300
306
IBG
Bandgap adder when BGEN bit is set
and device is placed in VLPx, LLS, or
VLLSx mode.
45
45
45
45
45
45
µA
IADC
ADC peripheral adder combining the
measured values at VDD and VDDA by
placing the device in STOP or VLPS
mode. ADC is configured for low-power
mode using the internal clock and
continuous conversions.
366
366
366
366
366
366
µA
5.2.5.1
Diagram: Typical IDD_RUN operating behavior
The following data was measured under these conditions:
•
•
•
•
•
MCG in FBE for run mode, and BLPE for VLPR mode
USB regulator disabled
No GPIOs toggled
Code execution from flash with cache enabled
For the ALLOFF curve, all peripheral clocks are disabled except FTFA
KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013.
Freescale Semiconductor, Inc.
17
General
Figure 2. Run mode supply current vs. core frequency
KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013.
18
Freescale Semiconductor, Inc.
General
Figure 3. VLPR mode current vs. core frequency
5.2.6 EMC radiated emissions operating behaviors
Table 12. EMC radiated emissions operating behaviors
Symbol
Description
Frequency
band (MHz)
Typ.
Unit
Notes
0.15–50
16
dBμV
1, 2
VRE1
Radiated emissions voltage, band 1
VRE2
Radiated emissions voltage, band 2
50–150
18
dBμV
VRE3
Radiated emissions voltage, band 3
150–500
11
dBμV
VRE4
Radiated emissions voltage, band 4
500–1000
13
dBμV
IEC level
0.15–1000
M
—
VRE_IEC
2, 3
1. Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions, 150
kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits - Measurement of
Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and Wideband
TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported
KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013.
Freescale Semiconductor, Inc.
19
General
emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the
measured orientations in each frequency range.
2. VDD = 3.3 V, TA = 25 °C, fOSC = 8 MHz (crystal), fSYS = 48 MHz, fBUS = 24 MHz
3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions—TEM Cell and Wideband
TEM Cell Method
5.2.7 Designing with radiated emissions in mind
To find application notes that provide guidance on designing your system to minimize
interference from radiated emissions:
1. Go to www.freescale.com.
2. Perform a keyword search for “EMC design.”
5.2.8 Capacitance attributes
Table 13. Capacitance attributes
Symbol
CIN
Description
Input capacitance
Min.
Max.
Unit
—
7
pF
Min.
Max.
Unit
5.3 Switching specifications
5.3.1 Device clock specifications
Table 14. Device clock specifications
Symbol
Description
Normal run mode
fSYS
System and core clock
—
48
MHz
fBUS
Bus clock
—
24
MHz
Flash clock
—
24
MHz
System and core clock when Full Speed USB in operation
20
—
MHz
LPTMR clock
—
24
MHz
fFLASH
fSYS_USB
fLPTMR
VLPR and VLPS
modes1
fSYS
System and core clock
—
4
MHz
fBUS
Bus clock
—
1
MHz
fFLASH
Flash clock
—
1
MHz
fLPTMR
LPTMR clock2
—
24
MHz
fERCLK
External reference clock
—
16
MHz
—
16
MHz
fLPTMR_ERCLK LPTMR external reference clock
Table continues on the next page...
KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013.
20
Freescale Semiconductor, Inc.
General
Table 14. Device clock specifications (continued)
Symbol
Description
fosc_hi_2
fTPM
fUART0
Min.
Max.
Unit
Oscillator crystal or resonator frequency — high frequency
mode (high range) (MCG_C2[RANGE]=1x)
—
16
MHz
TPM asynchronous clock
—
8
MHz
UART0 asynchronous clock
—
8
MHz
1. The frequency limitations in VLPR and VLPS modes here override any frequency specification listed in the timing
specification for any other module. These same frequency limits apply to VLPS, whether VLPS was entered from RUN or
from VLPR.
2. The LPTMR can be clocked at this speed in VLPR or VLPS only when the source is an external pin.
5.3.2 General switching specifications
These general-purpose specifications apply to all signals configured for GPIO and UART
signals.
Table 15. General switching specifications
Description
Min.
Max.
Unit
Notes
GPIO pin interrupt pulse width (digital glitch filter disabled) —
Synchronous path
1.5
—
Bus clock
cycles
1
External RESET and NMI pin interrupt pulse width —
Asynchronous path
100
—
ns
2
GPIO pin interrupt pulse width — Asynchronous path
16
—
ns
2
Port rise and fall time
—
36
ns
3
1. The greater synchronous and asynchronous timing must be met.
2. This is the shortest pulse that is guaranteed to be recognized.
3. 75 pF load
5.4 Thermal specifications
5.4.1 Thermal operating requirements
Table 16. Thermal operating requirements
Symbol
Description
Min.
Max.
Unit
TJ
Die junction temperature
–40
125
°C
TA
Ambient temperature
–40
105
°C
KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013.
Freescale Semiconductor, Inc.
21
Peripheral operating requirements and behaviors
5.4.2 Thermal attributes
Table 17. Thermal attributes
Board type
Symbol
Single-layer (1S)
RθJA
Four-layer (2s2p)
Description
64 LQFP
48 QFN
32 QFN
Unit
Notes
Thermal resistance, junction to
ambient (natural convection)
71
83
98
°C/W
1
RθJA
Thermal resistance, junction to
ambient (natural convection)
53
30
34
°C/W
Single-layer (1S)
RθJMA
Thermal resistance, junction to
ambient (200 ft./min. air speed)
59
68
82
°C/W
Four-layer (2s2p)
RθJMA
Thermal resistance, junction to
ambient (200 ft./min. air speed)
46
24
28
°C/W
—
RθJB
Thermal resistance, junction to
board
35
12
13
°C/W
2
—
RθJC
Thermal resistance, junction to
case
21
2.3
2.3
°C/W
3
—
ΨJT
Thermal characterization
parameter, junction to package
top outside center (natural
convection)
6
5
8
°C/W
4
1. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions
—Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method
Environmental Conditions—Forced Convection (Moving Air).
2. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions
—Junction-to-Board.
3. Determined according to Method 1012.1 of MIL-STD 883, Test Method Standard, Microcircuits, with the cold plate
temperature used for the case temperature. The value includes the thermal resistance of the interface material between
the top of the package and the cold plate.
4. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions
—Natural Convection (Still Air).
6 Peripheral operating requirements and behaviors
6.1 Core modules
6.1.1 SWD electricals
Table 18. SWD full voltage range electricals
Symbol
J1
Description
Min.
Max.
Unit
Operating voltage
1.71
3.6
V
0
25
MHz
1/J1
—
ns
SWD_CLK frequency of operation
• Serial wire debug
J2
SWD_CLK cycle period
Table continues on the next page...
KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013.
22
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 18. SWD full voltage range electricals (continued)
Symbol
J3
Description
Min.
Max.
Unit
20
—
ns
SWD_CLK clock pulse width
• Serial wire debug
J4
SWD_CLK rise and fall times
—
3
ns
J9
SWD_DIO input data setup time to SWD_CLK rise
10
—
ns
J10
SWD_DIO input data hold time after SWD_CLK rise
0
—
ns
J11
SWD_CLK high to SWD_DIO data valid
—
32
ns
J12
SWD_CLK high to SWD_DIO high-Z
5
—
ns
J2
J3
J3
SWD_CLK (input)
J4
J4
Figure 4. Serial wire clock input timing
SWD_CLK
J9
SWD_DIO
J10
Input data valid
J11
SWD_DIO
Output data valid
J12
SWD_DIO
J11
SWD_DIO
Output data valid
Figure 5. Serial wire data timing
KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013.
Freescale Semiconductor, Inc.
23
Peripheral operating requirements and behaviors
6.2 System modules
There are no specifications necessary for the device's system modules.
6.3 Clock modules
6.3.1 MCG specifications
Table 19. MCG specifications
Symbol
Description
fints_ft
Internal reference frequency (slow clock) —
factory trimmed at nominal VDD and 25 °C
fints_t
Internal reference frequency (slow clock) — user
trimmed
Δfdco_res_t Resolution of trimmed average DCO output
frequency at fixed voltage and temperature —
using C3[SCTRIM] and C4[SCFTRIM]
Min.
Typ.
Max.
Unit
Notes
—
32.768
—
kHz
31.25
—
39.0625
kHz
—
± 0.3
± 0.6
%fdco
1
Δfdco_t
Total deviation of trimmed average DCO output
frequency over voltage and temperature
—
+0.5/-0.7
±3
%fdco
1, 2
Δfdco_t
Total deviation of trimmed average DCO output
frequency over fixed voltage and temperature
range of 0–70 °C
—
± 0.4
± 1.5
%fdco
1, 2
Internal reference frequency (fast clock) —
factory trimmed at nominal VDD and 25 °C
—
4
—
MHz
Δfintf_ft
Frequency deviation of internal reference clock
(fast clock) over temperature and voltage —
factory trimmed at nominal VDD and 25 °C
—
+1/-2
±3
%fintf_ft
fintf_t
Internal reference frequency (fast clock) — user
trimmed at nominal VDD and 25 °C
3
—
5
MHz
fintf_ft
floc_low
Loss of external clock minimum frequency —
RANGE = 00
(3/5) x
fints_t
—
—
kHz
floc_high
Loss of external clock minimum frequency —
RANGE = 01, 10, or 11
(16/5) x
fints_t
—
—
kHz
31.25
—
39.0625
kHz
20
20.97
25
MHz
40
41.94
48
MHz
—
23.99
—
MHz
—
47.97
—
MHz
2
FLL
ffll_ref
fdco
FLL reference frequency range
DCO output
frequency range
Low range (DRS = 00)
3, 4
640 × ffll_ref
Mid range (DRS = 01)
1280 × ffll_ref
fdco_t_DMX32 DCO output
frequency
Low range (DRS = 00)
5, 6
732 × ffll_ref
Mid range (DRS = 01)
1464 × ffll_ref
Table continues on the next page...
KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013.
24
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 19. MCG specifications (continued)
Symbol
Jcyc_fll
Description
FLL period jitter
Min.
Typ.
Max.
Unit
Notes
—
180
—
ps
7
—
—
1
ms
8
48.0
—
100
MHz
—
1060
—
µA
—
600
—
µA
2.0
—
4.0
MHz
• fVCO = 48 MHz
tfll_acquire
FLL target frequency acquisition time
PLL
fvco
VCO operating frequency
Ipll
PLL operating current
• PLL at 96 MHz (fosc_hi_1 = 8 MHz, fpll_ref = 2
MHz, VDIV multiplier = 48)
Ipll
PLL operating current
• PLL at 48 MHz (fosc_hi_1 = 8 MHz, fpll_ref = 2
MHz, VDIV multiplier = 24)
fpll_ref
PLL reference frequency range
Jcyc_pll
PLL period jitter (RMS)
Jacc_pll
9
9
10
• fvco = 48 MHz
—
120
—
ps
• fvco = 100 MHz
—
50
—
ps
PLL accumulated jitter over 1µs (RMS)
10
• fvco = 48 MHz
—
1350
—
ps
• fvco = 100 MHz
—
600
—
ps
Dlock
Lock entry frequency tolerance
± 1.49
—
± 2.98
%
Dunl
Lock exit frequency tolerance
± 4.47
—
± 5.97
%
tpll_lock
Lock detector detection time
—
—
150 × 10-6
+ 1075(1/
fpll_ref)
s
11
1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock
mode).
2. The deviation is relative to the factory trimmed frequency at nominal VDD and 25 °C, fints_ft.
3. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32 = 0.
4. The resulting system clock frequencies must not exceed their maximum specified values. The DCO frequency deviation
(Δfdco_t) over voltage and temperature must be considered.
5. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32 = 1.
6. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.
7. This specification is based on standard deviation (RMS) of period or frequency.
8. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed,
DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE,
FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
9. Excludes any oscillator currents that are also consuming power while PLL is in operation.
10. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of
each PCB and results will vary.
11. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled
(BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes
it is already running.
6.3.2 Oscillator electrical specifications
KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013.
Freescale Semiconductor, Inc.
25
Peripheral operating requirements and behaviors
6.3.2.1
Oscillator DC electrical specifications
Table 20. Oscillator DC electrical specifications
Symbol
Description
Min.
Typ.
Max.
Unit
VDD
Supply voltage
1.71
—
3.6
V
IDDOSC
IDDOSC
Supply current — low-power mode (HGO=0)
Notes
1
• 32 kHz
—
500
—
nA
• 4 MHz
—
200
—
μA
• 8 MHz (RANGE=01)
—
300
—
μA
• 16 MHz
—
950
—
μA
• 24 MHz
—
1.2
—
mA
• 32 MHz
—
1.5
—
mA
Supply current — high gain mode (HGO=1)
1
• 32 kHz
—
25
—
μA
• 4 MHz
—
400
—
μA
• 8 MHz (RANGE=01)
—
500
—
μA
• 16 MHz
—
2.5
—
mA
• 24 MHz
—
3
—
mA
• 32 MHz
—
4
—
mA
Cx
EXTAL load capacitance
—
—
—
2, 3
Cy
XTAL load capacitance
—
—
—
2, 3
RF
Feedback resistor — low-frequency, low-power
mode (HGO=0)
—
—
—
MΩ
Feedback resistor — low-frequency, high-gain
mode (HGO=1)
—
10
—
MΩ
Feedback resistor — high-frequency, low-power
mode (HGO=0)
—
—
—
MΩ
Feedback resistor — high-frequency, high-gain
mode (HGO=1)
—
1
—
MΩ
Series resistor — low-frequency, low-power
mode (HGO=0)
—
—
—
kΩ
Series resistor — low-frequency, high-gain mode
(HGO=1)
—
200
—
kΩ
Series resistor — high-frequency, low-power
mode (HGO=0)
—
—
—
kΩ
—
0
—
kΩ
RS
2, 4
Series resistor — high-frequency, high-gain
mode (HGO=1)
Table continues on the next page...
KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013.
26
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 20. Oscillator DC electrical specifications (continued)
Symbol
Vpp5
Description
Min.
Typ.
Max.
Unit
Peak-to-peak amplitude of oscillation (oscillator
mode) — low-frequency, low-power mode
(HGO=0)
—
0.6
—
V
Peak-to-peak amplitude of oscillation (oscillator
mode) — low-frequency, high-gain mode
(HGO=1)
—
VDD
—
V
Peak-to-peak amplitude of oscillation (oscillator
mode) — high-frequency, low-power mode
(HGO=0)
—
0.6
—
V
Peak-to-peak amplitude of oscillation (oscillator
mode) — high-frequency, high-gain mode
(HGO=1)
—
VDD
—
V
Notes
1. VDD=3.3 V, Temperature =25 °C
2. See crystal or resonator manufacturer's recommendation
3. Cx,Cy can be provided by using the integrated capacitors when the low frequency oscillator (RANGE = 00) is used. For all
other cases external capacitors must be used.
4. When low power mode is selected, RF is integrated and must not be attached externally.
5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any
other devices.
6.3.2.2
Symbol
Oscillator frequency specifications
Table 21. Oscillator frequency specifications
Description
Min.
Typ.
Max.
Unit
fosc_lo
Oscillator crystal or resonator frequency — lowfrequency mode (MCG_C2[RANGE]=00)
32
—
40
kHz
fosc_hi_1
Oscillator crystal or resonator frequency — highfrequency mode (low range)
(MCG_C2[RANGE]=01)
3
—
8
MHz
fosc_hi_2
Oscillator crystal or resonator frequency — high
frequency mode (high range)
(MCG_C2[RANGE]=1x)
8
—
32
MHz
fec_extal
Input clock frequency (external clock mode)
—
—
48
MHz
tdc_extal
Input clock duty cycle (external clock mode)
40
50
60
%
Crystal startup time — 32 kHz low-frequency,
low-power mode (HGO=0)
—
750
—
ms
Crystal startup time — 32 kHz low-frequency,
high-gain mode (HGO=1)
—
250
—
ms
Crystal startup time — 8 MHz high-frequency
(MCG_C2[RANGE]=01), low-power mode
(HGO=0)
—
0.6
—
ms
Crystal startup time — 8 MHz high-frequency
(MCG_C2[RANGE]=01), high-gain mode
(HGO=1)
—
1
—
ms
tcst
Notes
1, 2
3, 4
1. Other frequency limits may apply when external clock is being used as a reference for the FLL or PLL.
2. When transitioning from FEI or FBI to FBE mode, restrict the frequency of the input clock so that, when it is divided by
FRDIV, it remains within the limits of the DCO input clock frequency.
KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013.
Freescale Semiconductor, Inc.
27
Peripheral operating requirements and behaviors
3. Proper PC board layout procedures must be followed to achieve specifications.
4. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register
being set.
6.4 Memories and memory interfaces
6.4.1 Flash electrical specifications
This section describes the electrical characteristics of the flash memory module.
6.4.1.1
Flash timing specifications — program and erase
The following specifications represent the amount of time the internal charge pumps are
active and do not include command overhead.
Table 22. NVM program/erase timing specifications
Symbol
Description
Min.
Typ.
Max.
Unit
thvpgm4
Notes
Longword Program high-voltage time
—
7.5
18
μs
thversscr
Sector Erase high-voltage time
—
13
113
ms
1
thversall
Erase All high-voltage time
—
52
452
ms
1
1. Maximum time based on expectations at cycling end-of-life.
6.4.1.2
Flash timing specifications — commands
Table 23. Flash command timing specifications
Symbol
Description
Min.
Typ.
Max.
Unit
Notes
trd1sec1k
Read 1s Section execution time (flash sector)
—
—
60
μs
1
tpgmchk
Program Check execution time
—
—
45
μs
1
trdrsrc
Read Resource execution time
—
—
30
μs
1
tpgm4
Program Longword execution time
—
65
145
μs
tersscr
Erase Flash Sector execution time
—
14
114
ms
trd1all
Read 1s All Blocks execution time
—
—
1.8
ms
trdonce
Read Once execution time
—
—
25
μs
tpgmonce
2
1
Program Once execution time
—
65
—
μs
tersall
Erase All Blocks execution time
—
88
650
ms
2
tvfykey
Verify Backdoor Access Key execution time
—
—
30
μs
1
1. Assumes 25 MHz flash clock frequency.
2. Maximum times for erase parameters based on expectations at cycling end-of-life.
KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013.
28
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
6.4.1.3
Flash high voltage current behaviors
Table 24. Flash high voltage current behaviors
Symbol
Description
IDD_PGM
IDD_ERS
6.4.1.4
Symbol
Min.
Typ.
Max.
Unit
Average current adder during high voltage
flash programming operation
—
2.5
6.0
mA
Average current adder during high voltage
flash erase operation
—
1.5
4.0
mA
Reliability specifications
Table 25. NVM reliability specifications
Description
Min.
Typ.1
Max.
Unit
Notes
Program Flash
tnvmretp10k Data retention after up to 10 K cycles
5
50
—
years
tnvmretp1k
Data retention after up to 1 K cycles
20
100
—
years
nnvmcycp
Cycling endurance
10 K
50 K
—
cycles
2
1. Typical data retention values are based on measured response accelerated at high temperature and derated to a constant
25 °C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering
Bulletin EB619.
2. Cycling endurance represents number of program/erase cycles at -40 °C ≤ Tj ≤ 125 °C.
6.5 Security and integrity modules
There are no specifications necessary for the device's security and integrity modules.
6.6 Analog
6.6.1 ADC electrical specifications
The 16-bit accuracy specifications listed in Table 26 and Table 27 are achievable on the
differential pins ADCx_DP0, ADCx_DM0.
All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy
specifications.
KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013.
Freescale Semiconductor, Inc.
29
Peripheral operating requirements and behaviors
6.6.1.1
16-bit ADC operating conditions
Table 26. 16-bit ADC operating conditions
Symbol
Description
Conditions
Min.
Typ.1
Max.
Unit
VDDA
Supply voltage
Absolute
1.71
—
3.6
V
ΔVDDA
Supply voltage
Delta to VDD (VDD – VDDA)
-100
0
+100
mV
2
ΔVSSA
Ground voltage
Delta to VSS (VSS – VSSA)
-100
0
+100
mV
2
VREFH
ADC reference
voltage high
1.13
VDDA
VDDA
V
3
VREFL
ADC reference
voltage low
VSSA
VSSA
VSSA
V
3
VADIN
Input voltage
• 16-bit differential mode
VREFL
—
31/32 *
VREFH
V
• All other modes
VREFL
—
• 16-bit mode
—
8
10
• 8-bit / 10-bit / 12-bit
modes
—
4
5
—
2
5
CADIN
RADIN
RAS
Input capacitance
Input resistance
Notes
VREFH
pF
kΩ
Analog source
resistance
13-bit / 12-bit modes
fADCK < 4 MHz
—
—
5
kΩ
fADCK
ADC conversion
clock frequency
≤ 13-bit mode
1.0
—
18.0
MHz
5
fADCK
ADC conversion
clock frequency
16-bit mode
2.0
—
12.0
MHz
5
Crate
ADC conversion
rate
≤ 13-bit modes
No ADC hardware averaging
4
6
20.000
—
818.330
Ksps
Continuous conversions
enabled, subsequent
conversion time
Crate
ADC conversion
rate
16-bit mode
No ADC hardware averaging
6
37.037
—
461.467
Ksps
Continuous conversions
enabled, subsequent
conversion time
1. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 1.0 MHz, unless otherwise stated. Typical values are for
reference only, and are not tested in production.
2. DC potential difference.
3. For packages without dedicated VREFH and VREFL pins, VREFH is internally tied to VDDA, and VREFL is internally tied to
VSSA.
4. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as
possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The RAS/CAS
time constant should be kept to < 1 ns.
5. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.
6. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.
KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013.
30
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
SIMPLIFIED
INPUT PIN EQUIVALENT
CIRCUIT
Z ADIN
SIMPLIFIED
CHANNEL SELECT
CIRCUIT
Pad
leakage
due to
input
protection
Z AS
R AS
ADC SAR
ENGINE
R ADIN
V ADIN
C AS
V AS
R ADIN
INPUT PIN
R ADIN
INPUT PIN
R ADIN
INPUT PIN
C ADIN
Figure 6. ADC input impedance equivalency diagram
6.6.1.2
16-bit ADC electrical characteristics
Table 27. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA)
Symbol
Description
IDDA_ADC
Supply current
fADACK
Conditions1.
ADC
asynchronous
clock source
Sample Time
TUE
DNL
INL
Min.
Typ.2
Max.
Unit
Notes
0.215
—
1.7
mA
3
• ADLPC = 1, ADHSC = 0
1.2
2.4
3.9
MHz
• ADLPC = 1, ADHSC = 1
2.4
4.0
6.1
MHz
tADACK = 1/
fADACK
• ADLPC = 0, ADHSC = 0
3.0
5.2
7.3
MHz
• ADLPC = 0, ADHSC = 1
4.4
6.2
9.5
MHz
LSB4
5
LSB4
5
LSB4
5
See Reference Manual chapter for sample times
Total unadjusted
error
• 12-bit modes
—
±4
±6.8
• <12-bit modes
—
±1.4
±2.1
Differential nonlinearity
• 12-bit modes
—
±0.7
–1.1 to
+1.9
• <12-bit modes
—
±0.2
• 12-bit modes
—
±1.0
• <12-bit modes
—
±0.5
Integral nonlinearity
–0.3 to 0.5
–2.7 to
+1.9
–0.7 to
+0.5
Table continues on the next page...
KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013.
Freescale Semiconductor, Inc.
31
Peripheral operating requirements and behaviors
Table 27. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)
Symbol
Description
EFS
Full-scale error
EQ
Quantization
error
ENOB
Conditions1.
Min.
Typ.2
Max.
Unit
Notes
• 12-bit modes
—
–4
–5.4
LSB4
• <12-bit modes
—
–1.4
–1.8
VADIN =
VDDA5
• 16-bit modes
—
–1 to 0
—
• ≤13-bit modes
—
—
±0.5
Effective number 16-bit differential mode
of bits
• Avg = 32
• Avg = 4
LSB4
6
12.8
14.5
—
bits
11.9
13.8
—
bits
12.2
13.9
—
bits
11.4
13.1
—
bits
16-bit single-ended mode
• Avg = 32
• Avg = 4
SINAD
THD
Signal-to-noise
plus distortion
See ENOB
Total harmonic
distortion
16-bit differential mode
• Avg = 32
16-bit single-ended mode
• Avg = 32
SFDR
Spurious free
dynamic range
dB
7
—
-94
—
dB
—
-85
—
dB
16-bit differential mode
• Avg = 32
16-bit single-ended mode
• Avg = 32
EIL
6.02 × ENOB + 1.76
7
82
95
—
dB
78
90
—
dB
Input leakage
error
IIn × RAS
mV
IIn =
leakage
current
(refer to
the MCU's
voltage
and current
operating
ratings)
VTEMP25
Temp sensor
slope
Across the full temperature
range of the device
1.55
1.62
1.69
mV/°C
8
Temp sensor
voltage
25 °C
706
716
726
mV
8
1. All accuracy numbers assume the ADC is calibrated with VREFH = VDDA
2. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 2.0 MHz unless otherwise stated. Typical values are for
reference only and are not tested in production.
3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low
power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with 1
MHz ADC conversion clock speed.
4. 1 LSB = (VREFH - VREFL)/2N
KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013.
32
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
5.
6.
7.
8.
ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)
Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz.
Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz.
ADC conversion clock < 3 MHz
Figure 7. Typical ENOB vs. ADC_CLK for 16-bit differential mode
Figure 8. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode
KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013.
Freescale Semiconductor, Inc.
33
Peripheral operating requirements and behaviors
6.6.2 CMP and 6-bit DAC electrical specifications
Table 28. Comparator and 6-bit DAC electrical specifications
Symbol
Description
Min.
Typ.
Max.
Unit
VDD
Supply voltage
1.71
—
3.6
V
IDDHS
Supply current, High-speed mode (EN=1, PMODE=1)
—
—
200
μA
IDDLS
Supply current, low-speed mode (EN=1, PMODE=0)
—
—
20
μA
VAIN
Analog input voltage
VSS – 0.3
—
VDD
V
VAIO
Analog input offset voltage
—
—
20
mV
• CR0[HYSTCTR] = 00
—
5
—
mV
• CR0[HYSTCTR] = 01
—
10
—
mV
• CR0[HYSTCTR] = 10
—
20
—
mV
• CR0[HYSTCTR] = 11
—
30
—
mV
VH
Analog comparator hysteresis1
VCMPOh
Output high
VDD – 0.5
—
—
V
VCMPOl
Output low
—
—
0.5
V
tDHS
Propagation delay, high-speed mode (EN=1,
PMODE=1)
20
50
200
ns
tDLS
Propagation delay, low-speed mode (EN=1,
PMODE=0)
80
250
600
ns
Analog comparator initialization delay2
—
—
40
μs
6-bit DAC current adder (enabled)
—
7
—
μA
IDAC6b
INL
6-bit DAC integral non-linearity
–0.5
—
0.5
LSB3
DNL
6-bit DAC differential non-linearity
–0.3
—
0.3
LSB
1. Typical hysteresis is measured with input voltage range limited to 0.6 to VDD–0.6 V.
2. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to
CMP_DACCR[DACEN], CMP_DACCR[VRSEL], CMP_DACCR[VOSEL], CMP_MUXCR[PSEL], and
CMP_MUXCR[MSEL]) and the comparator output settling to a stable level.
3. 1 LSB = Vreference/64
KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013.
34
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
0.08
0.07
0.06
HYSTCTR
Setting
CM P Hystereris (V)
0.05
00
0.04
01
10
11
0.03
0.02
0.01
0
0.1
0.4
0.7
1
1.3
1.6
1.9
Vin level (V)
2.2
2.5
2.8
3.1
Figure 9. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 0)
KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013.
Freescale Semiconductor, Inc.
35
Peripheral operating requirements and behaviors
0.18
0.16
0.14
CMP
P Hystereris (V)
0.12
HYSTCTR
Setting
0.1
00
01
0
08
0.08
10
11
0.06
0.04
0.02
0
0.1
0.4
0.7
1
1.3
1.6
Vin level (V)
1.9
2.2
2.5
2.8
3.1
Figure 10. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1)
6.6.3 12-bit DAC electrical characteristics
6.6.3.1
Symbol
12-bit DAC operating requirements
Table 29. 12-bit DAC operating requirements
Desciption
Min.
Max.
Unit
VDDA
Supply voltage
1.71
3.6
V
VDACR
Reference voltage
1.13
3.6
V
1
2
CL
Output load capacitance
—
100
pF
IL
Output load current
—
1
mA
Notes
1. The DAC reference can be selected to be VDDA or VREFH.
2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC
KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013.
36
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
6.6.3.2
Symbol
12-bit DAC operating behaviors
Table 30. 12-bit DAC operating behaviors
Description
IDDA_DACL Supply current — low-power mode
Min.
Typ.
Max.
Unit
—
—
250
μA
—
—
900
μA
Notes
P
IDDA_DACH Supply current — high-speed mode
P
tDACLP
Full-scale settling time (0x080 to 0xF7F) —
low-power mode
—
100
200
μs
1
tDACHP
Full-scale settling time (0x080 to 0xF7F) —
high-power mode
—
15
30
μs
1
—
0.7
1
μs
1
—
—
100
mV
tCCDACLP Code-to-code settling time (0xBF8 to 0xC08)
— low-power mode and high-speed mode
Vdacoutl
DAC output voltage range low — high-speed
mode, no load, DAC set to 0x000
Vdacouth
DAC output voltage range high — highspeed mode, no load, DAC set to 0xFFF
VDACR
−100
—
VDACR
mV
INL
Integral non-linearity error — high speed
mode
—
—
±8
LSB
2
DNL
Differential non-linearity error — VDACR > 2
V
—
—
±1
LSB
3
DNL
Differential non-linearity error — VDACR =
VREF_OUT
—
—
±1
LSB
4
—
±0.4
%FSR
5
Gain error
—
±0.1
%FSR
5
Power supply rejection ratio, VDDA ≥ 2.4 V
60
—
90
dB
TCO
Temperature coefficient offset voltage
—
3.7
—
μV/C
TGE
Temperature coefficient gain error
—
0.000421
—
%FSR/C
Rop
Output resistance (load = 3 kΩ)
—
—
250
Ω
SR
Slew rate -80h→ F7Fh→ 80h
VOFFSET Offset error
EG
PSRR
BW
1.
2.
3.
4.
5.
6.
6
V/μs
• High power (SPHP)
1.2
1.7
—
• Low power (SPLP)
0.05
0.12
—
3dB bandwidth
kHz
• High power (SPHP)
550
—
—
• Low power (SPLP)
40
—
—
Settling within ±1 LSB
The INL is measured for 0 + 100 mV to VDACR −100 mV
The DNL is measured for 0 + 100 mV to VDACR −100 mV
The DNL is measured for 0 + 100 mV to VDACR −100 mV with VDDA > 2.4 V
Calculated by a best fit curve from VSS + 100 mV to VDACR − 100 mV
VDDA = 3.0 V, reference select set for VDDA (DACx_CO:DACRFS = 1), high power mode (DACx_C0:LPEN = 0), DAC set to
0x800, temperature range is across the full range of the device
KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013.
Freescale Semiconductor, Inc.
37
Peripheral operating requirements and behaviors
Figure 11. Typical INL error vs. digital code
KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013.
38
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Figure 12. Offset at half scale vs. temperature
6.7 Timers
See General switching specifications.
6.8 Communication interfaces
6.8.1 USB electrical specifications
The USB electricals for the USB On-the-Go module conform to the standards
documented by the Universal Serial Bus Implementers Forum. For the most up-to-date
standards, visit usb.org.
KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013.
Freescale Semiconductor, Inc.
39
Peripheral operating requirements and behaviors
6.8.2 USB VREG electrical specifications
Table 31. USB VREG electrical specifications
Symbol
Description
Min.
Typ.1
Max.
Unit
VREGIN
Input supply voltage
2.7
—
5.5
V
IDDon
Quiescent current — Run mode, load current
equal zero, input supply (VREGIN) > 3.6 V
—
125
186
μA
IDDstby
Quiescent current — Standby mode, load current
equal zero
—
1.1
10
μA
IDDoff
Quiescent current — Shutdown mode
—
650
—
nA
—
—
4
μA
• VREGIN = 5.0 V and temperature=25 °C
• Across operating voltage and temperature
ILOADrun
Maximum load current — Run mode
—
—
120
mA
ILOADstby
Maximum load current — Standby mode
—
—
1
mA
VReg33out
Regulator output voltage — Input supply
(VREGIN) > 3.6 V
3
3.3
3.6
V
• Run mode
• Standby mode
2.1
2.8
3.6
V
Regulator output voltage — Input supply
(VREGIN) < 3.6 V, pass-through mode
2.1
—
3.6
V
COUT
External output capacitor
1.76
2.2
8.16
μF
ESR
External output capacitor equivalent series
resistance
1
—
100
mΩ
ILIM
Short circuit current
—
290
—
mA
VReg33out
Notes
2
1. Typical values assume VREGIN = 5.0 V, Temp = 25 °C unless otherwise stated.
2. Operating in pass-through mode: regulator output voltage equal to the input voltage minus a drop proportional to ILoad.
6.8.3 SPI switching specifications
The Serial Peripheral Interface (SPI) provides a synchronous serial bus with master and
slave operations. Many of the transfer attributes are programmable. The following tables
provide timing characteristics for classic SPI timing modes. See the SPI chapter of the
chip's Reference Manual for information about the modified transfer formats used for
communicating with slower peripheral devices.
All timing is shown with respect to 20% VDD and 80% VDD thresholds, unless noted, as
well as input signal transitions of 3 ns and a 30 pF maximum load on all SPI pins.
Table 32. SPI master mode timing on slew rate disabled pads
Num.
Symbol
1
fop
Description
Frequency of operation
Min.
Max.
Unit
Note
fperiph/2048
fperiph/2
Hz
1
Table continues on the next page...
KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013.
40
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 32. SPI master mode timing on slew rate disabled pads (continued)
Num.
Symbol
Description
Min.
Max.
Unit
Note
2
tSPSCK
SPSCK period
2 x tperiph
2048 x
tperiph
ns
2
3
tLead
Enable lead time
1/2
—
tSPSCK
—
4
tLag
Enable lag time
1/2
—
tSPSCK
—
5
tWSPSCK
tperiph - 30
1024 x
tperiph
ns
—
6
tSU
Data setup time (inputs)
18
—
ns
—
7
tHI
Data hold time (inputs)
0
—
ns
—
8
tv
Data valid (after SPSCK edge)
—
15
ns
—
9
tHO
Data hold time (outputs)
0
—
ns
—
10
tRI
Rise time input
—
tperiph - 25
ns
—
tFI
Fall time input
tRO
Rise time output
—
25
ns
—
tFO
Fall time output
11
Clock (SPSCK) high or low time
1. For SPI0 fperiph is the bus clock (fBUS). For SPI1 fperiph is the system clock (fSYS).
2. tperiph = 1/fperiph
Table 33. SPI master mode timing on slew rate enabled pads
Num.
Symbol
1
fop
2
tSPSCK
3
tLead
4
tLag
5
tWSPSCK
6
tSU
7
tHI
8
tv
9
10
11
Description
Min.
Max.
Unit
Note
fperiph/2048
fperiph/2
Hz
1
2 x tperiph
2048 x
tperiph
ns
2
Enable lead time
1/2
—
tSPSCK
—
Enable lag time
1/2
—
tSPSCK
—
tperiph - 30
1024 x
tperiph
ns
—
Data setup time (inputs)
96
—
ns
—
Data hold time (inputs)
0
—
ns
—
Data valid (after SPSCK edge)
—
52
ns
—
tHO
Data hold time (outputs)
0
—
ns
—
tRI
Rise time input
—
tperiph - 25
ns
—
tFI
Fall time input
tRO
Rise time output
—
36
ns
—
tFO
Fall time output
Frequency of operation
SPSCK period
Clock (SPSCK) high or low time
1. For SPI0 fperiph is the bus clock (fBUS). For SPI1 fperiph is the system clock (fSYS).
2. tperiph = 1/fperiph
KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013.
Freescale Semiconductor, Inc.
41
Peripheral operating requirements and behaviors
SS1
(OUTPUT)
3
2
SPSCK
(CPOL = 0)
(OUTPUT)
10
11
10
11
4
5
5
SPSCK
(CPOL = 1)
(OUTPUT)
6
7
MISO
(INPUT)
MSB IN2
BIT 6 . . . 1
LSB IN
8
MOSI
(OUTPUT)
MSB OUT2
9
BIT 6 . . . 1
LSB OUT
1. If configured as an output.
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.
Figure 13. SPI master mode timing (CPHA = 0)
SS1
(OUTPUT)
2
3
SPSCK
(CPOL = 0)
(OUTPUT)
5
SPSCK
(CPOL = 1)
(OUTPUT)
5
6
MISO
(INPUT)
10
11
10
11
4
7
MSB IN2
BIT 6 . . . 1
8
MOSI
2
(OUTPUT)PORT DATA MASTER MSB OUT
LSB IN
9
BIT 6 . . . 1
MASTER LSB OUT
PORT DATA
1.If configured as output
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.
Figure 14. SPI master mode timing (CPHA = 1)
Table 34. SPI slave mode timing on slew rate disabled pads
Num.
Symbol
1
fop
2
tSPSCK
3
tLead
4
tLag
5
tWSPSCK
Description
Frequency of operation
Min.
Max.
Unit
Note
0
fperiph/4
Hz
1
4 x tperiph
—
ns
2
Enable lead time
1
—
tperiph
—
Enable lag time
1
—
tperiph
—
tperiph - 30
—
ns
—
SPSCK period
Clock (SPSCK) high or low time
Table continues on the next page...
KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013.
42
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 34. SPI slave mode timing on slew rate disabled pads (continued)
1.
2.
3.
4.
Num.
Symbol
Description
Min.
Max.
Unit
Note
6
tSU
Data setup time (inputs)
2.5
—
ns
—
7
tHI
Data hold time (inputs)
3.5
—
ns
—
8
ta
Slave access time
—
tperiph
ns
3
9
tdis
Slave MISO disable time
—
tperiph
ns
4
10
tv
Data valid (after SPSCK edge)
—
31
ns
—
11
tHO
Data hold time (outputs)
0
—
ns
—
12
tRI
Rise time input
—
tperiph - 25
ns
—
tFI
Fall time input
13
tRO
Rise time output
—
25
ns
—
tFO
Fall time output
For SPI0 fperiph is the bus clock (fBUS). For SPI1 fperiph is the system clock (fSYS).
tperiph = 1/fperiph
Time to data active from high-impedance state
Hold time to high-impedance state
Table 35. SPI slave mode timing on slew rate enabled pads
Num.
Symbol
1
fop
2
tSPSCK
3
tLead
Enable lead time
4
tLag
Enable lag time
5
tWSPSCK
6
tSU
7
Min.
Max.
Unit
Note
0
fperiph/4
Hz
1
4 x tperiph
—
ns
2
1
—
tperiph
—
Frequency of operation
SPSCK period
1
—
tperiph
—
tperiph - 30
—
ns
—
Data setup time (inputs)
2
—
ns
—
tHI
Data hold time (inputs)
7
—
ns
—
8
ta
Slave access time
—
tperiph
ns
3
9
tdis
Slave MISO disable time
—
tperiph
ns
4
10
tv
Data valid (after SPSCK edge)
—
122
ns
—
11
tHO
Data hold time (outputs)
0
—
ns
—
12
tRI
Rise time input
—
tperiph - 25
ns
—
tFI
Fall time input
tRO
Rise time output
—
36
ns
—
tFO
Fall time output
13
1.
2.
3.
4.
Description
Clock (SPSCK) high or low time
For SPI0 fperiph is the bus clock (fBUS). For SPI1 fperiph is the system clock (fSYS).
tperiph = 1/fperiph
Time to data active from high-impedance state
Hold time to high-impedance state
KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013.
Freescale Semiconductor, Inc.
43
Peripheral operating requirements and behaviors
SS
(INPUT)
2
SPSCK
(CPOL = 0)
(INPUT)
5
3
SPSCK
(CPOL = 1)
(INPUT)
5
13 4
12
13
9
8
MISO
(OUTPUT)
12
10
see
note
6
11
BIT 6 . . . 1
SLAVE MSB
11
SEE
NOTE
SLAVE LSB OUT
7
MOSI
(INPUT)
BIT 6 . . . 1
MSB IN
LSB IN
NOTE: Not defined
Figure 15. SPI slave mode timing (CPHA = 0)
SS
(INPUT)
4
2
3
SPSCK
(CPOL = 0)
(INPUT)
5
SPSCK
(CPOL = 1)
(INPUT)
5
see
note
SLAVE
8
MSB OUT
6
MOSI
(INPUT)
13
12
13
9
11
10
MISO
(OUTPUT)
12
BIT 6 . . . 1
SLAVE LSB OUT
7
MSB IN
LSB IN
BIT 6 . . . 1
NOTE: Not defined
Figure 16. SPI slave mode timing (CPHA = 1)
6.8.4 Inter-Integrated Circuit Interface (I2C) timing
Table 36. I 2C timing
Characteristic
Symbol
SCL Clock Frequency
fSCL
Standard Mode
Fast Mode
Minimum
Maximum
Minimum
Maximum
0
100
0
400
Unit
kHz
Table continues on the next page...
KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013.
44
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 36. I 2C timing (continued)
Characteristic
Symbol
Standard Mode
Fast Mode
Unit
Minimum
Maximum
Minimum
Maximum
Hold time (repeated) START condition.
After this period, the first clock pulse is
generated.
tHD; STA
4
—
0.6
—
µs
LOW period of the SCL clock
tLOW
4.7
—
1.3
—
µs
HIGH period of the SCL clock
tHIGH
4
—
0.6
—
µs
Set-up time for a repeated START
condition
tSU; STA
4.7
—
0.6
—
µs
Data hold time for I2C bus devices
tHD; DAT
01
3.452
03
0.91
µs
tSU; DAT
2504
—
1002, 5
Data set-up time
Rise time of SDA and SCL signals
tr
—
1000
—
20 +0.1Cb
6
5

300
ns
ns

Fall time of SDA and SCL signals
tf
—
300
20 +0.1Cb
300
ns
Set-up time for STOP condition
tSU; STO
4
—
0.6
—
µs
Bus free time between STOP and
START condition
tBUF
4.7
—
1.3
—
µs
Pulse width of spikes that must be
suppressed by the input filter
tSP
N/A
N/A
0
50
ns
1. The master mode I2C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves
acknowledge this address byte, then a negative hold time can result, depending on the edge rates of the SDA and SCL
lines.
2. The maximum tHD; DAT must be met only if the device does not stretch the LOW period (tLOW) of the SCL signal.
3. Input signal Slew = 10 ns and Output Load = 50 pF
4. Set-up time in slave-transmitter mode is 1 IPBus clock period, if the TX FIFO is empty.
5. A Fast mode I2C bus device can be used in a Standard mode I2C bus system, but the requirement tSU; DAT ≥ 250 ns must
then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a
device does stretch the LOW period of the SCL signal, then it must output the next data bit to the SDA line trmax + tSU; DAT
= 1000 + 250 = 1250 ns (according to the Standard mode I2C bus specification) before the SCL line is released.
6. Cb = total capacitance of the one bus line in pF.
SDA
tf
tLOW
tSU; DAT
tr
tf
tHD; STA
tSP
tr
tBUF
SCL
S
tHD; STA
tHD; DAT
tHIGH
tSU; STA
SR
tSU; STO
P
S
Figure 17. Timing definition for fast and standard mode devices on the I2C bus
6.8.5 UART
See General switching specifications.
KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013.
Freescale Semiconductor, Inc.
45
Peripheral operating requirements and behaviors
6.8.6 I2S/SAI switching specifications
This section provides the AC timing for the I2S/SAI module in master mode (clocks are
driven) and slave mode (clocks are input). All timing is given for noninverted serial clock
polarity (TCR2[BCP] is 0, RCR2[BCP] is 0) and a noninverted frame sync (TCR4[FSP]
is 0, RCR4[FSP] is 0). If the polarity of the clock and/or the frame sync have been
inverted, all the timing remains valid by inverting the bit clock signal (BCLK) and/or the
frame sync (FS) signal shown in the following figures.
6.8.6.1
Normal Run, Wait and Stop mode performance over the full
operating voltage range
This section provides the operating performance over the full operating voltage for the
device in Normal Run, Wait and Stop modes.
Table 37. I2S/SAI master mode timing
Num.
Characteristic
Min.
Max.
Unit
Operating voltage
1.71
3.6
V
S1
I2S_MCLK cycle time
40
—
ns
S2
I2S_MCLK (as an input) pulse width high/low
45%
55%
MCLK period
S3
I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)
80
—
ns
S4
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low
45%
55%
BCLK period
S5
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/
I2S_RX_FS output valid
—
15.5
ns
S6
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/
I2S_RX_FS output invalid
0
—
ns
S7
I2S_TX_BCLK to I2S_TXD valid
—
19
ns
S8
I2S_TX_BCLK to I2S_TXD invalid
0
—
ns
S9
I2S_RXD/I2S_RX_FS input setup before
I2S_RX_BCLK
26
—
ns
S10
I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK
0
—
ns
KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013.
46
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
S1
S2
S2
I2S_MCLK (output)
S3
I2S_TX_BCLK/
I2S_RX_BCLK (output)
S4
S4
S6
S5
I2S_TX_FS/
I2S_RX_FS (output)
S10
S9
I2S_TX_FS/
I2S_RX_FS (input)
S7
S8
S7
S8
I2S_TXD
S9
S10
I2S_RXD
Figure 18. I2S/SAI timing — master modes
Table 38. I2S/SAI slave mode timing
Num.
Characteristic
Min.
Max.
Unit
Operating voltage
1.71
3.6
V
S11
I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)
80
—
ns
S12
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low
(input)
45%
55%
MCLK period
S13
I2S_TX_FS/I2S_RX_FS input setup before
I2S_TX_BCLK/I2S_RX_BCLK
10
—
ns
S14
I2S_TX_FS/I2S_RX_FS input hold after
I2S_TX_BCLK/I2S_RX_BCLK
2
—
ns
S15
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid
—
33
ns
S16
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid
0
—
ns
S17
I2S_RXD setup before I2S_RX_BCLK
10
—
ns
S18
I2S_RXD hold after I2S_RX_BCLK
2
—
ns
—
28
ns
S19
I2S_TX_FS input assertion to I2S_TXD output
valid1
1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear
KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013.
Freescale Semiconductor, Inc.
47
Peripheral operating requirements and behaviors
S11
S12
I2S_TX_BCLK/
I2S_RX_BCLK (input)
S12
S15
S16
I2S_TX_FS/
I2S_RX_FS (output)
S13
I2S_TX_FS/
I2S_RX_FS (input)
S19
S14
S15
S16
S15
S16
I2S_TXD
S17
S18
I2S_RXD
Figure 19. I2S/SAI timing — slave modes
6.8.6.2
VLPR, VLPW, and VLPS mode performance over the full operating
voltage range
This section provides the operating performance over the full operating voltage for the
device in VLPR, VLPW, and VLPS modes.
Table 39. I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes
(full voltage range)
Num.
Characteristic
Min.
Max.
Unit
Operating voltage
1.71
3.6
V
S1
I2S_MCLK cycle time
62.5
—
ns
S2
I2S_MCLK pulse width high/low
45%
55%
MCLK period
S3
I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)
250
—
ns
S4
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low
45%
55%
BCLK period
S5
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/
I2S_RX_FS output valid
—
45
ns
S6
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/
I2S_RX_FS output invalid
0
—
ns
S7
I2S_TX_BCLK to I2S_TXD valid
—
45
ns
S8
I2S_TX_BCLK to I2S_TXD invalid
—
ns
S9
I2S_RXD/I2S_RX_FS input setup before
I2S_RX_BCLK
—
ns
S10
I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK
—
ns
0
KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013.
48
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
S1
S2
S2
I2S_MCLK (output)
S3
I2S_TX_BCLK/
I2S_RX_BCLK (output)
S4
S4
S6
S5
I2S_TX_FS/
I2S_RX_FS (output)
S10
S9
I2S_TX_FS/
I2S_RX_FS (input)
S7
S8
S7
S8
I2S_TXD
S9
S10
I2S_RXD
Figure 20. I2S/SAI timing — master modes
Table 40. I2S/SAI slave mode timing in VLPR, VLPW, and VLPS modes (full
voltage range)
Num.
Characteristic
Min.
Max.
Unit
Operating voltage
1.71
3.6
V
S11
I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)
250
—
ns
S12
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low
(input)
45%
55%
MCLK period
S13
I2S_TX_FS/I2S_RX_FS input setup before
I2S_TX_BCLK/I2S_RX_BCLK
30
—
ns
S14
I2S_TX_FS/I2S_RX_FS input hold after
I2S_TX_BCLK/I2S_RX_BCLK
—
ns
S15
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid
—
S16
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid
0
—
ns
S17
I2S_RXD setup before I2S_RX_BCLK
30
—
ns
S18
I2S_RXD hold after I2S_RX_BCLK
2
—
ns
—
72
ns
S19
I2S_TX_FS input assertion to I2S_TXD output
valid1
ns
1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear
KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013.
Freescale Semiconductor, Inc.
49
Dimensions
S11
S12
I2S_TX_BCLK/
I2S_RX_BCLK (input)
S12
S15
S16
I2S_TX_FS/
I2S_RX_FS (output)
S13
I2S_TX_FS/
I2S_RX_FS (input)
S19
S14
S15
S16
S15
S16
I2S_TXD
S17
S18
I2S_RXD
Figure 21. I2S/SAI timing — slave modes
6.9 Human-machine interfaces (HMI)
6.9.1 TSI electrical specifications
Table 41. TSI electrical specifications
Symbol
Description
Min.
Typ.
Max.
Unit
TSI_RUNF
Fixed power consumption in run mode
—
100
—
µA
TSI_RUNV
Variable power consumption in run mode
(depends on oscillator's current selection)
1.0
—
128
µA
TSI_EN
Power consumption in enable mode
—
100
—
µA
TSI_DIS
Power consumption in disable mode
—
1.2
—
µA
TSI_TEN
TSI analog enable time
—
66
—
µs
TSI_CREF
TSI reference capacitor
—
1.0
—
pF
TSI_DVOLT
Voltage variation of VP & VM around nominal
values
0.19
—
1.03
V
7 Dimensions
7.1 Obtaining package dimensions
Package dimensions are provided in package drawings.
KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013.
50
Freescale Semiconductor, Inc.
Pinout
To find a package drawing, go to freescale.com and perform a keyword search for the
drawing’s document number:
If you want the drawing for this package
Then use this document number
32-pin QFN
98ASA00473D
48-pin QFN
98ASA00466D
64-pin LQFP
98ASS23234W
8 Pinout
8.1 KL26 Signal Multiplexing and Pin Assignments
The following table shows the signals available on each pin and the locations of these
pins on the devices supported by this document. The Port Control Module is responsible
for selecting which ALT functionality is available on each pin.
64
LQFP
48
QFN
32
QFN
Pin Name
Default
ALT0
1
—
1
PTE0
DISABLED
2
—
—
PTE1
DISABLED
3
1
—
VDD
VDD
VDD
4
2
2
VSS
VSS
VSS
5
3
3
USB0_DP
USB0_DP
USB0_DP
6
4
4
USB0_DM
USB0_DM
USB0_DM
7
5
5
VOUT33
VOUT33
VOUT33
8
6
6
VREGIN
VREGIN
VREGIN
9
7
—
PTE20
ADC0_DP0/
ADC0_SE0
ADC0_DP0/
ADC0_SE0
PTE20
TPM1_CH0
UART0_TX
10
8
—
PTE21
ADC0_DM0/
ADC0_SE4a
ADC0_DM0/
ADC0_SE4a
PTE21
TPM1_CH1
UART0_RX
11
—
—
PTE22
ADC0_DP3/
ADC0_SE3
ADC0_DP3/
ADC0_SE3
PTE22
TPM2_CH0
UART2_TX
12
—
—
PTE23
ADC0_DM3/
ADC0_SE7a
ADC0_DM3/
ADC0_SE7a
PTE23
TPM2_CH1
UART2_RX
PTE29
TPM0_CH2
TPM_CLKIN0
13
9
7
VDDA
VDDA
VDDA
14
10
—
VREFH
VREFH
VREFH
15
11
—
VREFL
VREFL
VREFL
16
12
8
VSSA
VSSA
VSSA
17
13
—
PTE29
CMP0_IN5/
ADC0_SE4b
CMP0_IN5/
ADC0_SE4b
ALT1
ALT2
ALT3
PTE0
SPI1_MISO
UART1_TX
PTE1
SPI1_MOSI
UART1_RX
ALT4
RTC_CLKOUT
ALT5
ALT6
CMP0_OUT
I2C1_SDA
SPI1_MISO
I2C1_SCL
ALT7
KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013.
Freescale Semiconductor, Inc.
51
Pinout
64
LQFP
48
QFN
32
QFN
Pin Name
Default
18
14
9
PTE30
DAC0_OUT/
ADC0_SE23/
CMP0_IN4
19
—
—
PTE31
20
15
—
PTE24
21
16
—
22
17
23
ALT0
DAC0_OUT/
ADC0_SE23/
CMP0_IN4
ALT1
ALT2
ALT3
ALT4
ALT5
ALT6
ALT7
PTE30
TPM0_CH3
TPM_CLKIN1
DISABLED
PTE31
TPM0_CH4
DISABLED
PTE24
TPM0_CH0
I2C0_SCL
PTE25
DISABLED
PTE25
TPM0_CH1
I2C0_SDA
10
PTA0
SWD_CLK
TSI0_CH1
PTA0
TPM0_CH5
18
11
PTA1
DISABLED
TSI0_CH2
PTA1
UART0_RX
TPM2_CH0
24
19
12
PTA2
DISABLED
TSI0_CH3
PTA2
UART0_TX
TPM2_CH1
25
20
13
PTA3
SWD_DIO
TSI0_CH4
PTA3
I2C1_SCL
TPM0_CH0
SWD_DIO
26
21
14
PTA4
NMI_b
TSI0_CH5
PTA4
I2C1_SDA
TPM0_CH1
NMI_b
27
—
—
PTA5
DISABLED
PTA5
USB_CLKIN
TPM0_CH2
I2S0_TX_BCLK
28
—
—
PTA12
DISABLED
PTA12
TPM1_CH0
I2S0_TXD0
29
—
—
PTA13
DISABLED
PTA13
TPM1_CH1
I2S0_TX_FS
30
22
15
VDD
VDD
VDD
31
23
16
VSS
VSS
VSS
32
24
17
PTA18
EXTAL0
EXTAL0
PTA18
UART1_RX
TPM_CLKIN0
33
25
18
PTA19
XTAL0
XTAL0
PTA19
UART1_TX
TPM_CLKIN1
34
26
19
PTA20
RESET_b
35
27
20
PTB0/
LLWU_P5
ADC0_SE8/
TSI0_CH0
ADC0_SE8/
TSI0_CH0
PTB0/
LLWU_P5
I2C0_SCL
TPM1_CH0
36
28
21
PTB1
ADC0_SE9/
TSI0_CH6
ADC0_SE9/
TSI0_CH6
PTB1
I2C0_SDA
TPM1_CH1
37
29
—
PTB2
ADC0_SE12/
TSI0_CH7
ADC0_SE12/
TSI0_CH7
PTB2
I2C0_SCL
TPM2_CH0
38
30
—
PTB3
ADC0_SE13/
TSI0_CH8
ADC0_SE13/
TSI0_CH8
PTB3
I2C0_SDA
TPM2_CH1
39
31
—
PTB16
TSI0_CH9
TSI0_CH9
PTB16
SPI1_MOSI
UART0_RX
TPM_CLKIN0
SPI1_MISO
40
32
—
PTB17
TSI0_CH10
TSI0_CH10
PTB17
SPI1_MISO
UART0_TX
TPM_CLKIN1
SPI1_MOSI
41
—
—
PTB18
TSI0_CH11
TSI0_CH11
PTB18
TPM2_CH0
I2S0_TX_BCLK
42
—
—
PTB19
TSI0_CH12
TSI0_CH12
PTB19
TPM2_CH1
I2S0_TX_FS
43
33
—
PTC0
ADC0_SE14/
TSI0_CH13
ADC0_SE14/
TSI0_CH13
PTC0
EXTRG_IN
audioUSB_
SOF_OUT
44
34
22
PTC1/
LLWU_P6/
RTC_CLKIN
ADC0_SE15/
TSI0_CH14
ADC0_SE15/
TSI0_CH14
PTC1/
LLWU_P6/
RTC_CLKIN
I2C1_SCL
TPM0_CH0
I2S0_TXD0
45
35
23
PTC2
ADC0_SE11/
TSI0_CH15
ADC0_SE11/
TSI0_CH15
PTC2
I2C1_SDA
TPM0_CH1
I2S0_TX_FS
46
36
24
PTC3/
LLWU_P7
DISABLED
47
—
—
VSS
VSS
VSS
48
—
—
VDD
VDD
VDD
49
37
25
PTC4/
LLWU_P8
DISABLED
SWD_CLK
LPTMR0_ALT1
PTA20
RESET_b
PTC3/
LLWU_P7
PTC4/
LLWU_P8
SPI0_PCS0
CMP0_OUT
UART1_RX
TPM0_CH2
CLKOUT
UART1_TX
TPM0_CH3
I2S0_MCLK
I2S0_TXD0
I2S0_TX_BCLK
KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013.
52
Freescale Semiconductor, Inc.
Pinout
64
LQFP
48
QFN
32
QFN
Pin Name
Default
50
38
26
PTC5/
LLWU_P9
DISABLED
51
39
27
PTC6/
LLWU_P10
CMP0_IN0
52
40
28
PTC7
53
—
—
54
—
55
ALT0
ALT1
ALT2
PTC5/
LLWU_P9
SPI0_SCK
LPTMR0_ALT2 I2S0_RXD0
CMP0_OUT
CMP0_IN0
PTC6/
LLWU_P10
SPI0_MOSI
EXTRG_IN
I2S0_RX_BCLK SPI0_MISO
I2S0_MCLK
CMP0_IN1
CMP0_IN1
PTC7
SPI0_MISO
audioUSB_
SOF_OUT
I2S0_RX_FS
PTC8
CMP0_IN2
CMP0_IN2
PTC8
I2C0_SCL
TPM0_CH4
I2S0_MCLK
—
PTC9
CMP0_IN3
CMP0_IN3
PTC9
I2C0_SDA
TPM0_CH5
I2S0_RX_BCLK
—
—
PTC10
DISABLED
PTC10
I2C1_SCL
I2S0_RX_FS
56
—
—
PTC11
DISABLED
PTC11
I2C1_SDA
I2S0_RXD0
57
41
—
PTD0
DISABLED
PTD0
SPI0_PCS0
TPM0_CH0
58
42
—
PTD1
ADC0_SE5b
PTD1
SPI0_SCK
TPM0_CH1
59
43
—
PTD2
DISABLED
PTD2
SPI0_MOSI
UART2_RX
TPM0_CH2
SPI0_MISO
60
44
—
PTD3
DISABLED
PTD3
SPI0_MISO
UART2_TX
TPM0_CH3
SPI0_MOSI
61
45
29
PTD4/
LLWU_P14
DISABLED
PTD4/
LLWU_P14
SPI1_PCS0
UART2_RX
TPM0_CH4
62
46
30
PTD5
ADC0_SE6b
ADC0_SE6b
PTD5
SPI1_SCK
UART2_TX
TPM0_CH5
63
47
31
PTD6/
LLWU_P15
ADC0_SE7b
ADC0_SE7b
PTD6/
LLWU_P15
SPI1_MOSI
UART0_RX
SPI1_MISO
64
48
32
PTD7
DISABLED
PTD7
SPI1_MISO
UART0_TX
SPI1_MOSI
ADC0_SE5b
ALT3
ALT4
ALT5
ALT6
ALT7
SPI0_MOSI
8.2 KL26 pinouts
The following figures show the pinout diagrams for the devices supported by this
document. Many signals may be multiplexed onto a single pin. To determine what signals
can be used on which pin, see KL26 Signal Multiplexing and Pin Assignments.
KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013.
Freescale Semiconductor, Inc.
53
PTD7
PTD6/LLWU_P15
PTD5
PTD4/LLWU_P14
PTD3
PTD2
PTD1
PTD0
PTC11
PTC10
PTC9
PTC8
PTC7
PTC6/LLWU_P10
PTC5/LLWU_P9
PTC4/LLWU_P8
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
Pinout
PTE20
9
40
PTB17
PTE21
10
39
PTB16
PTE22
11
38
PTB3
PTE23
12
37
PTB2
VDDA
13
36
PTB1
VREFH
14
35
PTB0/LLWU_P5
VREFL
15
34
PTA20
VSSA
16
33
PTA19
32
PTB18
PTA18
41
31
8
VSS
VREGIN
30
PTB19
VDD
42
29
7
PTA13
VOUT33
28
PTC0
PTA12
43
27
6
PTA5
USB0_DM
26
PTC1/LLWU_P6/RTC_CLKIN
PTA4
44
25
5
PTA3
USB0_DP
24
PTC2
PTA2
45
23
4
PTA1
VSS
22
PTC3/LLWU_P7
PTA0
46
21
3
PTE25
VDD
20
VSS
PTE24
47
19
2
PTE31
PTE1
18
VDD
PTE30
48
17
1
PTE29
PTE0
Figure 22. KL26 64-pin LQFP pinout diagram
KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013.
54
Freescale Semiconductor, Inc.
PTD7
PTD6/LLWU_P15
PTD5
PTD4/LLWU_P14
PTD3
PTD2
PTD1
PTD0
PTC7
PTC6/LLWU_P10
PTC5/LLWU_P9
PTC4/LLWU_P8
48
47
46
45
44
43
42
41
40
39
38
37
Pinout
PTE20
7
30
PTB3
PTE21
8
29
PTB2
VDDA
9
28
PTB1
VREFH
10
27
PTB0/LLWU_P5
VREFL
11
26
PTA20
VSSA
12
25
PTA19
24
PTB16
PTA18
31
23
6
VSS
VREGIN
22
PTB17
VDD
32
21
5
PTA4
VOUT33
20
PTC0
PTA3
33
19
4
PTA2
USB0_DM
18
PTC1/LLWU_P6/RTC_CLKIN
PTA1
34
17
3
PTA0
USB0_DP
16
PTC2
PTE25
35
15
2
PTE24
VSS
14
PTC3/LLWU_P7
PTE30
36
13
1
PTE29
VDD
Figure 23. KL26 48-pin QFN pinout diagram
KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013.
Freescale Semiconductor, Inc.
55
PTD7
PTD6/LLWU_P15
PTD5
PTD4/LLWU_P14
PTC7
PTC6/LLWU_P10
PTC5/LLWU_P9
PTC4/LLWU_P8
32
31
30
29
28
27
26
25
Pinout
21
PTB1
VOUT33
5
20
PTB0/LLWU_P5
VREGIN
6
19
PTA20
VDDA
7
18
PTA19
VSSA
8
17
PTA18
PTA0
PTE30
16
4
VSS
USB0_DM
15
PTC1/LLWU_P6/RTC_CLKIN
VDD
22
14
3
PTA4
USB0_DP
13
PTC2
PTA3
23
12
2
PTA2
VSS
11
PTC3/LLWU_P7
PTA1
24
10
1
9
PTE0
Figure 24. KL26 32-pin QFN pinout diagram
KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013.
56
Freescale Semiconductor, Inc.
How to Reach Us:
Information in this document is provided solely to enable system and software
Home Page:
freescale.com
implementers to use Freescale products. There are no express or implied copyright
Web Support:
freescale.com/support
information in this document.
licenses granted hereunder to design or fabricate any integrated circuits based on the
Freescale reserves the right to make changes without further notice to any products
herein. Freescale makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale assume any
liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental
damages. “Typical” parameters that may be provided in Freescale data sheets and/or
specifications can and do vary in different applications, and actual performance may
vary over time. All operating parameters, including “typicals,” must be validated for each
customer application by customer’s technical experts. Freescale does not convey any
license under its patent rights nor the rights of others. Freescale sells products pursuant
to standard terms and conditions of sale, which can be found at the following address:
freescale.com/SalesTermsandConditions.
Freescale, the Freescale logo, Energy Efficient Solutions logo, and Kinetis are
trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other
product or service names are the property of their respective owners. ARM and Cortex
are the registered trademarks of ARM Limited.
© 2013 Freescale Semiconductor, Inc.
Document Number: KL26P64M48SF5
Rev. 2
10/2013