Advisory August 5, 1999 TMPR28051 STS-1/AU-3 (STM-0) Mapper Device Advisory for Version 5 of the Device Register Architecture (RA) Map RA-1. Reset Bit The software reset bit (bit 0) of register 0x00 is not functional. RA-2. Transmit Path AIS Insert Bit The TXPAISINS bit (bit 5) of register 0x01 produces both AIS-P and AIS-L. RA-3. STS-1 Loss of Pointer Mask Bit The STS1LOPMSK bit (bit 2) of register 0x04 masks both STS1LOP and STS1LOF. RA-4. STS-1 Loss of Frame Mask Bit The STS1LOFMSK bit (bit 1) of register 0x04 is not functional. RA-5. VTLABCOM and VTRFIRDICOM Interrupt Bits Occasionally, it might require multiple reads to clear the composite interrupt bits VTLABCOM (bit 2 of register 0x05) and VTRFIRDICOM (bit 4 of register 0x05). Error Insertion (EI) EI-1. DS1/E1 Alarm Indication Signal The device does not insert DS1/E1 AIS towards the STS-1 if there is an LOC condition in the incoming DS1/E1 signal. EI-2. LOC Condition in E1 Loopback Mode In the absence of an input clock, the device detects an LOC condition and generates TU-AIS upstream, even if the loopback path is selected (the loopback signal is overwritten by TU-AIS). TMPR28051 STS-1/AU-3 (STM-0) Mapper Device Advisory for Version 5 of the Device Advisory August 5, 1999 Error Insertion (EI) (continued) EI-3. False S-BIP, L-BIP, and P-BIP Error Insertion The device transmits S-BIP, L-BIP, and P-BIP errors when configured for automatic insertion of REI, and certain STS-1 error conditions such as LOS, LOF, LOP-P, S-BIP, L-BIP, and P-BIP are inserted. VT Alarms (VT) VT-1. VT Path Payload Label Mismatch The device reports PLM-V when it detects three consecutive consistent new values for the VT label. This is in compliance with G.783 Section 2.2.2.7 and T1.231 Section 8.1.3.5.2.4.2 specifications, but is not compliant with GR-253 Section 6.2.1.1.8.C. VT-2. Failure in the Detection of VT Loss of Pointer Defects The device also apparently fails to detect an LOP-V defect when it continuously receives a VT pointer word of 6C68 (i.e., a value indicating a VT1.5 with an offset of 104 bytes, versus a maximum valid offset of 103 bytes). In this case, the device inserts the required DS1 AIS downstream, but does not subsequently declare an LOP-V failure (nonconformance to GR 253, R6-71). VT-3. Inappropriate Termination of VT Loss of Pointer Defect Condition After the device has detected an LOP-V defect, it inappropriately terminates that defect upon receiving two pointer words containing the same value as the previous valid pointer. According to GR 253, an LOP-V defect must not be terminated unless a valid pointer is received in three consecutive VT superframes (nonconformance to GR 253, R6-75). VT-4. Inappropriate Termination of VT Alarm Indication Signal Defect Condition After the device has detected an AIS-V defect, it inappropriately terminates that defect upon receiving two pointer words containing the same value as the previous valid pointer and without a set NDF (e.g., with the N bits set to 0110). According to GR 253, an AIS-V defect must not be terminated unless a normal valid pointer is received in three consecutive VT superframes, or a valid pointer with a set NDF is received in one VT superframe (nonconformance to GR 253, R6-183). For additional information, contact your Microelectronics Group Account Manager or the following: http://www.lucent.com/micro INTERNET: [email protected] E-MAIL: N. AMERICA: Microelectronics Group, Lucent Technologies Inc., 555 Union Boulevard, Room 30L-15P-BA, Allentown, PA 18103 1-800-372-2447, FAX 610-712-4106 (In CANADA: 1-800-553-2448, FAX 610-712-4106) ASIA PACIFIC: Microelectronics Group, Lucent Technologies Singapore Pte. Ltd., 77 Science Park Drive, #03-18 Cintech III, Singapore 118256 Tel. (65) 778 8833, FAX (65) 777 7495 CHINA: Microelectronics Group, Lucent Technologies (China) Co., Ltd., A-F2, 23/F, Zao Fong Universe Building, 1800 Zhong Shan Xi Road, Shanghai 200233 P. R. China Tel. (86) 21 6440 0468, ext. 316, FAX (86) 21 6440 0652 JAPAN: Microelectronics Group, Lucent Technologies Japan Ltd., 7-18, Higashi-Gotanda 2-chome, Shinagawa-ku, Tokyo 141, Japan Tel. (81) 3 5421 1600, FAX (81) 3 5421 1700 EUROPE: Data Requests: MICROELECTRONICS GROUP DATALINE: Tel. (44) 7000 582 368, FAX (44) 1189 328 148 Technical Inquiries: GERMANY: (49) 89 95086 0 (Munich), UNITED KINGDOM: (44) 1344 865 900 (Ascot), FRANCE: (33) 1 40 83 68 00 (Paris), SWEDEN: (46) 8 594 607 00 (Stockholm), FINLAND: (358) 9 4354 2800 (Helsinki), ITALY: (39) 02 6608131 (Milan), SPAIN: (34) 1 807 1441 (Madrid) Lucent Technologies Inc. reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application. No rights under any patent accompany the sale of any such product(s) or information. Copyright © 1999 Lucent Technologies Inc. All Rights Reserved August 5, 1999 AY99-025SONT (Must accompany DS99-068SONT) Advisory, Rev. 2 August 5, 1999 TMPR28051 STS-1/AU-3 (STM-0) Mapper Device Advisory for Version 2 of the Device Register Architecture (RA) Map RA-1. Reset Bit The software reset bit (bit 0) of register 0x00 is not functional. RA-2. Transmit Path AIS Insert Bit The TXPAISINS bit (bit 5) of register 0x01 produces both AIS-P and AIS-L. RA-3. STS-1 Loss of Pointer Mask Bit The STS1LOPMSK bit (bit 2) of register 0x04 masks both STS1LOP and STS1LOF. RA-4. STS-1 Loss of Frame Mask Bit The STS1LOFMSK bit (bit 1) of register 0x04 is not functional. RA-5. VTLABCOM and VTRFIRDICOM Interrupt Bits Occasionally, it might require multiple reads to clear the composite interrupt bits VTLABCOM (bit 2 of register 0x05) and VTRFIRDICOM (bit 4 of register 0x05). Error Insertion (EI) EI-1. DS1/E1 Alarm Indication Signal The device does not insert DS1/E1 AIS towards the STS-1 if there is an LOC condition in the incoming DS1/E1 signal. EI-2. LOC Condition in E1 Loopback Mode In the absence of an input clock, the device detects an LOC condition and generates TU-AIS upstream, even if the loopback is selected (the loopback signal is overwritten by TU-AIS). TMPR28051 STS-1/AU-3 (STM-0) Mapper Device Advisory for Version 2 of the Device Advisory, Rev. 2 August 5, 1999 Error Insertion (EI) (continued) EI-3. False S-BIP, L-BIP, and P-BIP Error Insertion The device transmits S-BIP, L-BIP, and P-BIP errors when configured for automatic insertion of REI, and certain STS-1 error conditions such as LOS, LOF, LOP-P, S-BIP, L-BIP, and P-BIP are inserted. EI-4. Forcing AIS Condition In order to force AIS using the VTDROP bits, a value of 0x1D must be programmed for DS1 AIS, and a value of 0x1E must be programmed for E1 AIS. VT Mapping (VT) VT-1. VT Path Payload Label Mismatch The device reports PLM-V when it detects three consecutive consistent new values for the VT label. This is in compliance with G.783 Section 2.2.2.7 and T1.231 Section 8.1.3.5.2.4.2 specifications, but is not compliant with GR-253 Section 6.2.1.1.8.C. VT-2. Failure in the Detection of VT Loss of Pointer Defects ■ The device fails to detect an LOP-V defect or insert the required DS1/E1 AIS downstream when it receives VT pointer words with the N bits continuously set to 1001 (i.e., with a continuously set NDF). ■ The device also apparently fails to detect an LOP-V defect when it continuously receives a VT pointer word of 6C68 (i.e., a value indicating a VT1.5 with an offset of 104 bytes, versus a maximum valid offset of 103 bytes). In this case, the device inserts the required DS1 AIS downstream, but does not subsequently declare an LOP-V failure (nonconformance to GR 253, R6-71). VT-3. Inappropriate Termination of VT Loss of Pointer Defect Condition After the device has detected an LOP-V defect, it inappropriately terminates that defect upon receiving two pointer words containing the same value as the previous valid pointer. According to GR 253, an LOP-V defect must not be terminated unless a valid pointer is received in three consecutive VT superframes (nonconformance to GR 253, R6-75). VT-4. Inappropriate Termination of VT Alarm Indication Signal Defect Condition After the device has detected an AIS-V defect, it inappropriately terminates that defect upon receiving two pointer words containing the same value as the previous valid pointer and without a set NDF (e.g., with the N bits set to 0110). According to GR 253, an AIS-V defect must not be terminated unless a normal valid pointer is received in three consecutive VT superframes, or a valid pointer with a set NDF is received in one VT superframe (nonconformance to GR 253, R6-183). 2 Lucent Technologies Inc. Advisory, Rev. 2 August 5, 1999 TMPR28051 STS-1/AU-3 (STM-0) Mapper Device Advisory for Version 2 of the Device VT Mapping (VT) (continued) VT-5. C-Bit Decoding In the presence of a receive SONET/SDH bit error rate, the device may destuff the DS1 from the VT1.5 incorrectly. This is the result of an error in the VT1.5 C-bit decoding process. The C-bit decoding process should be capable of correcting single errors to the C bits. Because of this error, an error in the first or second C bit for position 2 will be incorrectly decoded if the first C-bit position is calling for a stuff and the second C-bit position is not. The end result of this error is that both positions will call for a stuff, resulting in a bit being removed from the DS1 data stream. This will force downstream equipment to experience a reframe. The minimum time to false decode severity is as shown in Table VT-5 (in terms of seconds to false decode). Table VT-5. Minimum Time (in Seconds) to False Decode Severity of the C Bit BER Theoretical Actual 10–3 125 0.25 10–4 12500 2.5 10–5 1250000 25 10–6 1.25e+8 250 10–7 1.25e+10 2500 10–8 1.25e+12 2.5e+4 10–9 1.25e+14 2.5e+5 10–10 1.25e+16 2.5e+6 In the absence of an external bit error rate, the algorithm decodes these C bits correctly. Test Pattern (TP) Generator/Monitor TP-1. Test Pattern Insert The transmitted test pattern comes out on the opposite edge with respect to the jitter-attenuated data. TP-2. Test Pattern Drop The test pattern detector always inverts the clock coming into the block before retiming the data. Jitter Attenuation (JA) JA-1. Jitter Attenuator The digital jitter attenuator buffers are not functional. The DJACTL bit in register 0x01 should be set to 0 in this device. Putting the device in the jitter attenuator mode (DJACTL = 1) causes loss of transmission. Lucent Technologies Inc. 3 TMPR28051 STS-1/AU-3 (STM-0) Mapper Device Advisory for Version 2 of the Device Advisory, Rev. 2 August 5, 1999 STS Path Overhead (POH) POH-1. False H4LOMF Indication Forcing a SONET/SDH line level decrement (H1, H2) from a value of either 348 or 347 results in false H4LOMF indications. Loss of Data (LOD) LOD-1. Loss of DS1/E1 Data Simultaneously forcing VT pointer adjustments while forcing SONET/SDH decrements from values of 348 and 347 results in loss of DS1/E1 data. AY99-026SONT-2 Replaces AY99-026SONT to Incorporate the Following Updates Added issues RA-5 and EI-3 to the document. For additional information, contact your Microelectronics Group Account Manager or the following: http://www.lucent.com/micro INTERNET: [email protected] E-MAIL: N. AMERICA: Microelectronics Group, Lucent Technologies Inc., 555 Union Boulevard, Room 30L-15P-BA, Allentown, PA 18103 1-800-372-2447, FAX 610-712-4106 (In CANADA: 1-800-553-2448, FAX 610-712-4106) ASIA PACIFIC: Microelectronics Group, Lucent Technologies Singapore Pte. Ltd., 77 Science Park Drive, #03-18 Cintech III, Singapore 118256 Tel. (65) 778 8833, FAX (65) 777 7495 CHINA: Microelectronics Group, Lucent Technologies (China) Co., Ltd., A-F2, 23/F, Zao Fong Universe Building, 1800 Zhong Shan Xi Road, Shanghai 200233 P. R. China Tel. (86) 21 6440 0468, ext. 316, FAX (86) 21 6440 0652 JAPAN: Microelectronics Group, Lucent Technologies Japan Ltd., 7-18, Higashi-Gotanda 2-chome, Shinagawa-ku, Tokyo 141, Japan Tel. (81) 3 5421 1600, FAX (81) 3 5421 1700 EUROPE: Data Requests: MICROELECTRONICS GROUP DATALINE: Tel. (44) 7000 582 368, FAX (44) 1189 328 148 Technical Inquiries: GERMANY: (49) 89 95086 0 (Munich), UNITED KINGDOM: (44) 1344 865 900 (Ascot), FRANCE: (33) 1 40 83 68 00 (Paris), SWEDEN: (46) 8 594 607 00 (Stockholm), FINLAND: (358) 9 4354 2800 (Helsinki), ITALY: (39) 02 6608131 (Milan), SPAIN: (34) 1 807 1441 (Madrid) Lucent Technologies Inc. reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application. No rights under any patent accompany the sale of any such product(s) or information. Copyright © 1999 Lucent Technologies Inc. All Rights Reserved August 5, 1999 AY99-026SONT-2 (Replaces AY99-026SONT and must accompany DS99-068SONT) Advisory, Rev. 2 August 5, 1999 TMPR28051 STS-1/AU-3 (STM-0) Mapper Device Advisory for Version 3 of the Device Register Architecture (RA) Map RA-1. Reset Bit The software reset bit (bit 0) of register 0x00 is not functional. RA-2. Transmit Path AIS Insert Bit The TXPAISINS bit (bit 5) of register 0x01 produces both AIS-P and AIS-L. RA-3. STS-1 Loss of Pointer Mask Bit The STS1LOPMSK bit (bit 2) of register 0x04 masks both STS1LOP and STS1LOF. RA-4. STS-1 Loss of Frame Mask Bit The STS1LOFMSK bit (bit 1) of register 0x04 is not functional. RA-5. VTLABCOM and VTRFIRDICOM Interrupt Bits Occasionally, it might require multiple reads to clear the composite interrupt bits VTLABCOM (bit 2 of register 0x05) and VTRFIRDICOM (bit 4 of register 0x05). Error Insertion (EI) EI-1. DS1/E1 Alarm Indication Signal The device does not insert DS1/E1 AIS towards the STS-1 if there is an LOC condition in the incoming DS1/E1 signal. EI-2. LOC Condition in E1 Loopback Mode In the absence of an input clock, the device detects an LOC condition and generates TU-AIS upstream, even if the loopback is selected (the loopback signal is overwritten by TU-AIS). TMPR28051 STS-1/AU-3 (STM-0) Mapper Device Advisory for Version 3 of the Device Advisory, Rev. 2 August 5, 1999 Error Insertion (EI) (continued) EI-3. False S-BIP, L-BIP, and P-BIP Error Insertion The device transmits S-BIP, L-BIP, and P-BIP errors when configured for automatic insertion of REI, and certain STS-1 error conditions such as LOS, LOF, LOP-P, S-BIP, L-BIP, and P-BIP are inserted. EI-4. Forcing AIS Condition In order to force AIS using the VTDROP bits, a value of 0x1D must be programmed for DS1 AIS, and a value of 0x1E must be programmed for E1 AIS. VT Mapping (VT) VT-1. VT Path Payload Label Mismatch The device reports PLM-V when it detects three consecutive consistent new values for the VT label. This is in compliance with G.783 Section 2.2.2.7 and T1.231 Section 8.1.3.5.2.4.2 specifications, but is not compliant with GR-253 Section 6.2.1.1.8.C. VT-2. Failure in the Detection of VT Loss of Pointer Defects ■ The device fails to detect an LOP-V defect or insert the required DS1/E1 AIS downstream when it receives VT pointer words with the N bits continuously set to 1001 (i.e., with a continuously set NDF). ■ The device also apparently fails to detect an LOP-V defect when it continuously receives a VT pointer word of 6C68 (i.e., a value indicating a VT1.5 with an offset of 104 bytes, versus a maximum valid offset of 103 bytes). In this case, the device inserts the required DS1 AIS downstream, but does not subsequently declare an LOP-V failure (nonconformance to GR 253, R6-71). VT-3. Inappropriate Termination of VT Loss of Pointer Defect Condition After the device has detected an LOP-V defect, it inappropriately terminates that defect upon receiving two pointer words containing the same value as the previous valid pointer. According to GR 253, an LOP-V defect must not be terminated unless a valid pointer is received in three consecutive VT superframes (nonconformance to GR 253, R6-75). VT-4. Inappropriate Termination of VT Alarm Indication Signal Defect Condition After the device has detected an AIS-V defect, it inappropriately terminates that defect upon receiving two pointer words containing the same value as the previous valid pointer and without a set NDF (e.g., with the N bits set to 0110). According to GR 253, an AIS-V defect must not be terminated unless a normal valid pointer is received in three consecutive VT superframes, or a valid pointer with a set NDF is received in one VT superframe (nonconformance to GR 253, R6-183). 2 Lucent Technologies Inc. Advisory, Rev. 2 August 5, 1999 TMPR28051 STS-1/AU-3 (STM-0) Mapper Device Advisory for Version 3 of the Device VT Mapping (VT) (continued) VT-5. C-Bit Decoding In the presence of a receive SONET/SDH bit error rate, the device may destuff the DS1 from the VT1.5 incorrectly. This is the result of an error in the VT1.5 C-bit decoding process. The C-bit decoding process should be capable of correcting single errors to the C bits. Because of this error, an error in the first or second C bit for position 2 will be incorrectly decoded if the first C-bit position is calling for a stuff and the second C-bit position is not. The end result of this error is that both positions will call for a stuff, resulting in a bit being removed from the DS1 data stream. This will force downstream equipment to experience a reframe. The minimum time to false decode severity is as shown in Table VT-5 (in terms of seconds to false decode). Table VT-5. Minimum Time (in Seconds) to False Decode Severity of the C Bit BER Theoretical Actual 10–3 125 0.25 10–4 12500 2.5 10–5 1250000 25 10–6 1.25e+8 250 10–7 1.25e+10 2500 10–8 1.25e+12 2.5e+4 10–9 1.25e+14 2.5e+5 10–10 1.25e+16 2.5e+6 In the absence of an external bit error rate, the algorithm decodes these C bits correctly. Test Pattern (TP) Generator/Monitor TP-1. Test Pattern Insert The transmitted test pattern comes out on the opposite edge with respect to the jitter-attenuated data. TP-2. Test Pattern Drop The test pattern detector always inverts the clock coming into the block before retiming the data. Device Version (DV) DV-1. Device Version Report The device version register, 0x16, reports the device version as 0x02. Lucent Technologies Inc. 3 TMPR28051 STS-1/AU-3 (STM-0) Mapper Device Advisory for Version 3 of the Device Advisory, Rev. 2 August 5, 1999 AY99-027SONT-2 Replaces AY99-027SONT to Incorporate the Following Updates Added issues RA-5 and EI-3 to the document. For additional information, contact your Microelectronics Group Account Manager or the following: http://www.lucent.com/micro INTERNET: [email protected] E-MAIL: N. AMERICA: Microelectronics Group, Lucent Technologies Inc., 555 Union Boulevard, Room 30L-15P-BA, Allentown, PA 18103 1-800-372-2447, FAX 610-712-4106 (In CANADA: 1-800-553-2448, FAX 610-712-4106) ASIA PACIFIC: Microelectronics Group, Lucent Technologies Singapore Pte. Ltd., 77 Science Park Drive, #03-18 Cintech III, Singapore 118256 Tel. (65) 778 8833, FAX (65) 777 7495 CHINA: Microelectronics Group, Lucent Technologies (China) Co., Ltd., A-F2, 23/F, Zao Fong Universe Building, 1800 Zhong Shan Xi Road, Shanghai 200233 P. R. China Tel. (86) 21 6440 0468, ext. 316, FAX (86) 21 6440 0652 JAPAN: Microelectronics Group, Lucent Technologies Japan Ltd., 7-18, Higashi-Gotanda 2-chome, Shinagawa-ku, Tokyo 141, Japan Tel. (81) 3 5421 1600, FAX (81) 3 5421 1700 EUROPE: Data Requests: MICROELECTRONICS GROUP DATALINE: Tel. (44) 7000 582 368, FAX (44) 1189 328 148 Technical Inquiries: GERMANY: (49) 89 95086 0 (Munich), UNITED KINGDOM: (44) 1344 865 900 (Ascot), FRANCE: (33) 1 40 83 68 00 (Paris), SWEDEN: (46) 8 594 607 00 (Stockholm), FINLAND: (358) 9 4354 2800 (Helsinki), ITALY: (39) 02 6608131 (Milan), SPAIN: (34) 1 807 1441 (Madrid) Lucent Technologies Inc. reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application. No rights under any patent accompany the sale of any such product(s) or information. Copyright © 1999 Lucent Technologies Inc. All Rights Reserved August 5, 1999 AY99-027SONT-2 (Replaces AY99-027SONT and must accompany DS99-068SONT) Advisory, Rev. 2 August 5, 1999 TMPR28051 STS-1/AU-3 (STM-0) Mapper Device Advisory for Version 4 of the Device Register Architecture (RA) Map RA-1. Reset Bit The software reset bit (bit 0) of register 0x00 is not functional. RA-2. Transmit Path AIS Insert Bit The TXPAISINS bit (bit 5) of register 0x01 produces both AIS-P and AIS-L. RA-3. STS-1 Loss of Pointer Mask Bit The STS1LOPMSK bit (bit 2) of register 0x04 masks both STS1LOP and STS1LOF. RA-4. STS-1 Loss of Frame Mask Bit The STS1LOFMSK bit (bit 1) of register 0x04 is not functional. RA-5. VTLABCOM and VTRFIRDICOM Interrupt Bits Occasionally, it might require multiple reads to clear the composite interrupt bits VTLABCOM (bit 2 of register 0x05) and VTRFIRDICOM (bit 4 of register 0x05). Error Insertion (EI) EI-1. DS1/E1 Alarm Indication Signal The device does not insert DS1/E1 AIS towards the STS-1 if there is an LOC condition in the incoming DS1/E1 signal. EI-2. LOC Condition in E1 Loopback Mode In the absence of an input clock, the device detects an LOC condition and generates TU-AIS upstream, even if the loopback is selected (the loopback signal is overwritten by TU-AIS). TMPR28051 STS-1/AU-3 (STM-0) Mapper Device Advisory for Version 4 of the Device Advisory, Rev. 2 August 5, 1999 Error Insertion (EI) (continued) EI-3. False S-BIP, L-BIP, and P-BIP Error Insertion The device transmits S-BIP, L-BIP, and P-BIP errors when configured for automatic insertion of REI, and certain STS-1 error conditions such as LOS, LOF, LOP-P, S-BIP, L-BIP, and P-BIP are inserted. VT Mapping (VT) VT-1. VT Path Payload Label Mismatch The device reports PLM-V when it detects three consecutive consistent new values for the VT label. This is in compliance with G.783 Section 2.2.2.7 and T1.231 Section 8.1.3.5.2.4.2 specifications, but is not compliant with GR-253 Section 6.2.1.1.8.C. VT-2. Failure in the Detection of VT Loss of Pointer Defects ■ The device fails to detect an LOP-V defect or insert the required DS1/E1 AIS downstream when it receives VT pointer words with the N bits continuously set to 1001 (i.e., with a continuously set NDF). ■ The device also apparently fails to detect an LOP-V defect when it continuously receives a VT pointer word of 6C68 (i.e., a value indicating a VT1.5 with an offset of 104 bytes, versus a maximum valid offset of 103 bytes). In this case, the device inserts the required DS1 AIS downstream, but does not subsequently declare an LOP-V failure (nonconformance to GR 253, R6-71). VT-3. Inappropriate Termination of VT Loss of Pointer Defect Condition After the device has detected an LOP-V defect, it inappropriately terminates that defect upon receiving two pointer words containing the same value as the previous valid pointer. According to GR 253, an LOP-V defect must not be terminated unless a valid pointer is received in three consecutive VT superframes (nonconformance to GR 253, R6-75). VT-4. Inappropriate Termination of VT Alarm Indication Signal Defect Condition After the device has detected an AIS-V defect, it inappropriately terminates that defect upon receiving two pointer words containing the same value as the previous valid pointer and without a set NDF (e.g., with the N bits set to 0110). According to GR 253, an AIS-V defect must not be terminated unless a normal valid pointer is received in three consecutive VT superframes, or a valid pointer with a set NDF is received in one VT superframe (nonconformance to GR 253, R6-183). 2 Lucent Technologies Inc. Advisory, Rev. 2 August 5, 1999 TMPR28051 STS-1/AU-3 (STM-0) Mapper Device Advisory for Version 4 of the Device VT Mapping (VT) (continued) VT-5. C-Bit Decoding In the presence of a receive SONET/SDH bit error rate, the device may destuff the DS1 from the VT1.5 incorrectly. This is the result of an error in the VT1.5 C-bit decoding process. The C-bit decoding process should be capable of correcting single errors to the C bits. Because of this error, an error in the first or second C bit for position 2 will be incorrectly decoded if the first C-bit position is calling for a stuff and the second C-bit position is not. The end result of this error is that both positions will call for a stuff, resulting in a bit being removed from the DS1 data stream. This will force downstream equipment to experience a reframe. The minimum time to false decode severity is as shown in Table VT-5 (in terms of seconds to false decode). Table VT-5. Minimum Time (in Seconds) to False Decode Severity of the C Bit BER Theoretical Actual 10–3 125 0.25 10–4 12500 2.5 10–5 1250000 25 10–6 1.25e+8 250 10–7 1.25e+10 2500 10–8 1.25e+12 2.5e+4 10–9 1.25e+14 2.5e+5 10–10 1.25e+16 2.5e+6 In the absence of an external bit error rate, the algorithm decodes these C bits correctly. Device Version (DV) DV-1. Device Version Report The device version register, 0x16, reports the device version as 0x03. AY99-028SONT-2 Replaces AY99-028SONT to Incorporate the Following Updates Added issues RA-5 and E1-3 to the document. Lucent Technologies Inc. 3 TMPR28051 STS-1/AU-3 (STM-0) Mapper Device Advisory for Version 4 of the Device Advisory, Rev. 2 August 5, 1999 For additional information, contact your Microelectronics Group Account Manager or the following: http://www.lucent.com/micro INTERNET: [email protected] E-MAIL: N. AMERICA: Microelectronics Group, Lucent Technologies Inc., 555 Union Boulevard, Room 30L-15P-BA, Allentown, PA 18103 1-800-372-2447, FAX 610-712-4106 (In CANADA: 1-800-553-2448, FAX 610-712-4106) ASIA PACIFIC: Microelectronics Group, Lucent Technologies Singapore Pte. Ltd., 77 Science Park Drive, #03-18 Cintech III, Singapore 118256 Tel. (65) 778 8833, FAX (65) 777 7495 CHINA: Microelectronics Group, Lucent Technologies (China) Co., Ltd., A-F2, 23/F, Zao Fong Universe Building, 1800 Zhong Shan Xi Road, Shanghai 200233 P. R. China Tel. (86) 21 6440 0468, ext. 316, FAX (86) 21 6440 0652 JAPAN: Microelectronics Group, Lucent Technologies Japan Ltd., 7-18, Higashi-Gotanda 2-chome, Shinagawa-ku, Tokyo 141, Japan Tel. (81) 3 5421 1600, FAX (81) 3 5421 1700 EUROPE: Data Requests: MICROELECTRONICS GROUP DATALINE: Tel. (44) 7000 582 368, FAX (44) 1189 328 148 Technical Inquiries: GERMANY: (49) 89 95086 0 (Munich), UNITED KINGDOM: (44) 1344 865 900 (Ascot), FRANCE: (33) 1 40 83 68 00 (Paris), SWEDEN: (46) 8 594 607 00 (Stockholm), FINLAND: (358) 9 4354 2800 (Helsinki), ITALY: (39) 02 6608131 (Milan), SPAIN: (34) 1 807 1441 (Madrid) Lucent Technologies Inc. reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application. No rights under any patent accompany the sale of any such product(s) or information. Copyright © 1999 Lucent Technologies Inc. All Rights Reserved August 5, 1999 AY99-028SONT-2 (Replaces AY99-028SONT and must accompany DS99-068SONT) Data Sheet August 1999 TMPR28051 STS-1/AU-3 (STM-0) Mapper Features ■ ■ Maps signals in one of the following ways: — Maps up to 28 asynchronous DS1 signals to SONET STS-1 via VT Groups, or SDH AU-3 via TUG-2. — Maps up to 21 asynchronous E1 signals to SDH AU-3 via TUG-2, or SONET STS-1 via VT Groups. — Maps any valid combination of DS1/E1 signals at the VT Group/TUG-2 level. PLL-free receive operation using built-in digital jitter attenuators. ■ Automatic receive monitoring functions can be configured to provide an interrupt to the control system, or the device can be operated in a polled mode. ■ User configurable for VT/TU label, AIS-V, RDI-V, REI-V, force BIP-2 errors, or unequipped tributary insertion. ■ Typical 3.3 V operation with 5 V TTL tolerant I/O and boundary scan. ■ –40 °C to +85 °C temperature range. ■ 208-pin shrink quad flat pack (SQFP) package. ■ Provides alarm and control features to easily implement the latest release of the following standards: ■ High-speed microprocessor interface configurable to operate with most commercial microprocessors. ■ Inserts valid B1, B2, and B3 bit interleaved parity (BIP) in the transmit direction. ■ Detects and counts B1, B2, and B3 BIP-8 errors on either a bit or block basis for performance monitoring in the receive direction. ■ Detects and counts V5 BIP-2 errors on either a bit or block basis for performance monitoring. ■ Configurable continuous B1, B2, B3, and V5 BIP-2 error insertion. Applications ■ Configurable remote error indication (REI) insertion for B2, B3, and V5 BIP-2 errors. ■ SONET/SDH path termination multiplexers ■ SONET/SDH add/drop multiplexers ■ SONET/SDH cross connects ■ Digital access cross connects ■ DS1/E1 broadcast ■ SONET/SDH test equipment GR253-CORE (12/97 with the exception of GR-253 section 6.2.1.1.8.C), G.707 (3/96), G.783 (1/94), G.823.393, T1.105-1995, T1.105.02-1995, T1.105.03-1994, T1.105.03A-1995, T1.105.07-1996, T1.105.09-1996, ETS300.147 (1/95), ETS300.417-1-1 (1/96). ■ Detects and counts remote errors. ■ Built-in test pattern insertion and drop for setup and maintenance. ■ Configurable VT1.5/TU-11 slot selection for DS1 insertion and drop. ■ Configurable VT2/TU-12 slot selection for E1 insertion and drop. Description ■ Detects STS-1 path loss of pointer (LOP-P), loss of H4 multiframe (H4LOMF), path alarm indication signal (AIS-P), and path remote defect indication (RDI-P). ■ Automatic receive monitor functions include VT/TU remote defect indication (RDI-V), VT/TU remote error indication (REI-V), BIP-2 errors, VT/TU AIS (AIS-V), and VT/TU loss of pointer (LOP-V). The Lucent Technologies Microelectronics Group TMPR28051 device is designed to map any valid combination of DS1 and E1 signals into a stream at a rate of 51.84 Mbits/s. This device provides all of the functions necessary to insert and drop any valid combination up to 28 asynchronous DS1 signals or 21 asynchronous E1 signals into an SPE. TMPR28051 STS-1/AU-3 (STM-0) Mapper Data Sheet August 1999 Table of Contents Contents Page Features ................................................................................................................................................................... 1 Applications .............................................................................................................................................................. 1 Description ................................................................................................................................................................ 1 Block Diagram ..........................................................................................................................................................5 Pin Information ......................................................................................................................................................... 6 Nomenclature Assumptions ....................................................................................................................................10 DS1/E1 to STS-1 Block Descriptions .....................................................................................................................10 LOC and AIS Monitor .........................................................................................................................................10 DS1/E1 Loopback Select Logic ..........................................................................................................................10 Input Select Logic ...............................................................................................................................................10 Elastic Store .......................................................................................................................................................11 VT Generate .......................................................................................................................................................11 STS-1/AU-3 Generate ........................................................................................................................................13 SPE Insertion Logic ............................................................................................................................................14 STS-1 to DS1/E1 Block Descriptions .....................................................................................................................16 Loopback Select Logic .......................................................................................................................................16 SPE Locate .........................................................................................................................................................16 STS-1/AU-3 Terminate .......................................................................................................................................16 SPE Drop Logic ..................................................................................................................................................17 VT Terminate ......................................................................................................................................................17 Jitter Attenuate ...................................................................................................................................................18 Drop Select Logic ...............................................................................................................................................18 Test Pattern Block Descriptions .............................................................................................................................19 Test Pattern Insert ..............................................................................................................................................19 Test Pattern Drop ...............................................................................................................................................19 Microprocessor Interface Description .....................................................................................................................20 Overview .............................................................................................................................................................20 Microprocessor Configuration Modes ................................................................................................................. 20 Microprocessor Interface Pins ............................................................................................................................21 Register Architecture Map ..................................................................................................................................23 Register Architecture Description .......................................................................................................................37 I/O Timing ...........................................................................................................................................................60 Absolute Maximum Ratings ....................................................................................................................................65 Handling Precautions .............................................................................................................................................65 Operating Conditions ..............................................................................................................................................66 Electrical Characteristics ........................................................................................................................................66 Timing Characteristics ............................................................................................................................................67 Operational Timing .............................................................................................................................................67 Transmit Sync Timing .........................................................................................................................................70 Receive Sync Timing ..........................................................................................................................................71 Typical Uses ...........................................................................................................................................................72 Path Termination Multiplex .................................................................................................................................72 Digital Cross Connect .........................................................................................................................................72 Test Pattern Use—Complete System .................................................................................................................73 Test Pattern Use—End to End ...........................................................................................................................73 Outline Diagram ......................................................................................................................................................74 208-Pin SQFP ....................................................................................................................................................74 Ordering Information ...............................................................................................................................................75 DS99-068SONT Replaces DS98-100TIC to Incorporate the Following Updates ...................................................75 2 Lucent Technologies Inc. Data Sheet August 1999 TMPR28051 STS-1/AU-3 (STM-0) Mapper List of Figures Figures Page Figure 1. Block Diagram ...........................................................................................................................................5 Figure 2. Pin Diagram of 208-Pin SQFP ..................................................................................................................6 Figure 3. Mode 1—Read Cycle Timing (MPMODE = 0, MPMUX = 0) ...................................................................61 Figure 4. Mode 1—Write Cycle Timing (MPMODE = 0, MPMUX = 0) ...................................................................61 Figure 5. Mode 2—Read Cycle Timing (MPMODE = 0, MPMUX = 1) ...................................................................62 Figure 6. Mode 2—Write Cycle Timing (MPMODE = 0, MPMUX = 1) ...................................................................62 Figure 7. Mode 3—Read Cycle Timing (MPMODE = 1, MPMUX = 0) ...................................................................63 Figure 8. Mode 3—Write Cycle Timing (MPMODE = 1, MPMUX = 0) ...................................................................63 Figure 9. Mode 4—Read Cycle Timing (MPMODE = 1, MPMUX = 1) ...................................................................64 Figure 10. Mode 4—Write Cycle Timing (MPMODE = 1, MPMUX = 1) .................................................................64 Figure 11. Interface Data Timing ............................................................................................................................68 Figure 12. Serial Mode Transmit Sync Timing .......................................................................................................70 Figure 13. Bus Mode Transmit Sync Timing ..........................................................................................................70 Figure 14. Nonbus Parallel Mode Transmit Sync Timing .......................................................................................71 Figure 15. Bus Parallel Mode Receive Sync Timing ..............................................................................................71 Figure 16. SDH/SONET Path Termination Multiplex Application ...........................................................................72 Figure 17. Digital Cross Connect Application .........................................................................................................72 Figure 18. Test Pattern Usage for Complete System ............................................................................................73 Figure 19. Test Pattern Usage for End-to-End Operation ......................................................................................73 Lucent Technologies Inc. 3 TMPR28051 STS-1/AU-3 (STM-0) Mapper Data Sheet August 1999 List of Tables Tables Page Table 1. Pin Descriptions ......................................................................................................................................... 7 Table 2. VT1.5 Overhead Byte Format (V5) .......................................................................................................... 11 Table 3. RFI-V, RDI-V Description ........................................................................................................................ 11 Table 4. VT1.5 Superframe ................................................................................................................................... 12 Table 5. VT2 Superframe ...................................................................................................................................... 12 Table 6. STS-1 Overhead Byte Allocation ............................................................................................................. 13 Table 7. G1 Path Condition/Performance Byte Format ......................................................................................... 13 Table 8. VT1.5 SPE Insertion Format .................................................................................................................... 15 Table 9. Mapping of VT1.5 # to (VT Group #, VT #) .............................................................................................. 15 Table 10. VT2 SPE Insertion Format ..................................................................................................................... 15 Table 11. Mapping of VT2 # to (VT Group #, VT #) ............................................................................................... 15 Table 12. Microprocessor Configuration Modes .................................................................................................... 20 Table 13. Mode [1—4] Microprocessor Pin Definitions ......................................................................................... 21 Table 14. Device Register Map ............................................................................................................................. 23 Table 15. Registers 0x00—0x16: Device-Level Control, Alarm, and Mask Bits .................................................... 37 Table 16. Registers 0x17—0x32: DS1/E1 Insertion Selection ............................................................................. 47 Table 17. DS1/E1 Insertion Selection Format ....................................................................................................... 49 Table 18. Registers 0x33—0x4E: VT Drop Selection ............................................................................................ 49 Table 19. VT Drop Selection Format ..................................................................................................................... 50 Table 20. VT to Address Mapping ......................................................................................................................... 50 Table 21. Registers 0x4F—0x6A: Tx VT Overhead Insertion Control ................................................................... 51 Table 22. Registers 0x6B—0x86: Rx VT Drop Monitoring .................................................................................... 52 Table 23. Registers 0x88—0x89: Signal Override Control .................................................................................... 53 Table 24. Registers 0x8A—0x8F: Digital Jitter Attenuator Controls ...................................................................... 54 Table 25. Register 0x91: STS-1 LOS Detect/Test Pattern Edge Control .............................................................. 55 Table 26. Register 0xBF: Block Control ................................................................................................................ 56 Table 27. Registers 0xC0—0xFD: Detected BIP Errors ........................................................................................ 57 Table 28. Registers 0xFE, 0xFF: Received SONET/SDH Pointer Value .............................................................. 57 Table 29. Registers 0xC0—0xFD: Detected REI Errors ........................................................................................ 58 Table 30. Registers 0xFE—0xFF: Reserved ......................................................................................................... 58 Table 31. Registers 0xC0—0xFF: Receive J1 Path Trace Bytes .......................................................................... 59 Table 32. Registers 0xC0—0xFF: Transmit J1 Path Trace Bytes ......................................................................... 59 Table 33. Microprocessor Interface I/O Timing Specifications .............................................................................. 60 Table 34. Absolute Maximum Ratings ................................................................................................................... 65 Table 35. ESD Threshold Voltage ......................................................................................................................... 65 Table 36. Recommended Operating Conditions ................................................................................................... 66 Table 37. Logic Interface Characteristics .............................................................................................................. 66 Table 38. Input Clock Specifications ..................................................................................................................... 67 Table 39. Input Timing Specifications .................................................................................................................... 68 Table 40. Output Clock Specifications ................................................................................................................... 69 Table 41. Output Timing Specifications ................................................................................................................. 69 4 Lucent Technologies Inc. Data Sheet August 1999 TMPR28051 STS-1/AU-3 (STM-0) Mapper Description (continued) On the STS-1 side, the device can be configured for either a serial bit stream or an 8-bit parallel bus. This allows the device to drive an OC-1 optical signal directly and also allows for modular growth in terminal or add/drop applications. On the DS1/E1 side, the device is designed to interface with the Lucent T7698FL3/T7693 Quad Line Transceiver, or equivalent, using the internal digital jitter attenuator buffer for PLL-free operation. The TMPR28051 device contains built-in test pattern insertion and drop that allows end-to-end testing for initial setup or maintenance without the need for external test equipment. Built-in loopbacks at both the STS-1 and DS1/ E1 sides provide maximum flexibility for use in a number of SONET/SDH or DS1/E1 products including terminal multiplexers, add/drop multiplexers, and digital cross connects. A high-speed microprocessor interface and full user programmability for VT slot insertion and drop provide maximum flexibility for DS1/E1 I/O configuration. Block Diagram The block diagram is shown in Figure 1. For illustration purposes, only two of the DS1/E1 bidirectional blocks are shown. LOC AND AIS MONITOR DS1/E1 #1 IN STS-1/AU-3 GENERATE LOOPBACK SELECT LOGIC INPUT SELECT LOGIC ELASTIC STORE VT GENERATE SPE INSERTION LOGIC DS1/E1 #n IN LOC AND AIS MONITOR LOOPBACK SELECT LOGIC INPUT SELECT LOGIC ELASTIC STORE TEST PATTERN INSERT DS1/E1 #1 OUT VT GENERATE MICROPROCESSOR INTERFACE TEST PATTERN DROP DROP SELECT LOGIC JITTER ATTENUATE VT TERMINATE SPE DROP LOGIC DS1/E1 #n OUT DROP SELECT LOGIC JITTER ATTENUATE STS-1/AU-3 OUT VT TERMINATE SPE LOCATE LOOPBACK SELECT LOGIC STS-1/AU-3 IN STS-1/AU-3 TERMINATE 5-4875(F).ar.10 Note: “n” represents 28 or 21 for DS1 or E1, respectively. Figure 1. Block Diagram Lucent Technologies Inc. 5 Data Sheet August 1999 TMPR28051 STS-1/AU-3 (STM-0) Mapper 208 207 206 205 204 203 202 201 200 199 198 197 196 195 194 193 192 191 190 189 188 187 186 185 184 183 182 181 180 179 178 177 176 175 174 173 172 171 170 169 168 167 166 165 164 163 162 161 160 159 158 157 E1BLUECLK VSS TCLK11 TDATA11 RCLK11 RDATA11 RDATA12 RCLK12 TDATA12 TCLK12 TCLK13 TDATA13 VDD RCLK13 RDATA13 RDATA14 RCLK14 TDATA14 TCLK14 TDO TRST VSS TMS TDI TCK RDY_DTACK VSS RD_R/W MPMODE MPMUX ALE_AS VSS WR_DS TCLK15 TDATA15 RCLK15 RDATA15 RDATA16 RCLK16 TDATA16 VDD TCLK16 TCLK17 TDATA17 RCLK17 RDATA17 RDATA18 RCLK18 TDATA18 TCLK18 VSS VSS Pin Information 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 156 155 154 153 152 151 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 ICT VSS TCLK19 TDATA19 RCLK19 RDATA19 VDD RDATA20 RCLK20 TDATA20 TCLK20 TCLK21 VDD TDATA21 RCLK21 RDATA21 RDATA22 RCLK22 TDATA22 TCLK22 TCLK23 VSS TDATA23 RCLK23 RDATA23 RDATA24 VDD RCLK24 TDATA24 TCLK24 TCLK25 VSS TDATA25 RCLK25 RDATA25 VDD RDATA26 RCLK26 TDATA26 TCLK26 VDD TCLK27 TDATA27 RCLK27 RDATA27 VDD RDATA28 RCLK28 TDATA28 TCLK28 RESET VSS VSS VSS AD4 AD3 AD2 AD1 AD0 A7 A6 A5 A4 A3 VDD A2 A1 A0 VDD RSTS1PAR RSTS1DATA0 RSTS1DATA1 RSTS1DATA2 VSS RSTS1DATA3 RSTS1DATA4 RSTS1DATA5 RSTS1DATA6 VSS RSTS1DATA7 VSS RSTS1CLK VDD VSS RSTS1SERIAL INT CS TSTS1CLKOUT TSTS1CLKIN TSTS1SYNC TSTS1SERIAL/TSTS1DATA7 TSTS1DATA6 VDD TSTS1DATA5 TSTS1DATA4 TSTS1DATA3 TSTS1DATA2 TSTS1DATA1 TSTS1DATA0 TSTS1PAR DS1BLUECLK DS1_E1N VSS VDD 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 VSS VSS TCLK10 TDATA10 RCLK10 RDATA10 RDATA9 RCLK9 TDATA9 TCLK9 TCLK8 VDD TDATA8 RCLK8 RDATA8 RDATA7 RCLK7 TDATA7 TCLK7 TCLK6 VSS TDATA6 RCLK6 RDATA6 RDATA5 VDD RCLK5 TDATA5 TCLK5 TCLK4 VSS TDATA4 RCLK4 RDATA4 RDATA3 RCLK3 TDATA3 TCLK3 TCLK2 VDD TDATA2 RCLK2 RDATA2 RDATA1 RCLK1 TDATA1 TCLK1 AD7 AD6 AD5 VSS VDD 5-4873(F).cr.5 Figure 2. Pin Diagram of 208-Pin SQFP 6 Lucent Technologies Inc. Data Sheet August 1999 TMPR28051 STS-1/AU-3 (STM-0) Mapper Pin Information (continued) Table 1. Pin Descriptions Pin Symbol Type* Name/Description 47, 39, 38, 30, 29, 20, 19, 11, 10, 3, 206, 199, 198, 190, 175, 167, 166, 159, 154, 146, 145, 137, 136, 127, 126, 117, 115, 107 TCLK[1:28] O Transmit DS1/E1 Clock. DS1/E1 clock output. E1 signals can only occupy TCLK[1:21]. 46, 41, 37, 32, 28, 22, 18, 13, 9, 4, 205, 200, 197, 191, 174, 169, 165, 160, 153, 147, 143, 138, 134, 128, 124, 118, 114, 108 TDATA[1:28] O Transmit DS1/E1 Data. Transmit data output. E1 signals can only occupy TDATA[1:21]. 45, 42, 36, 33, 27, 23, 17, 14, 8, 5, 204, 201, 195, 192, 173, 170, 164, 161, 152, 148, 142, 139, 133, 129, 123, 119, 113, 109 RCLK[1:28] Iu Receive DS1/E1 Clock. Receive clock input. These pins have an internal 20 kΩ pull-up resistor. E1 signals can only occupy RCLK[1:21]. 44, 43, 35, 34, 25, 24, 16, 15, 7, 6, 203, 202, 194, 193, 172, 171, 163, 162, 151, 149, 141, 140, 132, 131, 122, 120, 112, 110 RDATA[1:28] Iu Receive DS1/E1 Data. Receive data input. These pins have an internal 20 kΩ pull-up resistor. E1 signals can only occupy RDATA[1:21]. 102 DS1_E1N I DS1/E1 Input Identifier. If this pin is pulled high, the device will default to DS1 to STS-1 mode and transmit 0s in the unused overhead bytes and 00 in the SS bits of H1. If pulled low, the device will default to E1 to AU-3 mode and transmit 1s in the unused overhead bytes and 10 in the SS bits of H1. This default selection can be overridden by setting TOVERRIDE and ROVERRIDE bits in registers 0x88 (bit 0) and 0x89 (bit 0), respectively. The seven VT Groups can then be individually programmed to carry either DS1 (TVTG-1. . . 7 = 1, RVTG-1. . . 7 = 1) or E1 (TVTG-1. . . 7 = 0, RVTG-1. . . 7 = 0) signals. 101 DS1BLUECLK I DS1 Blue Signal Clock. In the event of a loss of input DS1 clock or an unprovisioned DS1 output, this clock signal is used to generate the DS1 blue signal (all 1s). This clock must be 1.544 MHz ± 32 ppm or 16 times this rate when using the digital jitter attenuator. 208 E1BLUECLK I E1 Blue Signal Clock. In the event of a loss of input E1 clock or an unprovisioned E1 output, this clock signal is used to generate the E1 blue signal (all 1s). This clock must be 2.048 MHz ± 50 ppm or 16 times this rate when using the digital jitter attenuator. * Iu indicates an internal pull-up; Id indicates an internal pull-down. All I/O not explicitly stated with a buffer type are 5 V TTL compatible; they will tolerate 5 V at their inputs. Lucent Technologies Inc. 7 Data Sheet August 1999 TMPR28051 STS-1/AU-3 (STM-0) Mapper Pin Information (continued) Table 1. Pin Descriptions (continued) Pin Symbol Type* Name/Description 179 MPMUX I Microprocessor Multiplex Mode. Setting MPMUX = 1 allows the microprocessor interface to accept the multiplexed address and data signals. Setting MPMUX = 0 allows the microprocessor interface to accept demultiplexed (separate) address and data signals. 180 MPMODE I Microprocessor Mode. When MPMODE = 1, the device uses the address latch enable type microprocessor read/write protocol with separate read and write controls. Setting MPMODE = 0 allows the device to use the address strobe type microprocessor read/write protocol with a separate data strobe and a combined read/write control. 181 RD_R/W I Read (Active-Low). If MPMODE = 1, this pin is asserted low by the microprocessor to initiate a read cycle. Read/Write. If MPMODE = 0, this pin is asserted high by the microprocessor to indicate a read cycle or asserted low to indicate a write cycle. 178 ALE_AS I Address Latch Enable. If MPMODE = 1, this pin becomes the address latch enable for the microprocessor. When this pin transitions from high to low, the address bus inputs are latched into the internal registers. Address Strobe (Active-Low). If MPMODE = 0, this pin becomes the address strobe for the microprocessor. When this pin transitions from high to low, the address bus inputs are latched into the internal registers. 87 CS Iu Chip Select (Active-Low). This pin is asserted low by the microprocessor to enable the microprocessor interface (see Microprocessor Configuration Modes section on page 20). This pin has an internal 100 kΩ pull-up resistor. 86 INT O Interrupt. This pin is asserted high to indicate an interrupt produced by an alarm condition in register 3 or 5. The activation of this pin can be masked by microprocessor registers 4 and 6. 183 RDY_DTACK O Ready. If MPMODE = 1, this pin is asserted high to indicate the device has completed a read or write operation. This pin is in a high-impedance state when CS is high. Data Transfer Acknowledge (Active-Low). If MPMODE = 0, this pin is asserted low to indicate the device has completed a read or write operation. 48—50, 55—59 AD[7:0] I/O Microprocessor Interface Address/Data Bus. If MPMUX = 0, these pins become the bidirectional, 3-statable data bus. If MPMUX = 1, these pins become the multiplexed address/data bus. 60—64, 66—68 A[7:0] I Microprocessor Interface Address. If MPMUX = 0, these pins become the address bus for the microprocessor interface registers. 176 WR_DS I Write (Active-Low). If MPMODE = 1, this pin is asserted low by the microprocessor to initiate a write cycle. Data Strobe (Active-Low). If MPMODE = 0, this pin becomes the data strobe for the microprocessor. When R/W = 0 (write), a low applied to this pin latches the signal on the data bus into internal registers. 106 RESET Iu Hardware Reset (Active-Low). If RESET is forced low, all internal states in the transceiver paths are reset and data flow through each channel will be interrupted (see Device-Level Control, Alarm, and Mask Bits (0x00—0x16) section on page 37). This pin has an internal 20 kΩ pull-up resistor. 184 TCK Iu Boundary-Scan Clock. This pin has an internal 20 kΩ pull-up resistor. * Iu indicates an internal pull-up; Id indicates an internal pull-down. All I/O not explicitly stated with a buffer type are 5 V TTL compatible; they will tolerate 5 V at their inputs. 8 Lucent Technologies Inc. Data Sheet August 1999 TMPR28051 STS-1/AU-3 (STM-0) Mapper Pin Information (continued) Table 1. Pin Descriptions (continued) Pin Symbol Type* Name/Description 185 TDI Iu Boundary-Scan Input Data. This pin has an internal 20 kΩ pull-up resistor. 186 TMS Iu Boundary-Scan Mode Select. This pin has an internal 20 kΩ pull-up resistor. 188 TRST Id Boundary-Scan Reset (Active-Low). This pin has an internal 20 kΩ pull-down resistor. 189 TDO O Boundary-Scan Output Data. 89 TSTS1CLKIN I Transmit STS-1 Clock. The STS-1 clock can be 51.84 MHz for serial input data, or 19.44 MHz or 6.48 MHz for byte-wide data. 90 TSTS1SYNC I Transmit STS-1 Sync. The STS-1 sync pulse can be either J0 for 8 kHz only or a composite of J0J1V1 for 2 kHz. 92, 94—99 TSTS1DATA[6:0] O Transmit STS-1 Data. In the byte-wide output mode, this is bit 6—bit 0 of the data bus. TSTS1DATA7 is the most significant bit of the output byte. 100 TSTS1PAR O Transmit STS-1 Parity. The parity output is only defined for byte-wide data. The device can be provisioned to source either an odd or even parity. 91 TSTS1SERIAL/ TSTS1DATA7 O Transmit STS-1 Serial Data/Transmit STS-1 Data Bit 7 (MSB). In serial mode, this pin provides 51.84 Mbits/s serial data. In parallel mode, this pin provides TSTS1DATA7. 88 TSTS1CLKOUT O Transmit STS-1 Output Clock. 82 RSTS1CLK I Receive STS-1 Clock. The STS-1 clock can be 51.84 MHz for serial input data, or 19.44 MHz or 6.48 MHz for byte-wide data. 80, 78—75, 73—71 RSTS1DATA[7:0] Iu Receive STS-1 Data. In the byte-wide input mode, this is the data bus with RSTS1DATA7 as the most significant bit of the input byte. This pin has an internal 100 kΩ pull-up resistor. 70 RSTS1PAR Iu Receive STS-1 Parity. The parity input is only defined for byte-wide data. The device can be provisioned to accept either an odd or even parity. This pin has an internal 100 kΩ pull-up resistor. 85 RSTS1SERIAL I Receive STS-1 Serial Data. If the device is operating in the serial mode, then RSTS1SERIAL is used as the input data pin. In the bus mode, this pin is used to synchronize byte 1 of 3 (see Figure 15, page 71). 156 ICT Iu In-Circuit Test Control (Active-Low). If ICT is forced low, all output pins are placed in the high-impedance state. This pin has an internal 20 kΩ pull-up resistor. 1, 2, 21, 31, 51, 53, 54, 74, 79, 81, 84, 103, 105, 125, 135, 155, 157, 158, 177, 182, 187, 207 VSS I Ground Reference for Digital Circuitry. 12, 26, 40, 52, 65, 69, 83, 93, 104, 111, 116, 121, 130, 144, 150, 168, 196 VDD I Power Supply for Digital Circuitry. * Iu indicates an internal pull-up; Id indicates an internal pull-down. All I/O not explicitly stated with a buffer type are 5 V TTL compatible; they will tolerate 5 V at their inputs. Lucent Technologies Inc. 9 Data Sheet August 1999 TMPR28051 STS-1/AU-3 (STM-0) Mapper Nomenclature Assumptions The mapping methods (VT1.5, VT2, and VT Group in ANSI nomenclature; TU-11, TU-12, and TUG-2 in ITU nomenclature) are analogous, and for the rest of this document will be referred to as VT1.5, VT2, or VT Group. STS-1 and AU-3 are also analogous with a few minor differences. For the remainder of this document, the 51.84 Mbits/s signals are referred to as STS-1. DS1/E1 to STS-1 Block Descriptions In the descriptions of the block diagram of Figure 1, some of the control bits exist for each of the DS1/E1 or VT signals. Upon start-up, the device will set all of the input data types (DS1 or E1) based on the level of the DS1_E1N pin (pin 102). DS1_E1N controls the value transmitted in the unused overhead bytes and the value of the transmitted spare bits (SS) in the H1 byte. If this pin is high, then all of the VT Groups are populated with DS1 signals. If this pin is low, then all of the VT Groups are populated with E1 signals. This default selection can be overridden by setting TOVERRIDE and ROVERRIDE bits in registers 0x88 (bit 0) and 0x89 (bit 0), respectively. The seven VT Groups can then be individually programmed to carry either DS1 (TVTG-1 . . . 7 = 1, RVTG-1 . . . 7 = 1) or E1 (TVTG-1 . . . 7 = 0, RVTG-1 . . . 7 = 0) signals. LOC and AIS Monitor The incoming DS1/E1 signal is first checked for loss of clock (LOC). LOC is reported to the microprocessor via the DS1/E1LOC[1:21] and DS1LOC[22:28] bit (LOC = 1, 0 otherwise) in registers 0x17—0x32 (bit 6) and also via the AISLOCCOM composite bit in register 0x05 (bit 1). If LOC is present, the device inserts DS1/ E1 AIS towards the STS-1 using the blue signal clock. The incoming DS1/E1 data (RDATA[28:1]) is retimed immediately by the associated DS1/E1 clock (RCLK[28:1]). The edge of the clock that is used to retime the data is user-provisionable at the device level to either the rising edge (RXDS1EDGE = 1) in register 0x02 (bit 1) or falling edge (RXDS1EDGE = 0) in register 0x02 (bit 1). After being retimed, the incoming data stream is checked for AIS. The device will declare AIS if the input data is at logic 1 for 3 ms. The device will withstand up to eight errors in the 3 ms period. AIS is reported to the 10 microprocessor via the AISLOCCOM composite bit in register 0x05 (bit 1) and the individual DS1/E1AIS[1:21] and DS1AIS[22:28] bits in registers 0x17—0x32 (bit 7). The blue signal clock input signal to the device can be at the exact DS1/E1 rate (1.544/2.048 MHz) or at 16 times the DS1/E1 rate (24.704/32.768 MHz), with a tolerance of 32 ppm or 50 ppm for DS1 or E1, respectively. This allows users of the Lucent Technologies T7698FL3/T7693 devices to reuse the XCLK on the board. The TMPR28051 is provisioned to accept the exact DS1 rate by default (BLUECLKSEL = 0 in bit 2 of register 0x00), but can be changed to perform the divide-by-16 function (BLUECLKSEL = 1 in bit 2 of register 0x00). The duty cycle of the clock can be 45%/ 55% because the data is retimed internally in the device. The duty cycle requires a much tighter tolerance when used for XCLK as described earlier. DS1/E1 Loopback Select Logic The first stage after retiming the signal into the device is selection of the externally received DS1/E1 (DS1/E1LB[1:21] or DS1LB[22:28] = 0) or the looped back DS1/E1 (DS1/E1LB[1:21] or DS1LB[22:28] = 1). This selection is provisionable per DS1/E1 input in registers 0x17—0x32 (bit 5). Input Select Logic Once the DS1/E1 data sources have been selected, the DS1/E1 for each VT tributary is selected. This selection requires 5 bits per slot to determine which DS1/E1 input to use by provisioning DS1/E1INS[4:0]_[1:21] or DS1INS[4:0]_[22:28] bits in registers 0x17—0x32 (bits 4 through 0). The range [1:28] following the _ refers to the target VT #. Refer to Table 8 on page 15 and Table 10 on page 15 for details on the VT locations within the SPE. The numbering scheme for the five provisioned bits ranges from 00001 to 11100 where the binary value of the 5 bits corresponds to the DS1/E1 input. For instance, the value 00001 corresponds to selecting DS1/E1 #1. The unused value of 00000 results in VT unequipped being transmitted. This is the default value for all the VT slots at powerup. VT unequipped has a valid pointer and all-zero payload. The unused values of 11101—11110 will cause AIS-V to be inserted for that VT slot. Lucent Technologies Inc. Data Sheet August 1999 DS1/E1 to STS-1 Block Descriptions (continued) Input Select Logic (continued) The value of 11111 will cause the internally generated test pattern to be inserted for that VT slot. There are no restrictions on the number of VT slots that any given DS1/E1 input can supply (e.g., up to 28 VT1.5 slots can select the same DS1 input). This block can also be used to insert the test pattern (see Test Pattern Insert section on page 19). Elastic Store The selected DS1/E1 clock and data signals are fed to an elastic store that is used to synchronize the incoming DS1/E1 to the local STS-1 clock. This block determines the need for positive/zero/negative (P/Z/N) stuffing for each input. Data that is transmitted from this block is synchronized to the local transmit STS-1 clock (TSTS1CLK). This block allows the device to accept DS1 signals at 1.544 Mbits/s ± 130 ppm with up to ±5 unit intervals peak jitter, or E1 signals at 2.048 Mbits/s ± 130 ppm with up to ±5 unit intervals peak jitter. VT Generate This block generates the VT superframe. Unless AIS-V is being forced, the superframe is built with a fixed output pointer value of decimal 78 in all the VT1.5 slots. The VT size field is set to 11 binary, and the new data flag is set to 0110 binary. This corresponds to 0x6C4E for the V1 and V2 bytes within the VT1.5 superframe. Also, unless AIS-V is being forced, the superframe is built with a fixed output pointer value of decimal 105 in all the VT2 slots. The VT size field is set to 10 binary, and the new data flag is set to 0110 binary. This corresponds to 0x6869 for the V1 and V2 bytes within the VT2 superframe. Lucent Technologies Inc. TMPR28051 STS-1/AU-3 (STM-0) Mapper In this block, the DS1/E1 data is placed into the VT, and the VT overhead is generated. The format of the VT overhead byte, V5, is shown in Table 2. Table 2. VT1.5 Overhead Byte Format (V5) Bit # 1 2 BIP-2 3 4 REI-V RFI-V 5 6 Signal Label 7 8 RDI-V Each VT can be provisioned to insert AIS-V by assigning VTAISINS[1:28] = 1 in registers 0x4F—0x6A (bit 3). AIS-V consists of overwriting the entire VT payload and overhead with ones. RDI-V can be automatically inserted by the device (VTRFIRDIEN[1:28] = 1 in registers 0x4F—0x6A, bit 6) or written into the V5 byte under control of the microprocessor (VTRFIRDIEN[1:28] = 0 in registers 0x4F—0x6A, bit 6). In the automatic mode, the values for bit 4 (RFI-V) and bit 8 (RDI-V) are defined in Table 3. The automatic insertion mode may not meet the different standards body requirements unless the VT PTE at both ends of the path (and any intermediate NEs provisioned to perform intermediate-path PM on that path) support the protocol defined in Table 3. To meet the different standards requirements, the microprocessor mode allows programming the RDI-V and RFI-V bits in registers 0x4F—0x6A by programming VTRFIINS[1:28] (bit 5) and VTRDIINS[1:28] (bit 4), respectively. Table 3. RFI-V, RDI-V Description Bit 4 0 0 1 1 Bit 8 0 1 0 1 Description No alarm AIS-V or LOP-V VT payload mismatch VT unequipped The VT label for each VT is also provisionable through the microprocessor by programming the VTLABINS[2:0]_[1:28] in registers 0x4F—0x6A, bit 2 through bit 0. 11 Data Sheet August 1999 TMPR28051 STS-1/AU-3 (STM-0) Mapper DS1/E1 to STS-1 Block Descriptions (continued) VT Generate (continued) In addition to generating the superframe, this block automatically generates the BIP-2 signal. Each VT can be configured to intentionally insert continuous BIP-2 errors for troubleshooting purposes (BIP2ERINS[1:28] = 1 in bit 7 of registers 0x4F—0x6A). This BIP error insert field forces errors on both BIP-2 bits. The resultant VT1.5 and VT2 superframes are shown in Table 4 and Table 5, Where: Byte[24/32:1] = information bit O = overhead bit R = fixed stuff bit V1, V2, V3 = pointer and pointer action bytes S1, S2 = stuff opportunity bits V4 = reserved C1, C2 = stuff indication bits V5 = VT overhead byte J2, Z6/N2, Z7/K4 = unused Table 4. VT1.5 Superframe VT1.5 Superframe 12 Table 5. VT2 Superframe V1 V5 RRRRRRRR Byte 1 : Byte 32 RRRRRRRR V2 J2 C1C2OOOORR Byte 1 : Byte 32 RRRRRRRR V3 Z6/N2 C1C2OOOORR Byte 1 : Byte 32 RRRRRRRR V4 Z7/K4 C1C2RRRRRS1 S2 Byte 1[6:0] : Byte 32 RRRRRRRR VT2 Superframe V1 V5 RRRRRRIR Byte 1 : Byte 24 V2 J2 C1C2OOOOIR Byte 1 : Byte 24 V3 Z6/N2 C1C2OOOOIR Byte 1 : Byte 24 V4 Z7/K4 C1C2RRRS1S2R Byte 1 : Byte 24 Lucent Technologies Inc. Data Sheet August 1999 TMPR28051 STS-1/AU-3 (STM-0) Mapper DS1/E1 to STS-1 Block Descriptions (continued) The device inserts the correct frame pattern of 0xF628 into the A1 and A2 bytes. VT Generate (continued) The device inserts a fixed value of 0x01 into the J0 byte. The device would transmit 0 in each of the O bits when the DS1_E1N pin is pulled high. If DS1_E1N is pulled low, the device will transmit 1 in each of the O bits. The device generates and inserts valid B1, B2, and B3 BIP-8 even parity bytes into the STS-1 overhead. These bytes are forced to odd parity when B[1:3]ERRINS = 1 in bit 6 through bit 4 of register 0x00. The R bits are always set to 1. The device transmits all 1s in the J2, Z6/N2, and Z7/K4 bytes. The device can be configured such that any detected BIP-2 errors in the VT receive side result in REI-V being written into the corresponding transmit VT slot (when REI_EN = 1 in bit 7 of register 0x01). STS-1/AU-3 Generate The device generates an STS-1 signal based on an incoming clock (TSTS1CLK) and frame sync pulse (TSTS1SYNC). The frame sync pulse can be a single clock-period wide to indicate an 8 kHz sync, or it can contain pulses in three clock periods to indicate a composite 2 kHz sync. (See the Transmit Sync Timing section, page 70.) The STS-1 frame is 9 rows x 90 columns that repeats at an 8 kHz rate. Each column is 1-byte wide. The STS-1 frame contains three columns of transport overhead, one column of path overhead, and 86 columns of payload. The device will provide an STS-1 pointer with a fixed value of 522 (decimal) with 0110 in the new data flag (NDF) bits. The SS bits are determined by the level of the DS1_E1N pin. When this pin is high, the device puts 00 in the SS bits. When this pin is low, the device puts 10 in the SS bits. This pointer value indicates that the J1 path overhead byte follows immediately after the J0 line overhead byte. The J1 byte is used for path trace. This byte repetitively transmits a 64-byte fixed length sequence to verify end-to-end connectivity. These 64 bytes are programmable by the microprocessor by provisioning TJ1BYTE[7:0]_[64:1] in registers 0xC0—0xFF (when TJ1BYTE = 1 in register 0xBF). The method for programming these bits is described in detail in the register description of the transmit J1 path trace bytes, page 59. The F2 byte can be provisioned by the microprocessor (F2INS-[7:0]) in register 0x10. The device inserts a value of 0x02 into the C2 byte, indicating VT structured STS-1 SPE. The 36 bytes of STS-1 overhead are allocated as shown in Table 6. The three least significant bits of the K2 byte can be provisioned by the microprocessor (K2INS-[6:8]) in register 0x11. Table 6. STS-1 Overhead Byte Allocation The four least significant bits of the S1 byte can be provisioned by the microprocessor (S1INS-[3:0]) in register 0x13. Row 1 Row 2 Row 3 Row 4 Row 5 Row 6 Row 7 Row 8 Row 9 Col. 1 Col. 2 Col. 3 Col. 4 A1 B1 D1 H1 B2 D4 D7 D10 S1 A2 E1 D2 H2 K1 D5 D8 D11 M0 J0 F1 D3 H3 K2 D6 D9 D12 E2 J1 B3 C2 G1 F2 H4 Z3/F3 Z4/K3 Z5/N1 The overhead bytes that are inserted by the device are described below. All of the remaining overhead bytes are given a fixed value of all 0s when DS1_E1N (bit 0 in register 0x07) is high, or all 1s when DS1_E1N is low. Lucent Technologies Inc. The M0 byte is used to report B2 line REI (REI-L) when REI_EN = 1 in register 0x01. This register contains the number of B2 BIP-8 errors detected in the current receive frame circuitry when REI_EN = 1 (bit 7 0f register 0x01). Valid values for these 4 bits are 0000—1000. The G1 byte is used to convey path condition and performance back to the far end. The format of the G1 byte is shown in Table 7. Table 7. G1 Path Condition/Performance Byte Format Bit # 1 2 3 REI-P 4 5 6 7 8 User-Provisioned RDI-P 13 Data Sheet August 1999 TMPR28051 STS-1/AU-3 (STM-0) Mapper DS1/E1 to STS-1 Block Descriptions (continued) STS-1/AU-3 Generate (continued) Path remote error indicator (REI-P) reports the number of remote errors. The four REI-P bits contain the number of B3 BIP-8 errors detected in the current frame when REI_EN = 1 (bit 7 of register 0x01). Valid values for these 4 bits are 0000—1000. The path remote defect indicator (RDI-P) bits report back such conditions as receive AIS-P, signal failure, and path trace mismatch. These bits, 5 through 8 of the G1 byte (G1INS-[5:8] in register 0x11), are user programmable by the microprocessor and are not inserted automatically by the device. The H4 byte is inserted using the reduced H4 coding sequence format, where the 6 most significant bits are ones, and the 2 least significant bits take on the following values: 00-01-10-11-00, etc. The value of 00 indicates that the next STS-1 SPE contains the V1 overhead byte. SPE Insertion Logic In addition to the one column of path overhead and 84 columns of VT payload, the STS-1 SPE also contains two columns of fixed stuff bytes. The path overhead is located in column #1, while column #30 and column #59 contain the fixed stuff bytes. The remaining columns contain the interleaved VT data as shown in Table 8. The SPE insertion logic block acts in conjunction with the STS-1 frame generate block to place the VT information in the transmitted data stream. The cross-referencing between the VT1.5 # listed in Table 8 and the standard format (VT Group #, VT #) listed in GR-253-CORE section 3.2.4 is shown in Table 9. The cross-referencing between the VT2 # listed in Table 10 and the standard format (VT Group #, VT #) listed in GR-253-CORE section 3.2.4 is shown in Table 11. The STS-1 can be provisioned to send AIS-P (TXPAISINS = 1 in bit 5 of register 0x01). Writing AIS-P consists of writing all 1s into the H1—H3 bytes and the entire SPE. The transmitted STS-1 can be configured to scramble the output data (STS1SCR = 1 in bit 2 of register 0x01) or transmit the data without scrambling (STS1SCR = 0 in bit 2, register 0x01). It is useful to turn off SONET scrambling if the data is going to be immediately multiplexed into a higher rate SONET signal. When STS1SCR = 1 in register 0x01, the device scrambles the outgoing STS-1 frame according to the SONET frame synchronous scrambling sequence 1 + x6 + x7. The sequence is reset to 1111111 at the beginning of the byte following the C1 byte and scrambles all of the STS-1 data except the A1, A2, and C1 bytes. When this bit is 0, then the transmit data is not scrambled by the device. 14 Lucent Technologies Inc. Data Sheet August 1999 TMPR28051 STS-1/AU-3 (STM-0) Mapper DS1/E1 to STS-1 Block Descriptions (continued) SPE Insertion Logic (continued) Table 8. VT1.5 SPE Insertion Format SPE Column # 1 2 3 4 5 6 7 8 9 1 0 P V V V V V V V V V A T T T T T T T T T T 1 1 1 1 1 1 1 1 1 H . . . . . . . . . 5 5 5 5 5 5 5 5 5 O# # # # # # # # # H1 2 3 4 5 6 7 8 9 1 1 V ••• T 1 . 5 # 1 0 2 8 V T 1 . 5 # 2 7 2 9 V T 1 . 5 # 2 8 3 0 F I X E D 3 1 V T 1 . 5 # 1 3 2 V ••• T 1 . 5 # 2 5 7 V T 1 . 5 # 2 7 5 8 V T 1 . 5 # 2 8 5 9 F I X E D 6 0 V T 1 . 5 # 1 6 1 V T 1 . 5 # 2 6 2 V ••• T 1 . 5 # 3 8 1 V T 1 . 5 # 2 2 8 2 V T 1 . 5 # 2 3 8 3 V T 1 . 5 # 2 4 8 4 V T 1 . 5 # 2 5 8 5 V T 1 . 5 # 2 6 8 6 V T 1 . 5 # 2 7 8 7 V T 1 . 5 # 2 8 Table 9. Mapping of VT1.5 # to (VT Group #, VT #) VT1.5 # (VT Group #, VT #) VT1.5 # (VT Group #, VT #) VT1.5 # (VT Group #, VT #) VT1.5 # (VT Group #, VT #) 1 1, 1 8 1, 2 15 1, 3 22 1, 4 2 2, 1 9 2, 2 16 2, 3 23 2, 4 3 3, 1 10 3, 2 17 3, 3 24 3, 4 4 4, 1 11 4, 2 18 4, 3 25 4, 4 5 5, 1 12 5, 2 19 5, 3 26 5, 4 6 6, 1 13 6, 2 20 6, 3 27 6, 4 7 7, 1 14 7, 2 21 7, 3 28 7, 4 Table 10. VT2 SPE Insertion Format SPE Column # 1 2 3 4 5 6 7 8 9 1 0 P V V V V V V V V V A T T T T T T T T T T 2 2 2 2 2 2 2 2 2 H# # # # # # # # # 1 2 3 4 5 6 7 8 9 O H 1 1 V ••• T 2 # 1 0 2 8 V T 2 # 6 2 9 V T 2 # 7 3 0 F I X E D 3 1 V T 2 # 8 3 2 V ••• T 2 # 9 5 7 V T 2 # 1 3 5 8 V T 2 # 1 4 5 9 F I X E D 6 0 V T 2 # 1 5 6 1 V T 2 # 1 6 6 2 V ••• T 2 # 1 7 8 1 V T 2 # 1 5 8 2 V T 2 # 1 6 8 3 V T 2 # 1 7 8 4 V T 2 # 1 8 8 5 V T 2 # 1 9 8 6 V T 2 # 2 0 8 7 V T 2 # 2 1 Table 11. Mapping of VT2 # to (VT Group #, VT #) VT2 # 1 2 3 4 5 6 7 (VT Group #, VT #) 1, 1 2, 1 3, 1 4, 1 5, 1 6, 1 7, 1 Lucent Technologies Inc. VT2 # 8 9 10 11 12 13 14 (VT Group #, VT #) 1, 2 2, 2 3, 2 4, 2 5, 2 6, 2 7, 2 VT2 # 15 16 17 18 19 20 21 (VT Group #, VT #) 1, 3 2, 3 3, 3 4, 3 5, 3 6, 3 7, 3 15 Data Sheet August 1999 TMPR28051 STS-1/AU-3 (STM-0) Mapper DS1/E1 to STS-1 Block Descriptions (continued) SPE Insertion Logic (continued) The device can transmit the data as either a serial bit stream (TXSERIAL = 1 in register 0x02, bit 6) or as a parallel byte of data (TXSERIAL = 0 in register 0x02, bit 6). There are two parallel modes of operation: bus mode and nonbus mode. Bus mode allows multiple TMPR28051 devices to operate on a 19.44 MHz bus; in nonbus mode, the device transmits data in a point-to-point fashion at 6.48 MHz. In either parallel mode, the device sends a parity bit with the data. This parity bit is configurable to be either odd (TXPARITY = 1 in register 0x02, bit position 4) or even (TXPARITY = 0 in register 0x02, bit position 4) parity. The bus mode of operation requires the device to select which STS-1 time slot of the three that are available to transmit data. The TBUSMODE bit (bit 2) in register 0x12 determines whether the device operates in bus mode (TBUSMODE = 1) or nonbus mode (TBUSMODE = 0). By default, the device powers up in bus mode. The TBUSPOS bits (bit 1 and bit 0) in register 0x12 determine in which of the three time slots the device transmits. By default, the device does not transmit (TBUSPOS-[1:0] = 00 in register 0x12), but it can be configured to transmit during any of the three STS-1 time slots on the 19.44 MHz bus. with the data. This bit is configurable to odd (RXPARITY = 1 in bit 5 of register 0x02) or even (RXPARITY = 0 in bit 5 of register 0x02) parity. Errors in this bit are reported to the microprocessor (RXPARER in bit 6 of register 0x03). The bus mode of operation is similar to normal operation in the DS1/E1 to STS-1 direction. The device defaults to the bus mode (RBUSMODE = 1 in bit 5 of register 0x12) of operation and listens to none of the receive channels (RBUSPOS-[1:0] = 00 in bit 4 and bit 3 of register 0x12). The sync pulse is used only to define time slot #1 of the three that are possible. Bus mode operation requires at least one sync pulse to define the time slot. The STS-1 locate block performs the functions necessary to locate the SPE. The device will frame on the incoming STS-1 signal, and indicate when it is in the out of frame (OOF) condition (STS1OOF = 1 in bit 0 of register 0x03) or loss of frame (LOF) condition (STS1LOF = 1 in bit 1 of register 0x03). Loss of frame is defined as being in the OOF condition for 3 ms or more. Both the OOF and LOF are current state conditions; they hold their value for a minimum of 500 µs after the event. The indications reset if the condition is no longer true. In all three modes, the device frame sync input allows the 8 kHz STS-1 frames as well as the 2 kHz VT superframes to be aligned. The device monitors the received data bytes for continuous ones or zeros. If the number of continuous data bytes exceeds the provisioned value (LOSDET-[7:0] in register 0x91), then loss of signal (STS1LOS = 1 in bit 0 of register 0x05) is declared. If the value in LOSDET-[7:0] in register 0x91 is 0x00, then LOS is not declared. STS-1 to DS1/E1 Block Descriptions STS-1/AU-3 Terminate Loopback Select Logic The STS-1 terminate block can descramble the output data (STS1DSCR = 1 in bit 1 of register 0x01) or output the received data without descrambling (STS1DSCR = 0 in bit 1 of register 0x01). It is useful to turn off descrambling if the data is received locally from a higher-rate signal where descrambling has already taken place. The device can be configured to loop back the transmit STS-1 (STS1LB = 1 in bit 0 of register 0x01) or accept the receive STS-1 signal (STS1LB = 0 in bit 0 of register 0x01). When the receive STS-1 signal is selected, the user can configure which edge of the clock to use to retime the data (RXSTS1EDGE = 1 in bit 3 of register 0x02 uses the rising edge; RXSTS1EDGE = 0 in bit 3 of register 0x02 uses the falling edge). SPE Locate The device can receive data as either a serial bit stream (RXSERIAL = 1 in bit 7 of register 0x02) or as a parallel byte (RXSERIAL = 0 in bit 7 of register 0x02). In the parallel mode, the device receives a parity bit 16 For performance monitoring purposes, there are a number of BIP and REI error counters (registers 0xC0—0xFF) in the receive section of the device. All of these internal counters are comprised of a running error counter and a hold register that presents stable results to the microprocessor. The counts in all of the running counters are latched to the hold registers when LATCH_CNT (bit 3) in register 0x00 is written from 0 to 1. This also resets all of the running counters. The results are then held until read by the microprocessor. Lucent Technologies Inc. Data Sheet August 1999 STS-1 to DS1/E1 Block Descriptions (continued) STS-1/AU-3 Terminate (continued) All of the internal counters have the ability to store more than one second of counts. As long as the LATCH_CNT (bit 3) in register 0x00 occurs every second or faster, no counts will be lost. In case this does not happen, all of the running counters will hold their maximum value rather than roll over to zeros. The device performs pointer interpretation on the incoming signal to locate the start of the SPE. The pointer interpretation block will indicate when the device is in the path loss of pointer (LOP-P) or path AIS (AIS-P) condition. Loss of pointer condition is declared as the result of either of the following conditions: 1. Continuous NDF—If the device receives 1001 in the NDF field for nine consecutive frames, then LOP-P is declared. 2. Invalid pointer values—If the device receives nine frames consecutively of a pointer that is not a normal value, NDF, AIS-P, increment, or decrement, then LOP-P is declared. The SS bits do not contribute to LOP-P when DS1_E1N is high; otherwise, a non-10 value in the SS bits will contribute to LOP-P. AIS-P is declared on three consecutive frames with all 1s in the H1 and H2 bytes. AIS-P and LOP-P are mutually exclusive conditions. If neither STS1PAIS (bit 3 in register 0x03) or STS1LOP (bit 2 in register 0x03) is a logic 1, then the pointer interpreter declares a normal pointer. As part of the normal operation, the device will respond appropriately to valid NDF, increment, and decrement indications. Increment and decrement operations will be counted by the device and presented to the microprocessor via the SPTR+[7:0] and SPTR–[7:0] bits in registers 0xFE and 0xFF, respectively. The B1, B2, and B3 BIP-8 values are recalculated and compared to the received values. Any differences are counted by the appropriate error counter (B[1:3]BIPCNT-[15:0] in registers 0xC0—0xC5 when BIP_CNTS = 1 in register 0xBF). In addition, B2 and B3 REI errors are also counted in registers 0xC2—0xC5 (B[2:3]REI-[15:0]; register 0xBF settings: REI_CNTS = 1 and BIP_CNTS = 0). The running and latched counts for both B1 and B2 counters are held at zero during OOF. The running and latched counts for B3 counters are held at zero during OOF as well as LOP-P. Lucent Technologies Inc. TMPR28051 STS-1/AU-3 (STM-0) Mapper The device can be provisioned to count bits in error (BIPBLKCNT = 0 in bit 1 of register 0x00) or blocks in error (BIPBLKCNT = 1 in bit 0 of register 0x00). The J1 byte is terminated within the device. This consists of writing the receive J1 sequentially in a 64-byte register (modulo 64). At start-up, the receive J1 byte register is all 0s. Whenever the received J1 byte value does not match the current J1 byte in the register, the path trace mismatch TRACEER bit (bit 7 in register 0x03) is set to logic 1. This allows the user to read the 64-byte register once, and then ignore it unless differences are received. TRACEER bit (bit 7 in register 0x03) is masked during AIS-P and LOP-P. The F2 byte (F2-[7:0] in register 0x0B), the C2 byte (C2-[7:0] in register 0x0C), the 3 least significant bits of the K2 byte (K2-[6:8] in register 0x0D), the 4 least significant bits of the S1 byte (S1-[3:0] in register 0x14), and the 4 least significant bits of the G1 byte (G1-[5:8] in register 0x0D) are monitored by the microprocessor. The number of consistent, consecutive frames to update the values of all of these monitored bytes can be set by the user to anywhere between 2 and 15 frames (F2#DET-[3:0] in register 0x0E, C2#DET-[3:0] in register 0x0E, K2#DET-[3:0] in register 0x0F, G1#DET-[3:0] in register 0x0F). None of these registers will update during OOF condition. SPE Drop Logic The SPE drop logic uses the H4 multiframe indicator to identify the V1 byte and drop the data to the correct VT termination blocks. Loss of multiframe synchronization will be reported to the microprocessor (H4LOMF = 1 in bit 4 of register 0x03). VT Terminate The VT terminate block performs VT pointer interpretation on the received signal to locate the VT overhead. LOP-V (VTLOP[1:28] bit 6 in registers 0x6B—0x86) and AIS-V (VTAIS[1:28] bit 3 in registers 0x6B—0x86) are reported to the microprocessor. LOP-V is declared as a result of either of the following conditions: 1. Continuous NDF—If the device receives 1001 in the NDF field for nine consecutive superframes, then LOP-V is declared. 2. Invalid pointer values—If the device receives nine frames consecutively of a pointer that is not a normal value, NDF, AIS-V, increment, or decrement, then LOP-V is declared. The SS bits do contribute to LOP-V. 17 Data Sheet August 1999 TMPR28051 STS-1/AU-3 (STM-0) Mapper STS-1 to DS1/E1 Block Descriptions (continued) VT Terminate (continued) AIS-V is declared on three consecutive superframes with all 1s in the V1 and V2 bytes. AIS-V and LOP-V are mutually exclusive conditions. If neither VTAIS[1:28] (bit 3 in registers 0x6B—0x86) or VTLOP[1:28] (bit 6 in registers 0x6B—0x86) is a logic 1, then the pointer interpreter declares a normal pointer. As part of the normal operation, the device will respond appropriately to valid NDF, increment, and decrement indications. Increment and decrement operations will be counted by the device and presented to the microprocessor via bits VT[1:28]PTR+[3:0] in registers 0xC6—0xFF (BIP_CNTS = 1), and via VT[1:28]PTR–[3:0] in registers 0xC6—0xFF (REI_CNTS = 1 and BIP_CNTS = 0), respectively. Mismatches between the expected VT size bits, bit 11 for VT1.5 and bit 10 for VT2, and the actual received SS size bits are reported to the microprocessor VTSIZEER[1:28] bit (bit 7 in registers 0x6B—0x86). Once the V5 byte is located, the device checks for received BIP-2 errors (B2BIPCNT-[15:0] in registers 0xC0—0xC1 when BIP_CNTS bit in register 0xBF is set to 1) and received REI (B[2:3]REI-[15:0] in registers 0xC2—0xC5 when REI_CNTS and BIP_CNTS in register 0xBF are set to a 1 and 0, respectively). In addition to reporting the occurrence of BIP-2 errors and REI, the device also maintains a count of each of these on a per VT basis (VTREI[7:0]_[1:28] in registers 0xC7—0xFD: REI_CNTS = 1, BIP_CNTS = 0, and BIP2CNT[7:0]_[1:28] in registers 0xC7—0xFD: BIP_CNTS = 1). These running and latched counts for both BIP-2 and REI counters are held at zero during OOF, LOP-P, LOP-V, and AIS-V. Additionally, the device checks for received RFI-V and RDI-V (bit 5 and bit 4, respectively, in registers 0x6B—0x86) and received VT label (VTLAB[2:0]_[1:28], bit 2 through bit 0 in registers 0x6B—0x86). Whenever the device receives three consecutive consistent values for the VT label fields that are different from the current values, it latches the new value and reports the change to the microprocessor. When a 1 is received in VTRDI0_[1:28], bit 4 in registers 0x6B—0x86 (represents bit 8 of the VT V5 overhead byte), for 10 consecutive superframes, it declares an RDI-V condition. 18 Jitter Attenuate Each of the 28 VTs has a built-in digital jitter attenuator to remove the effects of mapping jitter and pointer adjustment jitter. The bits in registers 0x8A—0x8F are used to control various aspects of the digital jitter attenuator. Two programmable terms are used to set the 2nd-order loop damping factor and natural frequency of the PLL. These terms are the gain threshold, set by DJAGTHR[23:0] in registers 0x8D—0x8F, and scale value, set by DJASCALE[15:0] in registers 0x8B—0x8C. The PLL bandwidth can be set using the above registers to accommodate various system constraints. The digital jitter attenuator block can be enabled by setting the bit DJACTL = 1 (bit 4) in register 0x01. These digital jitter attenuators require a blue signal clock that runs at 16 times the nominal output rate. The digital jitter attenuators are designed to meet current jitter specifications as well as maximum time interval error (MTIE) requirements. The clock transmitted from this block nominally has a 50% duty cycle. The jitter attenuator block can be bypassed by setting DJACTL = 0 (bit 4) in register 0x01. If this block is bypassed, the output produces gapped clock and data. Drop Select Logic Once the VT has been terminated, the source VT for each DS1/E1 output is selected. This selection requires 5 bits per slot to determine which VT to use by programming VTDROP[4:0]_[1:28] bits (bits 4 through 0 in registers 0x33—0x4E). The numbering scheme for the five provisioned bits ranges from 00001 to 11100, where the binary value of the 5 bits corresponds to the VT source. For instance, the value 00001 corresponds to selecting VT Group 1, VT #1. The unused values of 00000 and 11101—11110 will cause AIS to be inserted for that DS1 output. By default, all DS1/E1 outputs reset to a value of 00000 on powerup, which causes all of the DS1/E1s to transmit AIS (all 1s) using the blue signal clock. The value of 11111 will insert the test pattern as described next. Lucent Technologies Inc. Data Sheet August 1999 TMPR28051 STS-1/AU-3 (STM-0) Mapper Test Pattern Block Descriptions Test Pattern Drop The device contains a test pattern generator and a test pattern detector for use in maintenance and troubleshooting. The test pattern detector can detect the same four test sequences generated by the test pattern generator (RCV_PAT-[1:0] in bit positions 4 and 5 of register 0x08). When the detector is out of synchronization, the device continuously monitors the input data signal for matches with the expected data signal. When the device detects 32 matches in a row, it declares itself in sync (TPOOS = 0 in bit 7 of register 0x0A), and the error detector is enabled. If the device detects eight consecutive bit mismatches, the test pattern detector declares itself out of sync (TPOOS = 1), and starts searching again. Test Pattern Insert The test pattern generator is capable of transmitting four different test patterns (XMT_PAT-[1:0] in bit positions 0 and 1 of register 0x08). In addition to a 215 – 1, a 220 – 1, and a 223 – 1 sequence, the device can also transmit a QRSS sequence. The QRSS pattern is a 220 – 1 pseudorandom bit sequence defined by the equation 1 + x17 + x20 = 0, with a 14 zero limit. As can be seen in Figure 1 on page 5, this test pattern can be inserted in the place of any of the transmitted or received DS1/E1 signals. The test pattern can also be provisioned to be framed (XMT_FRAME = 1 in bit 2 of register 0x08) or unframed (XMT_FRAME = 0 in bit 2 of register 0x08). The framed sequence can be either DS1 SF format (TP_DS1E1N = 1 in bit 7 of register 0x09) or E1 format (TP_DS1E1N = 0 in bit 7 of register 0x09). The test pattern can also be forced to transmit a bit error (ERROR_INS bit in register 0x08, bit position 3, is forced to make low to high transition). The test patterns are O.151 compliant, so they can be used to drive external test equipment as well as to perform internal maintenance and troubleshooting. Lucent Technologies Inc. The test pattern detector can be configured to look for a framed (RCV_FRAME = 1 in bit 6 of register 0x08) or unframed (RCV_FRAME = 0 in bit 6 of register 0x08) signal. While in sync, the device counts the number of times the input data differs from the expected data in a 7-bit counter, TPERR-[6:0] (bit 0 through bit 6 in register 0x0A), that holds its count when it reaches the maximum value of 128. This counter is reset when the LATCH_TP bit (bit 7) in register 0x08 makes a 0 to 1 transition. 19 TMPR28051 STS-1/AU-3 (STM-0) Mapper Data Sheet August 1999 Microprocessor Interface Description Overview The device is equipped with an asynchronous microprocessor interface that allows operation with most commercially available microprocessors. Inputs MPMUX and MPMODE are used to configure this interface into one of four possible modes. The MPMUX setting selects either a multiplexed 8-bit address/data bus (AD[7:0]), or a demultiplexed 8-bit address bus (A[7:0]) and an 8-bit data bus (AD[7:0]). The MPMODE setting selects the associated set of registers within the device. The microprocessor interface can operate at speeds up to 33 MHz in interrupt-driven or polled mode without wait-states. To conform to standards, there are a limited number of default powerup or reset states. All read/write registers must be written by the microprocessor on system start-up to guarantee proper device functionality. Microprocessor Configuration Modes Table 12 highlights the four microprocessor modes controlled by the MPMUX and MPMODE inputs. Table 12. Microprocessor Configuration Modes Mode MPMODE MPMUX Address/Data Bus Generic Control, Data, and Output Pin Names Mode 1 0 0 DeMUXed CS, AS, DS, R/W, A[7:0], AD[7:0], INT, DTACK Mode 2 0 1 MUXed CS, AS, DS, R/W, AD[7:0], INT, DTACK Mode 3 1 0 DeMUXed CS, ALE, RD, WR, A[7:0], AD[7:0], INT, RDY Mode 4 1 1 MUXed CS, ALE, RD, WR, AD[7:0], INT, RDY 20 Lucent Technologies Inc. Data Sheet August 1999 TMPR28051 STS-1/AU-3 (STM-0) Mapper Microprocessor Interface Description (continued) Microprocessor Interface Pins The mode [1—4] specific pin definitions are given in Table 13. Note that the microprocessor interface uses the same set of pins in all modes. Table 13. Mode [1—4] Microprocessor Pin Definitions Configuration Device Pin Name Generic Pin Name Pin Type Assertion Sense Mode 1 WR_DS DS Input Active-Low RD_R/W R/W Input — Read/Write R/W = 1 for Read R/W = 0 for Write ALE_AS AS Input — Address Strobe CS CS Input Active-Low Chip Select INT INT Output Active-High Interrupt RDY_DTACK DTACK Output Active-Low Data Acknowledge AD[7:0] AD[7:0] I/O — Data Bus A[7:0] A[7:0] Input — Address Bus WR_DS DS Input Active-Low Data Strobe RD_R/W R/W Input — Read/Write R/W = 1 for Read R/W = 0 for Write ALE_AS AS Input — Address Strobe CS CS Input Active-Low Chip Select INT INT Output Active-High Interrupt RDY_DTACK DTACK Output Active-Low Data Acknowledge AD[7:0] AD[7:0] I/O — Address/Data Bus Mode 2 Lucent Technologies Inc. Function Data Strobe 21 Data Sheet August 1999 TMPR28051 STS-1/AU-3 (STM-0) Mapper Microprocessor Interface Description (continued) Microprocessor Interface Pins (continued) Table 13. Mode [1—4] Microprocessor Pin Definitions (continued) Configuration Device Pin Name Generic Pin Name Pin Type Assertion Sense Mode 3 WR_DS WR Input Active-Low Write RD_R/W RD Input — Read ALE_AS ALE Input — Address Latch Enable CS CS Input Active-Low INT INT Output Active-High Interrupt RDY_DTACK RDY Output Active-Low AD[7:0] AD[7:0] I/O — Data Bus A[7:0] A[7:0] Input — Address Bus WR_DS WR Input Active-Low Write RD_R/W RD Input — Read ALE_AS ALE Input — Address Latch Enable CS CS Input Active-Low INT INT Output Active-High Interrupt RDY_DTACK RDY Output Active-Low AD[7:0] AD[7:0] I/O — Mode 4 22 Function Chip Select Ready Chip Select Ready Address/Data Bus Lucent Technologies Inc. Data Sheet August 1999 TMPR28051 STS-1/AU-3 (STM-0) Mapper Microprocessor Interface Description (continued) Register Architecture Map The register bank architecture of the microprocessor interface is shown in Table 14. All addresses referred to in this section are given in hexadecimal and binary notation, where hexadecimal is the left column and binary is the right column under Address. Note: Bits in registers 0xC0—0xFF can have one of four configurations, depending upon the setting of register 0xBF (see the Register Architecture Description section, page 57—page 59). Table 14. Device Register Map Address Bit 7 Bit 6 Bit 5 Bit 4 00 00000000 TEST_CNT B1ERRINS B2ERRINS 01 00000001 REI_EN AUTO_LRDI TXPAISINS DJACTL 02 00000010 RXSERIAL TXSERIAL RXPARITY TXPARITY 03 00000011 TRACEER RXPARER Bit 3 Bit 2 Bit 1 Bit 0 BIPBLKCNT 0 Control, Alarm, and Mask Bit Registers 04 00000100 TRACEERMSK RXPARERMSK 0 0 B3ERRINS H4LOMF LATCH_CNT BLUECLKSEL 0 STS1SCR STS1DSCR RXSTS1EDGE TXSTS1EDGE RXDS1EDGE STS1PAIS STS1LOP STS1LOF STS1LB TXDS1EDGE STS1OOF H4LOMFMSK STS1PAISMSK STS1LOPMSK STS1LOFMSK STS1OOFMSK 05 00000101 ESOFCOM VTSIZECOM VTLOPCOM VTRFIRDICOM VTAISCOM VTLABCOM AISLOCCOM 06 00000110 ESOFMSK VTSIZEMSK VTLOPMSK VTAISMSK VTLABMSK AISLOCMSK STS1LOSMSK VTRFIRDIMSK STS1LOS 07 00000111 0 0 0 0 0 0 0 DS1_E1N 08 00001000 LATCH_TP RCV_FRAME RCV_PAT-1 RCV_PAT-0 ERROR_INS XMT_FRAME XMT_PAT-1 XMT_PAT-0 TP_INVERT TPDROPSIDE TPDROP-4 TPDROP-3 TPDROP-2 TPDROP-1 TPDROP-0 TPERR-6 TPERR-5 TPERR-4 TPERR-3 TPERR-2 TPERR-1 TPERR-0 09 00001001 TP_DS1E1N 0A 00001010 TPOOS 0B 00001011 F2-7 F2-6 F2-5 F2-4 F2-3 F2-2 F2-1 F2-0 0C 00001100 C2-7 C2-6 C2-5 C2-4 C2-3 C2-2 C2-1 C2-0 0D 00001101 G1-5 G1-6 G1-7 G1-8 0 K2-6 K2-7 K2-8 0E 00001110 C2#DET-3 C2#DET-2 C2#DET-1 C2#DET-0 F2#DET-3 F2#DET-2 F2#DET-1 F2#DET-0 0F 00001111 G1#DET-3 G1#DET-2 G1#DET-1 G1#DET-0 K2#DET-3 K2#DET-2 K2#DET-1 K2#DET-0 10 00010000 F2INS-7 F2INS-6 F2INS-5 F2INS-4 F2INS-3 F2INS-2 F2INS-1 F2INS-0 11 00010001 G1INS-5 G1INS-6 G1INS-7 G1INS-8 0 K2INS-6 K2INS-7 K2INS-8 12 00010010 0 0 RBUSMODE RBUSPOS-1 RBUSPOS-0 TBUSMODE TBUSPOS-1 TBUSPOS-0 13 00010011 0 0 0 0 S1INS-3 S1INS-2 S1INS-1 S1INS-0 14 00010100 S1#DET-3 S1#DET-2 S1#DET-1 S1#DET-0 S1-3 S1-2 S1-1 S1-0 15 00010101 DEVID-7 DEVID-6 DEVID-5 DEVID-4 DEVID-3 DEVID-2 DEVID-1 DEVID-0 16 00010110 0 0 0 0 DEVVER-3 DEVVER-2 DEVVER-1 DEVVER-0 Lucent Technologies Inc. 23 Data Sheet August 1999 TMPR28051 STS-1/AU-3 (STM-0) Mapper Microprocessor Interface Description (continued) Register Architecture Map (continued) Table 14. Device Register Map (continued) Address Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 DS1/E1 Insertion Selection Registers 17 00010111 DS1/E1AIS1 DS1/E1LOC1 DS1/E1LB1 DS1/E1INS4_1 DS1/E1INS3_1 DS1/E1INS2_1 DS1/E1INS1_1 DS1/E1INS0_1 18 00011000 DS1/E1AIS2 DS1/E1LOC2 DS1/E1LB2 DS1/E1INS4_2 DS1/E1INS3_2 DS1/E1INS2_2 DS1/E1INS1_2 DS1/E1INS0_2 19 00011001 DS1/E1AIS3 DS1/E1LOC3 DS1/E1LB3 DS1/E1INS4_3 DS1/E1INS3_3 DS1/E1INS2_3 DS1/E1INS1_3 DS1/E1INS0_3 1A 00011010 DS1/E1AIS4 DS1/E1LOC4 DS1/E1LB4 DS1/E1INS4_4 DS1/E1INS3_4 DS1/E1INS2_4 DS1/E1INS1_4 DS1/E1INS0_4 1B 00011011 DS1/E1AIS5 DS1/E1LOC5 DS1/E1LB5 DS1/E1INS4_5 DS1/E1INS3_5 DS1/E1INS2_5 DS1/E1INS1_5 DS1/E1INS0_5 1C 00011100 DS1/E1AIS6 DS1/E1LOC6 DS1/E1LB6 DS1/E1INS4_6 DS1/E1INS3_6 DS1/E1INS2_6 DS1/E1INS1_6 DS1/E1INS0_6 1D 00011101 DS1/E1AIS7 DS1/E1LOC7 DS1/E1LB7 DS1/E1INS4_7 DS1/E1INS3_7 DS1/E1INS2_7 DS1/E1INS1_7 DS1/E1INS0_7 1E 00011110 DS1/E1AIS8 DS1/E1LOC8 DS1/E1LB8 DS1/E1INS4_8 DS1/E1INS3_8 DS1/E1INS2_8 DS1/E1INS1_8 DS1/E1INS0_8 1F 00011111 DS1/E1AIS9 DS1/E1LOC9 DS1/E1LB9 DS1/E1INS4_9 DS1/E1INS3_9 DS1/E1INS2_9 DS1/E1INS1_9 DS1/E1INS0_9 20 00100000 DS1/E1AIS10 DS1/E1LOC10 DS1/E1LB10 DS1/E1INS4_10 DS1/E1INS3_10 DS1/E1INS2_10 DS1/E1INS1_10 DS1/E1INS0_10 21 00100001 DS1/E1AIS11 DS1/E1LOC11 DS1/E1LB11 DS1/E1INS4_11 DS1/E1INS3_11 DS1/E1INS2_11 DS1/E1INS1_11 DS1/E1INS0_11 22 00100010 DS1/E1AIS12 DS1/E1LOC12 DS1/E1LB12 DS1/E1INS4_12 DS1/E1INS3_12 DS1/E1INS2_12 DS1/E1INS1_12 DS1/E1INS0_12 23 00100011 DS1/E1AIS13 DS1/E1LOC13 DS1/E1LB13 DS1/E1INS4_13 DS1/E1INS3_13 DS1/E1INS2_13 DS1/E1INS1_13 DS1/E1INS0_13 24 00100100 DS1/E1AIS14 DS1/E1LOC14 DS1/E1LB14 DS1/E1INS4_14 DS1/E1INS3_14 DS1/E1INS2_14 DS1/E1INS1_14 DS1/E1INS0_14 25 00100101 DS1/E1AIS15 DS1/E1LOC15 DS1/E1LB15 DS1/E1INS4_15 DS1/E1INS3_15 DS1/E1INS2_15 DS1/E1INS1_15 DS1/E1INS0_15 26 00100110 DS1/E1AIS16 DS1/E1LOC16 DS1/E1LB16 DS1/E1INS4_16 DS1/E1INS3_16 DS1/E1INS2_16 DS1/E1INS1_16 DS1/E1INS0_16 27 00100111 DS1/E1AIS17 DS1/E1LOC17 DS1/E1LB17 DS1/E1INS4_17 DS1/E1INS3_17 DS1/E1INS2_17 DS1/E1INS1_17 DS1/E1INS0_17 28 00101000 DS1/E1AIS18 DS1/E1LOC18 DS1/E1LB18 DS1/E1INS4_18 DS1/E1INS3_18 DS1/E1INS2_18 DS1/E1INS1_18 DS1/E1INS0_18 29 00101001 DS1/E1AIS19 DS1/E1LOC19 DS1/E1LB19 DS1/E1INS4_19 DS1/E1INS3_19 DS1/E1INS2_19 DS1/E1INS1_19 DS1/E1INS0_19 2A 00101010 DS1/E1AIS20 DS1/E1LOC20 DS1/E1LB20 DS1/E1INS4_20 DS1/E1INS3_20 DS1/E1INS2_20 DS1/E1INS1_20 DS1/E1INS0_20 2B 00101011 DS1/E1AIS21 DS1/E1LOC21 DS1/E1LB21 DS1/E1INS4_21 DS1/E1INS3_21 DS1/E1INS2_21 DS1/E1INS1_21 DS1/E1INS0_21 2C 00101100 DS1AIS22 DS1LOC22 DS1LB22 DS1INS4_22 DS1INS3_22 DS1INS2_22 DS1INS1_22 DS1INS0_22 2D 00101101 DS1AIS23 DS1LOC23 DS1LB23 DS1INS4_23 DS1INS3_23 DS1INS2_23 DS1INS1_23 DS1INS0_23 2E 00101110 DS1AIS24 DS1LOC24 DS1LB24 DS1INS4_24 DS1INS3_24 DS1INS2_24 DS1INS1_24 DS1INS0_24 2F 00101111 DS1AIS25 DS1LOC25 DS1LB25 DS1INS4_25 DS1INS3_25 DS1INS2_25 DS1INS1_25 DS1INS0_25 30 00110000 DS1AIS26 DS1LOC26 DS1LB26 DS1INS4_26 DS1INS3_26 DS1INS2_26 DS1INS1_26 DS1INS0_26 31 00110001 DS1AIS27 DS1LOC27 DS1LB27 DS1INS4_27 DS1INS3_27 DS1INS2_27 DS1INS1_27 DS1INS0_27 32 00110010 DS1AIS28 DS1LOC28 DS1LB28 DS1INS4_28 DS1INS3_28 DS1INS2_28 DS1INS1_28 DS1INS0_28 24 Lucent Technologies Inc. Data Sheet August 1999 TMPR28051 STS-1/AU-3 (STM-0) Mapper Microprocessor Interface Description (continued) Register Architecture Map (continued) Table 14. Device Register Map (continued) Address Bit 7 Bit 6 Bit 5 Bit 4 33 00110011 0 RXESOF1 TXESOF1 VTDROP4_1 34 00110100 0 RXESOF2 TXESOF2 35 00110101 0 RXESOF3 TXESOF3 36 00110110 0 RXESOF4 37 00110111 0 RXESOF5 38 00111000 0 39 00111001 0 3A 00111010 3B 00111011 Bit 3 Bit 2 Bit 1 Bit 0 VTDROP3_1 VTDROP2_1 VTDROP1_1 VTDROP0_1 VTDROP4_2 VTDROP3_2 VTDROP2_2 VTDROP1_2 VTDROP0_2 VTDROP4_3 VTDROP3_3 VTDROP2_3 VTDROP1_3 VTDROP0_3 TXESOF4 VTDROP4_4 VTDROP3_4 VTDROP2_4 VTDROP1_4 VTDROP0_4 TXESOF5 VTDROP4_5 VTDROP3_5 VTDROP2_5 VTDROP1_5 VTDROP0_5 RXESOF6 TXESOF6 VTDROP4_6 VTDROP3_6 VTDROP2_6 VTDROP1_6 VTDROP0_6 RXESOF7 TXESOF7 VTDROP4_7 VTDROP3_7 VTDROP2_7 VTDROP1_7 VTDROP0_7 0 RXESOF8 TXESOF8 VTDROP4_8 VTDROP3_8 VTDROP2_8 VTDROP1_8 VTDROP0_8 0 RXESOF9 TXESOF9 VTDROP4_9 VTDROP3_9 VTDROP2_9 VTDROP1_9 VTDROP0_9 3C 00111100 0 RXESOF10 TXESOF10 VTDROP4_10 VTDROP3_10 VTDROP2_10 VTDROP1_10 VTDROP0_10 3D 00111101 0 RXESOF11 TXESOF11 VTDROP4_11 VTDROP3_11 VTDROP2_11 VTDROP1_11 VTDROP0_11 3E 00111110 0 RXESOF12 TXESOF12 VTDROP4_12 VTDROP3_12 VTDROP2_12 VTDROP1_12 VTDROP0_12 3F 00111111 0 RXESOF13 TXESOF13 VTDROP4_13 VTDROP3_13 VTDROP2_13 VTDROP1_13 VTDROP0_13 40 01000000 0 RXESOF14 TXESOF14 VTDROP4_14 VTDROP3_14 VTDROP2_14 VTDROP1_14 VTDROP0_14 41 01000001 0 RXESOF15 TXESOF15 VTDROP4_15 VTDROP3_15 VTDROP2_15 VTDROP1_15 VTDROP0_15 42 01000010 0 RXESOF16 TXESOF16 VTDROP4_16 VTDROP3_16 VTDROP2_16 VTDROP1_16 VTDROP0_16 43 01000011 0 RXESOF17 TXESOF17 VTDROP4_17 VTDROP3_17 VTDROP2_17 VTDROP1_17 VTDROP0_17 44 01000100 0 RXESOF18 TXESOF18 VTDROP4_18 VTDROP3_18 VTDROP2_18 VTDROP1_18 VTDROP0_18 45 01000101 0 RXESOF19 TXESOF19 VTDROP4_19 VTDROP3_19 VTDROP2_19 VTDROP1_19 VTDROP0_19 46 01000110 0 RXESOF20 TXESOF20 VTDROP4_20 VTDROP3_20 VTDROP2_20 VTDROP1_20 VTDROP0_20 47 01000111 0 RXESOF21 TXESOF21 VTDROP4_21 VTDROP3_21 VTDROP2_21 VTDROP1_21 VTDROP0_21 48 01001000 0 RXESOF22 TXESOF22 VTDROP4_22 VTDROP3_22 VTDROP2_22 VTDROP1_22 VTDROP0_22 49 01001001 0 RXESOF23 TXESOF23 VTDROP4_23 VTDROP3_23 VTDROP2_23 VTDROP1_23 VTDROP0_23 4A 01001010 0 RXESOF24 TXESOF24 VTDROP4_24 VTDROP3_24 VTDROP2_24 VTDROP1_24 VTDROP0_24 4B 01001011 0 RXESOF25 TXESOF25 VTDROP4_25 VTDROP3_25 VTDROP2_25 VTDROP1_25 VTDROP0_25 4C 01001100 0 RXESOF26 TXESOF26 VTDROP4_26 VTDROP3_26 VTDROP2_26 VTDROP1_26 VTDROP0_26 4D 01001101 0 RXESOF27 TXESOF27 VTDROP4_27 VTDROP3_27 VTDROP2_27 VTDROP1_27 VTDROP0_27 4E 01001110 0 RXESOF28 TXESOF28 VTDROP4_28 VTDROP3_28 VTDROP2_28 VTDROP1_28 VTDROP0_28 VT Drop Selection Registers Lucent Technologies Inc. 25 Data Sheet August 1999 TMPR28051 STS-1/AU-3 (STM-0) Mapper Microprocessor Interface Description (continued) Register Architecture Map (continued) Table 14. Device Register Map (continued) Address Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Tx VT Overhead Insertion Control Registers 4F 01001111 BIP2ERINS1 VTRFIRDIEN1 VTRFIINS1 VTRDIINS1 VTAISINS1 VTLABINS2_1 VTLABINS1_1 VTLABINS0_1 50 01010000 BIP2ERINS2 VTRFIRDIEN2 VTRFIINS2 VTRDIINS2 VTAISINS2 VTLABINS2_2 VTLABINS1_2 VTLABINS0_2 51 01010001 BIP2ERINS3 VTRFIRDIEN3 VTRFIINS3 VTRDIINS3 VTAISINS3 VTLABINS2_3 VTLABINS1_3 VTLABINS0_3 52 01010010 BIP2ERINS4 VTRFIRDIEN4 VTRFIINS4 VTRDIINS4 VTAISINS4 VTLABINS2_4 VTLABINS1_4 VTLABINS0_4 53 01010011 BIP2ERINS5 VTRFIRDIEN5 VTRFIINS5 VTRDIINS5 VTAISINS5 VTLABINS2_5 VTLABINS1_5 VTLABINS0_5 54 01010100 BIP2ERINS6 VTRFIRDIEN6 VTRFIINS6 VTRDIINS6 VTAISINS6 VTLABINS2_6 VTLABINS1_6 VTLABINS0_6 55 01010101 BIP2ERINS7 VTRFIRDIEN7 VTRFIINS7 VTRDIINS7 VTAISINS7 VTLABINS2_7 VTLABINS1_7 VTLABINS0_7 56 01010110 BIP2ERINS8 VTRFIRDIEN8 VTRFIINS8 VTRDIINS8 VTAISINS8 VTLABINS2_8 VTLABINS1_8 VTLABINS0_8 57 01010111 BIP2ERINS9 VTRFIRDIEN9 VTRFIINS9 VTRDIINS9 VTAISINS9 VTLABINS2_9 VTLABINS1_9 VTLABINS0_9 58 01011000 BIP2ERINS10 VTRFIRDIEN10 VTRFIINS10 VTRDIINS10 VTAISINS10 VTLABINS2_10 VTLABINS1_10 VTLABINS0_10 59 01011001 BIP2ERINS11 VTRFIRDIEN11 VTRFIINS11 VTRDIINS11 VTAISINS11 VTLABINS2_11 VTLABINS1_11 VTLABINS0_11 5A 01011010 BIP2ERINS12 VTRFIRDIEN12 VTRFIINS12 VTRDIINS12 VTAISINS12 VTLABINS2_12 VTLABINS1_12 VTLABINS0_12 5B 01011011 BIP2ERINS13 VTRFIRDIEN13 VTRFIINS13 VTRDIINS13 VTAISINS13 VTLABINS2_13 VTLABINS1_13 VTLABINS0_13 5C 01011100 BIP2ERINS14 VTRFIRDIEN14 VTRFIINS14 VTRDIINS14 VTAISINS14 VTLABINS2_14 VTLABINS1_14 VTLABINS0_14 5D 01011101 BIP2ERINS15 VTRFIRDIEN15 VTRFIINS15 VTRDIINS15 VTAISINS15 VTLABINS2_15 VTLABINS1_15 VTLABINS0_15 5E 01011110 BIP2ERINS16 VTRFIRDIEN16 VTRFIINS16 VTRDIINS16 VTAISINS16 VTLABINS2_16 VTLABINS1_16 VTLABINS0_16 5F 01011111 BIP2ERINS17 VTRFIRDIEN17 VTRFIINS17 VTRDIINS17 VTAISINS17 VTLABINS2_17 VTLABINS1_17 VTLABINS0_17 60 01100000 BIP2ERINS18 VTRFIRDIEN18 VTRFIINS18 VTRDIINS18 VTAISINS18 VTLABINS2_18 VTLABINS1_18 VTLABINS0_18 61 01100001 BIP2ERINS19 VTRFIRDIEN19 VTRFIINS19 VTRDIINS19 VTAISINS19 VTLABINS2_19 VTLABINS1_19 VTLABINS0_19 62 01100010 BIP2ERINS20 VTRFIRDIEN20 VTRFIINS20 VTRDIINS20 VTAISINS20 VTLABINS2_20 VTLABINS1_20 VTLABINS0_20 63 01100011 BIP2ERINS21 VTRFIRDIEN21 VTRFIINS21 VTRDIINS21 VTAISINS21 VTLABINS2_21 VTLABINS1_21 VTLABINS0_21 64 01100100 BIP2ERINS22 VTRFIRDIEN22 VTRFIINS22 VTRDIINS22 VTAISINS22 VTLABINS2_22 VTLABINS1_22 VTLABINS0_22 65 01100101 BIP2ERINS23 VTRFIRDIEN23 VTRFIINS23 VTRDIINS23 VTAISINS23 VTLABINS2_23 VTLABINS1_23 VTLABINS0_23 66 01100110 BIP2ERINS24 VTRFIRDIEN24 VTRFIINS24 VTRDIINS24 VTAISINS24 VTLABINS2_24 VTLABINS1_24 VTLABINS0_24 67 01100111 BIP2ERINS25 VTRFIRDIEN25 VTRFIINS25 VTRDIINS25 VTAISINS25 VTLABINS2_25 VTLABINS1_25 VTLABINS0_25 68 01101000 BIP2ERINS26 VTRFIRDIEN26 VTRFIINS26 VTRDIINS26 VTAISINS26 VTLABINS2_26 VTLABINS1_26 VTLABINS0_26 69 01101001 BIP2ERINS27 VTRFIRDIEN27 VTRFIINS27 VTRDIINS27 VTAISINS27 VTLABINS2_27 VTLABINS1_27 VTLABINS0_27 6A 01101010 BIP2ERINS28 VTRFIRDIEN28 VTRFIINS28 VTRDIINS28 VTAISINS28 VTLABINS2_28 VTLABINS1_28 VTLABINS0_28 26 Lucent Technologies Inc. Data Sheet August 1999 TMPR28051 STS-1/AU-3 (STM-0) Mapper Microprocessor Interface Description (continued) Register Architecture Map (continued) Table 14. Device Register Map (continued) Address Bit 7 Bit 6 Bit 5 Bit 4 6B 01101011 VTSIZEER1 VTLOP1 VTRDI1_1 VTRDI0_1 6C 01101100 VTSIZEER2 VTLOP2 VTRDI1_2 6D 01101101 VTSIZEER3 VTLOP3 VTRDI1_3 6E 01101110 VTSIZEER4 VTLOP4 6F 01101111 VTSIZEER5 VTLOP5 70 01110000 VTSIZEER6 71 01110001 VTSIZEER7 72 01110010 73 01110011 Bit 3 Bit 2 Bit 1 Bit 0 VTAIS1 VTLAB2_1 VTLAB1_1 VTLAB0_1 VTRDI0_2 VTAIS2 VTLAB2_2 VTLAB1_2 VTLAB0_2 VTRDI0_3 VTAIS3 VTLAB2_3 VTLAB1_3 VTLAB0_3 VTRDI1_4 VTRDI0_4 VTAIS4 VTLAB2_4 VTLAB1_4 VTLAB0_4 VTRDI1_5 VTRDI0_5 VTAIS5 VTLAB2_5 VTLAB1_5 VTLAB0_5 VTLOP6 VTRDI1_6 VTRDI0_6 VTAIS6 VTLAB2_6 VTLAB1_6 VTLAB0_6 VTLOP7 VTRDI1_7 VTRDI0_7 VTAIS7 VTLAB2_7 VTLAB1_7 VTLAB0_7 VTSIZEER8 VTLOP8 VTRDI1_8 VTRDI0_8 VTAIS8 VTLAB2_8 VTLAB1_8 VTLAB0_8 VTSIZEER9 VTLOP9 VTRDI1_9 VTRDI0_9 VTAIS9 VTLAB2_9 VTLAB1_9 VTLAB0_9 74 01110100 VTSIZEER10 VTLOP10 VTRDI1_10 VTRDI0_10 VTAIS10 VTLAB2_10 VTLAB1_10 VTLAB0_10 75 01110101 VTSIZEER11 VTLOP11 VTRDI1_11 VTRDI0_11 VTAIS11 VTLAB2_11 VTLAB1_11 VTLAB0_11 76 01110110 VTSIZEER12 VTLOP12 VTRDI1_12 VTRDI0_12 VTAIS12 VTLAB2_12 VTLAB1_12 VTLAB0_12 77 01110111 VTSIZEER13 VTLOP13 VTRDI1_13 VTRDI0_13 VTAIS13 VTLAB2_13 VTLAB1_13 VTLAB0_13 78 01111000 VTSIZEER14 VTLOP14 VTRDI1_14 VTRDI0_14 VTAIS14 VTLAB2_14 VTLAB1_14 VTLAB0_14 79 01111001 VTSIZEER15 VTLOP15 VTRDI1_15 VTRDI0_15 VTAIS15 VTLAB2_15 VTLAB1_15 VTLAB0_15 7A 01111010 VTSIZEER16 VTLOP16 VTRDI1_16 VTRDI0_16 VTAIS16 VTLAB2_16 VTLAB1_16 VTLAB0_16 7B 01111011 VTSIZEER17 VTLOP17 VTRDI1_17 VTRDI0_17 VTAIS17 VTLAB2_17 VTLAB1_17 VTLAB0_17 7C 01111100 VTSIZEER18 VTLOP18 VTRDI1_18 VTRDI0_18 VTAIS18 VTLAB2_18 VTLAB1_18 VTLAB0_18 7D 01111101 VTSIZEER19 VTLOP19 VTRDI1_19 VTRDI0_19 VTAIS19 VTLAB2_19 VTLAB1_19 VTLAB0_19 7E 01111110 VTSIZEER20 VTLOP20 VTRDI1_20 VTRDI0_20 VTAIS20 VTLAB2_20 VTLAB1_20 VTLAB0_20 7F 01111111 VTSIZEER21 VTLOP21 VTRDI1_21 VTRDI0_21 VTAIS21 VTLAB2_21 VTLAB1_21 VTLAB0_21 80 10000000 VTSIZEER22 VTLOP22 VTRDI1_22 VTRDI0_22 VTAIS22 VTLAB2_22 VTLAB1_22 VTLAB0_22 81 10000001 VTSIZEER23 VTLOP23 VTRDI1_23 VTRDI0_23 VTAIS23 VTLAB2_23 VTLAB1_23 VTLAB0_23 82 10000010 VTSIZEER24 VTLOP24 VTRDI1_24 VTRDI0_24 VTAIS24 VTLAB2_24 VTLAB1_24 VTLAB0_24 83 10001000 VTSIZEER25 VTLOP25 VTRDI1_25 VTRDI0_25 VTAIS25 VTLAB2_25 VTLAB1_25 VTLAB0_25 84 10000100 VTSIZEER26 VTLOP26 VTRDI1_26 VTRDI0_26 VTAIS26 VTLAB2_26 VTLAB1_26 VTLAB0_26 85 10000101 VTSIZEER27 VTLOP27 VTRDI1_27 VTRDI0_27 VTAIS27 VTLAB2_27 VTLAB1_27 VTLAB0_27 86 10000110 VTSIZEER28 VTLOP28 VTRDI1_28 VTRDI0_28 VTAIS28 VTLAB2_28 VTLAB1_28 VTLAB0_28 0 0 0 0 Rx VT Drop Monitoring Registers Reserved Register 87 10000111 0 0 0 0 Signal Override Control Registers 88 10001000 TVTG-7 TVTG-6 TVTG-5 TVTG-4 TVTG-3 TVTG-2 TVTG-1 TOVERRIDE 89 10001001 RVTG-7 RVTG-6 RVTG-5 RVTG-4 RVTG-3 RVTG-2 RVTG-1 ROVERRIDE Jitter Attenuator Control Registers 8A 10001010 SCALETHR-7 SCALETHR-6 SCALETHR-5 SCALETHR-4 SCALETHR-3 SCALETHR-2 SCALETHR-1 SCALETHR-0 8B 10001011 DJASCALE-15 DJASCALE-14 DJASCALE-13 DJASCALE-12 DJASCALE-11 DJASCALE-10 DJASCALE-9 DJASCALE-6 DJASCALE-5 DJASCALE-4 8D 10001101 DJAGTHR-23 DJAGTHR-22 DJAGTHR-21 DJAGTHR-20 DJAGTHR-19 DJAGTHR-18 DJAGTHR-17 DJAGTHR-16 8E 10001110 DJAGTHR-15 DJAGTHR-14 DJAGTHR-13 DJAGTHR-12 DJAGTHR-11 DJAGTHR-10 DJAGTHR-9 DJAGTHR-8 8F 10001111 DJAGTHR-6 DJAGTHR-1 DJAGTHR-0 DJAGTHR-7 Lucent Technologies Inc. DJAGTHR-5 DJAGTHR-4 DJASCALE-3 DJASCALE-8 8C 10001100 DJASCALE-7 DJAGTHR-3 DJASCALE-2 DJASCALE-1 DJASCALE-0 DJAGTHR-2 27 Data Sheet August 1999 TMPR28051 STS-1/AU-3 (STM-0) Mapper Microprocessor Interface Description (continued) Register Architecture Map (continued) Table 14. Device Register Map (continued) Address Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 90 10010000 0 0 0 0 0 0 0 91 10010001 LOSDET-7 LOSDET-6 LOSDET-5 LOSDET-2 LOSDET-1/ TP_EDGE-1 LOSDET-0/ TP_EDGE-0 92 10010010 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED 93 10010011 RESERVED RESERVED RESERVED 94 10010100 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED 95 10010101 RESERVED RESERVED 96 10010110 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED 97 10010111 RESERVED 98 10011000 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED 99 10011001 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED 9A 10011010 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED Reserved Register 0 STS-1 LOS Detect/Test Pattern Edge Control Register LOSDET-4 LOSDET-3 Reserved Registers 9B 10011011 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED 9C 10011100 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED 9D 10011101 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED 9E 10011110 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED 9F 10011111 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED A0 10100000 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED A1 10100001 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED A2 10100010 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED A3 10100011 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED A4 10100100 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED A5 10100101 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED A6 10100110 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED A7 10100111 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED A8 10101000 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED A9 10101001 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED AA 10101010 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED AB 10101011 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED AC 10101100 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED AD 10101101 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED AE 10101110 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED AF 10101111 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED B0 10110000 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED B1 10110001 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED B2 10110010 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED B3 10110011 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED B4 10110100 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED 28 Lucent Technologies Inc. Data Sheet August 1999 TMPR28051 STS-1/AU-3 (STM-0) Mapper Microprocessor Interface Description (continued) Register Architecture Map (continued) Table 14. Device Register Map (continued) Address Bit 7 Bit 6 Bit 5 Bit 4 B5 10110101 RESERVED RESERVED RESERVED RESERVED B6 10110110 RESERVED RESERVED RESERVED B7 10110111 RESERVED RESERVED RESERVED B8 10111000 RESERVED RESERVED B9 10111001 RESERVED RESERVED BA 10111010 RESERVED BB 10111011 RESERVED Bit 3 Bit 2 Bit 1 Bit 0 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED BC 10111100 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED BD 10111101 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED BE 10111110 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RJ1BYTE REI_CNTS BIP_CNTS C0 11000000 B1BIPCNT-15 B1BIPCNT-14 B1BIPCNT-13 B1BIPCNT-12 B1BIPCNT-11 B1BIPCNT-10 B1BIPCNT-9 B1BIPCNT-8 C1 11000001 B1BIPCNT-7 Reserved Registers (continued) Block Control Register BF 10111111 0 0 0 0 TJ1BYTE Block Registers 0xC0—0xFF: Detected BIP Errors Register 0xBF Setting: BIP_CNTS = 1 B1BIPCNT-1 B1BIPCNT-0 C2 11000010 B2BIPCNT-15 B2BIPCNT-14 B2BIPCNT-13 B2BIPCNT-12 B2BIPCNT-11 B2BIPCNT-10 B1BIPCNT-6 B2BIPCNT-9 B2BIPCNT-8 C3 11000011 B2BIPCNT-7 B2BIPCNT-0 B3BIPCNT-8 C5 11000101 B3BIPCNT-7 B3BIPCNT-6 B3BIPCNT-5 B3BIPCNT-4 VT1PTR+2 VT1PTR+1 VT1PTR+0 C7 11000111 BIP2CNT7_1 BIP2CNT6_1 BIP2CNT5_1 VT2PTR+3 VT2PTR+2 VT2PTR+1 C9 11001001 BIP2CNT7_2 BIP2CNT6_2 BIP2CNT5_2 CA 11001010 VT3PTR+3 VT3PTR+2 VT3PTR+1 CB 11001011 BIP2CNT7_3 BIP2CNT6_3 BIP2CNT5_3 CC 11001100 VT4PTR+3 VT4PTR+2 VT4PTR+1 CD 11001101 BIP2CNT7_4 BIP2CNT6_4 BIP2CNT5_4 CE 11001110 VT5PTR+3 VT5PTR+2 VT5PTR+1 CF 11001111 BIP2CNT7_5 BIP2CNT6_5 BIP2CNT5_5 D0 11010000 VT6PTR+3 VT6PTR+2 VT6PTR+1 D1 11010001 BIP2CNT7_6 BIP2CNT6_6 BIP2CNT5_6 D2 11010010 VT7PTR+3 VT7PTR+2 VT7PTR+1 D3 11010011 BIP2CNT7_7 BIP2CNT6_7 BIP2CNT5_7 D4 11010100 VT8PTR+3 VT8PTR+2 VT8PTR+1 D5 11010101 BIP2CNT7_8 BIP2CNT6_8 BIP2CNT5_8 D6 11010110 VT9PTR+3 VT9PTR+2 VT9PTR+1 BIP2CNT4_1 VT2PTR+0 BIP2CNT4_2 VT3PTR+0 BIP2CNT4_3 VT4PTR+0 BIP2CNT4_4 VT5PTR+0 BIP2CNT4_5 VT6PTR+0 BIP2CNT4_6 VT7PTR+0 BIP2CNT4_7 VT8PTR+0 BIP2CNT4_8 VT9PTR+0 B2BIPCNT-3 B1BIPCNT-2 B3BIPCNT-9 C8 11001000 B2BIPCNT-4 B1BIPCNT-3 B2BIPCNT-1 VT1PTR+3 B2BIPCNT-5 B1BIPCNT-4 C4 11000100 B3BIPCNT-15 B3BIPCNT-14 B3BIPCNT-13 B3BIPCNT-12 B3BIPCNT-11 B3BIPCNT-10 C6 11000110 B2BIPCNT-6 B1BIPCNT-5 B3BIPCNT-3 B2BIPCNT-2 B3BIPCNT-1 B3BIPCNT-0 BIP2CNT11_1 BIP2CNT10_1 BIP2CNT9_1 B3BIPCNT-2 BIP2CNT8_1 BIP2CNT3_1 BIP2CNT1_1 BIP2CNT0_1 BIP2CNT11_2 BIP2CNT10_2 BIP2CNT9_2 BIP2CNT2_1 BIP2CNT8_2 BIP2CNT3_2 BIP2CNT1_2 BIP2CNT0_2 BIP2CNT11_3 BIP2CNT10_3 BIP2CNT9_3 BIP2CNT2_2 BIP2CNT8_3 BIP2CNT3_3 BIP2CNT1_3 BIP2CNT0_3 BIP2CNT11_4 BIP2CNT10_4 BIP2CNT9_4 BIP2CNT2_3 BIP2CNT8_4 BIP2CNT3_4 BIP2CNT1_4 BIP2CNT0_4 BIP2CNT11_5 BIP2CNT10_5 BIP2CNT9_5 BIP2CNT2_4 BIP2CNT8_5 BIP2CNT3_5 BIP2CNT1_5 BIP2CNT0_5 BIP2CNT11_6 BIP2CNT10_6 BIP2CNT9_6 BIP2CNT2_5 BIP2CNT8_6 BIP2CNT3_6 BIP2CNT1_6 BIP2CNT0_6 BIP2CNT11_7 BIP2CNT10_7 BIP2CNT9_7 BIP2CNT2_6 BIP2CNT8_7 BIP2CNT3_7 BIP2CNT1_7 BIP2CNT0_7 BIP2CNT11_8 BIP2CNT10_8 BIP2CNT9_8 BIP2CNT2_7 BIP2CNT8_8 BIP2CNT3_8 BIP2CNT1_8 BIP2CNT0_8 BIP2CNT11_9 BIP2CNT10_9 BIP2CNT9_9 BIP2CNT2_8 BIP2CNT8_9 BIP2CNT3_9 BIP2CNT0_9 D7 11010111 BIP2CNT7_9 BIP2CNT6_9 BIP2CNT5_9 BIP2CNT4_9 D8 11011000 VT10PTR+3 VT10PTR+0 BIP2CNT11_10 BIP2CNT10_10 BIP2CNT9_10 BIP2CNT8_10 VT10PTR+2 VT10PTR+1 BIP2CNT2_9 BIP2CNT1_9 D9 11011001 BIP2CNT7_10 BIP2CNT6_10 BIP2CNT5_10 BIP2CNT4_10 BIP2CNT3_10 BIP2CNT2_10 BIP2CNT1_10 BIP2CNT0_10 Lucent Technologies Inc. 29 Data Sheet August 1999 TMPR28051 STS-1/AU-3 (STM-0) Mapper Microprocessor Interface Description (continued) Register Architecture Map (continued) Table 14. Device Register Map (continued) Address Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Block Registers 0xC0—0xFF: Detected BIP Errors (continued) DA 11011010 VT11PTR+3 VT11PTR+2 VT11PTR+1 VT11PTR+0 BIP2CNT11_11 BIP2CNT10_11 BIP2CNT9_11 BIP2CNT8_11 DB 11011011 BIP2CNT7_11 BIP2CNT6_11 BIP2CNT5_11 BIP2CNT4_11 BIP2CNT3_11 BIP2CNT2_11 BIP2CNT1_11 BIP2CNT0_11 DC 11011100 VT12PTR+3 VT12PTR+2 VT12PTR+1 VT12PTR+0 BIP2CNT11_12 BIP2CNT10_12 BIP2CNT9_12 BIP2CNT8_12 DD 11011101 BIP2CNT7_12 BIP2CNT6_12 BIP2CNT5_12 BIP2CNT4_12 BIP2CNT3_12 BIP2CNT2_12 BIP2CNT1_12 BIP2CNT0_12 DE 11011110 VT13PTR+3 VT13PTR+2 VT13PTR+1 VT13PTR+0 BIP2CNT11_13 BIP2CNT10_13 BIP2CNT9_13 BIP2CNT8_13 DF 11011111 BIP2CNT7_13 BIP2CNT6_13 BIP2CNT5_13 BIP2CNT4_13 BIP2CNT3_13 BIP2CNT2_13 BIP2CNT1_13 BIP2CNT0_13 E0 11100000 VT14PTR+3 VT14PTR+2 VT14PTR+1 VT14PTR+0 BIP2CNT11_14 BIP2CNT10_14 BIP2CNT9_14 BIP2CNT8_14 E1 11100001 BIP2CNT7_14 BIP2CNT6_14 BIP2CNT5_14 BIP2CNT4_14 BIP2CNT3_14 BIP2CNT2_14 BIP2CNT1_14 BIP2CNT0_14 E2 11100010 VT15PTR+3 VT15PTR+2 VT15PTR+1 VT15PTR+0 BIP2CNT11_15 BIP2CNT10_15 BIP2CNT9_15 BIP2CNT8_15 E3 11100011 BIP2CNT7_15 BIP2CNT6_15 BIP2CNT5_15 BIP2CNT4_15 BIP2CNT3_15 BIP2CNT2_15 BIP2CNT1_15 BIP2CNT0_15 E4 11100100 VT16PTR+3 VT16PTR+2 VT16PTR+1 VT16PTR+0 BIP2CNT11_16 BIP2CNT10_16 BIP2CNT9_16 BIP2CNT8_16 E5 11100101 BIP2CNT7_16 BIP2CNT6_16 BIP2CNT5_16 BIP2CNT4_16 BIP2CNT3_16 BIP2CNT2_16 BIP2CNT1_16 BIP2CNT0_16 E6 11100110 VT17PTR+3 VT17PTR+2 VT17PTR+1 VT17PTR+0 BIP2CNT11_17 BIP2CNT10_17 BIP2CNT9_17 BIP2CNT8_17 E7 11100111 BIP2CNT7_17 BIP2CNT6_17 BIP2CNT5_17 BIP2CNT4_17 BIP2CNT3_17 BIP2CNT2_17 BIP2CNT1_17 BIP2CNT0_17 E8 11101000 VT18PTR+3 VT18PTR+2 VT18PTR+1 VT18PTR+0 BIP2CNT11_18 BIP2CNT10_18 BIP2CNT9_18 BIP2CNT8_18 E9 11101001 BIP2CNT7_18 BIP2CNT6_18 BIP2CNT5_18 BIP2CNT4_18 BIP2CNT3_18 BIP2CNT2_18 BIP2CNT1_18 BIP2CNT0_18 EA 11101010 VT19PTR+3 VT19PTR+2 VT19PTR+1 VT19PTR+0 BIP2CNT11_19 BIP2CNT10_19 BIP2CNT9_19 BIP2CNT8_19 EB 11101011 BIP2CNT7_19 BIP2CNT6_19 BIP2CNT5_19 BIP2CNT4_19 BIP2CNT3_19 BIP2CNT2_19 BIP2CNT1_19 BIP2CNT0_19 EC 11101100 VT20PTR+3 VT20PTR+2 VT20PTR+1 VT20PTR+0 BIP2CNT11_20 BIP2CNT10_20 BIP2CNT9_20 BIP2CNT8_20 ED 11101101 BIP2CNT7_20 BIP2CNT6_20 BIP2CNT5_20 BIP2CNT4_20 BIP2CNT3_20 BIP2CNT2_20 BIP2CNT1_20 BIP2CNT0_20 EE 11101110 VT21PTR+3 VT21PTR+2 VT21PTR+1 VT21PTR+0 BIP2CNT11_21 BIP2CNT10_21 BIP2CNT9_21 BIP2CNT8_21 EF 11101111 BIP2CNT7_21 BIP2CNT6_21 BIP2CNT5_21 BIP2CNT4_21 BIP2CNT3_21 BIP2CNT2_21 BIP2CNT1_21 BIP2CNT0_21 F0 11110000 VT22PTR+3 VT22PTR+2 VT22PTR+1 VT22PTR+0 BIP2CNT11_22 BIP2CNT10_22 BIP2CNT9_22 BIP2CNT8_22 F1 11110001 BIP2CNT7_22 BIP2CNT6_22 BIP2CNT5_22 BIP2CNT4_22 BIP2CNT3_22 BIP2CNT2_22 BIP2CNT1_22 BIP2CNT0_22 F2 11110010 VT23PTR+3 VT23PTR+2 VT23PTR+1 VT23PTR+0 BIP2CNT11_23 BIP2CNT10_23 BIP2CNT9_23 BIP2CNT8_23 F3 11110011 BIP2CNT7_23 BIP2CNT6_23 BIP2CNT5_23 BIP2CNT4_23 BIP2CNT3_23 BIP2CNT2_23 BIP2CNT1_23 BIP2CNT0_23 F4 11110100 VT24PTR+3 VT24PTR+2 VT24PTR+1 VT24PTR+0 BIP2CNT11_24 BIP2CNT10_24 BIP2CNT9_24 BIP2CNT8_24 F5 11110101 BIP2CNT7_24 BIP2CNT6_24 BIP2CNT5_24 BIP2CNT4_24 BIP2CNT3_24 BIP2CNT2_24 BIP2CNT1_24 BIP2CNT0_24 F6 11110110 VT25PTR+3 VT25PTR+2 VT25PTR+1 VT25PTR+0 BIP2CNT11_25 BIP2CNT10_25 BIP2CNT9_25 BIP2CNT8_25 F7 11110111 BIP2CNT7_25 BIP2CNT6_25 BIP2CNT5_25 BIP2CNT4_25 BIP2CNT3_25 BIP2CNT2_25 BIP2CNT1_25 BIP2CNT0_25 F8 11111000 VT26PTR+3 VT26PTR+2 VT26PTR+1 VT26PTR+0 BIP2CNT11_26 BIP2CNT10_26 BIP2CNT9_26 BIP2CNT8_26 F9 11111001 BIP2CNT7_26 BIP2CNT6_26 BIP2CNT5_26 BIP2CNT4_26 BIP2CNT3_26 BIP2CNT2_26 BIP2CNT1_26 BIP2CNT0_26 FA 11111010 VT27PTR+3 VT27PTR+2 VT27PTR+1 VT27PTR+0 BIP2CNT11_27 BIP2CNT10_27 BIP2CNT9_27 BIP2CNT8_27 FB 11111011 BIP2CNT7_27 BIP2CNT6_27 BIP2CNT5_27 BIP2CNT4_27 BIP2CNT3_27 BIP2CNT2_27 BIP2CNT1_27 BIP2CNT0_27 FC 11111100 VT28PTR+3 VT28PTR+2 VT28PTR+1 VT28PTR+0 BIP2CNT11_28 BIP2CNT10_28 BIP2CNT9_28 BIP2CNT8_28 FD 11111101 BIP2CNT7_28 BIP2CNT6_28 BIP2CNT5_28 BIP2CNT4_28 BIP2CNT3_28 BIP2CNT2_28 BIP2CNT1_28 BIP2CNT0_28 Received SONET/SDH Pointer Value Registers Register 0xBF Setting: BIP_CNTS = 1 FE 11111110 SPTR+7 SPTR+6 SPTR+5 SPTR+4 SPTR+3 SPTR+2 SPTR+1 SPTR+0 FF 11111111 SPTR–7 SPTR–6 SPTR–5 SPTR–4 SPTR–3 SPTR–2 SPTR–1 SPTR–0 30 Lucent Technologies Inc. Data Sheet August 1999 TMPR28051 STS-1/AU-3 (STM-0) Mapper Microprocessor Interface Description (continued) Register Architecture Map (continued) Table 14. Device Register Map (continued) Address Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0 Block Registers 0xC0—0xFF: Detected REI Errors Register 0xBF Settings: REI_CNTS = 1, BIP_CNTS = 0 C0 11000000 0 0 0 0 0 0 0 C1 11000001 0 0 0 0 0 0 0 0 C2 11000010 B2REI-15 B2REI-14 B2REI-13 B2REI-12 B2REI-11 B2REI-10 B2REI-9 B2REI-8 C3 11000011 B2REI-7 B2REI-6 B2REI-5 B2REI-4 B2REI-3 B2REI-2 B2REI-1 B2REI-0 C4 11000100 B3REI-15 B3REI-14 B3REI-13 B3REI-12 B3REI-11 B3REI-10 B3REI-9 B3REI-8 C5 11000101 B3REI-7 B3REI-6 B3REI-5 B3REI-4 B3REI-3 B3REI-2 B3REI-1 B3REI-0 C6 11000110 VT1PTR–3 VT1PTR–2 VT1PTR–1 VT1PTR–0 0 VTREI10_1 VTREI9_1 VTREI8_1 C7 11000111 VTREI7_1 VTREI6_1 VTREI5_1 VTREI4_1 VTREI3_1 VTREI2_1 VTREI1_1 VTREI0_1 C8 11001000 VT2PTR–3 VT2PTR–2 VT2PTR–1 VT2PTR–0 0 VTREI10_2 VTREI9_2 VTREI8_2 C9 11001001 VTREI7_2 VTREI6_2 VTREI5_2 VTREI4_2 VTREI3_2 VTREI2_2 VTREI1_2 VTREI0_2 CA 11001010 VT3PTR–3 VT3PTR–2 VT3PTR–1 VT3PTR–0 0 VTREI10_3 VTREI9_3 VTREI8_3 CB 11001011 VTREI7_3 VTREI6_3 VTREI5_3 VTREI4_3 VTREI3_3 VTREI2_3 VTREI1_3 VTREI0_3 CC 11001100 VT4PTR–3 VT4PTR–2 VT4PTR–1 VT4PTR–0 0 VTREI10_4 VTREI9_4 VTREI8_4 CD 11001101 VTREI7_4 VTREI6_4 VTREI5_4 VTREI4_4 VTREI3_4 VTREI2_4 VTREI1_4 VTREI0_4 CE 11001110 VT5PTR–3 VT5PTR–2 VT5PTR–1 VT5PTR–0 0 VTREI10_5 VTREI9_5 VTREI8_5 CF 11001111 VTREI7_5 VTREI6_5 VTREI5_5 VTREI4_5 VTREI3_5 VTREI2_5 VTREI1_5 VTREI0_5 D0 11010000 VT6PTR–3 VT6PTR–2 VT6PTR–1 VT6PTR–0 0 VTREI10_6 VTREI9_6 VTREI8_6 D1 11010001 VTREI7_6 VTREI6_6 VTREI5_6 VTREI4_6 VTREI3_6 VTREI2_6 VTREI1_6 VTREI0_6 D2 11010010 VT7PTR–3 VT7PTR–2 VT7PTR–1 VT7PTR–0 0 VTREI10_7 VTREI9_7 VTREI8_7 D3 11010011 VTREI7_7 VTREI6_7 VTREI5_7 VTREI4_7 VTREI3_7 VTREI2_7 VTREI1_7 VTREI0_7 D4 11010100 VT8PTR–3 VT8PTR–2 VT8PTR–1 VT8PTR–0 0 VTREI10_8 VTREI9_8 VTREI8_8 D5 11010101 VTREI7_8 VTREI6_8 VTREI5_8 VTREI4_8 VTREI3_8 VTREI2_8 VTREI1_8 VTREI0_8 D6 11010110 VT9PTR–3 VT9PTR–2 VT9PTR–1 VT9PTR–0 0 VTREI10_9 VTREI9_9 VTREI8_9 D7 11010111 VTREI7_9 VTREI6_9 VTREI5_9 VTREI4_9 VTREI3_9 VTREI2_9 VTREI1_9 VTREI0_9 D8 11011000 VT10PTR–3 VT10PTR–2 VT10PTR–1 VT10PTR–0 0 VTREI10_10 VTREI9_10 VTREI8_10 D9 11011001 VTREI7_10 VTREI6_10 VTREI5_10 VTREI4_10 VTREI3_10 VTREI2_10 VTREI1_10 VTREI0_10 DA 11011010 VT11PTR–3 VT11PTR–2 VT11PTR–1 VT11PTR–0 0 VTREI10_11 VTREI9_11 VTREI8_11 DB 11011011 VTREI7_11 VTREI6_11 VTREI5_11 VTREI4_11 VTREI3_11 VTREI2_11 VTREI1_11 VTREI0_11 DC 11011100 VT12PTR–3 VT12PTR–2 VT12PTR–1 VT12PTR–0 0 VTREI10_12 VTREI9_12 VTREI8_12 DD 11011101 VTREI7_12 VTREI6_12 VTREI5_12 VTREI4_12 VTREI3_12 VTREI2_12 VTREI1_12 VTREI0_12 DE 11011110 VT13PTR–3 VT13PTR–2 VT13PTR–1 VT13PTR–0 0 VTREI10_13 VTREI9_13 VTREI8_13 DF 11011111 VTREI7_13 VTREI6_13 VTREI5_13 VTREI4_13 VTREI3_13 VTREI2_13 VTREI1_13 VTREI0_13 E0 11100000 VT14PTR–3 VT14PTR–2 VT14PTR–1 VT14PTR–0 0 VTREI10_14 VTREI9_14 VTREI8_14 E1 11100001 VTREI7_14 VTREI6_14 VTREI5_14 VTREI4_14 VTREI3_14 VTREI2_14 VTREI1_14 VTREI0_14 E2 11100010 VT15PTR–3 VT15PTR–2 VT15PTR–1 VT15PTR–0 0 VTREI10_15 VTREI9_15 VTREI8_15 E3 11100011 VTREI7_15 VTREI6_15 VTREI5_15 VTREI4_15 VTREI3_15 VTREI2_15 VTREI1_15 VTREI0_15 E4 11100100 VT16PTR–3 VT16PTR–2 VT16PTR–1 VT16PTR–0 0 VTREI10_16 VTREI9_16 VTREI8_16 E5 11100101 VTREI7_16 VTREI6_16 VTREI5_16 VTREI4_16 VTREI3_16 VTREI2_16 VTREI1_16 VTREI0_16 E6 11100110 VT17PTR–3 VT17PTR–2 VT17PTR–1 VT17PTR–0 0 VTREI10_17 VTREI9_17 VTREI8_17 E7 11100111 VTREI7_17 VTREI6_17 VTREI5_17 VTREI4_17 VTREI3_17 VTREI2_17 VTREI1_17 VTREI0_17 E8 11101000 VT18PTR–3 VT18PTR–2 VT18PTR–1 VT18PTR–0 0 VTREI10_18 VTREI9_18 VTREI8_18 E9 11101001 VTREI7_18 VTREI6_18 VTREI5_18 VTREI4_18 VTREI3_18 VTREI2_18 VTREI1_18 VTREI0_18 EA 11101010 VT19PTR–3 VT19PTR–2 VT19PTR–1 VT19PTR–0 0 VTREI10_19 VTREI9_19 VTREI8_19 Lucent Technologies Inc. 31 Data Sheet August 1999 TMPR28051 STS-1/AU-3 (STM-0) Mapper Microprocessor Interface Description (continued) Register Architecture Map (continued) Table 14. Device Register Map (continued) Address Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Block Registers 0xC0—0xFF: Detected REI Errors (continued) VTREI7_19 VTREI6_19 VTREI5_19 VTREI4_19 VTREI3_19 VTREI2_19 VTREI1_19 VTREI0_19 EC 11101100 VT20PTR–3 EB 11101011 VT20PTR–2 VT20PTR–1 VT20PTR–0 0 VTREI10_20 VTREI9_20 VTREI8_20 ED 11101101 VTREI7_20 VTREI6_20 VTREI5_20 VTREI4_20 VTREI3_20 VTREI2_20 VTREI1_20 VTREI0_20 EE 11101110 VT21PTR–3 VT21PTR–2 VT21PTR–1 VT21PTR–0 0 VTREI10_21 VTREI9_21 VTREI8_21 EF 11101111 VTREI7_21 VTREI6_21 VTREI5_21 VTREI4_21 VTREI3_21 VTREI2_21 VTREI1_21 VTREI0_21 F0 11110000 VT22PTR–3 VT22PTR–2 VT22PTR–1 VT22PTR–0 0 VTREI10_22 VTREI9_22 VTREI8_22 F1 11110001 VTREI7_22 VTREI6_22 VTREI5_22 VTREI4_22 VTREI3_22 VTREI2_22 VTREI1_22 VTREI0_22 F2 11110010 VT23PTR–3 VT23PTR–2 VT23PTR–1 VT23PTR–0 0 VTREI10_23 VTREI9_23 VTREI8_23 F3 11110011 VTREI7_23 VTREI6_23 VTREI5_23 VTREI4_23 VTREI3_23 VTREI2_23 VTREI1_23 VTREI0_23 F4 11110100 VT24PTR–3 VT24PTR–2 VT24PTR–1 VT24PTR–0 0 VTREI10_24 VTREI9_24 VTREI8_24 F5 11110101 VTREI7_24 VTREI6_24 VTREI5_24 VTREI4_24 VTREI3_24 VTREI2_24 VTREI1_24 VTREI0_24 F6 11110110 VT25PTR–3 VT25PTR–2 VT25PTR–1 VT25PTR–0 0 VTREI10_25 VTREI9_25 VTREI8_25 F7 11110111 VTREI7_25 VTREI6_25 VTREI5_25 VTREI4_25 VTREI3_25 VTREI2_25 VTREI1_25 VTREI0_25 F8 11111000 VT26PTR–3 VT26PTR–2 VT26PTR–1 VT26PTR–0 0 VTREI10_26 VTREI9_26 VTREI8_26 F9 11111001 VTREI7_26 VTREI6_26 VTREI5_26 VTREI4_26 VTREI3_26 VTREI2_26 VTREI1_26 VTREI0_26 FA 11111010 VT27PTR–3 VT27PTR–2 VT27PTR–1 VT27PTR–0 0 VTREI10_27 VTREI9_27 VTREI8_27 FB 11111011 VTREI7_27 VTREI6_27 VTREI5_27 VTREI4_27 VTREI3_27 VTREI2_27 VTREI1_27 VTREI0_27 FC 11111100 VT28PTR–3 VT28PTR–2 VT28PTR–1 VT28PTR–0 0 VTREI10_28 VTREI9_28 VTREI8_28 FD 11111101 VTREI7_28 VTREI6_28 VTREI5_28 VTREI4_28 VTREI3_28 VTREI2_28 VTREI1_28 VTREI0_28 FE 11111110 0 0 0 0 0 0 0 0 FF 11111111 0 0 0 0 0 0 0 0 32 Lucent Technologies Inc. Data Sheet August 1999 TMPR28051 STS-1/AU-3 (STM-0) Mapper Microprocessor Interface Description (continued) Register Architecture Map (continued) Table 14. Device Register Map (continued) Address Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Block Registers 0xC0—0xFF: Receive J1 Path Trace Bytes Register 0xBF Settings: RJ1BYTE = 1, BIP_CNTS = 0, REI_CNTS = 0 C0 11000000 RJ1BYTE7_64 RJ1BYTE6_64 RJ1BYTE5_64 RJ1BYTE4_64 RJ1BYTE3_64 RJ1BYTE2_64 RJ1BYTE1_64 RJ1BYTE0_64 C1 11000001 RJ1BYTE7_63 RJ1BYTE6_63 RJ1BYTE5_63 RJ1BYTE4_63 RJ1BYTE3_63 RJ1BYTE2_63 RJ1BYTE1_63 RJ1BYTE0_63 C2 11000010 RJ1BYTE7_62 RJ1BYTE6_62 RJ1BYTE5_62 RJ1BYTE4_62 RJ1BYTE3_62 RJ1BYTE2_62 RJ1BYTE1_62 RJ1BYTE0_62 C3 11000011 RJ1BYTE7_61 RJ1BYTE6_61 RJ1BYTE5_61 RJ1BYTE4_61 RJ1BYTE3_61 RJ1BYTE2_61 RJ1BYTE1_61 RJ1BYTE0_61 C4 11000100 RJ1BYTE7_60 RJ1BYTE6_60 RJ1BYTE5_60 RJ1BYTE4_60 RJ1BYTE3_60 RJ1BYTE2_60 RJ1BYTE1_60 RJ1BYTE0_60 C5 11000101 RJ1BYTE7_59 RJ1BYTE6_59 RJ1BYTE5_59 RJ1BYTE4_59 RJ1BYTE3_59 RJ1BYTE2_59 RJ1BYTE1_59 RJ1BYTE0_59 C6 11000110 RJ1BYTE7_58 RJ1BYTE6_58 RJ1BYTE5_58 RJ1BYTE4_58 RJ1BYTE3_58 RJ1BYTE2_58 RJ1BYTE1_58 RJ1BYTE0_58 C7 11000111 RJ1BYTE7_57 RJ1BYTE6_57 RJ1BYTE5_57 RJ1BYTE4_57 RJ1BYTE3_57 RJ1BYTE2_57 RJ1BYTE1_57 RJ1BYTE0_57 C8 11001000 RJ1BYTE7_56 RJ1BYTE6_56 RJ1BYTE5_56 RJ1BYTE4_56 RJ1BYTE3_56 RJ1BYTE2_56 RJ1BYTE1_56 RJ1BYTE0_56 C9 11001001 RJ1BYTE7_55 RJ1BYTE6_55 RJ1BYTE5_55 RJ1BYTE4_55 RJ1BYTE3_55 RJ1BYTE2_55 RJ1BYTE1_55 RJ1BYTE0_55 CA 11001010 RJ1BYTE7_54 RJ1BYTE6_54 RJ1BYTE5_54 RJ1BYTE4_54 RJ1BYTE3_54 RJ1BYTE2_54 RJ1BYTE1_54 RJ1BYTE0_54 CB 11001011 RJ1BYTE7_53 RJ1BYTE6_53 RJ1BYTE5_53 RJ1BYTE4_53 RJ1BYTE3_53 RJ1BYTE2_53 RJ1BYTE1_53 RJ1BYTE0_53 CC 11001100 RJ1BYTE7_52 RJ1BYTE6_52 RJ1BYTE5_52 RJ1BYTE4_52 RJ1BYTE3_52 RJ1BYTE2_52 RJ1BYTE1_52 RJ1BYTE0_52 CD 11001101 RJ1BYTE7_51 RJ1BYTE6_51 RJ1BYTE5_51 RJ1BYTE4_51 RJ1BYTE3_51 RJ1BYTE2_51 RJ1BYTE1_51 RJ1BYTE0_51 CE 11001110 RJ1BYTE7_50 RJ1BYTE6_50 RJ1BYTE5_50 RJ1BYTE4_50 RJ1BYTE3_50 RJ1BYTE2_50 RJ1BYTE1_50 RJ1BYTE0_50 CF 11001111 RJ1BYTE7_49 RJ1BYTE6_49 RJ1BYTE5_49 RJ1BYTE4_49 RJ1BYTE3_49 RJ1BYTE2_49 RJ1BYTE1_49 RJ1BYTE0_49 D0 11010000 RJ1BYTE7_48 RJ1BYTE6_48 RJ1BYTE5_48 RJ1BYTE4_48 RJ1BYTE3_48 RJ1BYTE2_48 RJ1BYTE1_48 RJ1BYTE0_48 D1 11010001 RJ1BYTE7_47 RJ1BYTE6_47 RJ1BYTE5_47 RJ1BYTE4_47 RJ1BYTE3_47 RJ1BYTE2_47 RJ1BYTE1_47 RJ1BYTE0_47 D2 11010010 RJ1BYTE7_46 RJ1BYTE6_46 RJ1BYTE5_46 RJ1BYTE4_46 RJ1BYTE3_46 RJ1BYTE2_46 RJ1BYTE1_46 RJ1BYTE0_46 D3 11010011 RJ1BYTE7_45 RJ1BYTE6_45 RJ1BYTE5_45 RJ1BYTE4_45 RJ1BYTE3_45 RJ1BYTE2_45 RJ1BYTE1_45 RJ1BYTE0_45 D4 11010100 RJ1BYTE7_44 RJ1BYTE6_44 RJ1BYTE5_44 RJ1BYTE4_44 RJ1BYTE3_44 RJ1BYTE2_44 RJ1BYTE1_44 RJ1BYTE0_44 D5 11010101 RJ1BYTE7_43 RJ1BYTE6_43 RJ1BYTE5_43 RJ1BYTE4_43 RJ1BYTE3_43 RJ1BYTE2_43 RJ1BYTE1_43 RJ1BYTE0_43 D6 11010110 RJ1BYTE7_42 RJ1BYTE6_42 RJ1BYTE5_42 RJ1BYTE4_42 RJ1BYTE3_42 RJ1BYTE2_42 RJ1BYTE1_42 RJ1BYTE0_42 D7 11010111 RJ1BYTE7_41 RJ1BYTE6_41 RJ1BYTE5_41 RJ1BYTE4_41 RJ1BYTE3_41 RJ1BYTE2_41 RJ1BYTE1_41 RJ1BYTE0_41 D8 11011000 RJ1BYTE7_40 RJ1BYTE6_40 RJ1BYTE5_40 RJ1BYTE4_40 RJ1BYTE3_40 RJ1BYTE2_40 RJ1BYTE1_40 RJ1BYTE0_40 D9 11011001 RJ1BYTE7_39 RJ1BYTE6_39 RJ1BYTE5_39 RJ1BYTE4_39 RJ1BYTE3_39 RJ1BYTE2_39 RJ1BYTE1_39 RJ1BYTE0_39 DA 11011010 RJ1BYTE7_38 RJ1BYTE6_38 RJ1BYTE5_38 RJ1BYTE4_38 RJ1BYTE3_38 RJ1BYTE2_38 RJ1BYTE1_38 RJ1BYTE0_38 DB 11011011 RJ1BYTE7_37 RJ1BYTE6_37 RJ1BYTE5_37 RJ1BYTE4_37 RJ1BYTE3_37 RJ1BYTE2_37 RJ1BYTE1_37 RJ1BYTE0_37 DC 11011100 RJ1BYTE7_36 RJ1BYTE6_36 RJ1BYTE5_36 RJ1BYTE4_36 RJ1BYTE3_36 RJ1BYTE2_36 RJ1BYTE1_36 RJ1BYTE0_36 DD 11011101 RJ1BYTE7_35 RJ1BYTE6_35 RJ1BYTE5_35 RJ1BYTE4_35 RJ1BYTE3_35 RJ1BYTE2_35 RJ1BYTE1_35 RJ1BYTE0_35 DE 11011110 RJ1BYTE7_34 RJ1BYTE6_34 RJ1BYTE5_34 RJ1BYTE4_34 RJ1BYTE3_34 RJ1BYTE2_34 RJ1BYTE1_34 RJ1BYTE0_34 DF 11011111 RJ1BYTE7_33 RJ1BYTE6_33 RJ1BYTE5_33 RJ1BYTE4_33 RJ1BYTE3_33 RJ1BYTE2_33 RJ1BYTE1_33 RJ1BYTE0_33 E0 11100000 RJ1BYTE7_32 RJ1BYTE6_32 RJ1BYTE5_32 RJ1BYTE4_32 RJ1BYTE3_32 RJ1BYTE2_32 RJ1BYTE1_32 RJ1BYTE0_32 E1 11100001 RJ1BYTE7_31 RJ1BYTE6_31 RJ1BYTE5_31 RJ1BYTE4_31 RJ1BYTE3_31 RJ1BYTE2_31 RJ1BYTE1_31 RJ1BYTE0_31 E2 11100010 RJ1BYTE7_30 RJ1BYTE6_30 RJ1BYTE5_30 RJ1BYTE4_30 RJ1BYTE3_30 RJ1BYTE2_30 RJ1BYTE1_30 RJ1BYTE0_30 E3 11100011 RJ1BYTE7_29 RJ1BYTE6_29 RJ1BYTE5_29 RJ1BYTE4_29 RJ1BYTE3_29 RJ1BYTE2_29 RJ1BYTE1_29 RJ1BYTE0_29 E4 11100100 RJ1BYTE7_28 RJ1BYTE6_28 RJ1BYTE5_28 RJ1BYTE4_28 RJ1BYTE3_28 RJ1BYTE2_28 RJ1BYTE1_28 RJ1BYTE0_28 E5 11100101 RJ1BYTE7_27 RJ1BYTE6_27 RJ1BYTE5_27 RJ1BYTE4_27 RJ1BYTE3_27 RJ1BYTE2_27 RJ1BYTE1_27 RJ1BYTE0_27 E6 11100110 RJ1BYTE7_26 RJ1BYTE6_26 RJ1BYTE5_26 RJ1BYTE4_26 RJ1BYTE3_26 RJ1BYTE2_26 RJ1BYTE1_26 RJ1BYTE0_64 E7 11100111 RJ1BYTE7_25 RJ1BYTE6_25 RJ1BYTE5_25 RJ1BYTE4_25 RJ1BYTE3_25 RJ1BYTE2_25 RJ1BYTE1_25 RJ1BYTE0_25 Lucent Technologies Inc. 33 Data Sheet August 1999 TMPR28051 STS-1/AU-3 (STM-0) Mapper Microprocessor Interface Description (continued) Register Architecture Map (continued) Table 14. Device Register Map (continued) Address Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Block Registers 0xC0—0xFF: Receive J1 Path Trace Bytes (continued) E8 11101000 RJ1BYTE7_24 RJ1BYTE6_24 RJ1BYTE5_24 RJ1BYTE4_24 RJ1BYTE3_24 RJ1BYTE2_24 RJ1BYTE1_24 RJ1BYTE0_24 E9 11101001 RJ1BYTE7_23 RJ1BYTE6_23 RJ1BYTE5_23 RJ1BYTE4_23 RJ1BYTE3_23 RJ1BYTE2_23 RJ1BYTE1_23 RJ1BYTE0_23 EA 11101010 RJ1BYTE7_22 RJ1BYTE6_22 RJ1BYTE5_22 RJ1BYTE4_22 RJ1BYTE3_22 RJ1BYTE2_22 RJ1BYTE1_22 RJ1BYTE0_22 EB 11101011 RJ1BYTE7_21 RJ1BYTE6_21 RJ1BYTE5_21 RJ1BYTE4_21 RJ1BYTE3_21 RJ1BYTE2_21 RJ1BYTE1_21 RJ1BYTE0_21 EC 11101100 RJ1BYTE7_20 RJ1BYTE6_20 RJ1BYTE5_20 RJ1BYTE4_20 RJ1BYTE3_20 RJ1BYTE2_20 RJ1BYTE1_20 RJ1BYTE0_20 ED 11101101 RJ1BYTE7_19 RJ1BYTE6_19 RJ1BYTE5_19 RJ1BYTE4_19 RJ1BYTE3_19 RJ1BYTE2_19 RJ1BYTE1_19 RJ1BYTE0_19 EE 11101110 RJ1BYTE7_18 RJ1BYTE6_18 RJ1BYTE5_18 RJ1BYTE4_18 RJ1BYTE3_18 RJ1BYTE2_18 RJ1BYTE1_18 RJ1BYTE0_18 EF 11101111 RJ1BYTE7_17 RJ1BYTE6_17 RJ1BYTE5_17 RJ1BYTE4_17 RJ1BYTE3_17 RJ1BYTE2_17 RJ1BYTE1_17 RJ1BYTE0_17 F0 11110000 RJ1BYTE7_16 RJ1BYTE6_16 RJ1BYTE5_16 RJ1BYTE4_16 RJ1BYTE3_16 RJ1BYTE2_16 RJ1BYTE1_16 RJ1BYTE0_16 F1 11110001 RJ1BYTE7_15 RJ1BYTE6_15 RJ1BYTE5_15 RJ1BYTE4_15 RJ1BYTE3_15 RJ1BYTE2_15 RJ1BYTE1_15 RJ1BYTE0_15 F2 11110010 RJ1BYTE7_14 RJ1BYTE6_14 RJ1BYTE5_14 RJ1BYTE4_14 RJ1BYTE3_14 RJ1BYTE2_14 RJ1BYTE1_14 RJ1BYTE0_14 F3 11110011 RJ1BYTE7_13 RJ1BYTE6_13 RJ1BYTE5_13 RJ1BYTE4_13 RJ1BYTE3_13 RJ1BYTE2_13 RJ1BYTE1_13 RJ1BYTE0_13 F4 11110100 RJ1BYTE7_12 RJ1BYTE6_12 RJ1BYTE5_12 RJ1BYTE4_12 RJ1BYTE3_12 RJ1BYTE2_12 RJ1BYTE1_12 RJ1BYTE0_12 F5 11110101 RJ1BYTE7_11 RJ1BYTE6_11 RJ1BYTE5_11 RJ1BYTE4_11 RJ1BYTE3_11 RJ1BYTE2_11 RJ1BYTE1_11 RJ1BYTE0_11 F6 11110110 RJ1BYTE7_10 RJ1BYTE6_10 RJ1BYTE5_10 RJ1BYTE4_10 RJ1BYTE3_10 RJ1BYTE2_10 RJ1BYTE1_10 RJ1BYTE0_10 F7 11110111 RJ1BYTE7_9 RJ1BYTE6_9 RJ1BYTE5_9 RJ1BYTE4_9 RJ1BYTE3_9 RJ1BYTE2_9 RJ1BYTE1_9 RJ1BYTE0_9 F8 11111000 RJ1BYTE7_8 RJ1BYTE6_8 RJ1BYTE5_8 RJ1BYTE4_8 RJ1BYTE3_8 RJ1BYTE2_8 RJ1BYTE1_8 RJ1BYTE0_8 F9 11111001 RJ1BYTE7_7 RJ1BYTE6_7 RJ1BYTE5_7 RJ1BYTE4_7 RJ1BYTE3_7 RJ1BYTE2_7 RJ1BYTE1_7 RJ1BYTE0_7 FA 11111010 RJ1BYTE7_6 RJ1BYTE6_6 RJ1BYTE5_6 RJ1BYTE4_6 RJ1BYTE3_6 RJ1BYTE2_6 RJ1BYTE1_6 RJ1BYTE0_6 FB 11111011 RJ1BYTE7_5 RJ1BYTE6_5 RJ1BYTE5_5 RJ1BYTE4_5 RJ1BYTE3_5 RJ1BYTE2_5 RJ1BYTE1_5 RJ1BYTE0_5 FC 11111100 RJ1BYTE7_4 RJ1BYTE6_4 RJ1BYTE5_4 RJ1BYTE4_4 RJ1BYTE3_4 RJ1BYTE2_4 RJ1BYTE1_4 RJ1BYTE0_4 FD 11111101 RJ1BYTE7_3 RJ1BYTE6_3 RJ1BYTE5_3 RJ1BYTE4_3 RJ1BYTE3_3 RJ1BYTE2_3 RJ1BYTE1_3 RJ1BYTE0_3 FE 11111110 RJ1BYTE7_2 RJ1BYTE6_2 RJ1BYTE5_2 RJ1BYTE4_2 RJ1BYTE3_2 RJ1BYTE2_2 RJ1BYTE1_2 RJ1BYTE0_2 FF 11111111 RJ1BYTE7_1 RJ1BYTE6_1 RJ1BYTE5_1 RJ1BYTE4_1 RJ1BYTE3_1 RJ1BYTE2_1 RJ1BYTE1_1 RJ1BYTE0_1 34 Lucent Technologies Inc. Data Sheet August 1999 TMPR28051 STS-1/AU-3 (STM-0) Mapper Microprocessor Interface Description (continued) Register Architecture Map (continued) Table 14. Device Register Map (continued) Address Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Block Registers 0xC0—0xFF: Transmit J1 Path Trace Bytes Register 0xBF Settings: TJ1BYTE_RD = 1, BIP_CNTS = 0, REI_CNTS = 0, RJ1BYTE = 0 C0 11000000 TJ1BYTE7_64 TJ1BYTE6_64 TJ1BYTE5_64 TJ1BYTE4_64 TJ1BYTE3_64 TJ1BYTE2_64 TJ1BYTE1_64 TJ1BYTE0_64 C1 11000001 TJ1BYTE7_63 TJ1BYTE6_63 TJ1BYTE5_63 TJ1BYTE4_63 TJ1BYTE3_63 TJ1BYTE2_63 TJ1BYTE1_63 TJ1BYTE0_63 C2 11000010 TJ1BYTE7_62 TJ1BYTE6_62 TJ1BYTE5_62 TJ1BYTE4_62 TJ1BYTE3_62 TJ1BYTE2_62 TJ1BYTE1_62 TJ1BYTE0_62 C3 11000011 TJ1BYTE7_61 TJ1BYTE6_61 TJ1BYTE5_61 TJ1BYTE4_61 TJ1BYTE3_61 TJ1BYTE2_61 TJ1BYTE1_61 TJ1BYTE0_61 C4 11000100 TJ1BYTE7_60 TJ1BYTE6_60 TJ1BYTE5_60 TJ1BYTE4_60 TJ1BYTE3_60 TJ1BYTE2_60 TJ1BYTE1_60 TJ1BYTE0_60 C5 11000101 TJ1BYTE7_59 TJ1BYTE6_59 TJ1BYTE5_59 TJ1BYTE4_59 TJ1BYTE3_59 TJ1BYTE2_59 TJ1BYTE1_59 TJ1BYTE0_59 C6 11000110 TJ1BYTE7_58 TJ1BYTE6_58 TJ1BYTE5_58 TJ1BYTE4_58 TJ1BYTE3_58 TJ1BYTE2_58 TJ1BYTE1_58 TJ1BYTE0_58 C7 11000111 TJ1BYTE7_57 TJ1BYTE6_57 TJ1BYTE5_57 TJ1BYTE4_57 TJ1BYTE3_57 TJ1BYTE2_57 TJ1BYTE1_57 TJ1BYTE0_57 C8 11001000 TJ1BYTE7_56 TJ1BYTE6_56 TJ1BYTE5_56 TJ1BYTE4_56 TJ1BYTE3_56 TJ1BYTE2_56 TJ1BYTE1_56 TJ1BYTE0_56 C9 11001001 TJ1BYTE7_55 TJ1BYTE6_55 TJ1BYTE5_55 TJ1BYTE4_55 TJ1BYTE3_55 TJ1BYTE2_55 TJ1BYTE1_55 TJ1BYTE0_55 CA 11001010 TJ1BYTE7_54 TJ1BYTE6_54 TJ1BYTE5_54 TJ1BYTE4_54 TJ1BYTE3_54 TJ1BYTE2_54 TJ1BYTE1_54 TJ1BYTE0_54 CB 11001011 TJ1BYTE7_53 TJ1BYTE6_53 TJ1BYTE5_53 TJ1BYTE4_53 TJ1BYTE3_53 TJ1BYTE2_53 TJ1BYTE1_53 TJ1BYTE0_53 CC 11001100 TJ1BYTE7_52 TJ1BYTE6_52 TJ1BYTE5_52 TJ1BYTE4_52 TJ1BYTE3_52 TJ1BYTE2_52 TJ1BYTE1_52 TJ1BYTE0_52 CD 11001101 TJ1BYTE7_51 TJ1BYTE6_51 TJ1BYTE5_51 TJ1BYTE4_51 TJ1BYTE3_51 TJ1BYTE2_51 TJ1BYTE1_51 TJ1BYTE0_51 CE 11001110 TJ1BYTE7_50 TJ1BYTE6_50 TJ1BYTE5_50 TJ1BYTE4_50 TJ1BYTE3_50 TJ1BYTE2_50 TJ1BYTE1_50 TJ1BYTE0_50 CF 11001111 TJ1BYTE7_49 TJ1BYTE6_49 TJ1BYTE5_49 TJ1BYTE4_49 TJ1BYTE3_49 TJ1BYTE2_49 TJ1BYTE1_49 TJ1BYTE0_49 D0 11010000 TJ1BYTE7_48 TJ1BYTE6_48 TJ1BYTE5_48 TJ1BYTE4_48 TJ1BYTE3_48 TJ1BYTE2_48 TJ1BYTE1_48 TJ1BYTE0_48 D1 11010001 TJ1BYTE7_47 TJ1BYTE6_47 TJ1BYTE5_47 TJ1BYTE4_47 TJ1BYTE3_47 TJ1BYTE2_47 TJ1BYTE1_47 TJ1BYTE0_47 D2 11010010 TJ1BYTE7_46 TJ1BYTE6_46 TJ1BYTE5_46 TJ1BYTE4_46 TJ1BYTE3_46 TJ1BYTE2_46 TJ1BYTE1_46 TJ1BYTE0_46 D3 11010011 TJ1BYTE7_45 TJ1BYTE6_45 TJ1BYTE5_45 TJ1BYTE4_45 TJ1BYTE3_45 TJ1BYTE2_45 TJ1BYTE1_45 TJ1BYTE0_45 D4 11010100 TJ1BYTE7_44 TJ1BYTE6_44 TJ1BYTE5_44 TJ1BYTE4_44 TJ1BYTE3_44 TJ1BYTE2_44 TJ1BYTE1_44 TJ1BYTE0_44 D5 11010101 TJ1BYTE7_43 TJ1BYTE6_43 TJ1BYTE5_43 TJ1BYTE4_43 TJ1BYTE3_43 TJ1BYTE2_43 TJ1BYTE1_43 TJ1BYTE0_43 D6 11010110 TJ1BYTE7_42 TJ1BYTE6_42 TJ1BYTE5_42 TJ1BYTE4_42 TJ1BYTE3_42 TJ1BYTE2_42 TJ1BYTE1_42 TJ1BYTE0_42 D7 11010111 TJ1BYTE7_41 TJ1BYTE6_41 TJ1BYTE5_41 TJ1BYTE4_41 TJ1BYTE3_41 TJ1BYTE2_41 TJ1BYTE1_41 TJ1BYTE0_41 D8 11011000 TJ1BYTE7_40 TJ1BYTE6_40 TJ1BYTE5_40 TJ1BYTE4_40 TJ1BYTE3_40 TJ1BYTE2_40 TJ1BYTE1_40 TJ1BYTE0_40 D9 11011001 TJ1BYTE7_39 TJ1BYTE6_39 TJ1BYTE5_39 TJ1BYTE4_39 TJ1BYTE3_39 TJ1BYTE2_39 TJ1BYTE1_39 TJ1BYTE0_39 DA 11011010 TJ1BYTE7_38 TJ1BYTE6_38 TJ1BYTE5_38 TJ1BYTE4_38 TJ1BYTE3_38 TJ1BYTE2_38 TJ1BYTE1_38 TJ1BYTE0_38 DB 11011011 TJ1BYTE7_37 TJ1BYTE6_37 TJ1BYTE5_37 TJ1BYTE4_37 TJ1BYTE3_37 TJ1BYTE2_37 TJ1BYTE1_37 TJ1BYTE0_37 DC 11011100 TJ1BYTE7_36 TJ1BYTE6_36 TJ1BYTE5_36 TJ1BYTE4_36 TJ1BYTE3_36 TJ1BYTE2_36 TJ1BYTE1_36 TJ1BYTE0_36 DD 11011101 TJ1BYTE7_35 TJ1BYTE6_35 TJ1BYTE5_35 TJ1BYTE4_35 TJ1BYTE3_35 TJ1BYTE2_35 TJ1BYTE1_35 TJ1BYTE0_35 DE 11011110 TJ1BYTE7_34 TJ1BYTE6_34 TJ1BYTE5_34 TJ1BYTE4_34 TJ1BYTE3_34 TJ1BYTE2_34 TJ1BYTE1_34 TJ1BYTE0_34 DF 11011111 TJ1BYTE7_33 TJ1BYTE6_33 TJ1BYTE5_33 TJ1BYTE4_33 TJ1BYTE3_33 TJ1BYTE2_33 TJ1BYTE1_33 TJ1BYTE0_33 E0 11100000 TJ1BYTE7_32 TJ1BYTE6_32 TJ1BYTE5_32 TJ1BYTE4_32 TJ1BYTE3_32 TJ1BYTE2_32 TJ1BYTE1_32 TJ1BYTE0_32 E1 11100001 TJ1BYTE7_31 TJ1BYTE6_31 TJ1BYTE5_31 TJ1BYTE4_31 TJ1BYTE3_31 TJ1BYTE2_31 TJ1BYTE1_31 TJ1BYTE0_31 E2 11100010 TJ1BYTE7_30 TJ1BYTE6_30 TJ1BYTE5_30 TJ1BYTE4_30 TJ1BYTE3_30 TJ1BYTE2_30 TJ1BYTE1_30 TJ1BYTE0_30 E3 11100011 TJ1BYTE7_29 TJ1BYTE6_29 TJ1BYTE5_29 TJ1BYTE4_29 TJ1BYTE3_29 TJ1BYTE2_29 TJ1BYTE1_29 TJ1BYTE0_29 E4 11100100 TJ1BYTE7_28 TJ1BYTE6_28 TJ1BYTE5_28 TJ1BYTE4_28 TJ1BYTE3_28 TJ1BYTE2_28 TJ1BYTE1_28 TJ1BYTE0_28 E5 11100101 TJ1BYTE7_27 TJ1BYTE6_27 TJ1BYTE5_27 TJ1BYTE4_27 TJ1BYTE3_27 TJ1BYTE2_27 TJ1BYTE1_27 TJ1BYTE0_27 E6 11100110 TJ1BYTE7_26 TJ1BYTE6_26 TJ1BYTE5_26 TJ1BYTE4_26 TJ1BYTE3_26 TJ1BYTE2_26 TJ1BYTE1_26 TJ1BYTE0_26 Lucent Technologies Inc. 35 Data Sheet August 1999 TMPR28051 STS-1/AU-3 (STM-0) Mapper Microprocessor Interface Description (continued) Register Architecture Map (continued) Table 14. Device Register Map (continued) Address Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Block Registers 0xC0—0xFF: Transmit J1 Path Trace Bytes (continued) E7 11100111 TJ1BYTE7_25 TJ1BYTE6_25 TJ1BYTE5_25 TJ1BYTE4_25 TJ1BYTE3_25 TJ1BYTE2_25 TJ1BYTE1_25 TJ1BYTE0_25 E8 11101000 TJ1BYTE7_24 TJ1BYTE6_24 TJ1BYTE5_24 TJ1BYTE4_24 TJ1BYTE3_24 TJ1BYTE2_24 TJ1BYTE1_24 TJ1BYTE0_24 E9 11101001 TJ1BYTE7_23 TJ1BYTE6_23 TJ1BYTE5_23 TJ1BYTE4_23 TJ1BYTE3_23 TJ1BYTE2_23 TJ1BYTE1_23 TJ1BYTE0_23 EA 11101010 TJ1BYTE7_22 TJ1BYTE6_22 TJ1BYTE5_22 TJ1BYTE4_22 TJ1BYTE3_22 TJ1BYTE2_22 TJ1BYTE1_22 TJ1BYTE0_22 EB 11101011 TJ1BYTE7_21 TJ1BYTE6_21 TJ1BYTE5_21 TJ1BYTE4_21 TJ1BYTE3_21 TJ1BYTE2_21 TJ1BYTE1_21 TJ1BYTE0_21 EC 11101100 TJ1BYTE7_20 TJ1BYTE6_20 TJ1BYTE5_20 TJ1BYTE4_20 TJ1BYTE3_20 TJ1BYTE2_20 TJ1BYTE1_20 TJ1BYTE0_20 ED 11101101 TJ1BYTE7_19 TJ1BYTE6_19 TJ1BYTE5_19 TJ1BYTE4_19 TJ1BYTE3_19 TJ1BYTE2_19 TJ1BYTE1_19 TJ1BYTE0_19 EE 11101110 TJ1BYTE7_18 TJ1BYTE6_18 TJ1BYTE5_18 TJ1BYTE4_18 TJ1BYTE3_18 TJ1BYTE2_18 TJ1BYTE1_18 TJ1BYTE0_18 EF 11101111 TJ1BYTE7_17 TJ1BYTE6_17 TJ1BYTE5_17 TJ1BYTE4_17 TJ1BYTE3_17 TJ1BYTE2_17 TJ1BYTE1_17 TJ1BYTE0_17 F0 11110000 TJ1BYTE7_16 TJ1BYTE6_16 TJ1BYTE5_16 TJ1BYTE4_16 TJ1BYTE3_16 TJ1BYTE2_16 TJ1BYTE1_16 TJ1BYTE0_16 F1 11110001 TJ1BYTE7_15 TJ1BYTE6_15 TJ1BYTE5_15 TJ1BYTE4_15 TJ1BYTE3_15 TJ1BYTE2_15 TJ1BYTE1_15 TJ1BYTE0_15 F2 11110010 TJ1BYTE7_14 TJ1BYTE6_14 TJ1BYTE5_14 TJ1BYTE4_14 TJ1BYTE3_14 TJ1BYTE2_14 TJ1BYTE1_14 TJ1BYTE0_14 F3 11110011 TJ1BYTE7_13 TJ1BYTE6_13 TJ1BYTE5_13 TJ1BYTE4_13 TJ1BYTE3_13 TJ1BYTE2_13 TJ1BYTE1_13 TJ1BYTE0_13 F4 11110100 TJ1BYTE7_12 TJ1BYTE6_12 TJ1BYTE5_12 TJ1BYTE4_12 TJ1BYTE3_12 TJ1BYTE2_12 TJ1BYTE1_12 TJ1BYTE0_12 F5 11110101 TJ1BYTE7_11 TJ1BYTE6_11 TJ1BYTE5_11 TJ1BYTE4_11 TJ1BYTE3_11 TJ1BYTE2_11 TJ1BYTE1_11 TJ1BYTE0_11 F6 11110110 TJ1BYTE7_10 TJ1BYTE6_10 TJ1BYTE5_10 TJ1BYTE4_10 TJ1BYTE3_10 TJ1BYTE2_10 TJ1BYTE1_10 TJ1BYTE0_10 F7 11110111 TJ1BYTE7_9 TJ1BYTE6_9 TJ1BYTE5_9 TJ1BYTE4_9 TJ1BYTE3_9 TJ1BYTE2_9 TJ1BYTE1_9 TJ1BYTE0_9 F8 11111000 TJ1BYTE7_8 TJ1BYTE6_8 TJ1BYTE5_8 TJ1BYTE4_8 TJ1BYTE3_8 TJ1BYTE2_8 TJ1BYTE1_8 TJ1BYTE0_8 F9 11111001 TJ1BYTE7_7 TJ1BYTE6_7 TJ1BYTE5_7 TJ1BYTE4_7 TJ1BYTE3_7 TJ1BYTE2_7 TJ1BYTE1_7 TJ1BYTE0_7 FA 11111010 TJ1BYTE7_6 TJ1BYTE6_6 TJ1BYTE5_6 TJ1BYTE4_6 TJ1BYTE3_6 TJ1BYTE2_6 TJ1BYTE1_6 TJ1BYTE0_6 FB 11111011 TJ1BYTE7_5 TJ1BYTE6_5 TJ1BYTE5_5 TJ1BYTE4_5 TJ1BYTE3_5 TJ1BYTE2_5 TJ1BYTE1_5 TJ1BYTE0_5 FC 11111100 TJ1BYTE7_4 TJ1BYTE6_4 TJ1BYTE5_4 TJ1BYTE4_4 TJ1BYTE3_4 TJ1BYTE2_4 TJ1BYTE1_4 TJ1BYTE0_4 FD 11111101 TJ1BYTE7_3 TJ1BYTE6_3 TJ1BYTE5_3 TJ1BYTE4_3 TJ1BYTE3_3 TJ1BYTE2_3 TJ1BYTE1_3 TJ1BYTE0_3 FE 11111110 TJ1BYTE7_2 TJ1BYTE6_2 TJ1BYTE5_2 TJ1BYTE4_2 TJ1BYTE3_2 TJ1BYTE2_2 TJ1BYTE1_2 TJ1BYTE0_2 FF 11111111 TJ1BYTE7_1 TJ1BYTE6_1 TJ1BYTE5_1 TJ1BYTE4_1 TJ1BYTE3_1 TJ1BYTE2_1 TJ1BYTE1_1 TJ1BYTE0_1 36 Lucent Technologies Inc. Data Sheet August 1999 TMPR28051 STS-1/AU-3 (STM-0) Mapper Microprocessor Interface Description (continued) Register Architecture Description Hexadecimal notation is used in both the Address and the Reset Default columns in all the register description tables in this section. Device-Level Control, Alarm, and Mask Bits (0x00—0x16) Table 15. Registers 0x00—0x16: Device-Level Control, Alarm, and Mask Bits Address (Hex) Bit # Name Function 0x00 — — 7 TEST_CNT 6 5 4 3 B1ERRINS B2ERRINS B3ERRINS LATCH_CNT The bits in the register 0x00 are used for device-level control and error reporting. Factory Test Mode. TEST_CNT = 1 forces all internal counters to test mode and is intended for factory use only. This bit should always be set to 0. B1ERRINS, B2ERRINS, and B3ERRINS. B1ERRINS, B2ERRINS, and B3ERRINS all cause continuous BIP-8 errors to be transmitted in their respective BIP-8 values. 2 BLUECLKSEL 1 BIPBLKCNT 0 — Lucent Technologies Inc. Reset Default (Hex) 0x00 Latch Count. The device has a number of BIP, REI, and pointer adjustment counters that are all updated when the LATCH_CNT bit is written from 0 to 1. Nothing happens when the bit is written from 1 to 0. The only internal counter that is not updated by this bit is the test pattern counter. The device can accept a blue signal clock at either the exact DS1 rate (BLUECLKSEL = 0), or at 16 times the DS1 rate (BLUECLKSEL = 1). BIP Error Counter or BIP Block Counter. The BIPBLKCNT bit is used to determine whether the BIP counters count the number of BIP errors (BIPBLKCNT = 0) or the number of BIP blocks that contain errors (BIPBLKCNT = 1). Reserved. 37 Data Sheet August 1999 TMPR28051 STS-1/AU-3 (STM-0) Mapper Microprocessor Interface Description (continued) Register Architecture Description (continued) Table 15. Registers 0x00—0x16: Device-Level Control, Alarm, and Mask Bits (continued) 38 Address (Hex) Bit # Name Function 0x01 — — 7 REI_EN 6 AUTO_LRDI 5 TXPAISINS 4 DJACTL 3 2 — STS1SCR 1 STS1DSCR 0 STS1LB The bits in register 0x01 are used to provision device-level control bits. The functions of these bits are described below. REI_Enable. When REI_EN = 1, the device will automatically insert the appropriate REI into the transmitted Z2, G1, V5 overhead bytes whenever it receives BIP errors. If REI_EN = 0, then the automatic insertion of REI is disabled. When AUTO_LRDI = 1, the device will automatically insert line RDI. When TXPAISINS = 1, the device will write all 1s into the pointer bytes (H1—H3) and all of the synchronous payload envelope (SPE). The DJACTL is used to enable the use of the built-in digital jitter attenuators. When DJACTL = 0, the gapped DS1/E1 clock and data are transmitted by the device; otherwise, the smoothed clock and data are transmitted. Reserved. STS-1_Scramble. When STS1SCR = 1, the device scrambles the outgoing STS-1 frame according to the SONET frame synchronous scrambling sequence 1 + x6 + x7. The sequence is reset to 1111111 at the beginning of the byte following the C1 byte and scrambles all of the STS-1 data except the A1, A2, and C1 bytes. When this bit is 0, then the transmit data is not scrambled. STS-1_Descramble. When STS1DSCR = 1, the device descrambles the incoming STS-1 frame according to the SONET frame synchronous descrambling sequence 1 + x6 + x7. The sequence is reset to 1111111 at the beginning of the byte following the C1 byte and descrambles all of the STS-1 data except the A1, A2, and C1 bytes. When this bit is 0, then the received data is not descrambled. STS-1_Loopback. When STS1LB = 1, the transmitted data is looped back to the receive side. When this bit is 0, the device uses the received data. Reset Default (Hex) 0x00 Lucent Technologies Inc. Data Sheet August 1999 TMPR28051 STS-1/AU-3 (STM-0) Mapper Microprocessor Interface Description (continued) Register Architecture Description (continued) Table 15. Registers 0x00—0x16: Device-Level Control, Alarm, and Mask Bits (continued) Address (Hex) Bit # Name Function 0x02 — — 7 6 RXSERIAL TXSERIAL 5 4 RXPARITY TXPARITY 3 2 1 0 RXSTS1EDGE TXSTS1EDGE RXDS1EDGE TXDS1EDGE The bits in register 0x02 are used to set the edges that retime data into and out of the device. Receive Serial Data, Transmit Serial Data. Both the RXSERIAL and TXSERIAL bits are used to set the type of STS-1 data. When either serial bit is written to 1, the STS-1 rail runs in serial mode; otherwise, the STS-1 rail runs in parallel mode. Both the RXPARITY and TXPARITY bits determine the type of parity for data buses. When these bits are written with 1, odd parity is used; otherwise, even parity is used. When the edge register bits are set to 1, the data is retimed (either in or out) by the rising clock edge; when set to a logic 0, the data is retimed by the falling clock edge. Note that the TSTS1SERIAL data always comes out on the rising edge of the TSTS1CLKOUT. Reset Default (Hex) 0x00 Note: The TXSTS1EDGE (bit 2) should always be set to 0 to avoid potential race condition inside the device. Lucent Technologies Inc. 39 Data Sheet August 1999 TMPR28051 STS-1/AU-3 (STM-0) Mapper Microprocessor Interface Description (continued) Register Architecture Description (continued) Table 15. Registers 0x00—0x16: Device-Level Control, Alarm, and Mask Bits (continued) Address (Hex) Bit # Name Function 0x03 — — 7 TRACEER 6 RXPARER 5 4 — H4LOMF 3 STS1PAIS 2 STS1LOP 1 STS1LOF 0 STS1OOF 7 6 5 4 3 2 1 0 TRACEERMSK RXPARERMSK — H4LOMFMSK STS1PAISMSK STS1LOPMSK STS1LOFMSK STS1OOFMSK The bits in register 0x03 are used to report problems at the receive STS-1 level. The device monitors the received J1 byte for path trace mismatches. When the received J1 byte pattern does not match the previously received pattern, then TRACEER = 1. This is an event bit and is held until read. RXPARER = 1 reports a parity violation on the receive STS-1 data bus when in parallel mode. This is an event bit and is held until read. Reserved. The device monitors the incoming H4 byte for loss of multiframe indication (H4LOMF = 1). This is an event bit and is held until read. STS1PAIS = 1 reports path AIS as detected by the receive pointer interpreter. This is a current state bit with a minimum persistence of 375 µs. The indications reset if the condition is no longer true. STS1LOP = 1 reports a loss of STS-1 pointer. This is a current state bit with a minimum persistence of 125 µs. The indications reset if the condition is no longer true. STS1LOF = 1 reports an out of frame condition that persists for more than 3 ms. This is a current state bit with a minimum persistence of 3 ms. The indications reset if the condition is no longer true. STS1OOF = 1 reports an out of frame condition on the receive STS-1 signal. This is a current state bit with a minimum persistence of 500 µs. The indications reset if the condition is no longer true. The bits in register 0x04 are used to mask the contributions of the bits in register 0x03 to the microprocessor interrupt output, INT. When any of these bits are at a logic 1 level, the corresponding bit in register 0x03 is masked from contributing to the output interrupt. The reset default for this register masks all of the bits in register 0x03. 0x04 40 Reset Default (Hex) 0x00 0xFF Bit 5 is reserved. Lucent Technologies Inc. Data Sheet August 1999 TMPR28051 STS-1/AU-3 (STM-0) Mapper Microprocessor Interface Description (continued) Register Architecture Description (continued) Table 15. Registers 0x00—0x16: Device-Level Control, Alarm, and Mask Bits (continued) Address (Hex) Bit # Name Function 0x05 — — 7 ESOFCOM 6 VTSIZECOM 5 4 VTLOPCOM VTRFIRDICOM 3 VTAISCOM 2 VTLABCOM 1 AISLOCCOM 0 STS1LOS The bits in register 0x05 are used to report problems at the receive DS1/E1 and VT level. The bits in this register are composite bits. The bits that report the problems at the VT level are located in 28 separate registers (one for each VT) as described below. These composite bits are placed in the register map to determine which type of error was detected. When any one of the 28 VT bits indicates an error, the corresponding composite bit indicates an error. ESOFCOM = 1 reports that the device has experienced either a receive or a transmit elastic store overflow. This is an event bit and is held until read. VTSIZECOM = 1 reports incorrect VT size bits. The valid VT size bits are 11 for VT1.5 and 10 for VT2. VTLOPCOM = 1 reports LOP-V. VTRFIRDICOM = 1 reports the fact that the VT RFI/RDI bits have been received as a new consistent value for three consecutive superframes. This is an event bit and is held until read. VTAISCOM = 1 reports the fact that the V1 and V2 pointer bytes are all 1s for three consecutive superframes. VTLABCOM = 1 reports change of state of the VT label. In order for this bit to be set, the device must detect three consecutive consistent new values for the VT label. This is an event bit and is held until read. AISLOCCOM = 1 reports an AIS or LOC condition on DS1/ E1. This is a current state bit with a minimum persistence of 2 ms. The indications reset if the condition is no longer true. STS1LOS = 1 reports an STS-1 loss of signal. The bits in register 0x91 are used to set the number of 6.48 MHz clock periods required to declare received STS-1 loss of signal. If this value is 0x00, then STS1LOS is not declared. This is a current state bit with a minimum persistence of 250 µs. The indications reset if the condition is no longer true. Lucent Technologies Inc. Reset Default (Hex) 0x00 41 Data Sheet August 1999 TMPR28051 STS-1/AU-3 (STM-0) Mapper Microprocessor Interface Description (continued) Register Architecture Description (continued) Table 15. Registers 0x00—0x16: Device-Level Control, Alarm, and Mask Bits (continued) Address (Hex) Bit # Name Function 0x06 7 6 5 4 3 2 1 0 ESOFMSK VTSIZEMSK VTLOPMSK VTRFIRDIMSK VTAISMSK VTLABMSK AISLOCMSK STS1LOSMSK The bits in register 0x06 are used to mask the contributions of the bits in register 0x05 to the microprocessor interrupt output, INT. When any of these bits is 1, the corresponding bit in register 0x05 is masked from contributing to the output interrupt. The reset default for this register masks all of the bits in register 0x05. 0x07 7—1 0 — DS1_E1N 0x08 42 7 LATCH_TP 6 RCV_FRAME 5 4 RCV_PAT-1 RCV_PAT-0 3 ERROR_INS 2 XMT_FRAME 1 0 XMT_PAT-1 XMT_PAT-0 This register reports the hardware selected device mode. Reserved. These bits are set to 0 at reset. This bit reports the DS1_E1N value from the device input pin. The bits in register 0x08 are used to configure the test pattern generator and detector. A 0 to 1 transition on LATCH_TP causes the running error count to be latched and presented to the microprocessor. RCV_FRAME = 1 causes a framed test pattern to be expected; a 0 causes an unframed test pattern to be expected. RCV_PAT[1:0] determines the receive test pattern sequence where 00 = QRSS, 01 = 223 – 1, 10 = 220 – 1, 11 = 215 – 1. ERROR_INS causes a single error to be inserted in the data (not frame) bits after a 0 to 1 transition. XMT_FRAME = 1 causes a framed test pattern to be generated; a 0 causes an unframed test pattern to be generated. XMTPAT-[1:0] determines the transmit test pattern sequence where 00 = QRSS, 01 = 223 – 1, 10 = 220 – 1, 11 = 215 – 1. Reset Default (Hex) 0xFF 0x01 0x00 Lucent Technologies Inc. Data Sheet August 1999 TMPR28051 STS-1/AU-3 (STM-0) Mapper Microprocessor Interface Description (continued) Register Architecture Description (continued) Table 15. Registers 0x00—0x16: Device-Level Control, Alarm, and Mask Bits (continued) Address (Hex) Bit # Name 0x09 — 7 — TP_DS1E1N 6 TP_INVERT 5 TPDROPSIDE 4 3 2 1 0 — TPDROP-4 TPDROP-3 TPDROP-2 TPDROP-1 TPDROP-0 — 7 TPOOS 0x0B 6 5 4 3 2 1 0 7—0 TPERR-6 TPERR-5 TPERR-4 TPERR-3 TPERR-2 TPERR-1 TPERR-0 F2-[7:0] 0x0C 7—0 C2-[7:0] 0x0A Lucent Technologies Inc. Function Reset Default (Hex) The bits in register 0x09 are used to set up the test pattern. 0x00 TP_DS1E1N = 1 sets the frame sequence to DS1; TP_DS1E1N = 0 sets the frame sequence to E1. TP_INVERT = 1 forces the test pattern sequence to be inverted. When TPDROPSIDE = 1, the test pattern is dropped from the SPE drop logic. The DS1/E1 output that is dropped is described in the Microprocessor Interface Description (continued) section on page 50. When TPDROPSIDE = 0, the DS1/E1 that is dropped is the same as described in the DS1/E1 Insertion Selection section on page 47. The TPDROP[4:0] bits are used to select the VT that needs to be dropped. The bits in register 0x0A indicate the condition of the test pattern detector. If the test pattern detector has been able to synchronize on the dropped signal, then TPOOS = 0. When TPOOS = 0, then the TPERR-[6:0] bits are used to keep count of the number of bit errors the test pattern detector has seen. This error count is cleared when the register is read by the microprocessor. 0x80 The F2-[7:0] bits in register 0x0B are used to report the F2 receive byte in the path overhead. The C2-[7:0] bits in register 0x0C are used to report the received C2 label byte in the path overhead. The default value for this register indicates path unequipped. 0x00 0x00 43 Data Sheet August 1999 TMPR28051 STS-1/AU-3 (STM-0) Mapper Microprocessor Interface Description (continued) Register Architecture Description (continued) Table 15. Registers 0x00—0x16: Device-Level Control, Alarm, and Mask Bits (continued) Address (Hex) Bit # Name 0x0D — — 0x0E 7 6 5 4 3 2 1 0 — G1-5 G1-6 G1-7 G1-8 — K2-6 K2-7 K2-8 — 7 6 5 4 3 2 1 0 C2#DET-3 C2#DET-2 C2#DET-1 C2#DET-0 F2#DET-3 F2#DET-2 F2#DET-1 F2#DET-0 — — 7 6 5 4 3 2 1 0 G1#DET-3 G1#DET-2 G1#DET-1 G1#DET-0 K2#DET-3 K2#DET-2 K2#DET-1 K2#DET-0 7—0 F2INS-[7:0] 0x0F 0x10 44 Function The bits in register 0x0D are used to report path and section overhead. The G1-[5:8] are used to report the four least significant bits of the G1 path overhead byte. Reset Default (Hex) 0x00 Reserved. The K2-[6:8] bits are used to report the three least significant bits of the K2 section overhead byte. The bits in register 0x0E are used to set the number of consecutive, consistent values required by registers 0x0B and 0x0C before updating their values. The C2#DET-[3:0] bits are used to set the number of consecutive and consistent values required before updating C2-[7:0] bits in register 0x0C. The F2#DET-[3:0] bits are used to set the number of consecutive and consistent values required before updating F2-[7:0] bits in register 0x0B. Valid values for this register range from 3 to 15. Any value less than 3 defaults to 2 inside the device. The bits in register 0x0F are used to set the number of consecutive, consistent values required by register 0x0D before updating their values. The G1#DET-[3:0] bits are used to set the number of consecutive and consistent values required before updating G1-[5:8] bits in register 0x0D. The K2#DET-[3:0] bits are used to set the number of consecutive and consistent values required before updating K2-[6:8] bits in register 0x0D. Valid values for this register range from 3 to 15. Any value less than 3 defaults to 2 inside the device. The F2INS-[7:0] bits in register 0x10 are used to set the values to be transmitted in the F2 byte. 0x33 0x33 0x00 Lucent Technologies Inc. Data Sheet August 1999 TMPR28051 STS-1/AU-3 (STM-0) Mapper Microprocessor Interface Description (continued) Register Architecture Description (continued) Table 15. Registers 0x00—0x16: Device-Level Control, Alarm, and Mask Bits (continued) Address (Hex) Bit # Name Function 0x11 — — 7 6 5 4 3 2 1 0 G1INS-5 G1INS-6 G1INS-7 G1INS-8 — K2INS-6 K2INS-7 K2INS-8 The bits in register 0x11 are used to set the values to be transmitted in the G1 and K2 bytes. The G1INS-[5:8] bits are used to set values to be transmitted in the four least significant bits of the G1 byte. The G1 byte is written by the microprocessor. — — 7—6 5 — RBUSMODE 4 3 RBUSPOS-1 RBUSPOS-0 2 TBUSMODE 1 0 TBUSPOS-1 TBUSPOS-0 0x12 Lucent Technologies Inc. Reserved. The K2INS-[6:8] bits are used to set the values to be transmitted in the three least significant bits of the K2 byte. AUTO_LRDI bit (bit 6 of register 0x01) should be set to 0 for K2INS-[6:8] insertion (i.e., K2 insertion) through the microprocessor interface. The bits in register 0x12 are used to set the bus mode of operation for both the transmit and receive sides. Reserved. The RBUSMODE bit sets the STS-1 receive side of the device to the bus mode of operation when a 1; otherwise, the device is set to nonbus mode. The RBUSPOS-[1:0] sets the time slot for the receive side. 00 causes the receive side not to listen. Otherwise, the time slots are determined by the binary value of these bits as follows: 01 = time slot 1 10 = time slot 2 11 = time slot 3 The TBUSMODE bit sets the STS-1 transmit side of the device to the bus mode of operation when a 1; otherwise, the device is set to nonbus mode. The TBUSPOS-[1:0] sets the time slot for the transmit sides. 00 causes the transmit side not to transmit. Otherwise, the time slots are determined by the binary value of these bits as follows: 01 = time slot 1 10 = time slot 2 11 = time slot 3 Reset Default (Hex) 0x00 0x24 45 Data Sheet August 1999 TMPR28051 STS-1/AU-3 (STM-0) Mapper Microprocessor Interface Description (continued) Register Architecture Description (continued) Table 15. Registers 0x00—0x16: Device-Level Control, Alarm, and Mask Bits (continued) Address (Hex) Bit # Name 0x13 7—4 3 2 1 0 — S1INS-3 S1INS-2 S1INS-1 S1INS-0 7 6 5 4 S1#DET-3 S1#DET-2 S1#DET-1 S1#DET-0 3 2 1 0 7—0 S1-3 S1-2 S1-1 S1-0 DEVID-[7:0] — 7—4 3 2 1 0 — — DEVVER-3 DEVVER-2 DEVVER-1 DEVVER-0 0x14 0x15 0x16 46 Function Reserved. The S1INS-[3:0] bits in register 0x13 are used to set the four least significant bits of the S1 path overhead byte. Reset Default (Hex) 0x00 The bits in register 0x14 are for the S1 path overhead byte. The S1#DET-[3:0] bits are used to set the number of consecutive, consistent values required by the receive S1 byte before updating the value. Valid values for these registers range from 3 to 15. Any value less than 3 defaults to 2 inside the device. The S1-[3:0] bits are used to report the four least significant bits of the S1 path overhead byte. 0x30 DEVID-[7:0] bits in register 0x15 are used to report the device ID. The DEVVER-[3:0] bits in register 0x16 are used to report the device version. Anytime there are silicon changes that modify the operation of this device, this register will be incremented by 1. 0x51 — Notes: The reset default value is the device version. Bits 7—4 are reserved. Lucent Technologies Inc. Data Sheet August 1999 TMPR28051 STS-1/AU-3 (STM-0) Mapper Microprocessor Interface Description (continued) Register Architecture Description (continued) DS1/E1 Insertion Selection Table 16. Registers 0x17—0x32: DS1/E1 Insertion Selection Address (Hex) Bit # Name Function 0x17—0x2B — 7 — DS1/E1AIS[1:21] 6 DS1/E1LOC[1:21] 5 DS1/E1LB[1:21] 4 3 2 1 0 DS1/E1INS4_[1:21] DS1/E1INS3_[1:21] DS1/E1INS2_[1:21] DS1/E1INS1_[1:21] DS1/E1INS0_[1:21] Registers 0x17—0x2B report DS1 or E1 conditions. The DS1/E1AIS[1:21] bits report the received DS1/E1 AIS condition. When any of these bits is 1, the corresponding DS1/E1 input has an AIS condition. This value represents the current received state. The AIS condition is not latched by these bits. The indication is reset when the condition is no longer true. The DS1/E1LOC[1:21] bits in bit 6 report the received DS1/E1 loss of clock condition. When any of these bits is 1, the corresponding DS1/E1 input has a received loss of clock condition. This value represents the current received state. The loss of clock condition is not latched by these bits. The indication is reset when the condition is no longer true. The DS1/E1LB[1:21] bits in bit 5 are used to force DS1/ E1 loopback from output to input. When any of these bits is 1, the corresponding DS1/E1 input is overwritten by the outgoing DS1/E1 signal for that location. The DS1/E1INS[4:0]_[1:21] bits in registers 0x17— 0x2B are used to select the DS1/E1 input for the transmit VT1.5 slots. The DS1/E1 selected corresponds to the decimal value of the programmed 5 bits. If these bits contain 00000, the device will insert unequipped into the corresponding VT1.5 slot. If these bits contain 11101—11110, the device will insert AIS-V into the corresponding VT1.5 slot. Since the device defaults all 28 of these registers to the value 00000, all of the 28 VT1.5 slots begin transmitting unequipped following reset. The value 11111 inserts the test pattern. Addresses 0x17— 0x32 correspond to VT1.5s as shown in Table 17, page 49. Lucent Technologies Inc. Reset Default (Hex) Value is 0. 47 Data Sheet August 1999 TMPR28051 STS-1/AU-3 (STM-0) Mapper Microprocessor Interface Description (continued) Register Architecture Description (continued) Table 16. Registers 0x17—0x32: DS1/E1 Insertion Selection (continued) Address (Hex) Bit # Name Function 0x2C—0x32 — 7 — DS1AIS[22:28] 6 DS1LOC[22:28] 5 DS1LB[22:28] 4 3 2 1 0 DS1INS4_[22:28] DS1INS3_[22:28] DS1INS2_[22:28] DS1INS1_[22:28] DS1INS0_[22:28] Registers 0x17—0x32 report DS1 conditions. The DS1/E1AIS[1:21] and DS1AIS[22:28] bits report the received DS1 AIS condition. When any of these bits is 1, the corresponding DS1 input has an AIS condition. This value represents the current received state. The AIS condition is not latched by these bits. The indication is reset when the condition is no longer true. The DS1/E1LOC[1:21] and DS1LOC[22:28] bits in bit 6 report the received DS1 loss of clock condition. When any of these bits is 1, the corresponding DS1 input has a received loss of clock condition. This value represents the current received state. The loss of clock condition is not latched by these bits. The indication is reset when the condition is no longer true. The DS1/E1LB[1:21] and DS1LB[22:28] bits in bit 5 are used to force DS1 loopback from output to input. When any of these bits is 1, the corresponding DS1 input is overwritten by the outgoing DS1 signal for that location. The DS1/E1INS[4:0]_[1:21] and DS1INS[4:0]_[22:28] bits in registers 0x17—0x32 are used to select the DS1 input for the transmit VT1.5 slots. The DS1 selected corresponds to the decimal value of the programmed 5 bits. If these bits contain 00000, the device will insert unequipped into the corresponding VT1.5 slot. If these bits contain 11101— 11110, the device will insert AIS-V into the corresponding VT1.5 slot. Since the device defaults all 28 of these registers to the value 00000, all of the 28 VT1.5 slots begin transmitting unequipped following reset. The value 11111 inserts the test pattern. Addresses 0x17—0x32 correspond to VT1.5s as shown in Table 17, page 49. 48 Reset Default (Hex) Value is 0. Lucent Technologies Inc. Data Sheet August 1999 TMPR28051 STS-1/AU-3 (STM-0) Mapper Microprocessor Interface Description (continued) Register Architecture Description (continued) Table 17. DS1/E1 Insertion Selection Format VT1.5 # 1 2 3 • • 26 27 28 VT Group # 1 2 3 • • 5 6 7 VT # 1 1 1 • • 4 4 4 Address 17 18 19 • • 30 31 32 5 Programmed DS1/E1INS[4:0]_x Bits Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 • • • • • • • • • • 1 1 0 1 0 1 1 0 1 1 1 1 1 0 0 VT Drop Selection (0x33—0x4E) Table 18. Registers 0x33—0x4E: VT Drop Selection Address (Hex) Bit # Name 0x33—0x4E 7 6 — RXESOF[1:28] 5 TXESOF[1:28] 4 3 2 1 0 VTDROP4_[1:28] VTDROP3_[1:28] VTDROP2_[1:28] VTDROP1_[1:28] VTDROP0_[1:28] Function Reset Default (Hex) Reserved. Value is 0. The RXESOF[1:28] bits (see VT Drop Selection Registers, Table 14, page 25) report the receive elastic store overflow condition. When any of these bits is 1, the corresponding DS1/E1 output has experienced an elastic store overflow. This value is latched by these bits until read by the microprocessor. The TXESOF[1:28] bits (see Control, Alarm, and Mask Bit Registers, Table 14, page 23) report the transmit elastic store overflow condition. When any of these bits is 1, the corresponding DS1/E1 input has experienced an elastic store overflow. This value is latched by these bits until read by the microprocessor. These bits in registers 0x33—0x4E are used to select the VT1.5 slot for the DS1/E1 outputs. The VT1.5 selected in Table 17 corresponds to the decimal value of these programmed 5 bits. If these bits contain 00000, or 11101— 11111, then the device inserts the following: 00000 = device does not transmit any clock or data 11101 = device inserts a DS1 AIS into the corresponding DS1/E1 slot 11110 = device inserts a E1 AIS into the corresponding DS1/E1 slot 11111= device inserts the test pattern Since the device defaults these bits in all 28 of these registers to 00000, there will be no clock or data in any of the 28 DS1 or 21 E1 slots after reset. VTDROP[4:0]_[1:28], bits 00001—11100, correspond to the specific VT1.5 streams as shown in Table , page 50. Address 0x33— 0x4E correspond to VTs as shown in Table 20, also on page 50. Lucent Technologies Inc. 49 TMPR28051 STS-1/AU-3 (STM-0) Mapper Data Sheet August 1999 Microprocessor Interface Description (continued) Register Architecture Description (continued) Table 19. VT Drop Selection Format VT1.5 Drop # 1 2 3 • • 26 27 28 VT Group # 1 2 3 • • 5 6 7 VT # 1 1 1 • • 4 4 4 5 Programmed DS1/E1INS[4:0]_x or VT Drop Data Bits Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 • • • • • • • • • • 1 1 0 1 0 1 1 0 1 1 1 1 1 0 0 Table 20. VT to Address Mapping 50 VT # Address 1 33 2 34 3 35 • • • • 26 4C 27 4D 28 4E Lucent Technologies Inc. Data Sheet August 1999 TMPR28051 STS-1/AU-3 (STM-0) Mapper Microprocessor Interface Description (continued) Register Architecture Description (continued) Tx VT Overhead Insertion Control (0x4F—0x6A) Table 21. Registers 0x4F—0x6A: Tx VT Overhead Insertion Control Address (Hex) Bit # Name Function 0x4F—0x6A — — 7 BIP2ERINS[1:28] 6 VTRFIRDIEN[1:28] 5 VTRFIINS[1:28] 4 VTRDIINS[1:28] 3 VTAISINS[1:28] 2 1 0 VTLABINS2_[1:28] VTLABINS1_[1:28] VTLABINS0_[1:28] The bits in these registers provision the transmitted VT overhead byte, V5. Each BIP2ERINS[1:28] bit = 1 forces the selected VT to transmit inverted BIP-2 bits which causes the downstream receiver to declare continuous BIP-2 errors. The VTRFIRDIEN[1:28] bits control whether RDI-V bits are inserted automatically by the device (VTRFIRDIEN[1:28] = 1) or manually by the microprocessor (VTRFIRDIEN[1:28] = 0). The VTRFIINS[1:28] bits directly program the transmitted RFI-V bits when the corresponding VTRFIRDIEN[1:28] bits = 1. The VTRDIINS[1:28] bits directly program the transmitted RDI-V bits when the corresponding VTRFIRDIEN[1:28] bits = 1. Each VTAISINS[1:28] bit = 1 forces AIS-V to be written into the corresponding VT slot. This consists of writing all 1s into the selected VT slot. The VTLABINS[2:0]_[1:28] bits directly program the transmitted VT label bits. These bits are used to carry unequipped information (VTLABINS[2:0]_[1:28] = 000) as well as specific payload mappings and AIS-V. Lucent Technologies Inc. Reset Default (Hex) Value is 0. 51 Data Sheet August 1999 TMPR28051 STS-1/AU-3 (STM-0) Mapper Microprocessor Interface Description (continued) Register Architecture Description (continued) Rx VT Drop Monitoring (0x6B—0x86) Table 22. Registers 0x6B—0x86: Rx VT Drop Monitoring Address (Hex) Bit # Name 0x6B—0x86 — — 7 6 5 4 3 0x87 52 2 1 0 7—0 Function The bits in register 0x6B—0x86 are used to report the VT slot status. VTSIZEER[1:28] The VTSIZEER[1:28] bits report incorrect VT size bits when the value is 1. M = 1 reports an AIS or LOC condition on DS1/E1. These are current state bits with a minimum persistence of 500 µs. The indications reset if the condition is no longer true. VTLOP[1:28] The VTLOP[1:28] bits report VT loss of pointer when the value is 1. These are current state bits with a minimum persistence of 500 µs. The indications reset if the condition is no longer true. VTRDI1_[1:28] The VTRDI[1:0]_[1:28] bits report VT RDI. These are curVTRDI0_[1:28] rent state bits with a minimum persistence of 500 µs. The indications reset if the condition is no longer true. VTAIS[1:28] Each VTAIS[1:28] bit = 1 reports that the V1 and V2 pointer bytes are all 1s for three consecutive superframes. These are current state bits with a minimum persistence of 1500 µs. The indications reset if the condition is no longer true. VTLAB2_[1:28] The VTLAB[2:0]_[1:28] bits report the received VT labels. VTLAB1_[1:28] These bits have a minimum persistence of 500 µs. VTLAB0_[1:28] — Reserved. Reset Default (Hex) Value is 0. 0x00 Lucent Technologies Inc. Data Sheet August 1999 TMPR28051 STS-1/AU-3 (STM-0) Mapper Microprocessor Interface Description (continued) Register Architecture Description (continued) Table 23. Registers 0x88—0x89: Signal Override Control Address (Hex) Bit # Name Function 0x88 — — 7 6 5 4 3 2 1 0 TVTG-7 TVTG-6 TVTG-5 TVTG-4 TVTG-3 TVTG-2 TVTG-1 TOVERRIDE The bits in register 0x88 are used to override the DS1_E1N signal pin. These bits represent the seven VT Groups and can be individually programmed as follows. If TVTG-1 . . . 7 = 1, the signal will be DS1; otherwise, the signal will be E1. — — 7 6 5 4 3 2 1 0 RVTG-7 RVTG-6 RVTG-5 RVTG-4 RVTG-3 RVTG-2 RVTG-1 ROVERRIDE 0x89 Lucent Technologies Inc. If TOVERRIDE = 1, then the type of signal in each VT Group is determined by the 7 TVTG bits. The bits in register 0x89 are used to override the DS1_E1N signal pin. These bits represent the seven VT Groups and can be individually programmed as follows. If RVTG-1 . . . 7 = 1, the signal will be DS1; otherwise, the signal will be E1. Reset Default (Hex) 0x00 0x00 If ROVERRIDE = 1, then the type of signal in each VT Group is determined by the 7 RVTG bits. 53 Data Sheet August 1999 TMPR28051 STS-1/AU-3 (STM-0) Mapper Microprocessor Interface Description (continued) Register Architecture Description (continued) Digital Jitter Attenuator Controls (0x8A—0x8F) Table 24. Registers 0x8A—0x8F: Digital Jitter Attenuator Controls Address (Hex) Bit # Name 0x8A—0x8F — — 0x8A 0x8B 0x8C 0x8D 0x8E 0x8F 7—0 7—0 7—0 7—0 7—0 7—0 SCALETHR-[7:0] DJASCALE-[15:8] DJASCALE-[7:0] DJAGTHR-[23:16] DJAGTHR-[15:8] DJAGTHR-[7:0] 54 Function Reset Default (Hex) The bits in registers 0x8A—0x8F are used to control variSee ous aspects of the digital jitter attenuator. Two programma- below. ble terms are used to set the 2nd order loop damping factor and natural frequency of the PLL. These terms are the gain threshold, set by DJAGTHR-[23:0] in registers 0x8D—0x8F, and scale value, set by DJASCALE-[15:0] in registers 0x8B—0x8C. The PLL bandwidth can be set, using the above registers, to accommodate various system constraints. Scale Threshold. 0xFF Scale Value. 0x0F 0xCA Gain Threshold. 0x00 0xFE 0x50 Lucent Technologies Inc. Data Sheet August 1999 TMPR28051 STS-1/AU-3 (STM-0) Mapper Microprocessor Interface Description (continued) Register Architecture Description (continued) Table 25. Register 0x91: STS-1 LOS Detect/Test Pattern Edge Control Address (Hex) Bit # Name Function 0x91 — — The bits in register 0x91 are used to set the number of 6.48 MHz clock periods required to declare received STS-1 loss of signal. The two least significant bits have a dual purpose and can also be used to program the edge on which the QRSS pattern generator and detector data is clocked. 0x92—0xBE 7 6 5 4 3 2 1 LOSDET-7 LOSDET-6 LOSDET-5 LOSDET-4 LOSDET-3 LOSDET-2 LOSDET-1/ TP_EDGE-1 0 LOSDET-0/ TP_EDGE-0 7—0 — Lucent Technologies Inc. Reset Default (Hex) 0x00 If this value is 0x00, then LOS is not declared; otherwise, the device looks for an all-zeros or all-ones input signal for the binary equivalent of this value in clock periods to declare LOS. These bits are used to set the number of 6.48 MHz clock periods required to declare received STS-1 loss of signal. This bit has a dual purpose. It can either contribute to the above count or can be programmed to set the edge on which the test pattern detector data is clocked in. When set to 0, the detector uses the rising edge of the selected input clock to retime the data, or uses the falling edge otherwise. This bit has a dual purpose. It can either contribute to the above count or can be programmed to set the edge on which the test pattern generator data is clocked out. When set to 0, the generator uses the rising edge of the blue signal clock to retime the data, or uses the falling edge otherwise. Reserved. Value is 0. 55 Data Sheet August 1999 TMPR28051 STS-1/AU-3 (STM-0) Mapper Microprocessor Interface Description (continued) Register Architecture Description (continued) Block Control (0xBF) Table 26. Register 0xBF: Block Control 56 Address (Hex) Bit # Name Function 0xBF — — 7—4 3 — TJ1BYTE 2 RJ1BYTE 1 REI_CNTS 0 BIP_CNTS The bits in register 0xBF control the information presented to the microprocessor from the registers 0xC0—0xFF. These last 64 bytes will display different results depending on the value programmed into this byte. A hierarchy of evaluation of these bytes occurs in the following three ways presented in the description of bits 2, 1, 0. Reserved. These bits are set to 0. If TJ1BYTE = 1, the transmitted J1 byte values are presented. These registers are read/write. Any values written into these registers will change the J1 byte values that are transmitted. If RJ1BYTE = 1, the received J1 bytes are presented (read only). If REI_CNTS = 1, REI error information is presented (read only). If BIP_CNTS = 1, BIP error information is presented, regardless of the values of the other bits in this register (read only). Reset Default (Hex) 0x00 Lucent Technologies Inc. Data Sheet August 1999 TMPR28051 STS-1/AU-3 (STM-0) Mapper Microprocessor Interface Description (continued) Register Architecture Description (continued) Detected BIP Errors (0xC0—0xFD) Table 27. Registers 0xC0—0xFD: Detected BIP Errors Note: Bits in registers 0xC0—0xFF can have one of four configurations, depending upon the setting of register 0xBF. When register 0xBF is set for BIP_CNTS = 1, the bytes in registers 0xC0—0xFD are used to count the number of BIP errors detected by the device. Address (Hex) Bit # Name 0xC0 0xC1 0xC2 0xC3 0xC4 0xC5 0xC6— 0xFC* 7—0 7—0 7—0 7—0 7—0 7—0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 B1BIPCNT-[15:8] B1BIPCNT-[7:0] B2BIPCNT-[15:8] B2BIPCNT-[7:0] B3BIPCNT-[15:8] B3BIPCNT-[7:0] VT[1:28]PTR+3 VT[1:28]PTR+2 VT[1:28]PTR+1 VT[1:28]PTR+0 BIP2CNT11_[1:28] BIP2CNT10_[1:28] BIP2CNT9_[1:28] BIP2CNT8_[1:28] BIP2CNT7_[1:28] BIP2CNT6_[1:28] BIP2CNT5_[1:28] BIP2CNT4_[1:28] BIP2CNT3_[1:28] BIP2CNT2_[1:28] BIP2CNT1_[1:28] BIP2CNT0_[1:28] 0xC7— 0xFD† Function Registers 0xC0—0xC5. The first six registers in the block, 0xC0—0xC5, are the BIP errors detected by B1, B2, and B3. Registers 0xC6—0xFD. The remaining registers in the block indicate the errors seen by the BIP-2 error detectors in the individual VT1.5 slots. Reset Default (Hex) Value is 0. Value is 0. Since the BIP-2 errors only require 12 bits, the VT pointer increment counts are also presented in these registers. The values in all of these counters are latched by the LATCH_CNT bit in register 0x00. (See the STS-1/AU-3 Terminate section, page 16 and page 17.) * These registers are not contiguous, i.e., every other register in this group is shown (0xC6, 0xC8, 0xCA, . . . 0xFC) per the register map, page 29 and page 30. † These registers are not contiguous, i.e., every other register in this group is shown (0xC7, 0xC9, 0xCB, . . . 0xFD) per the register map, page 29 and page 30. Table 28. Registers 0xFE, 0xFF: Received SONET/SDH Pointer Value When register 0xBF is set for BIP_CNTS = 1, the bytes in registers 0xFE—0xFF are used to report the received SONET/SDH pointer value. Address (Hex) Bit # Name 0xFE 7—0 SPTR+[7:0] 0xFF 7—0 SPTR–[7:0] Lucent Technologies Inc. Function Register 0xFE. The SPTR+[7:0] bits report the SONET pointer increment value. Register 0xFF. The SPTR–[7:0] bits report the SONET pointer decrement value. Reset Default (Hex) 0x00 0x00 57 Data Sheet August 1999 TMPR28051 STS-1/AU-3 (STM-0) Mapper Microprocessor Interface Description (continued) Register Architecture Description (continued) Detected REI Errors (0xC0—0xFD) Table 29. Registers 0xC0—0xFD: Detected REI Errors Note: Bits in registers 0xC0—0xFF can have one of four configurations, depending upon the setting of register 0xBF. When register 0xBF is set for BIP_CNTS = 0 and REI_CNTS = 1, the bytes in registers 0xC0—0xFD are used to count the number of REI errors detected by the device. Address (Hex) Bit # Name 0xC0 0xC1 0xC2 0xC3 0xC4 0xC5 0xC6— 0xFC* 7—0 7—0 7—0 7—0 7—0 7—0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 — 0xC7— 0xFD† B2REI-[15:8] B2REI-[7:0] B3REI-[15:8] B3REI-[7:0] VT[1:28]PTR–3 VT[1:28]PTR–2 VT[1:28]PTR–1 VT[1:28]PTR–0 — VTREI10_[1:28] VTREI9_[1:28] VTREI8_[1:28] VTREI7_[1:28] VTREI6_[1:28] VTREI5_[1:28] VTREI4_[1:28] VTREI3_[1:28] VTREI2_[1:28] VTREI1_[1:28] VTREI0_[1:28] Function Reset Default (Hex) Value is 0. Reserved. These bits are set to 0. Registers 0xC2—0xC5. The registers, 0xC2—0xC5, are the REI errors detected by B2 and B3 (see the STS-1/AU-3 Terminate section, page 16 and page 17). Registers 0xC6—0xFD. The remaining registers in the block indicate the errors seen by the REI error detectors in the individual VT1.5 slots. Since the VT REI errors only require 11 bits, the VT pointer decrement counts are also presented in these registers. The values in all of these counters is latched by the LATCH_CNT bit (bit 3) in register 0x00. (See the STS-1/AU-3 Terminate section, page 16 and page 17.) Note: In registers 0xC6—0xFC, bit 3 is reserved. * These registers are not contiguous, i.e., every other register in this group is shown (0xC6, 0xC8, 0xCA, . . . 0xFC) per the register map, page 31 and page 32. † These registers are not contiguous, i.e., every other register in this group is shown (0xC7, 0xC9, 0xCB, . . . 0xFD) per the register map, page 31 and page 32. Table 30. Registers 0xFE—0xFF: Reserved When register 0xBF is set for BIP_CNTS = 0 and REI_CNTS = 1, the bytes in registers 0xFE—0xFF are reserved. 58 Address (Hex) Bit # Name 0xFE 0xFF 7—0 7—0 — Function Reserved. These bits are set to 0. Reset Default (Hex) 0x00 0x00 Lucent Technologies Inc. Data Sheet August 1999 TMPR28051 STS-1/AU-3 (STM-0) Mapper Microprocessor Interface Description (continued) Register Architecture Description (continued) Receive J1 Path Trace Bytes (0xC0—0xFF) Table 31. Registers 0xC0—0xFF: Receive J1 Path Trace Bytes Note: Bits in registers 0xC0—0xFF can have one of four configurations, depending upon the setting of register 0xBF. When register 0xBF is set for BIP_CNTS = 0 and REI_CNTS = 0 and RJ1BYTE = 1, the bytes in registers 0xC0—0xFF are used to read the received 64 path trace bytes. Address (Hex) Bit # Name 0xC0—0xFF 7 6 5 4 3 2 1 0 RJ1BYTE7_[64:1] RJ1BYTE6_[64:1] RJ1BYTE5_[64:1] RJ1BYTE4_[64:1] RJ1BYTE3_[64:1] RJ1BYTE2_[64:1] RJ1BYTE1_[64:1] RJ1BYTE0_[64:1] Function Reset Default (Hex) The receive J1 path trace byte RJ1BYTE[7:0]_64 corre- Value is sponds to the first byte in the 64-byte sequence, while the 0. J1 path trace byte RJ1BYTE[7:0]_1 corresponds to the last byte in the 64-byte sequence. These specified receive J1 byte values are continuously written, modulo 64, into the 0xC0—0xFF registers. If any received byte does not match the previously received byte for its location, then TRACEER bit (bit 7) in register 0x03 is set to 1. Transmit J1 Path Trace Bytes (0xC0—0xFF) Table 32. Registers 0xC0—0xFF: Transmit J1 Path Trace Bytes Note: Bits in registers 0xC0—0xFF can have one of four configurations, depending upon the setting of register 0xBF. When register 0xBF is set for BIP_CNTS = 0 and RJ1BYTE = 1 and TJ1BYTE = 1, the bytes in registers 0xC0—0xFF are used to provision the transmit 64 path trace bytes. Address (Hex) Bit # Name 0xC0—0xFF 7 6 5 4 3 2 1 0 TJ1BYTE7_[64:1] TJ1BYTE6_[64:1] TJ1BYTE5_[64:1] TJ1BYTE4_[64:1] TJ1BYTE3_[64:1] TJ1BYTE2_[64:1] TJ1BYTE1_[64:1] TJ1BYTE0_[64:1] Lucent Technologies Inc. Function Reset Default (Hex) The transmit J1 path trace byte TJ1BYTE[7:0]_64 corre- Value is 0. sponds to the first byte in the 64-byte sequence, while the J1 path trace byte TJ1BYTE[7:0]_1 corresponds to the last byte in the 64-byte sequence. These registers can be written by the microprocessor. 59 Data Sheet August 1999 TMPR28051 STS-1/AU-3 (STM-0) Mapper Microprocessor Interface Description (continued) I/O Timing The I/O timing specifications for the microprocessor interface are given in Table 33. The microprocessor interface pins use CMOS I/O levels (see pages 20—22 for pin listings). All outputs, except the address/data bus AD[7:0], are rated for a capacitive load of 50 pF. The AD[7:0] outputs are rated for a 100 pF load. The minimum read and write cycle time is 200 ns for all device configurations. Table 33. Microprocessor Interface I/O Timing Specifications Symbol Configuration t1 Modes 1 & 2 Parameter Setup (ns) (Min) Hold (ns) (Min) Delay (ns) (Max) Address Valid to AS Asserted (Read, Write) 5 — — t2 AS Asserted to Address Invalid (Read, Write) — 10 — t3 AS Asserted to DS Asserted 0 — — t4 R/W High (Read) to DS Asserted 25 — — t5 DS Asserted (Read, Write) to DTACK Asserted — — 20 t6 DTACK Asserted to Data Valid (Read) — — 24 t7 DS Asserted (Read) to Data Valid — — 44 t8 DS Negated (Read, Write) to AS Negated — — — t9 DS Negated (Read) to Data Invalid — — 15 t10 DS Negated (Read) to DTACK Negated — — 15 t11 AS (Read, Write) Asserted Width — 75 — t12 DS (Read) Asserted Width — 35 — t13 AS Asserted to R/W Low (Write) 7 — — t14 R/W Low (Write) to DS Asserted 20 — — t15 Data Valid to DS Asserted (Write) 7.5 — — t16 DS Negated to DTACK Negated (Write) — — 20 t17 DS Negated to Data Invalid (Write) — 7.5 — t18 DS (Write) Asserted Width — 35 — Address Valid to ALE Asserted Low (Read, Write) 15 — — t19 Modes 3 & 4 t20 ALE Asserted Low (Read, Write) to Address Invalid — 10 — t21 ALE Asserted Low to RD Asserted (Read) 30 — — t22 RD Asserted (Read) to Data Valid — — 90 t23 RD Asserted (Read) to RDY Asserted — — 75 t24 RD Negated to Data Invalid (Read) — — 25 t25 RD Negated to RDY Negated (Read) — — 25 t26 ALE Asserted Low to WR Asserted (Write) 35 — — t27 CS Asserted to RDY Asserted Low — — 16 t28 Data Valid to WR Asserted (Write) 25 — — t29 WR Asserted (Write) to RDY Asserted — — 73 t30 WR Negated to RDY Negated (Write) — — 22 t31 WR Negated to Data Invalid — 25 — t32 ALE Asserted (Read, Write) Width — 150 — t33 RD Asserted (Read) Width — 100 — t34 WR Asserted (Write) Width — 100 — The read and write timing diagrams for all four microprocessor interface modes are shown in Figures 3—10. 60 Lucent Technologies Inc. Data Sheet August 1999 TMPR28051 STS-1/AU-3 (STM-0) Mapper Microprocessor Interface Description (continued) I/O Timing (continued) MINIMUM READ CYCLE CS t11 AS t2 t1 t8 A[7:0] VALID ADDRESS R/W t4 t3 t12 DS t6 t10 t5 DTACK t9 t7 VALID DATA AD[7:0] 5-3685(F).br.4 Figure 3. Mode 1—Read Cycle Timing (MPMODE = 0, MPMUX = 0) MINIMUM WRITE CYCLE CS t11 AS t2 t1 t8 VALID ADDRESS A[7:0] t13 t14 R/W t18 DS t5 t16 DTACK t17 t15 VALID DATA AD[7:0] 5-3686(F).br.5 Figure 4. Mode 1—Write Cycle Timing (MPMODE = 0, MPMUX = 0) Lucent Technologies Inc. 61 Data Sheet August 1999 TMPR28051 STS-1/AU-3 (STM-0) Mapper Microprocessor Interface Description (continued) I/O Timing (continued) MINIMUM READ CYCLE CS t11 AS t8 R/W t4 t3 t12 DS t7 t10 t5 t6 DTACK t2 t9 t1 AD[7:0] VALID DATA VALID ADDRESS VALID ADDRESS VALID DATA 5-3687(F)r.12 Figure 5. Mode 2—Read Cycle Timing (MPMODE = 0, MPMUX = 1) MINIMUM WRITE CYCLE CS t11 AS t13 t8 t14 R/W t18 DS t16 t5 DTACK t2 t1 AD[7:0] VALID DATA VALID ADDRESS t15 t17 VALID ADDRESS VALID DATA 5-3688(F)r.12 Figure 6. Mode 2—Write Cycle Timing (MPMODE = 0, MPMUX = 1) 62 Lucent Technologies Inc. Data Sheet August 1999 TMPR28051 STS-1/AU-3 (STM-0) Mapper Microprocessor Interface Description (continued) I/O Timing (continued) MINIMUM READ CYCLE CS t32 ALE t19 t20 A[7:0] VALID ADDRESS t21 t33 RD t22 t24 AD[7:0] VALID DATA t27 t23 t25 RDY 5-3689(F).br.4 Figure 7. Mode 3—Read Cycle Timing (MPMODE = 1, MPMUX = 0) MINIMUM WRITE CYCLE CS t32 ALE t19 t20 VALID ADDRESS A[7:0] t26 t34 WR t28 t31 VALID DATA AD[7:0] t29 t27 t30 RDY 5-3690(F).br.3 Figure 8. Mode 3—Write Cycle Timing (MPMODE = 1, MPMUX = 0) Lucent Technologies Inc. 63 Data Sheet August 1999 TMPR28051 STS-1/AU-3 (STM-0) Mapper Microprocessor Interface Description (continued) I/O Timing (continued) MINIMUM READ CYCLE CS t32 ALE t21 t33 RD t19 AD[7:0] t22 t24 VALID ADDRESS VALID DATA t23 t27 VALID ADDRESS VALID DATA t25 t20 RDY 5-3691(F)r.12 Figure 9. Mode 4—Read Cycle Timing (MPMODE = 1, MPMUX = 1) MINIMUM WRITE CYCLE CS t32 ALE t26 t34 WR t19 t20 AD[7:0] VALID DATA t27 VALID ADDRESS t28 t31 VALID ADDRESS VALID DATA t29 t30 RDY 5-3692(F)r.13 Figure 10. Mode 4—Write Cycle Timing (MPMODE = 1, MPMUX = 1) 64 Lucent Technologies Inc. Data Sheet August 1999 TMPR28051 STS-1/AU-3 (STM-0) Mapper Absolute Maximum Ratings Stresses in excess of the absolute maximum ratings can cause permanent or latent damage to the device. These are absolute stress ratings only. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this device specification. Exposure to absolute maximum ratings for extended periods can adversely affect device reliability. Table 34. Absolute Maximum Ratings Parameter Power Supply (dc Voltage) Input Voltage Output Voltage Storage Temperature Ambient Operating Temperature Range Symbol VDD VI VO Tstg TA Min –0.5 –0.3 — –65 –40 Max 4.6 5.5 3.63 125 85 Unit V V V °C °C Handling Precautions Although protection circuitry has been designed into this device, proper precautions should be taken to avoid exposure to electrostatic discharge (ESD) during handling and mounting. Lucent employs a human-body model (HBM) and charged-device model (CDM) for ESD-susceptibility testing and protection design evaluation. ESD voltage thresholds are dependent on the circuit parameters used in the defined model. No industry-wide standard has been adopted for the CDM. However, a standard HBM (resistance = 1500 Ω, capacitance = 100 pF) is widely used and, therefore, can be used for comparison purposes. The HBM ESD threshold presented here was obtained by using these circuit parameters. Table 35. ESD Threshold Voltage Model HBM CDM (all pins except corner pins) CDM (all corner pins) Lucent Technologies Inc. Voltage (volts) 2000 500 1000 65 Data Sheet August 1999 TMPR28051 STS-1/AU-3 (STM-0) Mapper Operating Conditions Table 36. Recommended Operating Conditions Parameter Power Supply (dc Voltage) Ground Input Voltage, High Input Voltage, Low Ambient Temperature Power Dissipation, DS1 (TA = 23 °C, VDD = 3.3 V): Full Loopback Broadcast Standby Power Dissipation, E1 (TA = 23 °C, VDD = 3.3 V): Full Loopback Broadcast Standby Symbol VDD VSS VIH VIL TA PD Min 3.14 — — — –40 Typ 3.3 0.0 VDD – 1.0 VSS — Max 3.46 — 5.25 1.0 85 Unit V V V V °C — — — 380 380 360 — — — mW mW mW — — — 450 450 430 — — — mW mW mW Electrical Characteristics Table 37. Logic Interface Characteristics An internal 100 kΩ pull-up is provided on the ICT, RESET, CS, TCK, TDI, TMS, TRST, RSTS1DATA[7:0], RSTS1PAR, E1BLUECLK, RCLK[28:1], and RDATA[28:1] pins. This requires these input pins to sink no more than 20 µA. All buffers use CMOS levels. Parameter Input Voltage: Low High Input Leakage Output Voltage: Low High Input Capacitance Load Capacitance* Symbol Test Conditions — Min Max Unit 1.0 VDD 1.0 V V µA 0.5 VDD 3.0 25 V V pF pF VIL VIH IL — GND VDD – 1.0 — VOL VOH CI CL –5.0 mA 5.0 mA — — GND VDD – 1.0 — — * 100 pF allowed for AD[7:0] (pins 48 to 50 and 55 to 59). 66 Lucent Technologies Inc. Data Sheet August 1999 TMPR28051 STS-1/AU-3 (STM-0) Mapper Timing Characteristics Operational Timing The operational timing parameters can be grouped separately for clocks, inputs, and outputs. Table 38 lists the transmit and receive input clock specifications for this device. (For definitions of the signal names, see the pin descriptions in Table 1, pages 7—9.) Table 38. Input Clock Specifications Signal Name Parameter Min Max Unit Input Clock Signals TSTS1CLKIN Frequency 51.839 51.841 MHz Clock Pulse High Time 40 60 % Peak-to-Peak Jitter — 1 % 19.439 19.441 MHz Clock Pulse High Time 40 60 % Peak-to-Peak Jitter — 1 % 6.479 6.481 MHz 40 60 % Frequency Frequency Clock Pulse High Time Peak-to-Peak Jitter RCLK[1:28] (DS1 Mode) RCLK[1:21] (E1 Mode) RSTS1CLK — 1 % 1.5437 1.5443 MHz Clock Pulse High Time 40 60 % Peak-to-Peak Jitter — 1 % Frequency Frequency 2.0484 2.0476 MHz Clock Pulse High Time 40 60 % Peak-to-Peak Jitter — 1 % 51.839 51.841 MHz Clock Pulse High Time 40 60 % Peak-to-Peak Jitter — 1 % Frequency 0.5 12 MHz Clock Pulse High Time 40 60 % Peak-to-Peak Jitter — 1 % Rise/Fall Time — 15 ns Frequency JTAG Signal TCK Lucent Technologies Inc. 67 Data Sheet August 1999 TMPR28051 STS-1/AU-3 (STM-0) Mapper Timing Characteristics (continued) Operational Timing (continued) Table 39 lists the setup time (tSU) and hold time (tH) specifications for the receive input and JTAG signals. The digital system interface timing is shown in Figure 11. Table 39. Input Timing Specifications Input Name Setup Time (tSU) Reference CLK* Min Hold Time (tH) Max Min Max Unit Receive Signals TSTS1SYNC TSTS1CLKIN 5 — 2 — ns RDATA[1:28] RCLK[1:28] ↑↓ 50 — 40 — ns RSTS1DATA[7:0] RSTS1CLK ↑↓ 15 — 2 — ns RSTS1PAR RSTS1CLK ↑↓ 15 — 2 — ns RSTS1SERIAL RSTS1CLK ↑↓ 5 — 2 — ns TDI TCK ↑ — 50 — ns JTAG Signal * 50 These clock edges are programmable through the microprocessor interface. Notes: ↑ represents a low-to-high transition. ↓ represents a high-to-low transition. CLOCK IN tSU tH DATA IN CLOCK OUT tPD DATA OUT 5-5342(F)r.5 Figure 11. Interface Data Timing 68 Lucent Technologies Inc. Data Sheet August 1999 TMPR28051 STS-1/AU-3 (STM-0) Mapper Timing Characteristics (continued) Operational Timing (continued) The output clock specifications are shown in Table 40. Table 40. Output Clock Specifications Signal Name Rise Time Fall Time tR tF Test Conditions Frequency Unit Min Max Min Max TCLK[1:28] (DS1 Mode) 1.544 MHz ± 5% CL = 50 pF — 30 — 30 ns TCLK[1:28] (E1 Mode) 2.048 MHz ± 5% CL = 50 pF — 30 — 30 ns TSTS1CLKOUT* 51.84 MHz ± 5% CL = 15 pF — 3 — 3 ns 19.44 MHz ± 5% CL = 15 pF — 3 — 3 ns 6.48 MHz ± 5% CL = 15 pF — 3 — 3 ns * The duty-cycle distortion added to the TSTS1CLKOUT signal is ≤2% worst case when measured from 1.5 V in to 1.5 V out with a 2 ns rise time input. Table 41 lists the propagation delay (tPD) specifications for the output signals. The digital system interface timing is shown in Figure 11, page 68. Table 41. Output Timing Specifications Propagation Delay * Output Name TDATA[28:1] TSTS1DATA[7:0] TSTS1PAR TSTS1DATA7 Reference CLK TCLK[1:28] ↑↓ TSTS1CLKIN ↑ TSTS1CLKIN ↑ TSTS1CLKIN ↑ TDO TCK ↓ Test Conditions Transmit Signals CL = 25 pF CL = 15 pF CL = 15 pF CL = 15 pF JTAG Signal CL = 50 pF tPD Unit Min Max 40 2 2 0 190 12 12 3.5 ns ns ns ns 1.5 17 ns * Propagation delay skew, tPLH—tPHL, is ±200 ps. Notes: ↑ represents a low-to-high transition. ↓ represents a high-to-low transition. Lucent Technologies Inc. 69 Data Sheet August 1999 TMPR28051 STS-1/AU-3 (STM-0) Mapper Timing Characteristics (continued) Transmit Sync Timing In all transmit modes, the first bit/byte of the J0, J1, and V1 bytes are coincident with the sync pulse. The second and third pulses in this composite signal are only needed to force V1 superframe alignment. If there are three sync pulses as shown below, then V1 will be forced. The serial mode transmit sync timing is shown below in Figure 12. TSTS1CLK TSTS1SYNC TSTS1DATA J0-7 J0-6 J0-5 J0-4 J0-3 J0-2 J0-1 J0-0 J1-7 J1-6 J1-5 J1-4 J1-3 J1-2 J1-1 J1-0 V1-7 V1-6 V1-5 V1-4 V1-3 V1-2 V1-1 V1-0 5-6347(F)r.1 Note: The - symbol followed by a number represents the bit number in the byte. Figure 12. Serial Mode Transmit Sync Timing The bus mode transmit sync timing is shown below in Figure 13. TSTS1CLK TSTS1SYNC TSTS1DATA J0#1 J0#2 J0#3 J1#1 J1#2 J1#3 V1#1 V1#2 V1#3 5-6347(F).a Note: The # symbol followed by a number represents the active device on the bus. Figure 13. Bus Mode Transmit Sync Timing 70 Lucent Technologies Inc. Data Sheet August 1999 TMPR28051 STS-1/AU-3 (STM-0) Mapper Timing Characteristics (continued) Transmit Sync Timing (continued) The nonbus parallel mode transmit sync timing is shown below in Figure 14. TSTS1CLK TSTS1SYNC TSTS1DATA J0 J1 V1 5-6347(F).b Figure 14. Nonbus Parallel Mode Transmit Sync Timing Receive Sync Timing The only receive mode that requires a sync pulse is the bus mode. The sync pulse is required to align the device to time slot #1. The bus parallel mode receive sync timing is shown below in Figure 15. RSTS1CLK RSTS1SERIAL RSTS1DATA J0#1 J0#2 J0#3 J1#1 J1#2 J1#3 V1#1 V1#2 V1#3 5-6347(F).cr.1 Note: The # symbol followed by a number represents the active device on the bus. Figure 15. Bus Parallel Mode Receive Sync Timing Lucent Technologies Inc. 71 Data Sheet August 1999 TMPR28051 STS-1/AU-3 (STM-0) Mapper Typical Uses Path Termination Multiplex Using the device without internal loopbacks results in an SDH/SONET path terminating multiplex, as shown in Figure 16. TMPR28051 T7693 QUAD LIU DS1/E1 #1 IN LIU SPE GENERATE ELASTIC STORE TMUX03155 VT GENERATE DS1/E1 #1 OUT SPE INSERTION LOGIC DS1/E1 #n IN LIU ELASTIC STORE VT GENERATE JITTER ATTENUATE VT TERMINATE STS-1 OUT STS/STM MUX LOGIC STS-1 IN STS/STM DEMUX LOGIC DS1/E1 #n OUT SPE DROP LOGIC JITTER ATTENUATE SPE LOCATE SPE TERMINATE VT TERMINATE 5-4876(F)r.9 Note: n represents 28 or 21 for DS1 or E1, respectively. Figure 16. SDH/SONET Path Termination Multiplex Application Digital Cross Connect Using the device with STS-1 internal loopbacks results in a digital cross connect, as shown in Figure 17. TMPR28051 SPE GENERATE T7693 QUAD LIU DS1/E1 #1 IN LIU ELASTIC STORE VT GENERATE SPE INSERTION LOGIC DS1/E1 #n IN LIU ELASTIC STORE T7693 QUAD LIU VT GENERATE SPE LOCATE SPE TERMINATE VT TERMINATE LIU DS1/E1 #1 OUT VT TERMINATE LIU DS1/E1 #n OUT SPE DROP LOGIC 5-4878(F)r.8 Note: n represents 28 or 21 for DS1 or E1, respectively. Figure 17. Digital Cross Connect Application 72 Lucent Technologies Inc. Data Sheet August 1999 TMPR28051 STS-1/AU-3 (STM-0) Mapper Typical Uses (continued) Test Pattern Use—Complete System The internal test pattern generator can be used in conjunction with DS1 or E1 LIU devices that have built-in loopbacks (such as the Lucent T7698FL3/T7693) to do a complete system test, as shown in Figure 18. LIU TMPR28051 MAPPER TMPR28051 MAPPER LIU DS1/E1 AIS DS1/E1 IN TEST PATTERN DROP TEST PATTERN INSERT TEST PATTERN DROP DS1/E1 IN DS1/E1 AIS LOOPBACK MODE TEST PATTERN SOURCE OPTIONAL TEST PATTERN DROP LOOPBACK MODE 5-4879(F)r.7 Figure 18. Test Pattern Usage for Complete System Test Pattern Use—End to End The internal test pattern generator can be used to test connectivity within a link by setting up a test pattern insertion at one end and a drop at the other, as shown in Figure 19. TMPR28051 MAPPER TEST PATTERN INSERT TEST PATTERN SOURCE TMPR28051 MAPPER TEST PATTERN DROP TEST PATTERN DROP 5-4880(F)r.7 Figure 19. Test Pattern Usage for End-to-End Operation Lucent Technologies Inc. 73 Data Sheet August 1999 TMPR28051 STS-1/AU-3 (STM-0) Mapper Outline Diagram 208-Pin SQFP Dimensions are in millimeters. 30.60 ± 0.20 28.00 ± 0.20 PIN #1 IDENTIFIER ZONE 208 157 1 156 28.00 ± 0.20 30.60 ± 0.20 105 52 53 104 DETAIL A DETAIL B 3.40 ± 0.20 4.10 MAX SEATING PLANE 0.08 0.50 TYP 0.25 MIN 1.30 REF 0.25 0.090/0.200 GAGE PLANE SEATING PLANE 0.17/0.27 0.50/0.75 DETAIL A 0.10 M DETAIL B 5-2196(F)r.14 74 Lucent Technologies Inc. Data Sheet August 1999 TMPR28051 STS-1/AU-3 (STM-0) Mapper Ordering Information Device Code Package Temperature Comcode (Ordering Number) TMPR28051-3-SL5 208-Pin SQFP –40 °C to +85 °C 108421678 DS99-068SONT Replaces DS98-100TIC to Incorporate the Following Updates 1. Page 1, added bulleted items concerning 3.3 V operation, and alarm and control standards. 2. Page 5, Description (continued) section, replaced the Lucent T7690/T7693 Quad Line Transceiver interfacing device with the Lucent T7698FL3/T7693 Quad Line Transceiver. 3. Page 5, Figure 1, Block Diagram, clarified block flow. 4. Page 6, changed pin 184 and all corresponding references to TCK. 5. Page 7, clarified Pin 102. 6. Page 10, organized Nomenclature Assumptions section from the text at the beginning of the Description section. 7. Page 10—page 19, clarified block descriptions. 8. Page 14, 2nd paragraph, corrected the explanation of the reduced H4 coding sequence format from “alternate between” to “take on the following values.” 9. Page 23—page 36, updated register map. 10. Page 37—page 59, updated register description text and placed text in tables. 11. Page 42, Table , Registers 0x00—0x16: Device-Level Control, Alarm, and Mask Bits, corrected the test pattern sequence for register XMT_PAT-0, bits 01 and 11 combinations. 12. Page 49, Table 18, Registers 0x33—0x4E: VT Drop Selection, corrected VTxDROP, bits 4 through 0, to VT_DROP[4:0]_[1:28]. 13. Page 54, Table 24, Registers 0x8A—0x8F: Digital Jitter Attenuator Controls, added the register default values. 14. Page 65, Table 34, Absolute Maximum Ratings, updated table, including input and output voltages. 15. Page 65, Table 35, ESD Threshold Voltage, added parameters and values. 16. Page 66, Table 36, Recommended Operating Conditions, updated to list 3.3 V power dissipation for DS1 and E1. 17. Page 67, Table 38, Input Clock Specifications, added to the document. 18. Page 69, Table 40, Output Clock Specifications, added to the document. 19. Page 70, Transmit Sync Timing section, expanded and corrected. 20. Page 71, Figure 15, Bus Parallel Mode Receive Sync Timing, corrected pin name. 21. Page 75, updated device code. 22. TMPR28051 STS-1/AU-3 (STM-0) Mapper Device Advisory for Version 2 of the Device, TMPR28051 STS-1/AU-3 (STM-0) Mapper Device Advisory for Version 3 of the Device, TMPR28051 STS-1/AU-3 (STM-0) Mapper Device Advisory for Version 4 of the Device, TMPR28051 STS-1/AU-3 (STM-0) Data Addendum, included all printed advisories and an addendum through version 4, each published in April 1999, (AY99-026SONT, AY99-027SONT, AY99-028SONT, DA99-009SONT). An advisory was not issued for version 1 of the device. Lucent Technologies Inc. 75 TMPR28051 STS-1/AU-3 (STM-0) Mapper Data Sheet August 1999 For additional information, contact your Microelectronics Group Account Manager or the following: INTERNET: http://www.lucent.com/micro E-MAIL: [email protected] N. AMERICA: Microelectronics Group, Lucent Technologies Inc., 555 Union Boulevard, Room 30L-15P-BA, Allentown, PA 18103 1-800-372-2447, FAX 610-712-4106 (In CANADA: 1-800-553-2448, FAX 610-712-4106) ASIA PACIFIC: Microelectronics Group, Lucent Technologies Singapore Pte. Ltd., 77 Science Park Drive, #03-18 Cintech III, Singapore 118256 Tel. (65) 778 8833, FAX (65) 777 7495 CHINA: Microelectronics Group, Lucent Technologies (China) Co., Ltd., A-F2, 23/F, Zao Fong Universe Building, 1800 Zhong Shan Xi Road, Shanghai 200233 P. R. China Tel. (86) 21 6440 0468, ext. 316, FAX (86) 21 6440 0652 JAPAN: Microelectronics Group, Lucent Technologies Japan Ltd., 7-18, Higashi-Gotanda 2-chome, Shinagawa-ku, Tokyo 141, Japan Tel. (81) 3 5421 1600, FAX (81) 3 5421 1700 EUROPE: Data Requests: MICROELECTRONICS GROUP DATALINE: Tel. (44) 7000 582 368, FAX (44) 1189 328 148 Technical Inquiries: GERMANY: (49) 89 95086 0 (Munich), UNITED KINGDOM: (44) 1344 865 900 (Ascot), FRANCE: (33) 1 40 83 68 00 (Paris), SWEDEN: (46) 8 600 7070 (Stockholm), FINLAND: (358) 9 4354 2800 (Helsinki), ITALY: (39) 02 6608131 (Milan), SPAIN: (34) 1 807 1441 (Madrid) Lucent Technologies Inc. reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application. No rights under any patent accompany the sale of any such product(s) or information. Copyright © 1999 Lucent Technologies Inc. All Rights Reserved August 1999 DS99-068SONT (Replaces DS98-100TIC)