AGERE TMPR28051-3-SL5

Advisory
August 5, 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Device Advisory for Version 5 of the Device
Register Architecture (RA) Map
RA-1. Reset Bit
The software reset bit (bit 0) of register 0x00 is not functional.
RA-2. Transmit Path AIS Insert Bit
The TXPAISINS bit (bit 5) of register 0x01 produces both AIS-P and AIS-L.
RA-3. STS-1 Loss of Pointer Mask Bit
The STS1LOPMSK bit (bit 2) of register 0x04 masks both STS1LOP and STS1LOF.
RA-4. STS-1 Loss of Frame Mask Bit
The STS1LOFMSK bit (bit 1) of register 0x04 is not functional.
RA-5. VTLABCOM and VTRFIRDICOM Interrupt Bits
Occasionally, it might require multiple reads to clear the composite interrupt bits VTLABCOM (bit 2 of
register 0x05) and VTRFIRDICOM (bit 4 of register 0x05).
Error Insertion (EI)
EI-1. DS1/E1 Alarm Indication Signal
The device does not insert DS1/E1 AIS towards the STS-1 if there is an LOC condition in the incoming DS1/E1
signal.
EI-2. LOC Condition in E1 Loopback Mode
In the absence of an input clock, the device detects an LOC condition and generates TU-AIS upstream, even if the
loopback path is selected (the loopback signal is overwritten by TU-AIS).
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Device Advisory for Version 5 of the Device
Advisory
August 5, 1999
Error Insertion (EI) (continued)
EI-3. False S-BIP, L-BIP, and P-BIP Error Insertion
The device transmits S-BIP, L-BIP, and P-BIP errors when configured for automatic insertion of REI, and certain
STS-1 error conditions such as LOS, LOF, LOP-P, S-BIP, L-BIP, and P-BIP are inserted.
VT Alarms (VT)
VT-1. VT Path Payload Label Mismatch
The device reports PLM-V when it detects three consecutive consistent new values for the VT label. This is in compliance with G.783 Section 2.2.2.7 and T1.231 Section 8.1.3.5.2.4.2 specifications, but is not compliant with
GR-253 Section 6.2.1.1.8.C.
VT-2. Failure in the Detection of VT Loss of Pointer Defects
The device also apparently fails to detect an LOP-V defect when it continuously receives a VT pointer word of
6C68 (i.e., a value indicating a VT1.5 with an offset of 104 bytes, versus a maximum valid offset of 103 bytes). In
this case, the device inserts the required DS1 AIS downstream, but does not subsequently declare an LOP-V failure (nonconformance to GR 253, R6-71).
VT-3. Inappropriate Termination of VT Loss of Pointer Defect Condition
After the device has detected an LOP-V defect, it inappropriately terminates that defect upon receiving two pointer
words containing the same value as the previous valid pointer. According to GR 253, an LOP-V defect must not be
terminated unless a valid pointer is received in three consecutive VT superframes (nonconformance to GR 253,
R6-75).
VT-4. Inappropriate Termination of VT Alarm Indication Signal Defect Condition
After the device has detected an AIS-V defect, it inappropriately terminates that defect upon receiving two pointer
words containing the same value as the previous valid pointer and without a set NDF (e.g., with the N bits set to
0110). According to GR 253, an AIS-V defect must not be terminated unless a normal valid pointer is received in
three consecutive VT superframes, or a valid pointer with a set NDF is received in one VT superframe (nonconformance to GR 253, R6-183).
For additional information, contact your Microelectronics Group Account Manager or the following:
http://www.lucent.com/micro
INTERNET:
[email protected]
E-MAIL:
N. AMERICA: Microelectronics Group, Lucent Technologies Inc., 555 Union Boulevard, Room 30L-15P-BA, Allentown, PA 18103
1-800-372-2447, FAX 610-712-4106 (In CANADA: 1-800-553-2448, FAX 610-712-4106)
ASIA PACIFIC: Microelectronics Group, Lucent Technologies Singapore Pte. Ltd., 77 Science Park Drive, #03-18 Cintech III, Singapore 118256
Tel. (65) 778 8833, FAX (65) 777 7495
CHINA:
Microelectronics Group, Lucent Technologies (China) Co., Ltd., A-F2, 23/F, Zao Fong Universe Building, 1800 Zhong Shan Xi Road, Shanghai
200233 P. R. China Tel. (86) 21 6440 0468, ext. 316, FAX (86) 21 6440 0652
JAPAN:
Microelectronics Group, Lucent Technologies Japan Ltd., 7-18, Higashi-Gotanda 2-chome, Shinagawa-ku, Tokyo 141, Japan
Tel. (81) 3 5421 1600, FAX (81) 3 5421 1700
EUROPE:
Data Requests: MICROELECTRONICS GROUP DATALINE: Tel. (44) 7000 582 368, FAX (44) 1189 328 148
Technical Inquiries: GERMANY: (49) 89 95086 0 (Munich), UNITED KINGDOM: (44) 1344 865 900 (Ascot),
FRANCE: (33) 1 40 83 68 00 (Paris), SWEDEN: (46) 8 594 607 00 (Stockholm), FINLAND: (358) 9 4354 2800 (Helsinki),
ITALY: (39) 02 6608131 (Milan), SPAIN: (34) 1 807 1441 (Madrid)
Lucent Technologies Inc. reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application. No
rights under any patent accompany the sale of any such product(s) or information.
Copyright © 1999 Lucent Technologies Inc.
All Rights Reserved
August 5, 1999
AY99-025SONT (Must accompany DS99-068SONT)
Advisory, Rev. 2
August 5, 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Device Advisory for Version 2 of the Device
Register Architecture (RA) Map
RA-1. Reset Bit
The software reset bit (bit 0) of register 0x00 is not functional.
RA-2. Transmit Path AIS Insert Bit
The TXPAISINS bit (bit 5) of register 0x01 produces both AIS-P and AIS-L.
RA-3. STS-1 Loss of Pointer Mask Bit
The STS1LOPMSK bit (bit 2) of register 0x04 masks both STS1LOP and STS1LOF.
RA-4. STS-1 Loss of Frame Mask Bit
The STS1LOFMSK bit (bit 1) of register 0x04 is not functional.
RA-5. VTLABCOM and VTRFIRDICOM Interrupt Bits
Occasionally, it might require multiple reads to clear the composite interrupt bits VTLABCOM (bit 2 of
register 0x05) and VTRFIRDICOM (bit 4 of register 0x05).
Error Insertion (EI)
EI-1. DS1/E1 Alarm Indication Signal
The device does not insert DS1/E1 AIS towards the STS-1 if there is an LOC condition in the incoming DS1/E1
signal.
EI-2. LOC Condition in E1 Loopback Mode
In the absence of an input clock, the device detects an LOC condition and generates TU-AIS upstream, even if the
loopback is selected (the loopback signal is overwritten by TU-AIS).
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Device Advisory for Version 2 of the Device
Advisory, Rev. 2
August 5, 1999
Error Insertion (EI) (continued)
EI-3. False S-BIP, L-BIP, and P-BIP Error Insertion
The device transmits S-BIP, L-BIP, and P-BIP errors when configured for automatic insertion of REI, and certain
STS-1 error conditions such as LOS, LOF, LOP-P, S-BIP, L-BIP, and P-BIP are inserted.
EI-4. Forcing AIS Condition
In order to force AIS using the VTDROP bits, a value of 0x1D must be programmed for DS1 AIS, and a value of
0x1E must be programmed for E1 AIS.
VT Mapping (VT)
VT-1. VT Path Payload Label Mismatch
The device reports PLM-V when it detects three consecutive consistent new values for the VT label. This is in compliance with G.783 Section 2.2.2.7 and T1.231 Section 8.1.3.5.2.4.2 specifications, but is not compliant with
GR-253 Section 6.2.1.1.8.C.
VT-2. Failure in the Detection of VT Loss of Pointer Defects
■
The device fails to detect an LOP-V defect or insert the required DS1/E1 AIS downstream when it receives VT
pointer words with the N bits continuously set to 1001 (i.e., with a continuously set NDF).
■
The device also apparently fails to detect an LOP-V defect when it continuously receives a VT pointer word of
6C68 (i.e., a value indicating a VT1.5 with an offset of 104 bytes, versus a maximum valid offset of 103 bytes). In
this case, the device inserts the required DS1 AIS downstream, but does not subsequently declare an LOP-V
failure (nonconformance to GR 253, R6-71).
VT-3. Inappropriate Termination of VT Loss of Pointer Defect Condition
After the device has detected an LOP-V defect, it inappropriately terminates that defect upon receiving two pointer
words containing the same value as the previous valid pointer. According to GR 253, an LOP-V defect must not be
terminated unless a valid pointer is received in three consecutive VT superframes (nonconformance to GR 253,
R6-75).
VT-4. Inappropriate Termination of VT Alarm Indication Signal Defect Condition
After the device has detected an AIS-V defect, it inappropriately terminates that defect upon receiving two pointer
words containing the same value as the previous valid pointer and without a set NDF (e.g., with the N bits set to
0110). According to GR 253, an AIS-V defect must not be terminated unless a normal valid pointer is received in
three consecutive VT superframes, or a valid pointer with a set NDF is received in one VT superframe (nonconformance to GR 253, R6-183).
2
Lucent Technologies Inc.
Advisory, Rev. 2
August 5, 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Device Advisory for Version 2 of the Device
VT Mapping (VT) (continued)
VT-5. C-Bit Decoding
In the presence of a receive SONET/SDH bit error rate, the device may destuff the DS1 from the VT1.5 incorrectly.
This is the result of an error in the VT1.5 C-bit decoding process. The C-bit decoding process should be capable of
correcting single errors to the C bits. Because of this error, an error in the first or second C bit for position 2 will be
incorrectly decoded if the first C-bit position is calling for a stuff and the second C-bit position is not. The end result
of this error is that both positions will call for a stuff, resulting in a bit being removed from the DS1 data stream. This
will force downstream equipment to experience a reframe.
The minimum time to false decode severity is as shown in Table VT-5 (in terms of seconds to false decode).
Table VT-5. Minimum Time (in Seconds) to
False Decode Severity of the C Bit
BER
Theoretical
Actual
10–3
125
0.25
10–4
12500
2.5
10–5
1250000
25
10–6
1.25e+8
250
10–7
1.25e+10
2500
10–8
1.25e+12
2.5e+4
10–9
1.25e+14
2.5e+5
10–10
1.25e+16
2.5e+6
In the absence of an external bit error rate, the algorithm decodes these C bits correctly.
Test Pattern (TP) Generator/Monitor
TP-1. Test Pattern Insert
The transmitted test pattern comes out on the opposite edge with respect to the jitter-attenuated data.
TP-2. Test Pattern Drop
The test pattern detector always inverts the clock coming into the block before retiming the data.
Jitter Attenuation (JA)
JA-1. Jitter Attenuator
The digital jitter attenuator buffers are not functional. The DJACTL bit in register 0x01 should be set to 0 in this
device. Putting the device in the jitter attenuator mode (DJACTL = 1) causes loss of transmission.
Lucent Technologies Inc.
3
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Device Advisory for Version 2 of the Device
Advisory, Rev. 2
August 5, 1999
STS Path Overhead (POH)
POH-1. False H4LOMF Indication
Forcing a SONET/SDH line level decrement (H1, H2) from a value of either 348 or 347 results in false H4LOMF
indications.
Loss of Data (LOD)
LOD-1. Loss of DS1/E1 Data
Simultaneously forcing VT pointer adjustments while forcing SONET/SDH decrements from values of 348 and 347
results in loss of DS1/E1 data.
AY99-026SONT-2 Replaces AY99-026SONT to Incorporate the Following Updates
Added issues RA-5 and EI-3 to the document.
For additional information, contact your Microelectronics Group Account Manager or the following:
http://www.lucent.com/micro
INTERNET:
[email protected]
E-MAIL:
N. AMERICA: Microelectronics Group, Lucent Technologies Inc., 555 Union Boulevard, Room 30L-15P-BA, Allentown, PA 18103
1-800-372-2447, FAX 610-712-4106 (In CANADA: 1-800-553-2448, FAX 610-712-4106)
ASIA PACIFIC: Microelectronics Group, Lucent Technologies Singapore Pte. Ltd., 77 Science Park Drive, #03-18 Cintech III, Singapore 118256
Tel. (65) 778 8833, FAX (65) 777 7495
CHINA:
Microelectronics Group, Lucent Technologies (China) Co., Ltd., A-F2, 23/F, Zao Fong Universe Building, 1800 Zhong Shan Xi Road, Shanghai
200233 P. R. China Tel. (86) 21 6440 0468, ext. 316, FAX (86) 21 6440 0652
JAPAN:
Microelectronics Group, Lucent Technologies Japan Ltd., 7-18, Higashi-Gotanda 2-chome, Shinagawa-ku, Tokyo 141, Japan
Tel. (81) 3 5421 1600, FAX (81) 3 5421 1700
EUROPE:
Data Requests: MICROELECTRONICS GROUP DATALINE: Tel. (44) 7000 582 368, FAX (44) 1189 328 148
Technical Inquiries: GERMANY: (49) 89 95086 0 (Munich), UNITED KINGDOM: (44) 1344 865 900 (Ascot),
FRANCE: (33) 1 40 83 68 00 (Paris), SWEDEN: (46) 8 594 607 00 (Stockholm), FINLAND: (358) 9 4354 2800 (Helsinki),
ITALY: (39) 02 6608131 (Milan), SPAIN: (34) 1 807 1441 (Madrid)
Lucent Technologies Inc. reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application. No
rights under any patent accompany the sale of any such product(s) or information.
Copyright © 1999 Lucent Technologies Inc.
All Rights Reserved
August 5, 1999
AY99-026SONT-2 (Replaces AY99-026SONT and must accompany DS99-068SONT)
Advisory, Rev. 2
August 5, 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Device Advisory for Version 3 of the Device
Register Architecture (RA) Map
RA-1. Reset Bit
The software reset bit (bit 0) of register 0x00 is not functional.
RA-2. Transmit Path AIS Insert Bit
The TXPAISINS bit (bit 5) of register 0x01 produces both AIS-P and AIS-L.
RA-3. STS-1 Loss of Pointer Mask Bit
The STS1LOPMSK bit (bit 2) of register 0x04 masks both STS1LOP and STS1LOF.
RA-4. STS-1 Loss of Frame Mask Bit
The STS1LOFMSK bit (bit 1) of register 0x04 is not functional.
RA-5. VTLABCOM and VTRFIRDICOM Interrupt Bits
Occasionally, it might require multiple reads to clear the composite interrupt bits VTLABCOM (bit 2 of
register 0x05) and VTRFIRDICOM (bit 4 of register 0x05).
Error Insertion (EI)
EI-1. DS1/E1 Alarm Indication Signal
The device does not insert DS1/E1 AIS towards the STS-1 if there is an LOC condition in the incoming DS1/E1
signal.
EI-2. LOC Condition in E1 Loopback Mode
In the absence of an input clock, the device detects an LOC condition and generates TU-AIS upstream, even if the
loopback is selected (the loopback signal is overwritten by TU-AIS).
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Device Advisory for Version 3 of the Device
Advisory, Rev. 2
August 5, 1999
Error Insertion (EI) (continued)
EI-3. False S-BIP, L-BIP, and P-BIP Error Insertion
The device transmits S-BIP, L-BIP, and P-BIP errors when configured for automatic insertion of REI, and certain
STS-1 error conditions such as LOS, LOF, LOP-P, S-BIP, L-BIP, and P-BIP are inserted.
EI-4. Forcing AIS Condition
In order to force AIS using the VTDROP bits, a value of 0x1D must be programmed for DS1 AIS, and a value of
0x1E must be programmed for E1 AIS.
VT Mapping (VT)
VT-1. VT Path Payload Label Mismatch
The device reports PLM-V when it detects three consecutive consistent new values for the VT label. This is in compliance with G.783 Section 2.2.2.7 and T1.231 Section 8.1.3.5.2.4.2 specifications, but is not compliant with
GR-253 Section 6.2.1.1.8.C.
VT-2. Failure in the Detection of VT Loss of Pointer Defects
■
The device fails to detect an LOP-V defect or insert the required DS1/E1 AIS downstream when it receives VT
pointer words with the N bits continuously set to 1001 (i.e., with a continuously set NDF).
■
The device also apparently fails to detect an LOP-V defect when it continuously receives a VT pointer word of
6C68 (i.e., a value indicating a VT1.5 with an offset of 104 bytes, versus a maximum valid offset of 103 bytes). In
this case, the device inserts the required DS1 AIS downstream, but does not subsequently declare an LOP-V
failure (nonconformance to GR 253, R6-71).
VT-3. Inappropriate Termination of VT Loss of Pointer Defect Condition
After the device has detected an LOP-V defect, it inappropriately terminates that defect upon receiving two pointer
words containing the same value as the previous valid pointer. According to GR 253, an LOP-V defect must not be
terminated unless a valid pointer is received in three consecutive VT superframes (nonconformance to GR 253,
R6-75).
VT-4. Inappropriate Termination of VT Alarm Indication Signal Defect Condition
After the device has detected an AIS-V defect, it inappropriately terminates that defect upon receiving two pointer
words containing the same value as the previous valid pointer and without a set NDF (e.g., with the N bits set to
0110). According to GR 253, an AIS-V defect must not be terminated unless a normal valid pointer is received in
three consecutive VT superframes, or a valid pointer with a set NDF is received in one VT superframe (nonconformance to GR 253, R6-183).
2
Lucent Technologies Inc.
Advisory, Rev. 2
August 5, 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Device Advisory for Version 3 of the Device
VT Mapping (VT) (continued)
VT-5. C-Bit Decoding
In the presence of a receive SONET/SDH bit error rate, the device may destuff the DS1 from the VT1.5 incorrectly.
This is the result of an error in the VT1.5 C-bit decoding process. The C-bit decoding process should be capable of
correcting single errors to the C bits. Because of this error, an error in the first or second C bit for position 2 will be
incorrectly decoded if the first C-bit position is calling for a stuff and the second C-bit position is not. The end result
of this error is that both positions will call for a stuff, resulting in a bit being removed from the DS1 data stream. This
will force downstream equipment to experience a reframe.
The minimum time to false decode severity is as shown in Table VT-5 (in terms of seconds to false decode).
Table VT-5. Minimum Time (in Seconds) to
False Decode Severity of the C Bit
BER
Theoretical
Actual
10–3
125
0.25
10–4
12500
2.5
10–5
1250000
25
10–6
1.25e+8
250
10–7
1.25e+10
2500
10–8
1.25e+12
2.5e+4
10–9
1.25e+14
2.5e+5
10–10
1.25e+16
2.5e+6
In the absence of an external bit error rate, the algorithm decodes these C bits correctly.
Test Pattern (TP) Generator/Monitor
TP-1. Test Pattern Insert
The transmitted test pattern comes out on the opposite edge with respect to the jitter-attenuated data.
TP-2. Test Pattern Drop
The test pattern detector always inverts the clock coming into the block before retiming the data.
Device Version (DV)
DV-1. Device Version Report
The device version register, 0x16, reports the device version as 0x02.
Lucent Technologies Inc.
3
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Device Advisory for Version 3 of the Device
Advisory, Rev. 2
August 5, 1999
AY99-027SONT-2 Replaces AY99-027SONT to Incorporate the Following Updates
Added issues RA-5 and EI-3 to the document.
For additional information, contact your Microelectronics Group Account Manager or the following:
http://www.lucent.com/micro
INTERNET:
[email protected]
E-MAIL:
N. AMERICA: Microelectronics Group, Lucent Technologies Inc., 555 Union Boulevard, Room 30L-15P-BA, Allentown, PA 18103
1-800-372-2447, FAX 610-712-4106 (In CANADA: 1-800-553-2448, FAX 610-712-4106)
ASIA PACIFIC: Microelectronics Group, Lucent Technologies Singapore Pte. Ltd., 77 Science Park Drive, #03-18 Cintech III, Singapore 118256
Tel. (65) 778 8833, FAX (65) 777 7495
CHINA:
Microelectronics Group, Lucent Technologies (China) Co., Ltd., A-F2, 23/F, Zao Fong Universe Building, 1800 Zhong Shan Xi Road, Shanghai
200233 P. R. China Tel. (86) 21 6440 0468, ext. 316, FAX (86) 21 6440 0652
JAPAN:
Microelectronics Group, Lucent Technologies Japan Ltd., 7-18, Higashi-Gotanda 2-chome, Shinagawa-ku, Tokyo 141, Japan
Tel. (81) 3 5421 1600, FAX (81) 3 5421 1700
EUROPE:
Data Requests: MICROELECTRONICS GROUP DATALINE: Tel. (44) 7000 582 368, FAX (44) 1189 328 148
Technical Inquiries: GERMANY: (49) 89 95086 0 (Munich), UNITED KINGDOM: (44) 1344 865 900 (Ascot),
FRANCE: (33) 1 40 83 68 00 (Paris), SWEDEN: (46) 8 594 607 00 (Stockholm), FINLAND: (358) 9 4354 2800 (Helsinki),
ITALY: (39) 02 6608131 (Milan), SPAIN: (34) 1 807 1441 (Madrid)
Lucent Technologies Inc. reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application. No
rights under any patent accompany the sale of any such product(s) or information.
Copyright © 1999 Lucent Technologies Inc.
All Rights Reserved
August 5, 1999
AY99-027SONT-2 (Replaces AY99-027SONT and must accompany DS99-068SONT)
Advisory, Rev. 2
August 5, 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Device Advisory for Version 4 of the Device
Register Architecture (RA) Map
RA-1. Reset Bit
The software reset bit (bit 0) of register 0x00 is not functional.
RA-2. Transmit Path AIS Insert Bit
The TXPAISINS bit (bit 5) of register 0x01 produces both AIS-P and AIS-L.
RA-3. STS-1 Loss of Pointer Mask Bit
The STS1LOPMSK bit (bit 2) of register 0x04 masks both STS1LOP and STS1LOF.
RA-4. STS-1 Loss of Frame Mask Bit
The STS1LOFMSK bit (bit 1) of register 0x04 is not functional.
RA-5. VTLABCOM and VTRFIRDICOM Interrupt Bits
Occasionally, it might require multiple reads to clear the composite interrupt bits VTLABCOM (bit 2 of
register 0x05) and VTRFIRDICOM (bit 4 of register 0x05).
Error Insertion (EI)
EI-1. DS1/E1 Alarm Indication Signal
The device does not insert DS1/E1 AIS towards the STS-1 if there is an LOC condition in the incoming DS1/E1
signal.
EI-2. LOC Condition in E1 Loopback Mode
In the absence of an input clock, the device detects an LOC condition and generates TU-AIS upstream, even if the
loopback is selected (the loopback signal is overwritten by TU-AIS).
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Device Advisory for Version 4 of the Device
Advisory, Rev. 2
August 5, 1999
Error Insertion (EI) (continued)
EI-3. False S-BIP, L-BIP, and P-BIP Error Insertion
The device transmits S-BIP, L-BIP, and P-BIP errors when configured for automatic insertion of REI, and certain
STS-1 error conditions such as LOS, LOF, LOP-P, S-BIP, L-BIP, and P-BIP are inserted.
VT Mapping (VT)
VT-1. VT Path Payload Label Mismatch
The device reports PLM-V when it detects three consecutive consistent new values for the VT label. This is in compliance with G.783 Section 2.2.2.7 and T1.231 Section 8.1.3.5.2.4.2 specifications, but is not compliant with
GR-253 Section 6.2.1.1.8.C.
VT-2. Failure in the Detection of VT Loss of Pointer Defects
■
The device fails to detect an LOP-V defect or insert the required DS1/E1 AIS downstream when it receives VT
pointer words with the N bits continuously set to 1001 (i.e., with a continuously set NDF).
■
The device also apparently fails to detect an LOP-V defect when it continuously receives a VT pointer word of
6C68 (i.e., a value indicating a VT1.5 with an offset of 104 bytes, versus a maximum valid offset of 103 bytes). In
this case, the device inserts the required DS1 AIS downstream, but does not subsequently declare an LOP-V
failure (nonconformance to GR 253, R6-71).
VT-3. Inappropriate Termination of VT Loss of Pointer Defect Condition
After the device has detected an LOP-V defect, it inappropriately terminates that defect upon receiving two pointer
words containing the same value as the previous valid pointer. According to GR 253, an LOP-V defect must not be
terminated unless a valid pointer is received in three consecutive VT superframes (nonconformance to GR 253,
R6-75).
VT-4. Inappropriate Termination of VT Alarm Indication Signal Defect Condition
After the device has detected an AIS-V defect, it inappropriately terminates that defect upon receiving two pointer
words containing the same value as the previous valid pointer and without a set NDF (e.g., with the N bits set to
0110). According to GR 253, an AIS-V defect must not be terminated unless a normal valid pointer is received in
three consecutive VT superframes, or a valid pointer with a set NDF is received in one VT superframe (nonconformance to GR 253, R6-183).
2
Lucent Technologies Inc.
Advisory, Rev. 2
August 5, 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Device Advisory for Version 4 of the Device
VT Mapping (VT) (continued)
VT-5. C-Bit Decoding
In the presence of a receive SONET/SDH bit error rate, the device may destuff the DS1 from the VT1.5 incorrectly.
This is the result of an error in the VT1.5 C-bit decoding process. The C-bit decoding process should be capable of
correcting single errors to the C bits. Because of this error, an error in the first or second C bit for position 2 will be
incorrectly decoded if the first C-bit position is calling for a stuff and the second C-bit position is not. The end result
of this error is that both positions will call for a stuff, resulting in a bit being removed from the DS1 data stream. This
will force downstream equipment to experience a reframe.
The minimum time to false decode severity is as shown in Table VT-5 (in terms of seconds to false decode).
Table VT-5. Minimum Time (in Seconds) to
False Decode Severity of the C Bit
BER
Theoretical
Actual
10–3
125
0.25
10–4
12500
2.5
10–5
1250000
25
10–6
1.25e+8
250
10–7
1.25e+10
2500
10–8
1.25e+12
2.5e+4
10–9
1.25e+14
2.5e+5
10–10
1.25e+16
2.5e+6
In the absence of an external bit error rate, the algorithm decodes these C bits correctly.
Device Version (DV)
DV-1. Device Version Report
The device version register, 0x16, reports the device version as 0x03.
AY99-028SONT-2 Replaces AY99-028SONT to Incorporate the Following Updates
Added issues RA-5 and E1-3 to the document.
Lucent Technologies Inc.
3
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Device Advisory for Version 4 of the Device
Advisory, Rev. 2
August 5, 1999
For additional information, contact your Microelectronics Group Account Manager or the following:
http://www.lucent.com/micro
INTERNET:
[email protected]
E-MAIL:
N. AMERICA: Microelectronics Group, Lucent Technologies Inc., 555 Union Boulevard, Room 30L-15P-BA, Allentown, PA 18103
1-800-372-2447, FAX 610-712-4106 (In CANADA: 1-800-553-2448, FAX 610-712-4106)
ASIA PACIFIC: Microelectronics Group, Lucent Technologies Singapore Pte. Ltd., 77 Science Park Drive, #03-18 Cintech III, Singapore 118256
Tel. (65) 778 8833, FAX (65) 777 7495
CHINA:
Microelectronics Group, Lucent Technologies (China) Co., Ltd., A-F2, 23/F, Zao Fong Universe Building, 1800 Zhong Shan Xi Road, Shanghai
200233 P. R. China Tel. (86) 21 6440 0468, ext. 316, FAX (86) 21 6440 0652
JAPAN:
Microelectronics Group, Lucent Technologies Japan Ltd., 7-18, Higashi-Gotanda 2-chome, Shinagawa-ku, Tokyo 141, Japan
Tel. (81) 3 5421 1600, FAX (81) 3 5421 1700
EUROPE:
Data Requests: MICROELECTRONICS GROUP DATALINE: Tel. (44) 7000 582 368, FAX (44) 1189 328 148
Technical Inquiries: GERMANY: (49) 89 95086 0 (Munich), UNITED KINGDOM: (44) 1344 865 900 (Ascot),
FRANCE: (33) 1 40 83 68 00 (Paris), SWEDEN: (46) 8 594 607 00 (Stockholm), FINLAND: (358) 9 4354 2800 (Helsinki),
ITALY: (39) 02 6608131 (Milan), SPAIN: (34) 1 807 1441 (Madrid)
Lucent Technologies Inc. reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application. No
rights under any patent accompany the sale of any such product(s) or information.
Copyright © 1999 Lucent Technologies Inc.
All Rights Reserved
August 5, 1999
AY99-028SONT-2 (Replaces AY99-028SONT and must accompany DS99-068SONT)
Data Sheet
August 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Features
■
■
Maps signals in one of the following ways:
— Maps up to 28 asynchronous DS1 signals to
SONET STS-1 via VT Groups, or SDH AU-3 via
TUG-2.
— Maps up to 21 asynchronous E1 signals to SDH
AU-3 via TUG-2, or SONET STS-1 via VT
Groups.
— Maps any valid combination of DS1/E1 signals
at the VT Group/TUG-2 level.
PLL-free receive operation using built-in digital jitter attenuators.
■
Automatic receive monitoring functions can be
configured to provide an interrupt to the control
system, or the device can be operated in a polled
mode.
■
User configurable for VT/TU label, AIS-V, RDI-V,
REI-V, force BIP-2 errors, or unequipped tributary
insertion.
■
Typical 3.3 V operation with 5 V TTL tolerant I/O
and boundary scan.
■
–40 °C to +85 °C temperature range.
■
208-pin shrink quad flat pack (SQFP) package.
■
Provides alarm and control features to easily
implement the latest release of the following standards:
■
High-speed microprocessor interface configurable
to operate with most commercial microprocessors.
■
Inserts valid B1, B2, and B3 bit interleaved parity
(BIP) in the transmit direction.
■
Detects and counts B1, B2, and B3 BIP-8 errors on
either a bit or block basis for performance monitoring in the receive direction.
■
Detects and counts V5 BIP-2 errors on either a bit
or block basis for performance monitoring.
■
Configurable continuous B1, B2, B3, and V5 BIP-2
error insertion.
Applications
■
Configurable remote error indication (REI) insertion for B2, B3, and V5 BIP-2 errors.
■
SONET/SDH path termination multiplexers
■
SONET/SDH add/drop multiplexers
■
SONET/SDH cross connects
■
Digital access cross connects
■
DS1/E1 broadcast
■
SONET/SDH test equipment
GR253-CORE (12/97 with the exception of
GR-253 section 6.2.1.1.8.C), G.707 (3/96),
G.783 (1/94), G.823.393, T1.105-1995,
T1.105.02-1995, T1.105.03-1994,
T1.105.03A-1995, T1.105.07-1996,
T1.105.09-1996, ETS300.147 (1/95),
ETS300.417-1-1 (1/96).
■
Detects and counts remote errors.
■
Built-in test pattern insertion and drop for setup
and maintenance.
■
Configurable VT1.5/TU-11 slot selection for DS1
insertion and drop.
■
Configurable VT2/TU-12 slot selection for E1
insertion and drop.
Description
■
Detects STS-1 path loss of pointer (LOP-P), loss of
H4 multiframe (H4LOMF), path alarm indication
signal (AIS-P), and path remote defect indication
(RDI-P).
■
Automatic receive monitor functions include VT/TU
remote defect indication (RDI-V), VT/TU remote
error indication (REI-V), BIP-2 errors, VT/TU AIS
(AIS-V), and VT/TU loss of pointer (LOP-V).
The Lucent Technologies Microelectronics Group
TMPR28051 device is designed to map any valid
combination of DS1 and E1 signals into a stream at a
rate of 51.84 Mbits/s. This device provides all of the
functions necessary to insert and drop any valid combination up to 28 asynchronous DS1 signals or 21
asynchronous E1 signals into an SPE.
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Data Sheet
August 1999
Table of Contents
Contents
Page
Features ................................................................................................................................................................... 1
Applications .............................................................................................................................................................. 1
Description ................................................................................................................................................................ 1
Block Diagram ..........................................................................................................................................................5
Pin Information ......................................................................................................................................................... 6
Nomenclature Assumptions ....................................................................................................................................10
DS1/E1 to STS-1 Block Descriptions .....................................................................................................................10
LOC and AIS Monitor .........................................................................................................................................10
DS1/E1 Loopback Select Logic ..........................................................................................................................10
Input Select Logic ...............................................................................................................................................10
Elastic Store .......................................................................................................................................................11
VT Generate .......................................................................................................................................................11
STS-1/AU-3 Generate ........................................................................................................................................13
SPE Insertion Logic ............................................................................................................................................14
STS-1 to DS1/E1 Block Descriptions .....................................................................................................................16
Loopback Select Logic .......................................................................................................................................16
SPE Locate .........................................................................................................................................................16
STS-1/AU-3 Terminate .......................................................................................................................................16
SPE Drop Logic ..................................................................................................................................................17
VT Terminate ......................................................................................................................................................17
Jitter Attenuate ...................................................................................................................................................18
Drop Select Logic ...............................................................................................................................................18
Test Pattern Block Descriptions .............................................................................................................................19
Test Pattern Insert ..............................................................................................................................................19
Test Pattern Drop ...............................................................................................................................................19
Microprocessor Interface Description .....................................................................................................................20
Overview .............................................................................................................................................................20
Microprocessor Configuration Modes ................................................................................................................. 20
Microprocessor Interface Pins ............................................................................................................................21
Register Architecture Map ..................................................................................................................................23
Register Architecture Description .......................................................................................................................37
I/O Timing ...........................................................................................................................................................60
Absolute Maximum Ratings ....................................................................................................................................65
Handling Precautions .............................................................................................................................................65
Operating Conditions ..............................................................................................................................................66
Electrical Characteristics ........................................................................................................................................66
Timing Characteristics ............................................................................................................................................67
Operational Timing .............................................................................................................................................67
Transmit Sync Timing .........................................................................................................................................70
Receive Sync Timing ..........................................................................................................................................71
Typical Uses ...........................................................................................................................................................72
Path Termination Multiplex .................................................................................................................................72
Digital Cross Connect .........................................................................................................................................72
Test Pattern Use—Complete System .................................................................................................................73
Test Pattern Use—End to End ...........................................................................................................................73
Outline Diagram ......................................................................................................................................................74
208-Pin SQFP ....................................................................................................................................................74
Ordering Information ...............................................................................................................................................75
DS99-068SONT Replaces DS98-100TIC to Incorporate the Following Updates ...................................................75
2
Lucent Technologies Inc.
Data Sheet
August 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
List of Figures
Figures
Page
Figure 1. Block Diagram ...........................................................................................................................................5
Figure 2. Pin Diagram of 208-Pin SQFP ..................................................................................................................6
Figure 3. Mode 1—Read Cycle Timing (MPMODE = 0, MPMUX = 0) ...................................................................61
Figure 4. Mode 1—Write Cycle Timing (MPMODE = 0, MPMUX = 0) ...................................................................61
Figure 5. Mode 2—Read Cycle Timing (MPMODE = 0, MPMUX = 1) ...................................................................62
Figure 6. Mode 2—Write Cycle Timing (MPMODE = 0, MPMUX = 1) ...................................................................62
Figure 7. Mode 3—Read Cycle Timing (MPMODE = 1, MPMUX = 0) ...................................................................63
Figure 8. Mode 3—Write Cycle Timing (MPMODE = 1, MPMUX = 0) ...................................................................63
Figure 9. Mode 4—Read Cycle Timing (MPMODE = 1, MPMUX = 1) ...................................................................64
Figure 10. Mode 4—Write Cycle Timing (MPMODE = 1, MPMUX = 1) .................................................................64
Figure 11. Interface Data Timing ............................................................................................................................68
Figure 12. Serial Mode Transmit Sync Timing .......................................................................................................70
Figure 13. Bus Mode Transmit Sync Timing ..........................................................................................................70
Figure 14. Nonbus Parallel Mode Transmit Sync Timing .......................................................................................71
Figure 15. Bus Parallel Mode Receive Sync Timing ..............................................................................................71
Figure 16. SDH/SONET Path Termination Multiplex Application ...........................................................................72
Figure 17. Digital Cross Connect Application .........................................................................................................72
Figure 18. Test Pattern Usage for Complete System ............................................................................................73
Figure 19. Test Pattern Usage for End-to-End Operation ......................................................................................73
Lucent Technologies Inc.
3
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Data Sheet
August 1999
List of Tables
Tables
Page
Table 1. Pin Descriptions ......................................................................................................................................... 7
Table 2. VT1.5 Overhead Byte Format (V5) .......................................................................................................... 11
Table 3. RFI-V, RDI-V Description ........................................................................................................................ 11
Table 4. VT1.5 Superframe ................................................................................................................................... 12
Table 5. VT2 Superframe ...................................................................................................................................... 12
Table 6. STS-1 Overhead Byte Allocation ............................................................................................................. 13
Table 7. G1 Path Condition/Performance Byte Format ......................................................................................... 13
Table 8. VT1.5 SPE Insertion Format .................................................................................................................... 15
Table 9. Mapping of VT1.5 # to (VT Group #, VT #) .............................................................................................. 15
Table 10. VT2 SPE Insertion Format ..................................................................................................................... 15
Table 11. Mapping of VT2 # to (VT Group #, VT #) ............................................................................................... 15
Table 12. Microprocessor Configuration Modes .................................................................................................... 20
Table 13. Mode [1—4] Microprocessor Pin Definitions ......................................................................................... 21
Table 14. Device Register Map ............................................................................................................................. 23
Table 15. Registers 0x00—0x16: Device-Level Control, Alarm, and Mask Bits .................................................... 37
Table 16. Registers 0x17—0x32: DS1/E1 Insertion Selection ............................................................................. 47
Table 17. DS1/E1 Insertion Selection Format ....................................................................................................... 49
Table 18. Registers 0x33—0x4E: VT Drop Selection ............................................................................................ 49
Table 19. VT Drop Selection Format ..................................................................................................................... 50
Table 20. VT to Address Mapping ......................................................................................................................... 50
Table 21. Registers 0x4F—0x6A: Tx VT Overhead Insertion Control ................................................................... 51
Table 22. Registers 0x6B—0x86: Rx VT Drop Monitoring .................................................................................... 52
Table 23. Registers 0x88—0x89: Signal Override Control .................................................................................... 53
Table 24. Registers 0x8A—0x8F: Digital Jitter Attenuator Controls ...................................................................... 54
Table 25. Register 0x91: STS-1 LOS Detect/Test Pattern Edge Control .............................................................. 55
Table 26. Register 0xBF: Block Control ................................................................................................................ 56
Table 27. Registers 0xC0—0xFD: Detected BIP Errors ........................................................................................ 57
Table 28. Registers 0xFE, 0xFF: Received SONET/SDH Pointer Value .............................................................. 57
Table 29. Registers 0xC0—0xFD: Detected REI Errors ........................................................................................ 58
Table 30. Registers 0xFE—0xFF: Reserved ......................................................................................................... 58
Table 31. Registers 0xC0—0xFF: Receive J1 Path Trace Bytes .......................................................................... 59
Table 32. Registers 0xC0—0xFF: Transmit J1 Path Trace Bytes ......................................................................... 59
Table 33. Microprocessor Interface I/O Timing Specifications .............................................................................. 60
Table 34. Absolute Maximum Ratings ................................................................................................................... 65
Table 35. ESD Threshold Voltage ......................................................................................................................... 65
Table 36. Recommended Operating Conditions ................................................................................................... 66
Table 37. Logic Interface Characteristics .............................................................................................................. 66
Table 38. Input Clock Specifications ..................................................................................................................... 67
Table 39. Input Timing Specifications .................................................................................................................... 68
Table 40. Output Clock Specifications ................................................................................................................... 69
Table 41. Output Timing Specifications ................................................................................................................. 69
4
Lucent Technologies Inc.
Data Sheet
August 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Description (continued)
On the STS-1 side, the device can be configured for either a serial bit stream or an 8-bit parallel bus. This allows
the device to drive an OC-1 optical signal directly and also allows for modular growth in terminal or add/drop applications.
On the DS1/E1 side, the device is designed to interface with the Lucent T7698FL3/T7693 Quad Line Transceiver,
or equivalent, using the internal digital jitter attenuator buffer for PLL-free operation.
The TMPR28051 device contains built-in test pattern insertion and drop that allows end-to-end testing for initial
setup or maintenance without the need for external test equipment. Built-in loopbacks at both the STS-1 and DS1/
E1 sides provide maximum flexibility for use in a number of SONET/SDH or DS1/E1 products including terminal
multiplexers, add/drop multiplexers, and digital cross connects. A high-speed microprocessor interface and full
user programmability for VT slot insertion and drop provide maximum flexibility for DS1/E1 I/O configuration.
Block Diagram
The block diagram is shown in Figure 1. For illustration purposes, only two of the DS1/E1 bidirectional blocks are
shown.
LOC AND
AIS
MONITOR
DS1/E1 #1 IN
STS-1/AU-3
GENERATE
LOOPBACK
SELECT
LOGIC
INPUT
SELECT
LOGIC
ELASTIC
STORE
VT
GENERATE
SPE
INSERTION
LOGIC
DS1/E1 #n IN
LOC AND
AIS
MONITOR
LOOPBACK
SELECT
LOGIC
INPUT
SELECT
LOGIC
ELASTIC
STORE
TEST
PATTERN
INSERT
DS1/E1 #1 OUT
VT
GENERATE
MICROPROCESSOR
INTERFACE
TEST
PATTERN
DROP
DROP
SELECT
LOGIC
JITTER
ATTENUATE
VT
TERMINATE
SPE
DROP
LOGIC
DS1/E1 #n OUT
DROP
SELECT
LOGIC
JITTER
ATTENUATE
STS-1/AU-3 OUT
VT
TERMINATE
SPE
LOCATE
LOOPBACK
SELECT
LOGIC
STS-1/AU-3 IN
STS-1/AU-3
TERMINATE
5-4875(F).ar.10
Note: “n” represents 28 or 21 for DS1 or E1, respectively.
Figure 1. Block Diagram
Lucent Technologies Inc.
5
Data Sheet
August 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
208
207
206
205
204
203
202
201
200
199
198
197
196
195
194
193
192
191
190
189
188
187
186
185
184
183
182
181
180
179
178
177
176
175
174
173
172
171
170
169
168
167
166
165
164
163
162
161
160
159
158
157
E1BLUECLK
VSS
TCLK11
TDATA11
RCLK11
RDATA11
RDATA12
RCLK12
TDATA12
TCLK12
TCLK13
TDATA13
VDD
RCLK13
RDATA13
RDATA14
RCLK14
TDATA14
TCLK14
TDO
TRST
VSS
TMS
TDI
TCK
RDY_DTACK
VSS
RD_R/W
MPMODE
MPMUX
ALE_AS
VSS
WR_DS
TCLK15
TDATA15
RCLK15
RDATA15
RDATA16
RCLK16
TDATA16
VDD
TCLK16
TCLK17
TDATA17
RCLK17
RDATA17
RDATA18
RCLK18
TDATA18
TCLK18
VSS
VSS
Pin Information
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
156
155
154
153
152
151
150
149
148
147
146
145
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
ICT
VSS
TCLK19
TDATA19
RCLK19
RDATA19
VDD
RDATA20
RCLK20
TDATA20
TCLK20
TCLK21
VDD
TDATA21
RCLK21
RDATA21
RDATA22
RCLK22
TDATA22
TCLK22
TCLK23
VSS
TDATA23
RCLK23
RDATA23
RDATA24
VDD
RCLK24
TDATA24
TCLK24
TCLK25
VSS
TDATA25
RCLK25
RDATA25
VDD
RDATA26
RCLK26
TDATA26
TCLK26
VDD
TCLK27
TDATA27
RCLK27
RDATA27
VDD
RDATA28
RCLK28
TDATA28
TCLK28
RESET
VSS
VSS
VSS
AD4
AD3
AD2
AD1
AD0
A7
A6
A5
A4
A3
VDD
A2
A1
A0
VDD
RSTS1PAR
RSTS1DATA0
RSTS1DATA1
RSTS1DATA2
VSS
RSTS1DATA3
RSTS1DATA4
RSTS1DATA5
RSTS1DATA6
VSS
RSTS1DATA7
VSS
RSTS1CLK
VDD
VSS
RSTS1SERIAL
INT
CS
TSTS1CLKOUT
TSTS1CLKIN
TSTS1SYNC
TSTS1SERIAL/TSTS1DATA7
TSTS1DATA6
VDD
TSTS1DATA5
TSTS1DATA4
TSTS1DATA3
TSTS1DATA2
TSTS1DATA1
TSTS1DATA0
TSTS1PAR
DS1BLUECLK
DS1_E1N
VSS
VDD
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
VSS
VSS
TCLK10
TDATA10
RCLK10
RDATA10
RDATA9
RCLK9
TDATA9
TCLK9
TCLK8
VDD
TDATA8
RCLK8
RDATA8
RDATA7
RCLK7
TDATA7
TCLK7
TCLK6
VSS
TDATA6
RCLK6
RDATA6
RDATA5
VDD
RCLK5
TDATA5
TCLK5
TCLK4
VSS
TDATA4
RCLK4
RDATA4
RDATA3
RCLK3
TDATA3
TCLK3
TCLK2
VDD
TDATA2
RCLK2
RDATA2
RDATA1
RCLK1
TDATA1
TCLK1
AD7
AD6
AD5
VSS
VDD
5-4873(F).cr.5
Figure 2. Pin Diagram of 208-Pin SQFP
6
Lucent Technologies Inc.
Data Sheet
August 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Pin Information (continued)
Table 1. Pin Descriptions
Pin
Symbol
Type*
Name/Description
47, 39, 38, 30,
29, 20, 19, 11,
10, 3, 206, 199,
198, 190, 175,
167, 166, 159,
154, 146, 145,
137, 136, 127,
126, 117, 115,
107
TCLK[1:28]
O
Transmit DS1/E1 Clock. DS1/E1 clock output. E1 signals can only
occupy TCLK[1:21].
46, 41, 37, 32,
28, 22, 18, 13, 9,
4, 205, 200, 197,
191, 174, 169,
165, 160, 153,
147, 143, 138,
134, 128, 124,
118, 114, 108
TDATA[1:28]
O
Transmit DS1/E1 Data. Transmit data output. E1 signals can only
occupy TDATA[1:21].
45, 42, 36, 33,
27, 23, 17, 14, 8,
5, 204, 201, 195,
192, 173, 170,
164, 161, 152,
148, 142, 139,
133, 129, 123,
119, 113, 109
RCLK[1:28]
Iu
Receive DS1/E1 Clock. Receive clock input. These pins have an
internal 20 kΩ pull-up resistor. E1 signals can only occupy RCLK[1:21].
44, 43, 35, 34,
25, 24, 16, 15, 7,
6, 203, 202, 194,
193, 172, 171,
163, 162, 151,
149, 141, 140,
132, 131, 122,
120, 112, 110
RDATA[1:28]
Iu
Receive DS1/E1 Data. Receive data input. These pins have an internal 20 kΩ pull-up resistor. E1 signals can only occupy RDATA[1:21].
102
DS1_E1N
I
DS1/E1 Input Identifier. If this pin is pulled high, the device will default
to DS1 to STS-1 mode and transmit 0s in the unused overhead bytes
and 00 in the SS bits of H1. If pulled low, the device will default to E1 to
AU-3 mode and transmit 1s in the unused overhead bytes and 10 in
the SS bits of H1. This default selection can be overridden by setting
TOVERRIDE and ROVERRIDE bits in registers 0x88 (bit 0) and 0x89
(bit 0), respectively. The seven VT Groups can then be individually programmed to carry either DS1 (TVTG-1. . . 7 = 1, RVTG-1. . . 7 = 1) or
E1 (TVTG-1. . . 7 = 0, RVTG-1. . . 7 = 0) signals.
101
DS1BLUECLK
I
DS1 Blue Signal Clock. In the event of a loss of input DS1 clock or an
unprovisioned DS1 output, this clock signal is used to generate the
DS1 blue signal (all 1s). This clock must be 1.544 MHz ± 32 ppm or 16
times this rate when using the digital jitter attenuator.
208
E1BLUECLK
I
E1 Blue Signal Clock. In the event of a loss of input E1 clock or an
unprovisioned E1 output, this clock signal is used to generate the E1
blue signal (all 1s). This clock must be 2.048 MHz ± 50 ppm or 16
times this rate when using the digital jitter attenuator.
* Iu indicates an internal pull-up; Id indicates an internal pull-down. All I/O not explicitly stated with a buffer type are 5 V TTL compatible; they will
tolerate 5 V at their inputs.
Lucent Technologies Inc.
7
Data Sheet
August 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Pin Information (continued)
Table 1. Pin Descriptions (continued)
Pin
Symbol
Type*
Name/Description
179
MPMUX
I
Microprocessor Multiplex Mode. Setting MPMUX = 1 allows the microprocessor interface to accept the multiplexed address and data signals. Setting
MPMUX = 0 allows the microprocessor interface to accept demultiplexed
(separate) address and data signals.
180
MPMODE
I
Microprocessor Mode. When MPMODE = 1, the device uses the address
latch enable type microprocessor read/write protocol with separate read and
write controls. Setting MPMODE = 0 allows the device to use the address
strobe type microprocessor read/write protocol with a separate data strobe
and a combined read/write control.
181
RD_R/W
I
Read (Active-Low). If MPMODE = 1, this pin is asserted low by the microprocessor to initiate a read cycle.
Read/Write. If MPMODE = 0, this pin is asserted high by the microprocessor
to indicate a read cycle or asserted low to indicate a write cycle.
178
ALE_AS
I
Address Latch Enable. If MPMODE = 1, this pin becomes the address latch
enable for the microprocessor. When this pin transitions from high to low, the
address bus inputs are latched into the internal registers.
Address Strobe (Active-Low). If MPMODE = 0, this pin becomes the
address strobe for the microprocessor. When this pin transitions from high to
low, the address bus inputs are latched into the internal registers.
87
CS
Iu
Chip Select (Active-Low). This pin is asserted low by the microprocessor to
enable the microprocessor interface (see Microprocessor Configuration
Modes section on page 20). This pin has an internal 100 kΩ pull-up resistor.
86
INT
O
Interrupt. This pin is asserted high to indicate an interrupt produced by an
alarm condition in register 3 or 5. The activation of this pin can be masked by
microprocessor registers 4 and 6.
183
RDY_DTACK
O
Ready. If MPMODE = 1, this pin is asserted high to indicate the device has
completed a read or write operation. This pin is in a high-impedance state
when CS is high.
Data Transfer Acknowledge (Active-Low). If MPMODE = 0, this pin is
asserted low to indicate the device has completed a read or write operation.
48—50,
55—59
AD[7:0]
I/O
Microprocessor Interface Address/Data Bus. If MPMUX = 0, these pins
become the bidirectional, 3-statable data bus. If MPMUX = 1, these pins
become the multiplexed address/data bus.
60—64,
66—68
A[7:0]
I
Microprocessor Interface Address. If MPMUX = 0, these pins become the
address bus for the microprocessor interface registers.
176
WR_DS
I
Write (Active-Low). If MPMODE = 1, this pin is asserted low by the microprocessor to initiate a write cycle.
Data Strobe (Active-Low). If MPMODE = 0, this pin becomes the data
strobe for the microprocessor. When R/W = 0 (write), a low applied to this pin
latches the signal on the data bus into internal registers.
106
RESET
Iu
Hardware Reset (Active-Low). If RESET is forced low, all internal states in
the transceiver paths are reset and data flow through each channel will be
interrupted (see Device-Level Control, Alarm, and Mask Bits (0x00—0x16)
section on page 37). This pin has an internal 20 kΩ pull-up resistor.
184
TCK
Iu
Boundary-Scan Clock. This pin has an internal 20 kΩ pull-up resistor.
* Iu indicates an internal pull-up; Id indicates an internal pull-down. All I/O not explicitly stated with a buffer type are 5 V TTL compatible; they will
tolerate 5 V at their inputs.
8
Lucent Technologies Inc.
Data Sheet
August 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Pin Information (continued)
Table 1. Pin Descriptions (continued)
Pin
Symbol
Type*
Name/Description
185
TDI
Iu
Boundary-Scan Input Data. This pin has an internal 20 kΩ pull-up
resistor.
186
TMS
Iu
Boundary-Scan Mode Select. This pin has an internal 20 kΩ pull-up
resistor.
188
TRST
Id
Boundary-Scan Reset (Active-Low). This pin has an internal 20 kΩ
pull-down resistor.
189
TDO
O
Boundary-Scan Output Data.
89
TSTS1CLKIN
I
Transmit STS-1 Clock. The STS-1 clock can be 51.84 MHz for serial
input data, or 19.44 MHz or 6.48 MHz for byte-wide data.
90
TSTS1SYNC
I
Transmit STS-1 Sync. The STS-1 sync pulse can be either J0 for
8 kHz only or a composite of J0J1V1 for 2 kHz.
92,
94—99
TSTS1DATA[6:0]
O
Transmit STS-1 Data. In the byte-wide output mode, this is bit 6—bit 0
of the data bus. TSTS1DATA7 is the most significant bit of the output
byte.
100
TSTS1PAR
O
Transmit STS-1 Parity. The parity output is only defined for byte-wide
data. The device can be provisioned to source either an odd or even
parity.
91
TSTS1SERIAL/
TSTS1DATA7
O
Transmit STS-1 Serial Data/Transmit STS-1 Data Bit 7 (MSB). In
serial mode, this pin provides 51.84 Mbits/s serial data. In parallel
mode, this pin provides TSTS1DATA7.
88
TSTS1CLKOUT
O
Transmit STS-1 Output Clock.
82
RSTS1CLK
I
Receive STS-1 Clock. The STS-1 clock can be 51.84 MHz for serial
input data, or 19.44 MHz or 6.48 MHz for byte-wide data.
80, 78—75,
73—71
RSTS1DATA[7:0]
Iu
Receive STS-1 Data. In the byte-wide input mode, this is the data bus
with RSTS1DATA7 as the most significant bit of the input byte. This pin
has an internal 100 kΩ pull-up resistor.
70
RSTS1PAR
Iu
Receive STS-1 Parity. The parity input is only defined for byte-wide
data. The device can be provisioned to accept either an odd or even
parity. This pin has an internal 100 kΩ pull-up resistor.
85
RSTS1SERIAL
I
Receive STS-1 Serial Data. If the device is operating in the serial
mode, then RSTS1SERIAL is used as the input data pin. In the bus
mode, this pin is used to synchronize byte 1 of 3 (see Figure 15,
page 71).
156
ICT
Iu
In-Circuit Test Control (Active-Low). If ICT is forced low, all output
pins are placed in the high-impedance state. This pin has an internal
20 kΩ pull-up resistor.
1, 2, 21, 31,
51, 53, 54, 74,
79, 81, 84,
103, 105, 125,
135, 155, 157,
158, 177, 182,
187, 207
VSS
I
Ground Reference for Digital Circuitry.
12, 26, 40, 52,
65, 69, 83, 93,
104, 111, 116,
121, 130, 144,
150, 168, 196
VDD
I
Power Supply for Digital Circuitry.
* Iu indicates an internal pull-up; Id indicates an internal pull-down. All I/O not explicitly stated with a buffer type are 5 V TTL compatible; they will
tolerate 5 V at their inputs.
Lucent Technologies Inc.
9
Data Sheet
August 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Nomenclature Assumptions
The mapping methods (VT1.5, VT2, and VT Group in
ANSI nomenclature; TU-11, TU-12, and TUG-2 in ITU
nomenclature) are analogous, and for the rest of this
document will be referred to as VT1.5, VT2, or VT
Group. STS-1 and AU-3 are also analogous with a few
minor differences.
For the remainder of this document, the 51.84 Mbits/s
signals are referred to as STS-1.
DS1/E1 to STS-1 Block Descriptions
In the descriptions of the block diagram of Figure 1,
some of the control bits exist for each of the DS1/E1 or
VT signals.
Upon start-up, the device will set all of the input data
types (DS1 or E1) based on the level of the DS1_E1N
pin (pin 102). DS1_E1N controls the value transmitted
in the unused overhead bytes and the value of the
transmitted spare bits (SS) in the H1 byte. If this pin is
high, then all of the VT Groups are populated with DS1
signals. If this pin is low, then all of the VT Groups are
populated with E1 signals.
This default selection can be overridden by setting
TOVERRIDE and ROVERRIDE bits in registers 0x88
(bit 0) and 0x89 (bit 0), respectively. The seven VT
Groups can then be individually programmed to carry
either DS1 (TVTG-1 . . . 7 = 1, RVTG-1 . . . 7 = 1) or E1
(TVTG-1 . . . 7 = 0, RVTG-1 . . . 7 = 0) signals.
LOC and AIS Monitor
The incoming DS1/E1 signal is first checked for loss of
clock (LOC). LOC is reported to the microprocessor via
the DS1/E1LOC[1:21] and DS1LOC[22:28] bit
(LOC = 1, 0 otherwise) in registers 0x17—0x32 (bit 6)
and also via the AISLOCCOM composite bit in register
0x05 (bit 1). If LOC is present, the device inserts DS1/
E1 AIS towards the STS-1 using the blue signal clock.
The incoming DS1/E1 data (RDATA[28:1]) is
retimed immediately by the associated DS1/E1 clock
(RCLK[28:1]). The edge of the clock that is used to
retime the data is user-provisionable at the device level
to either the rising edge (RXDS1EDGE = 1) in register
0x02 (bit 1) or falling edge (RXDS1EDGE = 0) in register 0x02 (bit 1).
After being retimed, the incoming data stream is
checked for AIS. The device will declare AIS if the input
data is at logic 1 for 3 ms. The device will withstand up
to eight errors in the 3 ms period. AIS is reported to the
10
microprocessor via the AISLOCCOM composite bit in
register 0x05 (bit 1) and the individual
DS1/E1AIS[1:21] and DS1AIS[22:28] bits in registers
0x17—0x32 (bit 7).
The blue signal clock input signal to the device can be
at the exact DS1/E1 rate (1.544/2.048 MHz) or at 16
times the DS1/E1 rate (24.704/32.768 MHz), with a tolerance of 32 ppm or 50 ppm for DS1 or E1, respectively. This allows users of the Lucent Technologies
T7698FL3/T7693 devices to reuse the XCLK on the
board. The TMPR28051 is provisioned to accept the
exact DS1 rate by default (BLUECLKSEL = 0 in bit 2 of
register 0x00), but can be changed to perform the
divide-by-16 function (BLUECLKSEL = 1 in bit 2 of register 0x00). The duty cycle of the clock can be 45%/
55% because the data is retimed internally in the
device. The duty cycle requires a much tighter tolerance when used for XCLK as described earlier.
DS1/E1 Loopback Select Logic
The first stage after retiming the signal into the device
is selection of the externally received DS1/E1
(DS1/E1LB[1:21] or DS1LB[22:28] = 0) or the looped
back DS1/E1 (DS1/E1LB[1:21] or DS1LB[22:28] = 1).
This selection is provisionable per DS1/E1 input in registers 0x17—0x32 (bit 5).
Input Select Logic
Once the DS1/E1 data sources have been selected,
the DS1/E1 for each VT tributary is selected. This
selection requires 5 bits per slot to determine
which DS1/E1 input to use by provisioning
DS1/E1INS[4:0]_[1:21] or DS1INS[4:0]_[22:28] bits in
registers 0x17—0x32 (bits 4 through 0). The range
[1:28] following the _ refers to the target VT #. Refer to
Table 8 on page 15 and Table 10 on page 15 for details
on the VT locations within the SPE.
The numbering scheme for the five provisioned bits
ranges from 00001 to 11100 where the binary value of
the 5 bits corresponds to the DS1/E1 input. For
instance, the value 00001 corresponds to selecting
DS1/E1 #1.
The unused value of 00000 results in VT unequipped
being transmitted. This is the default value for all the
VT slots at powerup. VT unequipped has a valid
pointer and all-zero payload.
The unused values of 11101—11110 will cause AIS-V
to be inserted for that VT slot.
Lucent Technologies Inc.
Data Sheet
August 1999
DS1/E1 to STS-1 Block Descriptions
(continued)
Input Select Logic (continued)
The value of 11111 will cause the internally generated
test pattern to be inserted for that VT slot.
There are no restrictions on the number of VT slots that
any given DS1/E1 input can supply (e.g., up to 28
VT1.5 slots can select the same DS1 input).
This block can also be used to insert the test pattern
(see Test Pattern Insert section on page 19).
Elastic Store
The selected DS1/E1 clock and data signals are fed to
an elastic store that is used to synchronize the incoming DS1/E1 to the local STS-1 clock. This block determines the need for positive/zero/negative (P/Z/N)
stuffing for each input. Data that is transmitted from this
block is synchronized to the local transmit STS-1 clock
(TSTS1CLK). This block allows the device to accept
DS1 signals at 1.544 Mbits/s ± 130 ppm with up to ±5
unit intervals peak jitter, or E1 signals at 2.048 Mbits/s
± 130 ppm with up to ±5 unit intervals peak jitter.
VT Generate
This block generates the VT superframe. Unless AIS-V
is being forced, the superframe is built with a fixed output pointer value of decimal 78 in all the VT1.5 slots.
The VT size field is set to 11 binary, and the new data
flag is set to 0110 binary. This corresponds to 0x6C4E
for the V1 and V2 bytes within the VT1.5 superframe.
Also, unless AIS-V is being forced, the superframe is
built with a fixed output pointer value of decimal 105 in
all the VT2 slots. The VT size field is set to 10 binary,
and the new data flag is set to 0110 binary. This corresponds to 0x6869 for the V1 and V2 bytes within the
VT2 superframe.
Lucent Technologies Inc.
TMPR28051 STS-1/AU-3 (STM-0) Mapper
In this block, the DS1/E1 data is placed into the VT,
and the VT overhead is generated. The format of the
VT overhead byte, V5, is shown in Table 2.
Table 2. VT1.5 Overhead Byte Format (V5)
Bit # 1
2
BIP-2
3
4
REI-V
RFI-V
5
6
Signal
Label
7
8
RDI-V
Each VT can be provisioned to insert AIS-V by assigning VTAISINS[1:28] = 1 in registers 0x4F—0x6A (bit 3).
AIS-V consists of overwriting the entire VT payload and
overhead with ones.
RDI-V can be automatically inserted by the device
(VTRFIRDIEN[1:28] = 1 in registers 0x4F—0x6A, bit 6)
or written into the V5 byte under control of the microprocessor (VTRFIRDIEN[1:28] = 0 in registers
0x4F—0x6A, bit 6). In the automatic mode, the values
for bit 4 (RFI-V) and bit 8 (RDI-V) are defined in
Table 3. The automatic insertion mode may not meet
the different standards body requirements unless the
VT PTE at both ends of the path (and any intermediate
NEs provisioned to perform intermediate-path PM on
that path) support the protocol defined in Table 3. To
meet the different standards requirements, the microprocessor mode allows programming the RDI-V and
RFI-V bits in registers 0x4F—0x6A by programming
VTRFIINS[1:28] (bit 5) and VTRDIINS[1:28] (bit 4),
respectively.
Table 3. RFI-V, RDI-V Description
Bit 4
0
0
1
1
Bit 8
0
1
0
1
Description
No alarm
AIS-V or LOP-V
VT payload mismatch
VT unequipped
The VT label for each VT is also provisionable through
the microprocessor by programming the
VTLABINS[2:0]_[1:28] in registers 0x4F—0x6A, bit 2
through bit 0.
11
Data Sheet
August 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
DS1/E1 to STS-1 Block Descriptions
(continued)
VT Generate (continued)
In addition to generating the superframe, this block
automatically generates the BIP-2 signal. Each VT can
be configured to intentionally insert continuous BIP-2
errors for troubleshooting purposes (BIP2ERINS[1:28]
= 1 in bit 7 of registers 0x4F—0x6A). This BIP error
insert field forces errors on both BIP-2 bits.
The resultant VT1.5 and VT2 superframes are shown
in Table 4 and Table 5,
Where:
Byte[24/32:1] = information bit
O = overhead bit
R = fixed stuff bit
V1, V2, V3 = pointer and pointer action bytes
S1, S2 = stuff opportunity bits
V4 = reserved
C1, C2 = stuff indication bits
V5 = VT overhead byte
J2, Z6/N2, Z7/K4 = unused
Table 4. VT1.5 Superframe
VT1.5
Superframe
12
Table 5. VT2 Superframe
V1
V5
RRRRRRRR
Byte 1
:
Byte 32
RRRRRRRR
V2
J2
C1C2OOOORR
Byte 1
:
Byte 32
RRRRRRRR
V3
Z6/N2
C1C2OOOORR
Byte 1
:
Byte 32
RRRRRRRR
V4
Z7/K4
C1C2RRRRRS1
S2 Byte 1[6:0]
:
Byte 32
RRRRRRRR
VT2
Superframe
V1
V5
RRRRRRIR
Byte 1
:
Byte 24
V2
J2
C1C2OOOOIR
Byte 1
:
Byte 24
V3
Z6/N2
C1C2OOOOIR
Byte 1
:
Byte 24
V4
Z7/K4
C1C2RRRS1S2R
Byte 1
:
Byte 24
Lucent Technologies Inc.
Data Sheet
August 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
DS1/E1 to STS-1 Block Descriptions
(continued)
The device inserts the correct frame pattern of 0xF628
into the A1 and A2 bytes.
VT Generate (continued)
The device inserts a fixed value of 0x01 into the J0
byte.
The device would transmit 0 in each of the O bits when
the DS1_E1N pin is pulled high. If DS1_E1N is pulled
low, the device will transmit 1 in each of the O bits.
The device generates and inserts valid B1, B2, and B3
BIP-8 even parity bytes into the STS-1 overhead.
These bytes are forced to odd parity when
B[1:3]ERRINS = 1 in bit 6 through bit 4 of register 0x00.
The R bits are always set to 1.
The device transmits all 1s in the J2, Z6/N2, and Z7/K4
bytes.
The device can be configured such that any detected
BIP-2 errors in the VT receive side result in REI-V
being written into the corresponding transmit VT slot
(when REI_EN = 1 in bit 7 of register 0x01).
STS-1/AU-3 Generate
The device generates an STS-1 signal based on an
incoming clock (TSTS1CLK) and frame sync pulse
(TSTS1SYNC). The frame sync pulse can be a single
clock-period wide to indicate an 8 kHz sync, or it can
contain pulses in three clock periods to indicate a composite 2 kHz sync. (See the Transmit Sync Timing section, page 70.)
The STS-1 frame is 9 rows x 90 columns that repeats
at an 8 kHz rate. Each column is 1-byte wide. The
STS-1 frame contains three columns of transport overhead, one column of path overhead, and 86 columns of
payload.
The device will provide an STS-1 pointer with a fixed
value of 522 (decimal) with 0110 in the new data flag
(NDF) bits. The SS bits are determined by the level of
the DS1_E1N pin. When this pin is high, the device
puts 00 in the SS bits. When this pin is low, the device
puts 10 in the SS bits. This pointer value indicates that
the J1 path overhead byte follows immediately after the
J0 line overhead byte.
The J1 byte is used for path trace. This byte repetitively
transmits a 64-byte fixed length sequence to verify
end-to-end connectivity. These 64 bytes are programmable by the microprocessor by provisioning
TJ1BYTE[7:0]_[64:1] in registers 0xC0—0xFF (when
TJ1BYTE = 1 in register 0xBF). The method for programming these bits is described in detail in the register description of the transmit J1 path trace bytes,
page 59.
The F2 byte can be provisioned by the microprocessor
(F2INS-[7:0]) in register 0x10.
The device inserts a value of 0x02 into the C2 byte,
indicating VT structured STS-1 SPE.
The 36 bytes of STS-1 overhead are allocated as
shown in Table 6.
The three least significant bits of the K2 byte can be
provisioned by the microprocessor (K2INS-[6:8]) in register 0x11.
Table 6. STS-1 Overhead Byte Allocation
The four least significant bits of the S1 byte can be provisioned by the microprocessor (S1INS-[3:0]) in register 0x13.
Row 1
Row 2
Row 3
Row 4
Row 5
Row 6
Row 7
Row 8
Row 9
Col. 1
Col. 2
Col. 3
Col. 4
A1
B1
D1
H1
B2
D4
D7
D10
S1
A2
E1
D2
H2
K1
D5
D8
D11
M0
J0
F1
D3
H3
K2
D6
D9
D12
E2
J1
B3
C2
G1
F2
H4
Z3/F3
Z4/K3
Z5/N1
The overhead bytes that are inserted by the device are
described below. All of the remaining overhead bytes
are given a fixed value of all 0s when DS1_E1N (bit 0
in register 0x07) is high, or all 1s when DS1_E1N is
low.
Lucent Technologies Inc.
The M0 byte is used to report B2 line REI (REI-L) when
REI_EN = 1 in register 0x01. This register contains the
number of B2 BIP-8 errors detected in the current
receive frame circuitry when REI_EN = 1 (bit 7 0f register 0x01). Valid values for these 4 bits are 0000—1000.
The G1 byte is used to convey path condition and performance back to the far end. The format of the G1
byte is shown in Table 7.
Table 7. G1 Path Condition/Performance Byte
Format
Bit #
1
2
3
REI-P
4
5
6
7
8
User-Provisioned
RDI-P
13
Data Sheet
August 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
DS1/E1 to STS-1 Block Descriptions
(continued)
STS-1/AU-3 Generate (continued)
Path remote error indicator (REI-P) reports the number
of remote errors. The four REI-P bits contain the number of B3 BIP-8 errors detected in the current frame
when REI_EN = 1 (bit 7 of register 0x01). Valid values
for these 4 bits are 0000—1000. The path remote
defect indicator (RDI-P) bits report back such conditions as receive AIS-P, signal failure, and path trace
mismatch. These bits, 5 through 8 of the G1 byte
(G1INS-[5:8] in register 0x11), are user programmable
by the microprocessor and are not inserted automatically by the device.
The H4 byte is inserted using the reduced H4 coding
sequence format, where the 6 most significant bits are
ones, and the 2 least significant bits take on the following values: 00-01-10-11-00, etc. The value of 00 indicates that the next STS-1 SPE contains the V1
overhead byte.
SPE Insertion Logic
In addition to the one column of path overhead and 84
columns of VT payload, the STS-1 SPE also contains
two columns of fixed stuff bytes. The path overhead is
located in column #1, while column #30 and column
#59 contain the fixed stuff bytes. The remaining columns contain the interleaved VT data as shown in
Table 8.
The SPE insertion logic block acts in conjunction with
the STS-1 frame generate block to place the VT information in the transmitted data stream.
The cross-referencing between the VT1.5 # listed in
Table 8 and the standard format (VT Group #, VT #)
listed in GR-253-CORE section 3.2.4 is shown in
Table 9.
The cross-referencing between the VT2 # listed in
Table 10 and the standard format (VT Group #, VT #)
listed in GR-253-CORE section 3.2.4 is shown in
Table 11.
The STS-1 can be provisioned to send AIS-P
(TXPAISINS = 1 in bit 5 of register 0x01). Writing AIS-P
consists of writing all 1s into the H1—H3 bytes and the
entire SPE.
The transmitted STS-1 can be configured to scramble
the output data (STS1SCR = 1 in bit 2 of register 0x01)
or transmit the data without scrambling (STS1SCR = 0
in bit 2, register 0x01). It is useful to turn off SONET
scrambling if the data is going to be immediately multiplexed into a higher rate SONET signal. When
STS1SCR = 1 in register 0x01, the device scrambles
the outgoing STS-1 frame according to the SONET
frame synchronous scrambling sequence 1 + x6 + x7.
The sequence is reset to 1111111 at the beginning of
the byte following the C1 byte and scrambles all of the
STS-1 data except the A1, A2, and C1 bytes. When
this bit is 0, then the transmit data is not scrambled by
the device.
14
Lucent Technologies Inc.
Data Sheet
August 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
DS1/E1 to STS-1 Block Descriptions (continued)
SPE Insertion Logic (continued)
Table 8. VT1.5 SPE Insertion Format
SPE Column #
1 2 3 4 5 6 7 8 9 1
0
P V V V V V V V V V
A T T T T T T T T T
T 1 1 1 1 1 1 1 1 1
H . . . . . . . . .
5 5 5 5 5 5 5 5 5
O# # # # # # # # #
H1 2 3 4 5 6 7 8 9
1
1
V •••
T
1
.
5
#
1
0
2
8
V
T
1
.
5
#
2
7
2
9
V
T
1
.
5
#
2
8
3
0
F
I
X
E
D
3
1
V
T
1
.
5
#
1
3
2
V •••
T
1
.
5
#
2
5
7
V
T
1
.
5
#
2
7
5
8
V
T
1
.
5
#
2
8
5
9
F
I
X
E
D
6
0
V
T
1
.
5
#
1
6
1
V
T
1
.
5
#
2
6
2
V •••
T
1
.
5
#
3
8
1
V
T
1
.
5
#
2
2
8
2
V
T
1
.
5
#
2
3
8
3
V
T
1
.
5
#
2
4
8
4
V
T
1
.
5
#
2
5
8
5
V
T
1
.
5
#
2
6
8
6
V
T
1
.
5
#
2
7
8
7
V
T
1
.
5
#
2
8
Table 9. Mapping of VT1.5 # to (VT Group #, VT #)
VT1.5 # (VT Group #, VT #) VT1.5 # (VT Group #, VT #) VT1.5 # (VT Group #, VT #) VT1.5 # (VT Group #, VT #)
1
1, 1
8
1, 2
15
1, 3
22
1, 4
2
2, 1
9
2, 2
16
2, 3
23
2, 4
3
3, 1
10
3, 2
17
3, 3
24
3, 4
4
4, 1
11
4, 2
18
4, 3
25
4, 4
5
5, 1
12
5, 2
19
5, 3
26
5, 4
6
6, 1
13
6, 2
20
6, 3
27
6, 4
7
7, 1
14
7, 2
21
7, 3
28
7, 4
Table 10. VT2 SPE Insertion Format
SPE Column #
1 2 3 4 5 6 7 8 9 1
0
P V V V V V V V V V
A T T T T T T T T T
T 2 2 2 2 2 2 2 2 2
H# # # # # # # # #
1 2 3 4 5 6 7 8 9
O
H
1
1
V •••
T
2
#
1
0
2
8
V
T
2
#
6
2
9
V
T
2
#
7
3
0
F
I
X
E
D
3
1
V
T
2
#
8
3
2
V •••
T
2
#
9
5
7
V
T
2
#
1
3
5
8
V
T
2
#
1
4
5
9
F
I
X
E
D
6
0
V
T
2
#
1
5
6
1
V
T
2
#
1
6
6
2
V •••
T
2
#
1
7
8
1
V
T
2
#
1
5
8
2
V
T
2
#
1
6
8
3
V
T
2
#
1
7
8
4
V
T
2
#
1
8
8
5
V
T
2
#
1
9
8
6
V
T
2
#
2
0
8
7
V
T
2
#
2
1
Table 11. Mapping of VT2 # to (VT Group #, VT #)
VT2 #
1
2
3
4
5
6
7
(VT Group #, VT #)
1, 1
2, 1
3, 1
4, 1
5, 1
6, 1
7, 1
Lucent Technologies Inc.
VT2 #
8
9
10
11
12
13
14
(VT Group #, VT #)
1, 2
2, 2
3, 2
4, 2
5, 2
6, 2
7, 2
VT2 #
15
16
17
18
19
20
21
(VT Group #, VT #)
1, 3
2, 3
3, 3
4, 3
5, 3
6, 3
7, 3
15
Data Sheet
August 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
DS1/E1 to STS-1 Block Descriptions
(continued)
SPE Insertion Logic (continued)
The device can transmit the data as either a serial bit
stream (TXSERIAL = 1 in register 0x02, bit 6) or as a
parallel byte of data (TXSERIAL = 0 in register 0x02,
bit 6). There are two parallel modes of operation: bus
mode and nonbus mode. Bus mode allows multiple
TMPR28051 devices to operate on a 19.44 MHz bus;
in nonbus mode, the device transmits data in a
point-to-point fashion at 6.48 MHz. In either parallel
mode, the device sends a parity bit with the data.
This parity bit is configurable to be either odd
(TXPARITY = 1 in register 0x02, bit position 4) or even
(TXPARITY = 0 in register 0x02, bit position 4) parity.
The bus mode of operation requires the device to
select which STS-1 time slot of the three that are available to transmit data. The TBUSMODE bit (bit 2) in register 0x12 determines whether the device operates in
bus mode (TBUSMODE = 1) or nonbus mode
(TBUSMODE = 0). By default, the device powers up in
bus mode. The TBUSPOS bits (bit 1 and bit 0) in register 0x12 determine in which of the three time slots the
device transmits. By default, the device does not transmit (TBUSPOS-[1:0] = 00 in register 0x12), but it can
be configured to transmit during any of the three STS-1
time slots on the 19.44 MHz bus.
with the data. This bit is configurable to odd
(RXPARITY = 1 in bit 5 of register 0x02) or even
(RXPARITY = 0 in bit 5 of register 0x02) parity. Errors
in this bit are reported to the microprocessor
(RXPARER in bit 6 of register 0x03).
The bus mode of operation is similar to normal operation in the DS1/E1 to STS-1 direction. The device
defaults to the bus mode (RBUSMODE = 1 in bit 5 of
register 0x12) of operation and listens to none of the
receive channels (RBUSPOS-[1:0] = 00 in bit 4 and
bit 3 of register 0x12). The sync pulse is used only to
define time slot #1 of the three that are possible. Bus
mode operation requires at least one sync pulse to
define the time slot.
The STS-1 locate block performs the functions necessary to locate the SPE. The device will frame on the
incoming STS-1 signal, and indicate when it is in the
out of frame (OOF) condition (STS1OOF = 1 in bit 0 of
register 0x03) or loss of frame (LOF) condition
(STS1LOF = 1 in bit 1 of register 0x03). Loss of frame
is defined as being in the OOF condition for 3 ms or
more. Both the OOF and LOF are current state conditions; they hold their value for a minimum of 500 µs
after the event. The indications reset if the condition is
no longer true.
In all three modes, the device frame sync input allows
the 8 kHz STS-1 frames as well as the 2 kHz VT superframes to be aligned.
The device monitors the received data bytes for continuous ones or zeros. If the number of continuous data
bytes exceeds the provisioned value (LOSDET-[7:0] in
register 0x91), then loss of signal (STS1LOS = 1 in
bit 0 of register 0x05) is declared. If the value in
LOSDET-[7:0] in register 0x91 is 0x00, then LOS is not
declared.
STS-1 to DS1/E1 Block Descriptions
STS-1/AU-3 Terminate
Loopback Select Logic
The STS-1 terminate block can descramble the output
data (STS1DSCR = 1 in bit 1 of register 0x01) or output
the received data without descrambling
(STS1DSCR = 0 in bit 1 of register 0x01). It is useful to
turn off descrambling if the data is received locally from
a higher-rate signal where descrambling has already
taken place.
The device can be configured to loop back the transmit
STS-1 (STS1LB = 1 in bit 0 of register 0x01) or accept
the receive STS-1 signal (STS1LB = 0 in bit 0 of register 0x01). When the receive STS-1 signal is selected,
the user can configure which edge of the clock to use
to retime the data (RXSTS1EDGE = 1 in bit 3 of register 0x02 uses the rising edge; RXSTS1EDGE = 0 in
bit 3 of register 0x02 uses the falling edge).
SPE Locate
The device can receive data as either a serial bit
stream (RXSERIAL = 1 in bit 7 of register 0x02) or as a
parallel byte (RXSERIAL = 0 in bit 7 of register 0x02).
In the parallel mode, the device receives a parity bit
16
For performance monitoring purposes, there are a
number of BIP and REI error counters (registers
0xC0—0xFF) in the receive section of the device. All of
these internal counters are comprised of a running
error counter and a hold register that presents stable
results to the microprocessor. The counts in all of the
running counters are latched to the hold registers when
LATCH_CNT (bit 3) in register 0x00 is written from 0 to
1. This also resets all of the running counters. The
results are then held until read by the microprocessor.
Lucent Technologies Inc.
Data Sheet
August 1999
STS-1 to DS1/E1 Block Descriptions
(continued)
STS-1/AU-3 Terminate (continued)
All of the internal counters have the ability to store
more than one second of counts. As long as the
LATCH_CNT (bit 3) in register 0x00 occurs every second or faster, no counts will be lost. In case this does
not happen, all of the running counters will hold their
maximum value rather than roll over to zeros.
The device performs pointer interpretation on the
incoming signal to locate the start of the SPE. The
pointer interpretation block will indicate when the
device is in the path loss of pointer (LOP-P) or path AIS
(AIS-P) condition.
Loss of pointer condition is declared as the result of
either of the following conditions:
1. Continuous NDF—If the device receives 1001 in the
NDF field for nine consecutive frames, then LOP-P
is declared.
2. Invalid pointer values—If the device receives nine
frames consecutively of a pointer that is not a normal value, NDF, AIS-P, increment, or decrement,
then LOP-P is declared. The SS bits do not contribute to LOP-P when DS1_E1N is high; otherwise, a
non-10 value in the SS bits will contribute to
LOP-P.
AIS-P is declared on three consecutive frames with all
1s in the H1 and H2 bytes.
AIS-P and LOP-P are mutually exclusive conditions. If
neither STS1PAIS (bit 3 in register 0x03) or STS1LOP
(bit 2 in register 0x03) is a logic 1, then the pointer
interpreter declares a normal pointer. As part of the
normal operation, the device will respond appropriately
to valid NDF, increment, and decrement indications.
Increment and decrement operations will be counted
by the device and presented to the microprocessor via
the SPTR+[7:0] and SPTR–[7:0] bits in registers 0xFE
and 0xFF, respectively.
The B1, B2, and B3 BIP-8 values are recalculated and
compared to the received values. Any differences are
counted by the appropriate error counter
(B[1:3]BIPCNT-[15:0] in registers 0xC0—0xC5 when
BIP_CNTS = 1 in register 0xBF). In addition, B2 and
B3 REI errors are also counted in registers
0xC2—0xC5 (B[2:3]REI-[15:0]; register 0xBF settings:
REI_CNTS = 1 and BIP_CNTS = 0). The running and
latched counts for both B1 and B2 counters are held at
zero during OOF. The running and latched counts for
B3 counters are held at zero during OOF as well as
LOP-P.
Lucent Technologies Inc.
TMPR28051 STS-1/AU-3 (STM-0) Mapper
The device can be provisioned to count bits in error
(BIPBLKCNT = 0 in bit 1 of register 0x00) or blocks in
error (BIPBLKCNT = 1 in bit 0 of register 0x00).
The J1 byte is terminated within the device. This consists of writing the receive J1 sequentially in a 64-byte
register (modulo 64).
At start-up, the receive J1 byte register is all 0s. Whenever the received J1 byte value does not match the
current J1 byte in the register, the path trace mismatch
TRACEER bit (bit 7 in register 0x03) is set to logic 1.
This allows the user to read the 64-byte register once,
and then ignore it unless differences are received.
TRACEER bit (bit 7 in register 0x03) is masked during
AIS-P and LOP-P.
The F2 byte (F2-[7:0] in register 0x0B), the C2 byte
(C2-[7:0] in register 0x0C), the 3 least significant bits of
the K2 byte (K2-[6:8] in register 0x0D), the 4 least significant bits of the S1 byte (S1-[3:0] in register 0x14),
and the 4 least significant bits of the G1 byte (G1-[5:8]
in register 0x0D) are monitored by the microprocessor.
The number of consistent, consecutive frames to
update the values of all of these monitored bytes can
be set by the user to anywhere between 2 and 15
frames (F2#DET-[3:0] in register 0x0E, C2#DET-[3:0]
in register 0x0E, K2#DET-[3:0] in register 0x0F,
G1#DET-[3:0] in register 0x0F). None of these registers will update during OOF condition.
SPE Drop Logic
The SPE drop logic uses the H4 multiframe indicator to
identify the V1 byte and drop the data to the correct VT
termination blocks. Loss of multiframe synchronization
will be reported to the microprocessor (H4LOMF = 1 in
bit 4 of register 0x03).
VT Terminate
The VT terminate block performs VT pointer interpretation on the received signal to locate the VT overhead.
LOP-V (VTLOP[1:28] bit 6 in registers 0x6B—0x86)
and AIS-V (VTAIS[1:28] bit 3 in registers 0x6B—0x86)
are reported to the microprocessor. LOP-V is declared
as a result of either of the following conditions:
1. Continuous NDF—If the device receives 1001 in the
NDF field for nine consecutive superframes, then
LOP-V is declared.
2. Invalid pointer values—If the device receives nine
frames consecutively of a pointer that is not a normal value, NDF, AIS-V, increment, or decrement,
then LOP-V is declared. The SS bits do contribute
to LOP-V.
17
Data Sheet
August 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
STS-1 to DS1/E1 Block Descriptions
(continued)
VT Terminate (continued)
AIS-V is declared on three consecutive superframes
with all 1s in the V1 and V2 bytes.
AIS-V and LOP-V are mutually exclusive conditions. If
neither VTAIS[1:28] (bit 3 in registers 0x6B—0x86) or
VTLOP[1:28] (bit 6 in registers 0x6B—0x86) is a
logic 1, then the pointer interpreter declares a normal
pointer. As part of the normal operation, the device will
respond appropriately to valid NDF, increment, and
decrement indications. Increment and decrement operations will be counted by the device and presented to
the microprocessor via bits VT[1:28]PTR+[3:0] in registers 0xC6—0xFF (BIP_CNTS = 1), and via
VT[1:28]PTR–[3:0] in registers 0xC6—0xFF
(REI_CNTS = 1 and BIP_CNTS = 0), respectively.
Mismatches between the expected VT size bits, bit 11
for VT1.5 and bit 10 for VT2, and the actual received
SS size bits are reported to the microprocessor
VTSIZEER[1:28] bit (bit 7 in registers 0x6B—0x86).
Once the V5 byte is located, the device checks for
received BIP-2 errors (B2BIPCNT-[15:0] in registers
0xC0—0xC1 when BIP_CNTS bit in register 0xBF is
set to 1) and received REI (B[2:3]REI-[15:0] in registers
0xC2—0xC5 when REI_CNTS and BIP_CNTS in register 0xBF are set to a 1 and 0, respectively). In addition to reporting the occurrence of BIP-2 errors and
REI, the device also maintains a count of each of these
on a per VT basis (VTREI[7:0]_[1:28] in registers
0xC7—0xFD: REI_CNTS = 1, BIP_CNTS = 0, and
BIP2CNT[7:0]_[1:28] in registers 0xC7—0xFD:
BIP_CNTS = 1). These running and latched counts for
both BIP-2 and REI counters are held at zero during
OOF, LOP-P, LOP-V, and AIS-V.
Additionally, the device checks for received RFI-V and
RDI-V (bit 5 and bit 4, respectively, in registers
0x6B—0x86) and received VT label
(VTLAB[2:0]_[1:28], bit 2 through bit 0 in registers
0x6B—0x86). Whenever the device receives three
consecutive consistent values for the VT label fields
that are different from the current values, it latches the
new value and reports the change to the microprocessor. When a 1 is received in VTRDI0_[1:28], bit 4 in
registers 0x6B—0x86 (represents bit 8 of the VT V5
overhead byte), for 10 consecutive superframes, it
declares an RDI-V condition.
18
Jitter Attenuate
Each of the 28 VTs has a built-in digital jitter attenuator
to remove the effects of mapping jitter and pointer
adjustment jitter. The bits in registers 0x8A—0x8F are
used to control various aspects of the digital jitter attenuator. Two programmable terms are used to set the
2nd-order loop damping factor and natural frequency of
the PLL. These terms are the gain threshold, set by
DJAGTHR[23:0] in registers 0x8D—0x8F, and scale
value, set by DJASCALE[15:0] in registers
0x8B—0x8C. The PLL bandwidth can be set using the
above registers to accommodate various system constraints.
The digital jitter attenuator block can be enabled by
setting the bit DJACTL = 1 (bit 4) in register 0x01.
These digital jitter attenuators require a blue signal
clock that runs at 16 times the nominal output rate.
The digital jitter attenuators are designed to meet current jitter specifications as well as maximum time interval error (MTIE) requirements. The clock transmitted
from this block nominally has a 50% duty cycle. The jitter attenuator block can be bypassed by setting
DJACTL = 0 (bit 4) in register 0x01. If this block is
bypassed, the output produces gapped clock and data.
Drop Select Logic
Once the VT has been terminated, the source VT for
each DS1/E1 output is selected. This selection
requires 5 bits per slot to determine which VT to use by
programming VTDROP[4:0]_[1:28] bits (bits 4 through
0 in registers 0x33—0x4E). The numbering scheme for
the five provisioned bits ranges from 00001 to 11100,
where the binary value of the 5 bits corresponds to the
VT source. For instance, the value 00001 corresponds
to selecting VT Group 1, VT #1.
The unused values of 00000 and 11101—11110 will
cause AIS to be inserted for that DS1 output. By
default, all DS1/E1 outputs reset to a value of 00000 on
powerup, which causes all of the DS1/E1s to transmit
AIS (all 1s) using the blue signal clock.
The value of 11111 will insert the test pattern as
described next.
Lucent Technologies Inc.
Data Sheet
August 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Test Pattern Block Descriptions
Test Pattern Drop
The device contains a test pattern generator and a test
pattern detector for use in maintenance and troubleshooting.
The test pattern detector can detect the same four test
sequences generated by the test pattern generator
(RCV_PAT-[1:0] in bit positions 4 and 5 of register
0x08). When the detector is out of synchronization, the
device continuously monitors the input data signal for
matches with the expected data signal. When the
device detects 32 matches in a row, it declares itself in
sync (TPOOS = 0 in bit 7 of register 0x0A), and the
error detector is enabled. If the device detects eight
consecutive bit mismatches, the test pattern detector
declares itself out of sync (TPOOS = 1), and starts
searching again.
Test Pattern Insert
The test pattern generator is capable of transmitting
four different test patterns (XMT_PAT-[1:0] in bit positions 0 and 1 of register 0x08). In addition to a 215 – 1,
a 220 – 1, and a 223 – 1 sequence, the device can also
transmit a QRSS sequence. The QRSS pattern is a
220 – 1 pseudorandom bit sequence defined by the
equation 1 + x17 + x20 = 0, with a 14 zero limit.
As can be seen in Figure 1 on page 5, this test pattern
can be inserted in the place of any of the transmitted or
received DS1/E1 signals. The test pattern can also be
provisioned to be framed (XMT_FRAME = 1 in bit 2 of
register 0x08) or unframed (XMT_FRAME = 0 in bit 2
of register 0x08). The framed sequence can be either
DS1 SF format (TP_DS1E1N = 1 in bit 7 of register
0x09) or E1 format (TP_DS1E1N = 0 in bit 7 of register
0x09). The test pattern can also be forced to transmit a
bit error (ERROR_INS bit in register 0x08, bit position
3, is forced to make low to high transition). The test
patterns are O.151 compliant, so they can be used to
drive external test equipment as well as to perform
internal maintenance and troubleshooting.
Lucent Technologies Inc.
The test pattern detector can be configured to look for
a framed (RCV_FRAME = 1 in bit 6 of register 0x08) or
unframed (RCV_FRAME = 0 in bit 6 of register 0x08)
signal.
While in sync, the device counts the number of times
the input data differs from the expected data in a 7-bit
counter, TPERR-[6:0] (bit 0 through bit 6 in register
0x0A), that holds its count when it reaches the maximum value of 128. This counter is reset when the
LATCH_TP bit (bit 7) in register 0x08 makes a 0 to 1
transition.
19
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Data Sheet
August 1999
Microprocessor Interface Description
Overview
The device is equipped with an asynchronous microprocessor interface that allows operation with most commercially available microprocessors. Inputs MPMUX and MPMODE are used to configure this interface into one of four
possible modes. The MPMUX setting selects either a multiplexed 8-bit address/data bus (AD[7:0]), or a demultiplexed 8-bit address bus (A[7:0]) and an 8-bit data bus (AD[7:0]). The MPMODE setting selects the associated set
of registers within the device.
The microprocessor interface can operate at speeds up to 33 MHz in interrupt-driven or polled mode without
wait-states. To conform to standards, there are a limited number of default powerup or reset states. All read/write
registers must be written by the microprocessor on system start-up to guarantee proper device functionality.
Microprocessor Configuration Modes
Table 12 highlights the four microprocessor modes controlled by the MPMUX and MPMODE inputs.
Table 12. Microprocessor Configuration Modes
Mode
MPMODE
MPMUX
Address/Data
Bus
Generic Control, Data, and Output Pin Names
Mode 1
0
0
DeMUXed
CS, AS, DS, R/W, A[7:0], AD[7:0], INT, DTACK
Mode 2
0
1
MUXed
CS, AS, DS, R/W, AD[7:0], INT, DTACK
Mode 3
1
0
DeMUXed
CS, ALE, RD, WR, A[7:0], AD[7:0], INT, RDY
Mode 4
1
1
MUXed
CS, ALE, RD, WR, AD[7:0], INT, RDY
20
Lucent Technologies Inc.
Data Sheet
August 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Microprocessor Interface Description (continued)
Microprocessor Interface Pins
The mode [1—4] specific pin definitions are given in Table 13. Note that the microprocessor interface uses the
same set of pins in all modes.
Table 13. Mode [1—4] Microprocessor Pin Definitions
Configuration
Device Pin
Name
Generic Pin
Name
Pin Type
Assertion
Sense
Mode 1
WR_DS
DS
Input
Active-Low
RD_R/W
R/W
Input
—
Read/Write
R/W = 1 for Read
R/W = 0 for Write
ALE_AS
AS
Input
—
Address Strobe
CS
CS
Input
Active-Low
Chip Select
INT
INT
Output
Active-High
Interrupt
RDY_DTACK
DTACK
Output
Active-Low
Data Acknowledge
AD[7:0]
AD[7:0]
I/O
—
Data Bus
A[7:0]
A[7:0]
Input
—
Address Bus
WR_DS
DS
Input
Active-Low
Data Strobe
RD_R/W
R/W
Input
—
Read/Write
R/W = 1 for Read
R/W = 0 for Write
ALE_AS
AS
Input
—
Address Strobe
CS
CS
Input
Active-Low
Chip Select
INT
INT
Output
Active-High
Interrupt
RDY_DTACK
DTACK
Output
Active-Low
Data Acknowledge
AD[7:0]
AD[7:0]
I/O
—
Address/Data Bus
Mode 2
Lucent Technologies Inc.
Function
Data Strobe
21
Data Sheet
August 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Microprocessor Interface Description (continued)
Microprocessor Interface Pins (continued)
Table 13. Mode [1—4] Microprocessor Pin Definitions (continued)
Configuration
Device Pin
Name
Generic Pin
Name
Pin
Type
Assertion
Sense
Mode 3
WR_DS
WR
Input
Active-Low
Write
RD_R/W
RD
Input
—
Read
ALE_AS
ALE
Input
—
Address Latch
Enable
CS
CS
Input
Active-Low
INT
INT
Output
Active-High Interrupt
RDY_DTACK
RDY
Output
Active-Low
AD[7:0]
AD[7:0]
I/O
—
Data Bus
A[7:0]
A[7:0]
Input
—
Address Bus
WR_DS
WR
Input
Active-Low
Write
RD_R/W
RD
Input
—
Read
ALE_AS
ALE
Input
—
Address Latch
Enable
CS
CS
Input
Active-Low
INT
INT
Output
Active-High Interrupt
RDY_DTACK
RDY
Output
Active-Low
AD[7:0]
AD[7:0]
I/O
—
Mode 4
22
Function
Chip Select
Ready
Chip Select
Ready
Address/Data Bus
Lucent Technologies Inc.
Data Sheet
August 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Microprocessor Interface Description (continued)
Register Architecture Map
The register bank architecture of the microprocessor interface is shown in Table 14. All addresses referred to in
this section are given in hexadecimal and binary notation, where hexadecimal is the left column and binary is the
right column under Address.
Note: Bits in registers 0xC0—0xFF can have one of four configurations, depending upon the setting of register
0xBF (see the Register Architecture Description section, page 57—page 59).
Table 14. Device Register Map
Address
Bit 7
Bit 6
Bit 5
Bit 4
00 00000000
TEST_CNT
B1ERRINS
B2ERRINS
01 00000001
REI_EN
AUTO_LRDI
TXPAISINS
DJACTL
02 00000010
RXSERIAL
TXSERIAL
RXPARITY
TXPARITY
03 00000011
TRACEER
RXPARER
Bit 3
Bit 2
Bit 1
Bit 0
BIPBLKCNT
0
Control, Alarm, and Mask Bit Registers
04 00000100 TRACEERMSK RXPARERMSK
0
0
B3ERRINS
H4LOMF
LATCH_CNT BLUECLKSEL
0
STS1SCR
STS1DSCR
RXSTS1EDGE TXSTS1EDGE RXDS1EDGE
STS1PAIS
STS1LOP
STS1LOF
STS1LB
TXDS1EDGE
STS1OOF
H4LOMFMSK STS1PAISMSK STS1LOPMSK STS1LOFMSK STS1OOFMSK
05 00000101
ESOFCOM
VTSIZECOM
VTLOPCOM VTRFIRDICOM
VTAISCOM
VTLABCOM
AISLOCCOM
06 00000110
ESOFMSK
VTSIZEMSK
VTLOPMSK
VTAISMSK
VTLABMSK
AISLOCMSK STS1LOSMSK
VTRFIRDIMSK
STS1LOS
07 00000111
0
0
0
0
0
0
0
DS1_E1N
08 00001000
LATCH_TP
RCV_FRAME
RCV_PAT-1
RCV_PAT-0
ERROR_INS
XMT_FRAME
XMT_PAT-1
XMT_PAT-0
TP_INVERT
TPDROPSIDE
TPDROP-4
TPDROP-3
TPDROP-2
TPDROP-1
TPDROP-0
TPERR-6
TPERR-5
TPERR-4
TPERR-3
TPERR-2
TPERR-1
TPERR-0
09 00001001 TP_DS1E1N
0A 00001010
TPOOS
0B 00001011
F2-7
F2-6
F2-5
F2-4
F2-3
F2-2
F2-1
F2-0
0C 00001100
C2-7
C2-6
C2-5
C2-4
C2-3
C2-2
C2-1
C2-0
0D 00001101
G1-5
G1-6
G1-7
G1-8
0
K2-6
K2-7
K2-8
0E 00001110
C2#DET-3
C2#DET-2
C2#DET-1
C2#DET-0
F2#DET-3
F2#DET-2
F2#DET-1
F2#DET-0
0F 00001111
G1#DET-3
G1#DET-2
G1#DET-1
G1#DET-0
K2#DET-3
K2#DET-2
K2#DET-1
K2#DET-0
10 00010000
F2INS-7
F2INS-6
F2INS-5
F2INS-4
F2INS-3
F2INS-2
F2INS-1
F2INS-0
11 00010001
G1INS-5
G1INS-6
G1INS-7
G1INS-8
0
K2INS-6
K2INS-7
K2INS-8
12 00010010
0
0
RBUSMODE
RBUSPOS-1
RBUSPOS-0
TBUSMODE
TBUSPOS-1
TBUSPOS-0
13 00010011
0
0
0
0
S1INS-3
S1INS-2
S1INS-1
S1INS-0
14 00010100
S1#DET-3
S1#DET-2
S1#DET-1
S1#DET-0
S1-3
S1-2
S1-1
S1-0
15 00010101
DEVID-7
DEVID-6
DEVID-5
DEVID-4
DEVID-3
DEVID-2
DEVID-1
DEVID-0
16 00010110
0
0
0
0
DEVVER-3
DEVVER-2
DEVVER-1
DEVVER-0
Lucent Technologies Inc.
23
Data Sheet
August 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Microprocessor Interface Description (continued)
Register Architecture Map (continued)
Table 14. Device Register Map (continued)
Address
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
DS1/E1 Insertion Selection Registers
17 00010111 DS1/E1AIS1
DS1/E1LOC1
DS1/E1LB1 DS1/E1INS4_1 DS1/E1INS3_1 DS1/E1INS2_1 DS1/E1INS1_1 DS1/E1INS0_1
18 00011000 DS1/E1AIS2
DS1/E1LOC2
DS1/E1LB2 DS1/E1INS4_2 DS1/E1INS3_2 DS1/E1INS2_2 DS1/E1INS1_2 DS1/E1INS0_2
19 00011001 DS1/E1AIS3
DS1/E1LOC3
DS1/E1LB3 DS1/E1INS4_3 DS1/E1INS3_3 DS1/E1INS2_3 DS1/E1INS1_3 DS1/E1INS0_3
1A 00011010 DS1/E1AIS4
DS1/E1LOC4
DS1/E1LB4 DS1/E1INS4_4 DS1/E1INS3_4 DS1/E1INS2_4 DS1/E1INS1_4 DS1/E1INS0_4
1B 00011011 DS1/E1AIS5
DS1/E1LOC5
DS1/E1LB5 DS1/E1INS4_5 DS1/E1INS3_5 DS1/E1INS2_5 DS1/E1INS1_5 DS1/E1INS0_5
1C 00011100 DS1/E1AIS6
DS1/E1LOC6
DS1/E1LB6 DS1/E1INS4_6 DS1/E1INS3_6 DS1/E1INS2_6 DS1/E1INS1_6 DS1/E1INS0_6
1D 00011101 DS1/E1AIS7
DS1/E1LOC7
DS1/E1LB7 DS1/E1INS4_7 DS1/E1INS3_7 DS1/E1INS2_7 DS1/E1INS1_7 DS1/E1INS0_7
1E 00011110 DS1/E1AIS8
DS1/E1LOC8
DS1/E1LB8 DS1/E1INS4_8 DS1/E1INS3_8 DS1/E1INS2_8 DS1/E1INS1_8 DS1/E1INS0_8
1F 00011111 DS1/E1AIS9
DS1/E1LOC9
DS1/E1LB9 DS1/E1INS4_9 DS1/E1INS3_9 DS1/E1INS2_9 DS1/E1INS1_9 DS1/E1INS0_9
20 00100000 DS1/E1AIS10 DS1/E1LOC10 DS1/E1LB10 DS1/E1INS4_10 DS1/E1INS3_10 DS1/E1INS2_10 DS1/E1INS1_10 DS1/E1INS0_10
21 00100001 DS1/E1AIS11 DS1/E1LOC11 DS1/E1LB11 DS1/E1INS4_11 DS1/E1INS3_11 DS1/E1INS2_11 DS1/E1INS1_11 DS1/E1INS0_11
22 00100010 DS1/E1AIS12 DS1/E1LOC12 DS1/E1LB12 DS1/E1INS4_12 DS1/E1INS3_12 DS1/E1INS2_12 DS1/E1INS1_12 DS1/E1INS0_12
23 00100011 DS1/E1AIS13 DS1/E1LOC13 DS1/E1LB13 DS1/E1INS4_13 DS1/E1INS3_13 DS1/E1INS2_13 DS1/E1INS1_13 DS1/E1INS0_13
24 00100100 DS1/E1AIS14 DS1/E1LOC14 DS1/E1LB14 DS1/E1INS4_14 DS1/E1INS3_14 DS1/E1INS2_14 DS1/E1INS1_14 DS1/E1INS0_14
25 00100101 DS1/E1AIS15 DS1/E1LOC15 DS1/E1LB15 DS1/E1INS4_15 DS1/E1INS3_15 DS1/E1INS2_15 DS1/E1INS1_15 DS1/E1INS0_15
26 00100110 DS1/E1AIS16 DS1/E1LOC16 DS1/E1LB16 DS1/E1INS4_16 DS1/E1INS3_16 DS1/E1INS2_16 DS1/E1INS1_16 DS1/E1INS0_16
27 00100111 DS1/E1AIS17 DS1/E1LOC17 DS1/E1LB17 DS1/E1INS4_17 DS1/E1INS3_17 DS1/E1INS2_17 DS1/E1INS1_17 DS1/E1INS0_17
28 00101000 DS1/E1AIS18 DS1/E1LOC18 DS1/E1LB18 DS1/E1INS4_18 DS1/E1INS3_18 DS1/E1INS2_18 DS1/E1INS1_18 DS1/E1INS0_18
29 00101001 DS1/E1AIS19 DS1/E1LOC19 DS1/E1LB19 DS1/E1INS4_19 DS1/E1INS3_19 DS1/E1INS2_19 DS1/E1INS1_19 DS1/E1INS0_19
2A 00101010 DS1/E1AIS20 DS1/E1LOC20 DS1/E1LB20 DS1/E1INS4_20 DS1/E1INS3_20 DS1/E1INS2_20 DS1/E1INS1_20 DS1/E1INS0_20
2B 00101011 DS1/E1AIS21 DS1/E1LOC21 DS1/E1LB21 DS1/E1INS4_21 DS1/E1INS3_21 DS1/E1INS2_21 DS1/E1INS1_21 DS1/E1INS0_21
2C 00101100
DS1AIS22
DS1LOC22
DS1LB22
DS1INS4_22
DS1INS3_22
DS1INS2_22
DS1INS1_22
DS1INS0_22
2D 00101101
DS1AIS23
DS1LOC23
DS1LB23
DS1INS4_23
DS1INS3_23
DS1INS2_23
DS1INS1_23
DS1INS0_23
2E 00101110
DS1AIS24
DS1LOC24
DS1LB24
DS1INS4_24
DS1INS3_24
DS1INS2_24
DS1INS1_24
DS1INS0_24
2F 00101111
DS1AIS25
DS1LOC25
DS1LB25
DS1INS4_25
DS1INS3_25
DS1INS2_25
DS1INS1_25
DS1INS0_25
30 00110000
DS1AIS26
DS1LOC26
DS1LB26
DS1INS4_26
DS1INS3_26
DS1INS2_26
DS1INS1_26
DS1INS0_26
31 00110001
DS1AIS27
DS1LOC27
DS1LB27
DS1INS4_27
DS1INS3_27
DS1INS2_27
DS1INS1_27
DS1INS0_27
32 00110010
DS1AIS28
DS1LOC28
DS1LB28
DS1INS4_28
DS1INS3_28
DS1INS2_28
DS1INS1_28
DS1INS0_28
24
Lucent Technologies Inc.
Data Sheet
August 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Microprocessor Interface Description (continued)
Register Architecture Map (continued)
Table 14. Device Register Map (continued)
Address
Bit 7
Bit 6
Bit 5
Bit 4
33 00110011
0
RXESOF1
TXESOF1
VTDROP4_1
34 00110100
0
RXESOF2
TXESOF2
35 00110101
0
RXESOF3
TXESOF3
36 00110110
0
RXESOF4
37 00110111
0
RXESOF5
38 00111000
0
39 00111001
0
3A 00111010
3B 00111011
Bit 3
Bit 2
Bit 1
Bit 0
VTDROP3_1
VTDROP2_1
VTDROP1_1
VTDROP0_1
VTDROP4_2
VTDROP3_2
VTDROP2_2
VTDROP1_2
VTDROP0_2
VTDROP4_3
VTDROP3_3
VTDROP2_3
VTDROP1_3
VTDROP0_3
TXESOF4
VTDROP4_4
VTDROP3_4
VTDROP2_4
VTDROP1_4
VTDROP0_4
TXESOF5
VTDROP4_5
VTDROP3_5
VTDROP2_5
VTDROP1_5
VTDROP0_5
RXESOF6
TXESOF6
VTDROP4_6
VTDROP3_6
VTDROP2_6
VTDROP1_6
VTDROP0_6
RXESOF7
TXESOF7
VTDROP4_7
VTDROP3_7
VTDROP2_7
VTDROP1_7
VTDROP0_7
0
RXESOF8
TXESOF8
VTDROP4_8
VTDROP3_8
VTDROP2_8
VTDROP1_8
VTDROP0_8
0
RXESOF9
TXESOF9
VTDROP4_9
VTDROP3_9
VTDROP2_9
VTDROP1_9
VTDROP0_9
3C 00111100
0
RXESOF10
TXESOF10
VTDROP4_10 VTDROP3_10 VTDROP2_10 VTDROP1_10 VTDROP0_10
3D 00111101
0
RXESOF11
TXESOF11
VTDROP4_11 VTDROP3_11 VTDROP2_11 VTDROP1_11 VTDROP0_11
3E 00111110
0
RXESOF12
TXESOF12
VTDROP4_12 VTDROP3_12 VTDROP2_12 VTDROP1_12 VTDROP0_12
3F 00111111
0
RXESOF13
TXESOF13
VTDROP4_13 VTDROP3_13 VTDROP2_13 VTDROP1_13 VTDROP0_13
40 01000000
0
RXESOF14
TXESOF14
VTDROP4_14 VTDROP3_14 VTDROP2_14 VTDROP1_14 VTDROP0_14
41 01000001
0
RXESOF15
TXESOF15
VTDROP4_15 VTDROP3_15 VTDROP2_15 VTDROP1_15 VTDROP0_15
42 01000010
0
RXESOF16
TXESOF16
VTDROP4_16 VTDROP3_16 VTDROP2_16 VTDROP1_16 VTDROP0_16
43 01000011
0
RXESOF17
TXESOF17
VTDROP4_17 VTDROP3_17 VTDROP2_17 VTDROP1_17 VTDROP0_17
44 01000100
0
RXESOF18
TXESOF18
VTDROP4_18 VTDROP3_18 VTDROP2_18 VTDROP1_18 VTDROP0_18
45 01000101
0
RXESOF19
TXESOF19
VTDROP4_19 VTDROP3_19 VTDROP2_19 VTDROP1_19 VTDROP0_19
46 01000110
0
RXESOF20
TXESOF20
VTDROP4_20 VTDROP3_20 VTDROP2_20 VTDROP1_20 VTDROP0_20
47 01000111
0
RXESOF21
TXESOF21
VTDROP4_21 VTDROP3_21 VTDROP2_21 VTDROP1_21 VTDROP0_21
48 01001000
0
RXESOF22
TXESOF22
VTDROP4_22 VTDROP3_22 VTDROP2_22 VTDROP1_22 VTDROP0_22
49 01001001
0
RXESOF23
TXESOF23
VTDROP4_23 VTDROP3_23 VTDROP2_23 VTDROP1_23 VTDROP0_23
4A 01001010
0
RXESOF24
TXESOF24
VTDROP4_24 VTDROP3_24 VTDROP2_24 VTDROP1_24 VTDROP0_24
4B 01001011
0
RXESOF25
TXESOF25
VTDROP4_25 VTDROP3_25 VTDROP2_25 VTDROP1_25 VTDROP0_25
4C 01001100
0
RXESOF26
TXESOF26
VTDROP4_26 VTDROP3_26 VTDROP2_26 VTDROP1_26 VTDROP0_26
4D 01001101
0
RXESOF27
TXESOF27
VTDROP4_27 VTDROP3_27 VTDROP2_27 VTDROP1_27 VTDROP0_27
4E 01001110
0
RXESOF28
TXESOF28
VTDROP4_28 VTDROP3_28 VTDROP2_28 VTDROP1_28 VTDROP0_28
VT Drop Selection Registers
Lucent Technologies Inc.
25
Data Sheet
August 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Microprocessor Interface Description (continued)
Register Architecture Map (continued)
Table 14. Device Register Map (continued)
Address
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Tx VT Overhead Insertion Control Registers
4F 01001111 BIP2ERINS1
VTRFIRDIEN1 VTRFIINS1
VTRDIINS1
VTAISINS1
VTLABINS2_1 VTLABINS1_1 VTLABINS0_1
50 01010000 BIP2ERINS2
VTRFIRDIEN2 VTRFIINS2
VTRDIINS2
VTAISINS2
VTLABINS2_2 VTLABINS1_2 VTLABINS0_2
51 01010001 BIP2ERINS3
VTRFIRDIEN3 VTRFIINS3
VTRDIINS3
VTAISINS3
VTLABINS2_3 VTLABINS1_3 VTLABINS0_3
52 01010010 BIP2ERINS4
VTRFIRDIEN4 VTRFIINS4
VTRDIINS4
VTAISINS4
VTLABINS2_4 VTLABINS1_4 VTLABINS0_4
53 01010011 BIP2ERINS5
VTRFIRDIEN5 VTRFIINS5
VTRDIINS5
VTAISINS5
VTLABINS2_5 VTLABINS1_5 VTLABINS0_5
54 01010100 BIP2ERINS6
VTRFIRDIEN6 VTRFIINS6
VTRDIINS6
VTAISINS6
VTLABINS2_6 VTLABINS1_6 VTLABINS0_6
55 01010101 BIP2ERINS7
VTRFIRDIEN7 VTRFIINS7
VTRDIINS7
VTAISINS7
VTLABINS2_7 VTLABINS1_7 VTLABINS0_7
56 01010110 BIP2ERINS8
VTRFIRDIEN8 VTRFIINS8
VTRDIINS8
VTAISINS8
VTLABINS2_8 VTLABINS1_8 VTLABINS0_8
57 01010111 BIP2ERINS9
VTRFIRDIEN9 VTRFIINS9
VTRDIINS9
VTAISINS9
VTLABINS2_9 VTLABINS1_9 VTLABINS0_9
58 01011000 BIP2ERINS10 VTRFIRDIEN10 VTRFIINS10 VTRDIINS10 VTAISINS10 VTLABINS2_10 VTLABINS1_10 VTLABINS0_10
59 01011001 BIP2ERINS11 VTRFIRDIEN11 VTRFIINS11 VTRDIINS11 VTAISINS11 VTLABINS2_11 VTLABINS1_11 VTLABINS0_11
5A 01011010 BIP2ERINS12 VTRFIRDIEN12 VTRFIINS12 VTRDIINS12 VTAISINS12 VTLABINS2_12 VTLABINS1_12 VTLABINS0_12
5B 01011011 BIP2ERINS13 VTRFIRDIEN13 VTRFIINS13 VTRDIINS13 VTAISINS13 VTLABINS2_13 VTLABINS1_13 VTLABINS0_13
5C 01011100 BIP2ERINS14 VTRFIRDIEN14 VTRFIINS14 VTRDIINS14 VTAISINS14 VTLABINS2_14 VTLABINS1_14 VTLABINS0_14
5D 01011101 BIP2ERINS15 VTRFIRDIEN15 VTRFIINS15 VTRDIINS15 VTAISINS15 VTLABINS2_15 VTLABINS1_15 VTLABINS0_15
5E 01011110 BIP2ERINS16 VTRFIRDIEN16 VTRFIINS16 VTRDIINS16 VTAISINS16 VTLABINS2_16 VTLABINS1_16 VTLABINS0_16
5F 01011111 BIP2ERINS17 VTRFIRDIEN17 VTRFIINS17 VTRDIINS17 VTAISINS17 VTLABINS2_17 VTLABINS1_17 VTLABINS0_17
60 01100000 BIP2ERINS18 VTRFIRDIEN18 VTRFIINS18 VTRDIINS18 VTAISINS18 VTLABINS2_18 VTLABINS1_18 VTLABINS0_18
61 01100001 BIP2ERINS19 VTRFIRDIEN19 VTRFIINS19 VTRDIINS19 VTAISINS19 VTLABINS2_19 VTLABINS1_19 VTLABINS0_19
62 01100010 BIP2ERINS20 VTRFIRDIEN20 VTRFIINS20 VTRDIINS20 VTAISINS20 VTLABINS2_20 VTLABINS1_20 VTLABINS0_20
63 01100011 BIP2ERINS21 VTRFIRDIEN21 VTRFIINS21 VTRDIINS21 VTAISINS21 VTLABINS2_21 VTLABINS1_21 VTLABINS0_21
64 01100100 BIP2ERINS22 VTRFIRDIEN22 VTRFIINS22 VTRDIINS22 VTAISINS22 VTLABINS2_22 VTLABINS1_22 VTLABINS0_22
65 01100101 BIP2ERINS23 VTRFIRDIEN23 VTRFIINS23 VTRDIINS23 VTAISINS23 VTLABINS2_23 VTLABINS1_23 VTLABINS0_23
66 01100110 BIP2ERINS24 VTRFIRDIEN24 VTRFIINS24 VTRDIINS24 VTAISINS24 VTLABINS2_24 VTLABINS1_24 VTLABINS0_24
67 01100111 BIP2ERINS25 VTRFIRDIEN25 VTRFIINS25 VTRDIINS25 VTAISINS25 VTLABINS2_25 VTLABINS1_25 VTLABINS0_25
68 01101000 BIP2ERINS26 VTRFIRDIEN26 VTRFIINS26 VTRDIINS26 VTAISINS26 VTLABINS2_26 VTLABINS1_26 VTLABINS0_26
69 01101001 BIP2ERINS27 VTRFIRDIEN27 VTRFIINS27 VTRDIINS27 VTAISINS27 VTLABINS2_27 VTLABINS1_27 VTLABINS0_27
6A 01101010 BIP2ERINS28 VTRFIRDIEN28 VTRFIINS28 VTRDIINS28 VTAISINS28 VTLABINS2_28 VTLABINS1_28 VTLABINS0_28
26
Lucent Technologies Inc.
Data Sheet
August 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Microprocessor Interface Description (continued)
Register Architecture Map (continued)
Table 14. Device Register Map (continued)
Address
Bit 7
Bit 6
Bit 5
Bit 4
6B 01101011
VTSIZEER1
VTLOP1
VTRDI1_1
VTRDI0_1
6C 01101100
VTSIZEER2
VTLOP2
VTRDI1_2
6D 01101101
VTSIZEER3
VTLOP3
VTRDI1_3
6E 01101110
VTSIZEER4
VTLOP4
6F 01101111
VTSIZEER5
VTLOP5
70 01110000
VTSIZEER6
71 01110001
VTSIZEER7
72 01110010
73 01110011
Bit 3
Bit 2
Bit 1
Bit 0
VTAIS1
VTLAB2_1
VTLAB1_1
VTLAB0_1
VTRDI0_2
VTAIS2
VTLAB2_2
VTLAB1_2
VTLAB0_2
VTRDI0_3
VTAIS3
VTLAB2_3
VTLAB1_3
VTLAB0_3
VTRDI1_4
VTRDI0_4
VTAIS4
VTLAB2_4
VTLAB1_4
VTLAB0_4
VTRDI1_5
VTRDI0_5
VTAIS5
VTLAB2_5
VTLAB1_5
VTLAB0_5
VTLOP6
VTRDI1_6
VTRDI0_6
VTAIS6
VTLAB2_6
VTLAB1_6
VTLAB0_6
VTLOP7
VTRDI1_7
VTRDI0_7
VTAIS7
VTLAB2_7
VTLAB1_7
VTLAB0_7
VTSIZEER8
VTLOP8
VTRDI1_8
VTRDI0_8
VTAIS8
VTLAB2_8
VTLAB1_8
VTLAB0_8
VTSIZEER9
VTLOP9
VTRDI1_9
VTRDI0_9
VTAIS9
VTLAB2_9
VTLAB1_9
VTLAB0_9
74 01110100 VTSIZEER10
VTLOP10
VTRDI1_10
VTRDI0_10
VTAIS10
VTLAB2_10
VTLAB1_10
VTLAB0_10
75 01110101 VTSIZEER11
VTLOP11
VTRDI1_11
VTRDI0_11
VTAIS11
VTLAB2_11
VTLAB1_11
VTLAB0_11
76 01110110 VTSIZEER12
VTLOP12
VTRDI1_12
VTRDI0_12
VTAIS12
VTLAB2_12
VTLAB1_12
VTLAB0_12
77 01110111 VTSIZEER13
VTLOP13
VTRDI1_13
VTRDI0_13
VTAIS13
VTLAB2_13
VTLAB1_13
VTLAB0_13
78 01111000 VTSIZEER14
VTLOP14
VTRDI1_14
VTRDI0_14
VTAIS14
VTLAB2_14
VTLAB1_14
VTLAB0_14
79 01111001 VTSIZEER15
VTLOP15
VTRDI1_15
VTRDI0_15
VTAIS15
VTLAB2_15
VTLAB1_15
VTLAB0_15
7A 01111010 VTSIZEER16
VTLOP16
VTRDI1_16
VTRDI0_16
VTAIS16
VTLAB2_16
VTLAB1_16
VTLAB0_16
7B 01111011 VTSIZEER17
VTLOP17
VTRDI1_17
VTRDI0_17
VTAIS17
VTLAB2_17
VTLAB1_17
VTLAB0_17
7C 01111100 VTSIZEER18
VTLOP18
VTRDI1_18
VTRDI0_18
VTAIS18
VTLAB2_18
VTLAB1_18
VTLAB0_18
7D 01111101 VTSIZEER19
VTLOP19
VTRDI1_19
VTRDI0_19
VTAIS19
VTLAB2_19
VTLAB1_19
VTLAB0_19
7E 01111110 VTSIZEER20
VTLOP20
VTRDI1_20
VTRDI0_20
VTAIS20
VTLAB2_20
VTLAB1_20
VTLAB0_20
7F 01111111 VTSIZEER21
VTLOP21
VTRDI1_21
VTRDI0_21
VTAIS21
VTLAB2_21
VTLAB1_21
VTLAB0_21
80 10000000 VTSIZEER22
VTLOP22
VTRDI1_22
VTRDI0_22
VTAIS22
VTLAB2_22
VTLAB1_22
VTLAB0_22
81 10000001 VTSIZEER23
VTLOP23
VTRDI1_23
VTRDI0_23
VTAIS23
VTLAB2_23
VTLAB1_23
VTLAB0_23
82 10000010 VTSIZEER24
VTLOP24
VTRDI1_24
VTRDI0_24
VTAIS24
VTLAB2_24
VTLAB1_24
VTLAB0_24
83 10001000 VTSIZEER25
VTLOP25
VTRDI1_25
VTRDI0_25
VTAIS25
VTLAB2_25
VTLAB1_25
VTLAB0_25
84 10000100 VTSIZEER26
VTLOP26
VTRDI1_26
VTRDI0_26
VTAIS26
VTLAB2_26
VTLAB1_26
VTLAB0_26
85 10000101 VTSIZEER27
VTLOP27
VTRDI1_27
VTRDI0_27
VTAIS27
VTLAB2_27
VTLAB1_27
VTLAB0_27
86 10000110 VTSIZEER28
VTLOP28
VTRDI1_28
VTRDI0_28
VTAIS28
VTLAB2_28
VTLAB1_28
VTLAB0_28
0
0
0
0
Rx VT Drop Monitoring Registers
Reserved Register
87 10000111
0
0
0
0
Signal Override Control Registers
88 10001000
TVTG-7
TVTG-6
TVTG-5
TVTG-4
TVTG-3
TVTG-2
TVTG-1
TOVERRIDE
89 10001001
RVTG-7
RVTG-6
RVTG-5
RVTG-4
RVTG-3
RVTG-2
RVTG-1
ROVERRIDE
Jitter Attenuator Control Registers
8A 10001010 SCALETHR-7 SCALETHR-6 SCALETHR-5 SCALETHR-4 SCALETHR-3 SCALETHR-2 SCALETHR-1 SCALETHR-0
8B 10001011 DJASCALE-15 DJASCALE-14 DJASCALE-13 DJASCALE-12 DJASCALE-11 DJASCALE-10 DJASCALE-9
DJASCALE-6 DJASCALE-5 DJASCALE-4
8D 10001101 DJAGTHR-23
DJAGTHR-22 DJAGTHR-21 DJAGTHR-20 DJAGTHR-19 DJAGTHR-18 DJAGTHR-17 DJAGTHR-16
8E 10001110 DJAGTHR-15
DJAGTHR-14 DJAGTHR-13 DJAGTHR-12 DJAGTHR-11 DJAGTHR-10
DJAGTHR-9
DJAGTHR-8
8F 10001111
DJAGTHR-6
DJAGTHR-1
DJAGTHR-0
DJAGTHR-7
Lucent Technologies Inc.
DJAGTHR-5
DJAGTHR-4
DJASCALE-3
DJASCALE-8
8C 10001100 DJASCALE-7
DJAGTHR-3
DJASCALE-2 DJASCALE-1 DJASCALE-0
DJAGTHR-2
27
Data Sheet
August 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Microprocessor Interface Description (continued)
Register Architecture Map (continued)
Table 14. Device Register Map (continued)
Address
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
90 10010000
0
0
0
0
0
0
0
91 10010001
LOSDET-7
LOSDET-6
LOSDET-5
LOSDET-2
LOSDET-1/
TP_EDGE-1
LOSDET-0/
TP_EDGE-0
92 10010010 RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
93 10010011 RESERVED
RESERVED
RESERVED
94 10010100 RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
95 10010101 RESERVED
RESERVED
96 10010110 RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
97 10010111 RESERVED
98 10011000 RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
99 10011001 RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
9A 10011010 RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
Reserved Register
0
STS-1 LOS Detect/Test Pattern Edge Control Register
LOSDET-4
LOSDET-3
Reserved Registers
9B 10011011 RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
9C 10011100 RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
9D 10011101 RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
9E 10011110 RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
9F 10011111 RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
A0 10100000 RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
A1 10100001 RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
A2 10100010 RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
A3 10100011 RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
A4 10100100 RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
A5 10100101 RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
A6 10100110 RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
A7 10100111 RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
A8 10101000 RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
A9 10101001 RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
AA 10101010 RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
AB 10101011 RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
AC 10101100 RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
AD 10101101 RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
AE 10101110 RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
AF 10101111 RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
B0 10110000 RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
B1 10110001 RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
B2 10110010 RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
B3 10110011 RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
B4 10110100 RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
28
Lucent Technologies Inc.
Data Sheet
August 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Microprocessor Interface Description (continued)
Register Architecture Map (continued)
Table 14. Device Register Map (continued)
Address
Bit 7
Bit 6
Bit 5
Bit 4
B5 10110101 RESERVED
RESERVED
RESERVED
RESERVED
B6 10110110 RESERVED
RESERVED
RESERVED
B7 10110111 RESERVED
RESERVED
RESERVED
B8 10111000 RESERVED
RESERVED
B9 10111001 RESERVED
RESERVED
BA 10111010 RESERVED
BB 10111011 RESERVED
Bit 3
Bit 2
Bit 1
Bit 0
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
BC 10111100 RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
BD 10111101 RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
BE 10111110 RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RJ1BYTE
REI_CNTS
BIP_CNTS
C0 11000000 B1BIPCNT-15 B1BIPCNT-14 B1BIPCNT-13 B1BIPCNT-12 B1BIPCNT-11 B1BIPCNT-10
B1BIPCNT-9
B1BIPCNT-8
C1 11000001 B1BIPCNT-7
Reserved Registers (continued)
Block Control Register
BF 10111111
0
0
0
0
TJ1BYTE
Block Registers 0xC0—0xFF: Detected BIP Errors
Register 0xBF Setting: BIP_CNTS = 1
B1BIPCNT-1
B1BIPCNT-0
C2 11000010 B2BIPCNT-15 B2BIPCNT-14 B2BIPCNT-13 B2BIPCNT-12 B2BIPCNT-11 B2BIPCNT-10
B1BIPCNT-6
B2BIPCNT-9
B2BIPCNT-8
C3 11000011 B2BIPCNT-7
B2BIPCNT-0
B3BIPCNT-8
C5 11000101 B3BIPCNT-7
B3BIPCNT-6
B3BIPCNT-5
B3BIPCNT-4
VT1PTR+2
VT1PTR+1
VT1PTR+0
C7 11000111 BIP2CNT7_1 BIP2CNT6_1 BIP2CNT5_1
VT2PTR+3
VT2PTR+2
VT2PTR+1
C9 11001001 BIP2CNT7_2 BIP2CNT6_2 BIP2CNT5_2
CA 11001010
VT3PTR+3
VT3PTR+2
VT3PTR+1
CB 11001011 BIP2CNT7_3 BIP2CNT6_3 BIP2CNT5_3
CC 11001100
VT4PTR+3
VT4PTR+2
VT4PTR+1
CD 11001101 BIP2CNT7_4 BIP2CNT6_4 BIP2CNT5_4
CE 11001110
VT5PTR+3
VT5PTR+2
VT5PTR+1
CF 11001111 BIP2CNT7_5 BIP2CNT6_5 BIP2CNT5_5
D0 11010000
VT6PTR+3
VT6PTR+2
VT6PTR+1
D1 11010001 BIP2CNT7_6 BIP2CNT6_6 BIP2CNT5_6
D2 11010010
VT7PTR+3
VT7PTR+2
VT7PTR+1
D3 11010011 BIP2CNT7_7 BIP2CNT6_7 BIP2CNT5_7
D4 11010100
VT8PTR+3
VT8PTR+2
VT8PTR+1
D5 11010101 BIP2CNT7_8 BIP2CNT6_8 BIP2CNT5_8
D6 11010110
VT9PTR+3
VT9PTR+2
VT9PTR+1
BIP2CNT4_1
VT2PTR+0
BIP2CNT4_2
VT3PTR+0
BIP2CNT4_3
VT4PTR+0
BIP2CNT4_4
VT5PTR+0
BIP2CNT4_5
VT6PTR+0
BIP2CNT4_6
VT7PTR+0
BIP2CNT4_7
VT8PTR+0
BIP2CNT4_8
VT9PTR+0
B2BIPCNT-3
B1BIPCNT-2
B3BIPCNT-9
C8 11001000
B2BIPCNT-4
B1BIPCNT-3
B2BIPCNT-1
VT1PTR+3
B2BIPCNT-5
B1BIPCNT-4
C4 11000100 B3BIPCNT-15 B3BIPCNT-14 B3BIPCNT-13 B3BIPCNT-12 B3BIPCNT-11 B3BIPCNT-10
C6 11000110
B2BIPCNT-6
B1BIPCNT-5
B3BIPCNT-3
B2BIPCNT-2
B3BIPCNT-1
B3BIPCNT-0
BIP2CNT11_1 BIP2CNT10_1 BIP2CNT9_1
B3BIPCNT-2
BIP2CNT8_1
BIP2CNT3_1
BIP2CNT1_1
BIP2CNT0_1
BIP2CNT11_2 BIP2CNT10_2 BIP2CNT9_2
BIP2CNT2_1
BIP2CNT8_2
BIP2CNT3_2
BIP2CNT1_2
BIP2CNT0_2
BIP2CNT11_3 BIP2CNT10_3 BIP2CNT9_3
BIP2CNT2_2
BIP2CNT8_3
BIP2CNT3_3
BIP2CNT1_3
BIP2CNT0_3
BIP2CNT11_4 BIP2CNT10_4 BIP2CNT9_4
BIP2CNT2_3
BIP2CNT8_4
BIP2CNT3_4
BIP2CNT1_4
BIP2CNT0_4
BIP2CNT11_5 BIP2CNT10_5 BIP2CNT9_5
BIP2CNT2_4
BIP2CNT8_5
BIP2CNT3_5
BIP2CNT1_5
BIP2CNT0_5
BIP2CNT11_6 BIP2CNT10_6 BIP2CNT9_6
BIP2CNT2_5
BIP2CNT8_6
BIP2CNT3_6
BIP2CNT1_6
BIP2CNT0_6
BIP2CNT11_7 BIP2CNT10_7 BIP2CNT9_7
BIP2CNT2_6
BIP2CNT8_7
BIP2CNT3_7
BIP2CNT1_7
BIP2CNT0_7
BIP2CNT11_8 BIP2CNT10_8 BIP2CNT9_8
BIP2CNT2_7
BIP2CNT8_8
BIP2CNT3_8
BIP2CNT1_8
BIP2CNT0_8
BIP2CNT11_9 BIP2CNT10_9 BIP2CNT9_9
BIP2CNT2_8
BIP2CNT8_9
BIP2CNT3_9
BIP2CNT0_9
D7 11010111 BIP2CNT7_9 BIP2CNT6_9 BIP2CNT5_9
BIP2CNT4_9
D8 11011000 VT10PTR+3
VT10PTR+0 BIP2CNT11_10 BIP2CNT10_10 BIP2CNT9_10 BIP2CNT8_10
VT10PTR+2
VT10PTR+1
BIP2CNT2_9
BIP2CNT1_9
D9 11011001 BIP2CNT7_10 BIP2CNT6_10 BIP2CNT5_10 BIP2CNT4_10 BIP2CNT3_10 BIP2CNT2_10 BIP2CNT1_10 BIP2CNT0_10
Lucent Technologies Inc.
29
Data Sheet
August 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Microprocessor Interface Description (continued)
Register Architecture Map (continued)
Table 14. Device Register Map (continued)
Address
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Block Registers 0xC0—0xFF: Detected BIP Errors (continued)
DA 11011010 VT11PTR+3
VT11PTR+2
VT11PTR+1
VT11PTR+0
BIP2CNT11_11 BIP2CNT10_11 BIP2CNT9_11 BIP2CNT8_11
DB 11011011 BIP2CNT7_11 BIP2CNT6_11 BIP2CNT5_11 BIP2CNT4_11 BIP2CNT3_11 BIP2CNT2_11 BIP2CNT1_11 BIP2CNT0_11
DC 11011100 VT12PTR+3
VT12PTR+2
VT12PTR+1
VT12PTR+0
BIP2CNT11_12 BIP2CNT10_12 BIP2CNT9_12 BIP2CNT8_12
DD 11011101 BIP2CNT7_12 BIP2CNT6_12 BIP2CNT5_12 BIP2CNT4_12 BIP2CNT3_12 BIP2CNT2_12 BIP2CNT1_12 BIP2CNT0_12
DE 11011110 VT13PTR+3
VT13PTR+2
VT13PTR+1
VT13PTR+0
BIP2CNT11_13 BIP2CNT10_13 BIP2CNT9_13 BIP2CNT8_13
DF 11011111 BIP2CNT7_13 BIP2CNT6_13 BIP2CNT5_13 BIP2CNT4_13 BIP2CNT3_13 BIP2CNT2_13 BIP2CNT1_13 BIP2CNT0_13
E0 11100000 VT14PTR+3
VT14PTR+2
VT14PTR+1
VT14PTR+0
BIP2CNT11_14 BIP2CNT10_14 BIP2CNT9_14 BIP2CNT8_14
E1 11100001 BIP2CNT7_14 BIP2CNT6_14 BIP2CNT5_14 BIP2CNT4_14 BIP2CNT3_14 BIP2CNT2_14 BIP2CNT1_14 BIP2CNT0_14
E2 11100010 VT15PTR+3
VT15PTR+2
VT15PTR+1
VT15PTR+0
BIP2CNT11_15 BIP2CNT10_15 BIP2CNT9_15 BIP2CNT8_15
E3 11100011 BIP2CNT7_15 BIP2CNT6_15 BIP2CNT5_15 BIP2CNT4_15 BIP2CNT3_15 BIP2CNT2_15 BIP2CNT1_15 BIP2CNT0_15
E4 11100100 VT16PTR+3
VT16PTR+2
VT16PTR+1
VT16PTR+0
BIP2CNT11_16 BIP2CNT10_16 BIP2CNT9_16 BIP2CNT8_16
E5 11100101 BIP2CNT7_16 BIP2CNT6_16 BIP2CNT5_16 BIP2CNT4_16 BIP2CNT3_16 BIP2CNT2_16 BIP2CNT1_16 BIP2CNT0_16
E6 11100110 VT17PTR+3
VT17PTR+2
VT17PTR+1
VT17PTR+0
BIP2CNT11_17 BIP2CNT10_17 BIP2CNT9_17 BIP2CNT8_17
E7 11100111 BIP2CNT7_17 BIP2CNT6_17 BIP2CNT5_17 BIP2CNT4_17 BIP2CNT3_17 BIP2CNT2_17 BIP2CNT1_17 BIP2CNT0_17
E8 11101000 VT18PTR+3
VT18PTR+2
VT18PTR+1
VT18PTR+0
BIP2CNT11_18 BIP2CNT10_18 BIP2CNT9_18 BIP2CNT8_18
E9 11101001 BIP2CNT7_18 BIP2CNT6_18 BIP2CNT5_18 BIP2CNT4_18 BIP2CNT3_18 BIP2CNT2_18 BIP2CNT1_18 BIP2CNT0_18
EA 11101010 VT19PTR+3
VT19PTR+2
VT19PTR+1
VT19PTR+0
BIP2CNT11_19 BIP2CNT10_19 BIP2CNT9_19 BIP2CNT8_19
EB 11101011 BIP2CNT7_19 BIP2CNT6_19 BIP2CNT5_19 BIP2CNT4_19 BIP2CNT3_19 BIP2CNT2_19 BIP2CNT1_19 BIP2CNT0_19
EC 11101100 VT20PTR+3
VT20PTR+2
VT20PTR+1
VT20PTR+0
BIP2CNT11_20 BIP2CNT10_20 BIP2CNT9_20 BIP2CNT8_20
ED 11101101 BIP2CNT7_20 BIP2CNT6_20 BIP2CNT5_20 BIP2CNT4_20 BIP2CNT3_20 BIP2CNT2_20 BIP2CNT1_20 BIP2CNT0_20
EE 11101110 VT21PTR+3
VT21PTR+2
VT21PTR+1
VT21PTR+0
BIP2CNT11_21 BIP2CNT10_21 BIP2CNT9_21 BIP2CNT8_21
EF 11101111 BIP2CNT7_21 BIP2CNT6_21 BIP2CNT5_21 BIP2CNT4_21 BIP2CNT3_21 BIP2CNT2_21 BIP2CNT1_21 BIP2CNT0_21
F0 11110000 VT22PTR+3
VT22PTR+2
VT22PTR+1
VT22PTR+0
BIP2CNT11_22 BIP2CNT10_22 BIP2CNT9_22 BIP2CNT8_22
F1 11110001 BIP2CNT7_22 BIP2CNT6_22 BIP2CNT5_22 BIP2CNT4_22 BIP2CNT3_22 BIP2CNT2_22 BIP2CNT1_22 BIP2CNT0_22
F2 11110010 VT23PTR+3
VT23PTR+2
VT23PTR+1
VT23PTR+0
BIP2CNT11_23 BIP2CNT10_23 BIP2CNT9_23 BIP2CNT8_23
F3 11110011 BIP2CNT7_23 BIP2CNT6_23 BIP2CNT5_23 BIP2CNT4_23 BIP2CNT3_23 BIP2CNT2_23 BIP2CNT1_23 BIP2CNT0_23
F4 11110100 VT24PTR+3
VT24PTR+2
VT24PTR+1
VT24PTR+0
BIP2CNT11_24 BIP2CNT10_24 BIP2CNT9_24 BIP2CNT8_24
F5 11110101 BIP2CNT7_24 BIP2CNT6_24 BIP2CNT5_24 BIP2CNT4_24 BIP2CNT3_24 BIP2CNT2_24 BIP2CNT1_24 BIP2CNT0_24
F6 11110110 VT25PTR+3
VT25PTR+2
VT25PTR+1
VT25PTR+0
BIP2CNT11_25 BIP2CNT10_25 BIP2CNT9_25 BIP2CNT8_25
F7 11110111 BIP2CNT7_25 BIP2CNT6_25 BIP2CNT5_25 BIP2CNT4_25 BIP2CNT3_25 BIP2CNT2_25 BIP2CNT1_25 BIP2CNT0_25
F8 11111000 VT26PTR+3
VT26PTR+2
VT26PTR+1
VT26PTR+0
BIP2CNT11_26 BIP2CNT10_26 BIP2CNT9_26 BIP2CNT8_26
F9 11111001 BIP2CNT7_26 BIP2CNT6_26 BIP2CNT5_26 BIP2CNT4_26 BIP2CNT3_26 BIP2CNT2_26 BIP2CNT1_26 BIP2CNT0_26
FA 11111010 VT27PTR+3
VT27PTR+2
VT27PTR+1
VT27PTR+0
BIP2CNT11_27 BIP2CNT10_27 BIP2CNT9_27 BIP2CNT8_27
FB 11111011 BIP2CNT7_27 BIP2CNT6_27 BIP2CNT5_27 BIP2CNT4_27 BIP2CNT3_27 BIP2CNT2_27 BIP2CNT1_27 BIP2CNT0_27
FC 11111100 VT28PTR+3
VT28PTR+2
VT28PTR+1
VT28PTR+0
BIP2CNT11_28 BIP2CNT10_28 BIP2CNT9_28 BIP2CNT8_28
FD 11111101 BIP2CNT7_28 BIP2CNT6_28 BIP2CNT5_28 BIP2CNT4_28 BIP2CNT3_28 BIP2CNT2_28 BIP2CNT1_28 BIP2CNT0_28
Received SONET/SDH Pointer Value Registers
Register 0xBF Setting: BIP_CNTS = 1
FE 11111110
SPTR+7
SPTR+6
SPTR+5
SPTR+4
SPTR+3
SPTR+2
SPTR+1
SPTR+0
FF 11111111
SPTR–7
SPTR–6
SPTR–5
SPTR–4
SPTR–3
SPTR–2
SPTR–1
SPTR–0
30
Lucent Technologies Inc.
Data Sheet
August 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Microprocessor Interface Description (continued)
Register Architecture Map (continued)
Table 14. Device Register Map (continued)
Address
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0
Block Registers 0xC0—0xFF: Detected REI Errors
Register 0xBF Settings: REI_CNTS = 1, BIP_CNTS = 0
C0 11000000
0
0
0
0
0
0
0
C1 11000001
0
0
0
0
0
0
0
0
C2 11000010
B2REI-15
B2REI-14
B2REI-13
B2REI-12
B2REI-11
B2REI-10
B2REI-9
B2REI-8
C3 11000011
B2REI-7
B2REI-6
B2REI-5
B2REI-4
B2REI-3
B2REI-2
B2REI-1
B2REI-0
C4 11000100
B3REI-15
B3REI-14
B3REI-13
B3REI-12
B3REI-11
B3REI-10
B3REI-9
B3REI-8
C5 11000101
B3REI-7
B3REI-6
B3REI-5
B3REI-4
B3REI-3
B3REI-2
B3REI-1
B3REI-0
C6 11000110
VT1PTR–3
VT1PTR–2
VT1PTR–1
VT1PTR–0
0
VTREI10_1
VTREI9_1
VTREI8_1
C7 11000111
VTREI7_1
VTREI6_1
VTREI5_1
VTREI4_1
VTREI3_1
VTREI2_1
VTREI1_1
VTREI0_1
C8 11001000
VT2PTR–3
VT2PTR–2
VT2PTR–1
VT2PTR–0
0
VTREI10_2
VTREI9_2
VTREI8_2
C9 11001001
VTREI7_2
VTREI6_2
VTREI5_2
VTREI4_2
VTREI3_2
VTREI2_2
VTREI1_2
VTREI0_2
CA 11001010
VT3PTR–3
VT3PTR–2
VT3PTR–1
VT3PTR–0
0
VTREI10_3
VTREI9_3
VTREI8_3
CB 11001011
VTREI7_3
VTREI6_3
VTREI5_3
VTREI4_3
VTREI3_3
VTREI2_3
VTREI1_3
VTREI0_3
CC 11001100
VT4PTR–3
VT4PTR–2
VT4PTR–1
VT4PTR–0
0
VTREI10_4
VTREI9_4
VTREI8_4
CD 11001101
VTREI7_4
VTREI6_4
VTREI5_4
VTREI4_4
VTREI3_4
VTREI2_4
VTREI1_4
VTREI0_4
CE 11001110
VT5PTR–3
VT5PTR–2
VT5PTR–1
VT5PTR–0
0
VTREI10_5
VTREI9_5
VTREI8_5
CF 11001111
VTREI7_5
VTREI6_5
VTREI5_5
VTREI4_5
VTREI3_5
VTREI2_5
VTREI1_5
VTREI0_5
D0 11010000
VT6PTR–3
VT6PTR–2
VT6PTR–1
VT6PTR–0
0
VTREI10_6
VTREI9_6
VTREI8_6
D1 11010001
VTREI7_6
VTREI6_6
VTREI5_6
VTREI4_6
VTREI3_6
VTREI2_6
VTREI1_6
VTREI0_6
D2 11010010
VT7PTR–3
VT7PTR–2
VT7PTR–1
VT7PTR–0
0
VTREI10_7
VTREI9_7
VTREI8_7
D3 11010011
VTREI7_7
VTREI6_7
VTREI5_7
VTREI4_7
VTREI3_7
VTREI2_7
VTREI1_7
VTREI0_7
D4 11010100
VT8PTR–3
VT8PTR–2
VT8PTR–1
VT8PTR–0
0
VTREI10_8
VTREI9_8
VTREI8_8
D5 11010101
VTREI7_8
VTREI6_8
VTREI5_8
VTREI4_8
VTREI3_8
VTREI2_8
VTREI1_8
VTREI0_8
D6 11010110
VT9PTR–3
VT9PTR–2
VT9PTR–1
VT9PTR–0
0
VTREI10_9
VTREI9_9
VTREI8_9
D7 11010111
VTREI7_9
VTREI6_9
VTREI5_9
VTREI4_9
VTREI3_9
VTREI2_9
VTREI1_9
VTREI0_9
D8 11011000 VT10PTR–3
VT10PTR–2
VT10PTR–1
VT10PTR–0
0
VTREI10_10
VTREI9_10
VTREI8_10
D9 11011001
VTREI7_10
VTREI6_10
VTREI5_10
VTREI4_10
VTREI3_10
VTREI2_10
VTREI1_10
VTREI0_10
DA 11011010 VT11PTR–3
VT11PTR–2
VT11PTR–1
VT11PTR–0
0
VTREI10_11
VTREI9_11
VTREI8_11
DB 11011011
VTREI7_11
VTREI6_11
VTREI5_11
VTREI4_11
VTREI3_11
VTREI2_11
VTREI1_11
VTREI0_11
DC 11011100 VT12PTR–3
VT12PTR–2
VT12PTR–1
VT12PTR–0
0
VTREI10_12
VTREI9_12
VTREI8_12
DD 11011101
VTREI7_12
VTREI6_12
VTREI5_12
VTREI4_12
VTREI3_12
VTREI2_12
VTREI1_12
VTREI0_12
DE 11011110 VT13PTR–3
VT13PTR–2
VT13PTR–1
VT13PTR–0
0
VTREI10_13
VTREI9_13
VTREI8_13
DF 11011111
VTREI7_13
VTREI6_13
VTREI5_13
VTREI4_13
VTREI3_13
VTREI2_13
VTREI1_13
VTREI0_13
E0 11100000 VT14PTR–3
VT14PTR–2
VT14PTR–1
VT14PTR–0
0
VTREI10_14
VTREI9_14
VTREI8_14
E1 11100001
VTREI7_14
VTREI6_14
VTREI5_14
VTREI4_14
VTREI3_14
VTREI2_14
VTREI1_14
VTREI0_14
E2 11100010 VT15PTR–3
VT15PTR–2
VT15PTR–1
VT15PTR–0
0
VTREI10_15
VTREI9_15
VTREI8_15
E3 11100011
VTREI7_15
VTREI6_15
VTREI5_15
VTREI4_15
VTREI3_15
VTREI2_15
VTREI1_15
VTREI0_15
E4 11100100 VT16PTR–3
VT16PTR–2
VT16PTR–1
VT16PTR–0
0
VTREI10_16
VTREI9_16
VTREI8_16
E5 11100101
VTREI7_16
VTREI6_16
VTREI5_16
VTREI4_16
VTREI3_16
VTREI2_16
VTREI1_16
VTREI0_16
E6 11100110 VT17PTR–3
VT17PTR–2
VT17PTR–1
VT17PTR–0
0
VTREI10_17
VTREI9_17
VTREI8_17
E7 11100111
VTREI7_17
VTREI6_17
VTREI5_17
VTREI4_17
VTREI3_17
VTREI2_17
VTREI1_17
VTREI0_17
E8 11101000 VT18PTR–3
VT18PTR–2
VT18PTR–1
VT18PTR–0
0
VTREI10_18
VTREI9_18
VTREI8_18
E9 11101001
VTREI7_18
VTREI6_18
VTREI5_18
VTREI4_18
VTREI3_18
VTREI2_18
VTREI1_18
VTREI0_18
EA 11101010 VT19PTR–3
VT19PTR–2
VT19PTR–1
VT19PTR–0
0
VTREI10_19
VTREI9_19
VTREI8_19
Lucent Technologies Inc.
31
Data Sheet
August 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Microprocessor Interface Description (continued)
Register Architecture Map (continued)
Table 14. Device Register Map (continued)
Address
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Block Registers 0xC0—0xFF: Detected REI Errors (continued)
VTREI7_19
VTREI6_19
VTREI5_19
VTREI4_19
VTREI3_19
VTREI2_19
VTREI1_19
VTREI0_19
EC 11101100 VT20PTR–3
EB 11101011
VT20PTR–2
VT20PTR–1
VT20PTR–0
0
VTREI10_20
VTREI9_20
VTREI8_20
ED 11101101
VTREI7_20
VTREI6_20
VTREI5_20
VTREI4_20
VTREI3_20
VTREI2_20
VTREI1_20
VTREI0_20
EE 11101110 VT21PTR–3
VT21PTR–2
VT21PTR–1
VT21PTR–0
0
VTREI10_21
VTREI9_21
VTREI8_21
EF 11101111
VTREI7_21
VTREI6_21
VTREI5_21
VTREI4_21
VTREI3_21
VTREI2_21
VTREI1_21
VTREI0_21
F0 11110000 VT22PTR–3
VT22PTR–2
VT22PTR–1
VT22PTR–0
0
VTREI10_22
VTREI9_22
VTREI8_22
F1 11110001
VTREI7_22
VTREI6_22
VTREI5_22
VTREI4_22
VTREI3_22
VTREI2_22
VTREI1_22
VTREI0_22
F2 11110010 VT23PTR–3
VT23PTR–2
VT23PTR–1
VT23PTR–0
0
VTREI10_23
VTREI9_23
VTREI8_23
F3 11110011
VTREI7_23
VTREI6_23
VTREI5_23
VTREI4_23
VTREI3_23
VTREI2_23
VTREI1_23
VTREI0_23
F4 11110100 VT24PTR–3
VT24PTR–2
VT24PTR–1
VT24PTR–0
0
VTREI10_24
VTREI9_24
VTREI8_24
F5 11110101
VTREI7_24
VTREI6_24
VTREI5_24
VTREI4_24
VTREI3_24
VTREI2_24
VTREI1_24
VTREI0_24
F6 11110110 VT25PTR–3
VT25PTR–2
VT25PTR–1
VT25PTR–0
0
VTREI10_25
VTREI9_25
VTREI8_25
F7 11110111
VTREI7_25
VTREI6_25
VTREI5_25
VTREI4_25
VTREI3_25
VTREI2_25
VTREI1_25
VTREI0_25
F8 11111000 VT26PTR–3
VT26PTR–2
VT26PTR–1
VT26PTR–0
0
VTREI10_26
VTREI9_26
VTREI8_26
F9 11111001
VTREI7_26
VTREI6_26
VTREI5_26
VTREI4_26
VTREI3_26
VTREI2_26
VTREI1_26
VTREI0_26
FA 11111010 VT27PTR–3
VT27PTR–2
VT27PTR–1
VT27PTR–0
0
VTREI10_27
VTREI9_27
VTREI8_27
FB 11111011
VTREI7_27
VTREI6_27
VTREI5_27
VTREI4_27
VTREI3_27
VTREI2_27
VTREI1_27
VTREI0_27
FC 11111100 VT28PTR–3
VT28PTR–2
VT28PTR–1
VT28PTR–0
0
VTREI10_28
VTREI9_28
VTREI8_28
FD 11111101
VTREI7_28
VTREI6_28
VTREI5_28
VTREI4_28
VTREI3_28
VTREI2_28
VTREI1_28
VTREI0_28
FE 11111110
0
0
0
0
0
0
0
0
FF 11111111
0
0
0
0
0
0
0
0
32
Lucent Technologies Inc.
Data Sheet
August 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Microprocessor Interface Description (continued)
Register Architecture Map (continued)
Table 14. Device Register Map (continued)
Address
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Block Registers 0xC0—0xFF: Receive J1 Path Trace Bytes
Register 0xBF Settings: RJ1BYTE = 1, BIP_CNTS = 0, REI_CNTS = 0
C0 11000000 RJ1BYTE7_64 RJ1BYTE6_64 RJ1BYTE5_64 RJ1BYTE4_64 RJ1BYTE3_64 RJ1BYTE2_64 RJ1BYTE1_64 RJ1BYTE0_64
C1 11000001 RJ1BYTE7_63 RJ1BYTE6_63 RJ1BYTE5_63 RJ1BYTE4_63 RJ1BYTE3_63 RJ1BYTE2_63 RJ1BYTE1_63 RJ1BYTE0_63
C2 11000010 RJ1BYTE7_62 RJ1BYTE6_62 RJ1BYTE5_62 RJ1BYTE4_62 RJ1BYTE3_62 RJ1BYTE2_62 RJ1BYTE1_62 RJ1BYTE0_62
C3 11000011 RJ1BYTE7_61 RJ1BYTE6_61 RJ1BYTE5_61 RJ1BYTE4_61 RJ1BYTE3_61 RJ1BYTE2_61 RJ1BYTE1_61 RJ1BYTE0_61
C4 11000100 RJ1BYTE7_60 RJ1BYTE6_60 RJ1BYTE5_60 RJ1BYTE4_60 RJ1BYTE3_60 RJ1BYTE2_60 RJ1BYTE1_60 RJ1BYTE0_60
C5 11000101 RJ1BYTE7_59 RJ1BYTE6_59 RJ1BYTE5_59 RJ1BYTE4_59 RJ1BYTE3_59 RJ1BYTE2_59 RJ1BYTE1_59 RJ1BYTE0_59
C6 11000110 RJ1BYTE7_58 RJ1BYTE6_58 RJ1BYTE5_58 RJ1BYTE4_58 RJ1BYTE3_58 RJ1BYTE2_58 RJ1BYTE1_58 RJ1BYTE0_58
C7 11000111 RJ1BYTE7_57 RJ1BYTE6_57 RJ1BYTE5_57 RJ1BYTE4_57 RJ1BYTE3_57 RJ1BYTE2_57 RJ1BYTE1_57 RJ1BYTE0_57
C8 11001000 RJ1BYTE7_56 RJ1BYTE6_56 RJ1BYTE5_56 RJ1BYTE4_56 RJ1BYTE3_56 RJ1BYTE2_56 RJ1BYTE1_56 RJ1BYTE0_56
C9 11001001 RJ1BYTE7_55 RJ1BYTE6_55 RJ1BYTE5_55 RJ1BYTE4_55 RJ1BYTE3_55 RJ1BYTE2_55 RJ1BYTE1_55 RJ1BYTE0_55
CA 11001010 RJ1BYTE7_54 RJ1BYTE6_54 RJ1BYTE5_54 RJ1BYTE4_54 RJ1BYTE3_54 RJ1BYTE2_54 RJ1BYTE1_54 RJ1BYTE0_54
CB 11001011 RJ1BYTE7_53 RJ1BYTE6_53 RJ1BYTE5_53 RJ1BYTE4_53 RJ1BYTE3_53 RJ1BYTE2_53 RJ1BYTE1_53 RJ1BYTE0_53
CC 11001100 RJ1BYTE7_52 RJ1BYTE6_52 RJ1BYTE5_52 RJ1BYTE4_52 RJ1BYTE3_52 RJ1BYTE2_52 RJ1BYTE1_52 RJ1BYTE0_52
CD 11001101 RJ1BYTE7_51 RJ1BYTE6_51 RJ1BYTE5_51 RJ1BYTE4_51 RJ1BYTE3_51 RJ1BYTE2_51 RJ1BYTE1_51 RJ1BYTE0_51
CE 11001110 RJ1BYTE7_50 RJ1BYTE6_50 RJ1BYTE5_50 RJ1BYTE4_50 RJ1BYTE3_50 RJ1BYTE2_50 RJ1BYTE1_50 RJ1BYTE0_50
CF 11001111 RJ1BYTE7_49 RJ1BYTE6_49 RJ1BYTE5_49 RJ1BYTE4_49 RJ1BYTE3_49 RJ1BYTE2_49 RJ1BYTE1_49 RJ1BYTE0_49
D0 11010000 RJ1BYTE7_48 RJ1BYTE6_48 RJ1BYTE5_48 RJ1BYTE4_48 RJ1BYTE3_48 RJ1BYTE2_48 RJ1BYTE1_48 RJ1BYTE0_48
D1 11010001 RJ1BYTE7_47 RJ1BYTE6_47 RJ1BYTE5_47 RJ1BYTE4_47 RJ1BYTE3_47 RJ1BYTE2_47 RJ1BYTE1_47 RJ1BYTE0_47
D2 11010010 RJ1BYTE7_46 RJ1BYTE6_46 RJ1BYTE5_46 RJ1BYTE4_46 RJ1BYTE3_46 RJ1BYTE2_46 RJ1BYTE1_46 RJ1BYTE0_46
D3 11010011 RJ1BYTE7_45 RJ1BYTE6_45 RJ1BYTE5_45 RJ1BYTE4_45 RJ1BYTE3_45 RJ1BYTE2_45 RJ1BYTE1_45 RJ1BYTE0_45
D4 11010100 RJ1BYTE7_44 RJ1BYTE6_44 RJ1BYTE5_44 RJ1BYTE4_44 RJ1BYTE3_44 RJ1BYTE2_44 RJ1BYTE1_44 RJ1BYTE0_44
D5 11010101 RJ1BYTE7_43 RJ1BYTE6_43 RJ1BYTE5_43 RJ1BYTE4_43 RJ1BYTE3_43 RJ1BYTE2_43 RJ1BYTE1_43 RJ1BYTE0_43
D6 11010110 RJ1BYTE7_42 RJ1BYTE6_42 RJ1BYTE5_42 RJ1BYTE4_42 RJ1BYTE3_42 RJ1BYTE2_42 RJ1BYTE1_42 RJ1BYTE0_42
D7 11010111 RJ1BYTE7_41 RJ1BYTE6_41 RJ1BYTE5_41 RJ1BYTE4_41 RJ1BYTE3_41 RJ1BYTE2_41 RJ1BYTE1_41 RJ1BYTE0_41
D8 11011000 RJ1BYTE7_40 RJ1BYTE6_40 RJ1BYTE5_40 RJ1BYTE4_40 RJ1BYTE3_40 RJ1BYTE2_40 RJ1BYTE1_40 RJ1BYTE0_40
D9 11011001 RJ1BYTE7_39 RJ1BYTE6_39 RJ1BYTE5_39 RJ1BYTE4_39 RJ1BYTE3_39 RJ1BYTE2_39 RJ1BYTE1_39 RJ1BYTE0_39
DA 11011010 RJ1BYTE7_38 RJ1BYTE6_38 RJ1BYTE5_38 RJ1BYTE4_38 RJ1BYTE3_38 RJ1BYTE2_38 RJ1BYTE1_38 RJ1BYTE0_38
DB 11011011 RJ1BYTE7_37 RJ1BYTE6_37 RJ1BYTE5_37 RJ1BYTE4_37 RJ1BYTE3_37 RJ1BYTE2_37 RJ1BYTE1_37 RJ1BYTE0_37
DC 11011100 RJ1BYTE7_36 RJ1BYTE6_36 RJ1BYTE5_36 RJ1BYTE4_36 RJ1BYTE3_36 RJ1BYTE2_36 RJ1BYTE1_36 RJ1BYTE0_36
DD 11011101 RJ1BYTE7_35 RJ1BYTE6_35 RJ1BYTE5_35 RJ1BYTE4_35 RJ1BYTE3_35 RJ1BYTE2_35 RJ1BYTE1_35 RJ1BYTE0_35
DE 11011110 RJ1BYTE7_34 RJ1BYTE6_34 RJ1BYTE5_34 RJ1BYTE4_34 RJ1BYTE3_34 RJ1BYTE2_34 RJ1BYTE1_34 RJ1BYTE0_34
DF 11011111 RJ1BYTE7_33 RJ1BYTE6_33 RJ1BYTE5_33 RJ1BYTE4_33 RJ1BYTE3_33 RJ1BYTE2_33 RJ1BYTE1_33 RJ1BYTE0_33
E0 11100000 RJ1BYTE7_32 RJ1BYTE6_32 RJ1BYTE5_32 RJ1BYTE4_32 RJ1BYTE3_32 RJ1BYTE2_32 RJ1BYTE1_32 RJ1BYTE0_32
E1 11100001 RJ1BYTE7_31 RJ1BYTE6_31 RJ1BYTE5_31 RJ1BYTE4_31 RJ1BYTE3_31 RJ1BYTE2_31 RJ1BYTE1_31 RJ1BYTE0_31
E2 11100010 RJ1BYTE7_30 RJ1BYTE6_30 RJ1BYTE5_30 RJ1BYTE4_30 RJ1BYTE3_30 RJ1BYTE2_30 RJ1BYTE1_30 RJ1BYTE0_30
E3 11100011 RJ1BYTE7_29 RJ1BYTE6_29 RJ1BYTE5_29 RJ1BYTE4_29 RJ1BYTE3_29 RJ1BYTE2_29 RJ1BYTE1_29 RJ1BYTE0_29
E4 11100100 RJ1BYTE7_28 RJ1BYTE6_28 RJ1BYTE5_28 RJ1BYTE4_28 RJ1BYTE3_28 RJ1BYTE2_28 RJ1BYTE1_28 RJ1BYTE0_28
E5 11100101 RJ1BYTE7_27 RJ1BYTE6_27 RJ1BYTE5_27 RJ1BYTE4_27 RJ1BYTE3_27 RJ1BYTE2_27 RJ1BYTE1_27 RJ1BYTE0_27
E6 11100110 RJ1BYTE7_26 RJ1BYTE6_26 RJ1BYTE5_26 RJ1BYTE4_26 RJ1BYTE3_26 RJ1BYTE2_26 RJ1BYTE1_26 RJ1BYTE0_64
E7 11100111 RJ1BYTE7_25 RJ1BYTE6_25 RJ1BYTE5_25 RJ1BYTE4_25 RJ1BYTE3_25 RJ1BYTE2_25 RJ1BYTE1_25 RJ1BYTE0_25
Lucent Technologies Inc.
33
Data Sheet
August 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Microprocessor Interface Description (continued)
Register Architecture Map (continued)
Table 14. Device Register Map (continued)
Address
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Block Registers 0xC0—0xFF: Receive J1 Path Trace Bytes (continued)
E8 11101000 RJ1BYTE7_24 RJ1BYTE6_24 RJ1BYTE5_24 RJ1BYTE4_24 RJ1BYTE3_24 RJ1BYTE2_24 RJ1BYTE1_24 RJ1BYTE0_24
E9 11101001 RJ1BYTE7_23 RJ1BYTE6_23 RJ1BYTE5_23 RJ1BYTE4_23 RJ1BYTE3_23 RJ1BYTE2_23 RJ1BYTE1_23 RJ1BYTE0_23
EA 11101010 RJ1BYTE7_22 RJ1BYTE6_22 RJ1BYTE5_22 RJ1BYTE4_22 RJ1BYTE3_22 RJ1BYTE2_22 RJ1BYTE1_22 RJ1BYTE0_22
EB 11101011 RJ1BYTE7_21 RJ1BYTE6_21 RJ1BYTE5_21 RJ1BYTE4_21 RJ1BYTE3_21 RJ1BYTE2_21 RJ1BYTE1_21 RJ1BYTE0_21
EC 11101100 RJ1BYTE7_20 RJ1BYTE6_20 RJ1BYTE5_20 RJ1BYTE4_20 RJ1BYTE3_20 RJ1BYTE2_20 RJ1BYTE1_20 RJ1BYTE0_20
ED 11101101 RJ1BYTE7_19 RJ1BYTE6_19 RJ1BYTE5_19 RJ1BYTE4_19 RJ1BYTE3_19 RJ1BYTE2_19 RJ1BYTE1_19 RJ1BYTE0_19
EE 11101110 RJ1BYTE7_18 RJ1BYTE6_18 RJ1BYTE5_18 RJ1BYTE4_18 RJ1BYTE3_18 RJ1BYTE2_18 RJ1BYTE1_18 RJ1BYTE0_18
EF 11101111 RJ1BYTE7_17 RJ1BYTE6_17 RJ1BYTE5_17 RJ1BYTE4_17 RJ1BYTE3_17 RJ1BYTE2_17 RJ1BYTE1_17 RJ1BYTE0_17
F0 11110000 RJ1BYTE7_16 RJ1BYTE6_16 RJ1BYTE5_16 RJ1BYTE4_16 RJ1BYTE3_16 RJ1BYTE2_16 RJ1BYTE1_16 RJ1BYTE0_16
F1 11110001 RJ1BYTE7_15 RJ1BYTE6_15 RJ1BYTE5_15 RJ1BYTE4_15 RJ1BYTE3_15 RJ1BYTE2_15 RJ1BYTE1_15 RJ1BYTE0_15
F2 11110010 RJ1BYTE7_14 RJ1BYTE6_14 RJ1BYTE5_14 RJ1BYTE4_14 RJ1BYTE3_14 RJ1BYTE2_14 RJ1BYTE1_14 RJ1BYTE0_14
F3 11110011 RJ1BYTE7_13 RJ1BYTE6_13 RJ1BYTE5_13 RJ1BYTE4_13 RJ1BYTE3_13 RJ1BYTE2_13 RJ1BYTE1_13 RJ1BYTE0_13
F4 11110100 RJ1BYTE7_12 RJ1BYTE6_12 RJ1BYTE5_12 RJ1BYTE4_12 RJ1BYTE3_12 RJ1BYTE2_12 RJ1BYTE1_12 RJ1BYTE0_12
F5 11110101 RJ1BYTE7_11 RJ1BYTE6_11 RJ1BYTE5_11 RJ1BYTE4_11 RJ1BYTE3_11 RJ1BYTE2_11 RJ1BYTE1_11 RJ1BYTE0_11
F6 11110110 RJ1BYTE7_10 RJ1BYTE6_10 RJ1BYTE5_10 RJ1BYTE4_10 RJ1BYTE3_10 RJ1BYTE2_10 RJ1BYTE1_10 RJ1BYTE0_10
F7 11110111 RJ1BYTE7_9 RJ1BYTE6_9
RJ1BYTE5_9
RJ1BYTE4_9 RJ1BYTE3_9 RJ1BYTE2_9 RJ1BYTE1_9 RJ1BYTE0_9
F8 11111000 RJ1BYTE7_8 RJ1BYTE6_8
RJ1BYTE5_8
RJ1BYTE4_8 RJ1BYTE3_8 RJ1BYTE2_8 RJ1BYTE1_8 RJ1BYTE0_8
F9 11111001 RJ1BYTE7_7 RJ1BYTE6_7
RJ1BYTE5_7
RJ1BYTE4_7 RJ1BYTE3_7 RJ1BYTE2_7 RJ1BYTE1_7 RJ1BYTE0_7
FA 11111010 RJ1BYTE7_6 RJ1BYTE6_6
RJ1BYTE5_6
RJ1BYTE4_6 RJ1BYTE3_6 RJ1BYTE2_6 RJ1BYTE1_6 RJ1BYTE0_6
FB 11111011 RJ1BYTE7_5 RJ1BYTE6_5
RJ1BYTE5_5
RJ1BYTE4_5 RJ1BYTE3_5 RJ1BYTE2_5 RJ1BYTE1_5 RJ1BYTE0_5
FC 11111100 RJ1BYTE7_4 RJ1BYTE6_4
RJ1BYTE5_4
RJ1BYTE4_4 RJ1BYTE3_4 RJ1BYTE2_4 RJ1BYTE1_4 RJ1BYTE0_4
FD 11111101 RJ1BYTE7_3 RJ1BYTE6_3
RJ1BYTE5_3
RJ1BYTE4_3 RJ1BYTE3_3 RJ1BYTE2_3 RJ1BYTE1_3 RJ1BYTE0_3
FE 11111110 RJ1BYTE7_2 RJ1BYTE6_2
RJ1BYTE5_2
RJ1BYTE4_2 RJ1BYTE3_2 RJ1BYTE2_2 RJ1BYTE1_2 RJ1BYTE0_2
FF 11111111 RJ1BYTE7_1 RJ1BYTE6_1 RJ1BYTE5_1 RJ1BYTE4_1 RJ1BYTE3_1 RJ1BYTE2_1 RJ1BYTE1_1 RJ1BYTE0_1
34
Lucent Technologies Inc.
Data Sheet
August 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Microprocessor Interface Description (continued)
Register Architecture Map (continued)
Table 14. Device Register Map (continued)
Address
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Block Registers 0xC0—0xFF: Transmit J1 Path Trace Bytes
Register 0xBF Settings: TJ1BYTE_RD = 1, BIP_CNTS = 0, REI_CNTS = 0, RJ1BYTE = 0
C0 11000000 TJ1BYTE7_64 TJ1BYTE6_64 TJ1BYTE5_64 TJ1BYTE4_64 TJ1BYTE3_64 TJ1BYTE2_64 TJ1BYTE1_64 TJ1BYTE0_64
C1 11000001 TJ1BYTE7_63 TJ1BYTE6_63 TJ1BYTE5_63 TJ1BYTE4_63 TJ1BYTE3_63 TJ1BYTE2_63 TJ1BYTE1_63 TJ1BYTE0_63
C2 11000010 TJ1BYTE7_62 TJ1BYTE6_62 TJ1BYTE5_62 TJ1BYTE4_62 TJ1BYTE3_62 TJ1BYTE2_62 TJ1BYTE1_62 TJ1BYTE0_62
C3 11000011 TJ1BYTE7_61 TJ1BYTE6_61 TJ1BYTE5_61 TJ1BYTE4_61 TJ1BYTE3_61 TJ1BYTE2_61 TJ1BYTE1_61 TJ1BYTE0_61
C4 11000100 TJ1BYTE7_60 TJ1BYTE6_60 TJ1BYTE5_60 TJ1BYTE4_60 TJ1BYTE3_60 TJ1BYTE2_60 TJ1BYTE1_60 TJ1BYTE0_60
C5 11000101 TJ1BYTE7_59 TJ1BYTE6_59 TJ1BYTE5_59 TJ1BYTE4_59 TJ1BYTE3_59 TJ1BYTE2_59 TJ1BYTE1_59 TJ1BYTE0_59
C6 11000110 TJ1BYTE7_58 TJ1BYTE6_58 TJ1BYTE5_58 TJ1BYTE4_58 TJ1BYTE3_58 TJ1BYTE2_58 TJ1BYTE1_58 TJ1BYTE0_58
C7 11000111 TJ1BYTE7_57 TJ1BYTE6_57 TJ1BYTE5_57 TJ1BYTE4_57 TJ1BYTE3_57 TJ1BYTE2_57 TJ1BYTE1_57 TJ1BYTE0_57
C8 11001000 TJ1BYTE7_56 TJ1BYTE6_56 TJ1BYTE5_56 TJ1BYTE4_56 TJ1BYTE3_56 TJ1BYTE2_56 TJ1BYTE1_56 TJ1BYTE0_56
C9 11001001 TJ1BYTE7_55 TJ1BYTE6_55 TJ1BYTE5_55 TJ1BYTE4_55 TJ1BYTE3_55 TJ1BYTE2_55 TJ1BYTE1_55 TJ1BYTE0_55
CA 11001010 TJ1BYTE7_54 TJ1BYTE6_54 TJ1BYTE5_54 TJ1BYTE4_54 TJ1BYTE3_54 TJ1BYTE2_54 TJ1BYTE1_54 TJ1BYTE0_54
CB 11001011 TJ1BYTE7_53 TJ1BYTE6_53 TJ1BYTE5_53 TJ1BYTE4_53 TJ1BYTE3_53 TJ1BYTE2_53 TJ1BYTE1_53 TJ1BYTE0_53
CC 11001100 TJ1BYTE7_52 TJ1BYTE6_52 TJ1BYTE5_52 TJ1BYTE4_52 TJ1BYTE3_52 TJ1BYTE2_52 TJ1BYTE1_52 TJ1BYTE0_52
CD 11001101 TJ1BYTE7_51 TJ1BYTE6_51 TJ1BYTE5_51 TJ1BYTE4_51 TJ1BYTE3_51 TJ1BYTE2_51 TJ1BYTE1_51 TJ1BYTE0_51
CE 11001110 TJ1BYTE7_50 TJ1BYTE6_50 TJ1BYTE5_50 TJ1BYTE4_50 TJ1BYTE3_50 TJ1BYTE2_50 TJ1BYTE1_50 TJ1BYTE0_50
CF 11001111 TJ1BYTE7_49 TJ1BYTE6_49 TJ1BYTE5_49 TJ1BYTE4_49 TJ1BYTE3_49 TJ1BYTE2_49 TJ1BYTE1_49 TJ1BYTE0_49
D0 11010000 TJ1BYTE7_48 TJ1BYTE6_48 TJ1BYTE5_48 TJ1BYTE4_48 TJ1BYTE3_48 TJ1BYTE2_48 TJ1BYTE1_48 TJ1BYTE0_48
D1 11010001 TJ1BYTE7_47 TJ1BYTE6_47 TJ1BYTE5_47 TJ1BYTE4_47 TJ1BYTE3_47 TJ1BYTE2_47 TJ1BYTE1_47 TJ1BYTE0_47
D2 11010010 TJ1BYTE7_46 TJ1BYTE6_46 TJ1BYTE5_46 TJ1BYTE4_46 TJ1BYTE3_46 TJ1BYTE2_46 TJ1BYTE1_46 TJ1BYTE0_46
D3 11010011 TJ1BYTE7_45 TJ1BYTE6_45 TJ1BYTE5_45 TJ1BYTE4_45 TJ1BYTE3_45 TJ1BYTE2_45 TJ1BYTE1_45 TJ1BYTE0_45
D4 11010100 TJ1BYTE7_44 TJ1BYTE6_44 TJ1BYTE5_44 TJ1BYTE4_44 TJ1BYTE3_44 TJ1BYTE2_44 TJ1BYTE1_44 TJ1BYTE0_44
D5 11010101 TJ1BYTE7_43 TJ1BYTE6_43 TJ1BYTE5_43 TJ1BYTE4_43 TJ1BYTE3_43 TJ1BYTE2_43 TJ1BYTE1_43 TJ1BYTE0_43
D6 11010110 TJ1BYTE7_42 TJ1BYTE6_42 TJ1BYTE5_42 TJ1BYTE4_42 TJ1BYTE3_42 TJ1BYTE2_42 TJ1BYTE1_42 TJ1BYTE0_42
D7 11010111 TJ1BYTE7_41 TJ1BYTE6_41 TJ1BYTE5_41 TJ1BYTE4_41 TJ1BYTE3_41 TJ1BYTE2_41 TJ1BYTE1_41 TJ1BYTE0_41
D8 11011000 TJ1BYTE7_40 TJ1BYTE6_40 TJ1BYTE5_40 TJ1BYTE4_40 TJ1BYTE3_40 TJ1BYTE2_40 TJ1BYTE1_40 TJ1BYTE0_40
D9 11011001 TJ1BYTE7_39 TJ1BYTE6_39 TJ1BYTE5_39 TJ1BYTE4_39 TJ1BYTE3_39 TJ1BYTE2_39 TJ1BYTE1_39 TJ1BYTE0_39
DA 11011010 TJ1BYTE7_38 TJ1BYTE6_38 TJ1BYTE5_38 TJ1BYTE4_38 TJ1BYTE3_38 TJ1BYTE2_38 TJ1BYTE1_38 TJ1BYTE0_38
DB 11011011 TJ1BYTE7_37 TJ1BYTE6_37 TJ1BYTE5_37 TJ1BYTE4_37 TJ1BYTE3_37 TJ1BYTE2_37 TJ1BYTE1_37 TJ1BYTE0_37
DC 11011100 TJ1BYTE7_36 TJ1BYTE6_36 TJ1BYTE5_36 TJ1BYTE4_36 TJ1BYTE3_36 TJ1BYTE2_36 TJ1BYTE1_36 TJ1BYTE0_36
DD 11011101 TJ1BYTE7_35 TJ1BYTE6_35 TJ1BYTE5_35 TJ1BYTE4_35 TJ1BYTE3_35 TJ1BYTE2_35 TJ1BYTE1_35 TJ1BYTE0_35
DE 11011110 TJ1BYTE7_34 TJ1BYTE6_34 TJ1BYTE5_34 TJ1BYTE4_34 TJ1BYTE3_34 TJ1BYTE2_34 TJ1BYTE1_34 TJ1BYTE0_34
DF 11011111 TJ1BYTE7_33 TJ1BYTE6_33 TJ1BYTE5_33 TJ1BYTE4_33 TJ1BYTE3_33 TJ1BYTE2_33 TJ1BYTE1_33 TJ1BYTE0_33
E0 11100000 TJ1BYTE7_32 TJ1BYTE6_32 TJ1BYTE5_32 TJ1BYTE4_32 TJ1BYTE3_32 TJ1BYTE2_32 TJ1BYTE1_32 TJ1BYTE0_32
E1 11100001 TJ1BYTE7_31 TJ1BYTE6_31 TJ1BYTE5_31 TJ1BYTE4_31 TJ1BYTE3_31 TJ1BYTE2_31 TJ1BYTE1_31 TJ1BYTE0_31
E2 11100010 TJ1BYTE7_30 TJ1BYTE6_30 TJ1BYTE5_30 TJ1BYTE4_30 TJ1BYTE3_30 TJ1BYTE2_30 TJ1BYTE1_30 TJ1BYTE0_30
E3 11100011 TJ1BYTE7_29 TJ1BYTE6_29 TJ1BYTE5_29 TJ1BYTE4_29 TJ1BYTE3_29 TJ1BYTE2_29 TJ1BYTE1_29 TJ1BYTE0_29
E4 11100100 TJ1BYTE7_28 TJ1BYTE6_28 TJ1BYTE5_28 TJ1BYTE4_28 TJ1BYTE3_28 TJ1BYTE2_28 TJ1BYTE1_28 TJ1BYTE0_28
E5 11100101 TJ1BYTE7_27 TJ1BYTE6_27 TJ1BYTE5_27 TJ1BYTE4_27 TJ1BYTE3_27 TJ1BYTE2_27 TJ1BYTE1_27 TJ1BYTE0_27
E6 11100110 TJ1BYTE7_26 TJ1BYTE6_26 TJ1BYTE5_26 TJ1BYTE4_26 TJ1BYTE3_26 TJ1BYTE2_26 TJ1BYTE1_26 TJ1BYTE0_26
Lucent Technologies Inc.
35
Data Sheet
August 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Microprocessor Interface Description (continued)
Register Architecture Map (continued)
Table 14. Device Register Map (continued)
Address
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Block Registers 0xC0—0xFF: Transmit J1 Path Trace Bytes (continued)
E7 11100111 TJ1BYTE7_25 TJ1BYTE6_25 TJ1BYTE5_25 TJ1BYTE4_25 TJ1BYTE3_25 TJ1BYTE2_25 TJ1BYTE1_25 TJ1BYTE0_25
E8 11101000 TJ1BYTE7_24 TJ1BYTE6_24 TJ1BYTE5_24 TJ1BYTE4_24 TJ1BYTE3_24 TJ1BYTE2_24 TJ1BYTE1_24 TJ1BYTE0_24
E9 11101001 TJ1BYTE7_23 TJ1BYTE6_23 TJ1BYTE5_23 TJ1BYTE4_23 TJ1BYTE3_23 TJ1BYTE2_23 TJ1BYTE1_23 TJ1BYTE0_23
EA 11101010 TJ1BYTE7_22 TJ1BYTE6_22 TJ1BYTE5_22 TJ1BYTE4_22 TJ1BYTE3_22 TJ1BYTE2_22 TJ1BYTE1_22 TJ1BYTE0_22
EB 11101011 TJ1BYTE7_21 TJ1BYTE6_21 TJ1BYTE5_21 TJ1BYTE4_21 TJ1BYTE3_21 TJ1BYTE2_21 TJ1BYTE1_21 TJ1BYTE0_21
EC 11101100 TJ1BYTE7_20 TJ1BYTE6_20 TJ1BYTE5_20 TJ1BYTE4_20 TJ1BYTE3_20 TJ1BYTE2_20 TJ1BYTE1_20 TJ1BYTE0_20
ED 11101101 TJ1BYTE7_19 TJ1BYTE6_19 TJ1BYTE5_19 TJ1BYTE4_19 TJ1BYTE3_19 TJ1BYTE2_19 TJ1BYTE1_19 TJ1BYTE0_19
EE 11101110 TJ1BYTE7_18 TJ1BYTE6_18 TJ1BYTE5_18 TJ1BYTE4_18 TJ1BYTE3_18 TJ1BYTE2_18 TJ1BYTE1_18 TJ1BYTE0_18
EF 11101111 TJ1BYTE7_17 TJ1BYTE6_17 TJ1BYTE5_17 TJ1BYTE4_17 TJ1BYTE3_17 TJ1BYTE2_17 TJ1BYTE1_17 TJ1BYTE0_17
F0 11110000 TJ1BYTE7_16 TJ1BYTE6_16 TJ1BYTE5_16 TJ1BYTE4_16 TJ1BYTE3_16 TJ1BYTE2_16 TJ1BYTE1_16 TJ1BYTE0_16
F1 11110001 TJ1BYTE7_15 TJ1BYTE6_15 TJ1BYTE5_15 TJ1BYTE4_15 TJ1BYTE3_15 TJ1BYTE2_15 TJ1BYTE1_15 TJ1BYTE0_15
F2 11110010 TJ1BYTE7_14 TJ1BYTE6_14 TJ1BYTE5_14 TJ1BYTE4_14 TJ1BYTE3_14 TJ1BYTE2_14 TJ1BYTE1_14 TJ1BYTE0_14
F3 11110011 TJ1BYTE7_13 TJ1BYTE6_13 TJ1BYTE5_13 TJ1BYTE4_13 TJ1BYTE3_13 TJ1BYTE2_13 TJ1BYTE1_13 TJ1BYTE0_13
F4 11110100 TJ1BYTE7_12 TJ1BYTE6_12 TJ1BYTE5_12 TJ1BYTE4_12 TJ1BYTE3_12 TJ1BYTE2_12 TJ1BYTE1_12 TJ1BYTE0_12
F5 11110101 TJ1BYTE7_11 TJ1BYTE6_11 TJ1BYTE5_11 TJ1BYTE4_11 TJ1BYTE3_11 TJ1BYTE2_11 TJ1BYTE1_11 TJ1BYTE0_11
F6 11110110 TJ1BYTE7_10 TJ1BYTE6_10 TJ1BYTE5_10 TJ1BYTE4_10 TJ1BYTE3_10 TJ1BYTE2_10 TJ1BYTE1_10 TJ1BYTE0_10
F7 11110111 TJ1BYTE7_9
TJ1BYTE6_9
TJ1BYTE5_9
TJ1BYTE4_9
TJ1BYTE3_9
TJ1BYTE2_9
TJ1BYTE1_9
TJ1BYTE0_9
F8 11111000 TJ1BYTE7_8
TJ1BYTE6_8
TJ1BYTE5_8
TJ1BYTE4_8
TJ1BYTE3_8
TJ1BYTE2_8
TJ1BYTE1_8
TJ1BYTE0_8
F9 11111001 TJ1BYTE7_7
TJ1BYTE6_7
TJ1BYTE5_7
TJ1BYTE4_7
TJ1BYTE3_7
TJ1BYTE2_7
TJ1BYTE1_7
TJ1BYTE0_7
FA 11111010 TJ1BYTE7_6
TJ1BYTE6_6
TJ1BYTE5_6
TJ1BYTE4_6
TJ1BYTE3_6
TJ1BYTE2_6
TJ1BYTE1_6
TJ1BYTE0_6
FB 11111011 TJ1BYTE7_5
TJ1BYTE6_5
TJ1BYTE5_5
TJ1BYTE4_5
TJ1BYTE3_5
TJ1BYTE2_5
TJ1BYTE1_5
TJ1BYTE0_5
FC 11111100 TJ1BYTE7_4
TJ1BYTE6_4
TJ1BYTE5_4
TJ1BYTE4_4
TJ1BYTE3_4
TJ1BYTE2_4
TJ1BYTE1_4
TJ1BYTE0_4
FD 11111101 TJ1BYTE7_3
TJ1BYTE6_3
TJ1BYTE5_3
TJ1BYTE4_3
TJ1BYTE3_3
TJ1BYTE2_3
TJ1BYTE1_3
TJ1BYTE0_3
FE 11111110 TJ1BYTE7_2
TJ1BYTE6_2
TJ1BYTE5_2
TJ1BYTE4_2
TJ1BYTE3_2
TJ1BYTE2_2
TJ1BYTE1_2
TJ1BYTE0_2
FF 11111111 TJ1BYTE7_1
TJ1BYTE6_1
TJ1BYTE5_1
TJ1BYTE4_1
TJ1BYTE3_1
TJ1BYTE2_1
TJ1BYTE1_1
TJ1BYTE0_1
36
Lucent Technologies Inc.
Data Sheet
August 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Microprocessor Interface Description (continued)
Register Architecture Description
Hexadecimal notation is used in both the Address and the Reset Default columns in all the register description
tables in this section.
Device-Level Control, Alarm, and Mask Bits (0x00—0x16)
Table 15. Registers 0x00—0x16: Device-Level Control, Alarm, and Mask Bits
Address
(Hex)
Bit #
Name
Function
0x00
—
—
7
TEST_CNT
6
5
4
3
B1ERRINS
B2ERRINS
B3ERRINS
LATCH_CNT
The bits in the register 0x00 are used for device-level control and error reporting.
Factory Test Mode. TEST_CNT = 1 forces all internal
counters to test mode and is intended for factory use only.
This bit should always be set to 0.
B1ERRINS, B2ERRINS, and B3ERRINS. B1ERRINS,
B2ERRINS, and B3ERRINS all cause continuous BIP-8
errors to be transmitted in their respective BIP-8 values.
2
BLUECLKSEL
1
BIPBLKCNT
0
—
Lucent Technologies Inc.
Reset
Default
(Hex)
0x00
Latch Count. The device has a number of BIP, REI, and
pointer adjustment counters that are all updated when the
LATCH_CNT bit is written from 0 to 1. Nothing happens
when the bit is written from 1 to 0. The only internal counter
that is not updated by this bit is the test pattern counter.
The device can accept a blue signal clock at either the
exact DS1 rate (BLUECLKSEL = 0), or at 16 times the DS1
rate (BLUECLKSEL = 1).
BIP Error Counter or BIP Block Counter. The
BIPBLKCNT bit is used to determine whether the BIP
counters count the number of BIP errors (BIPBLKCNT = 0)
or the number of BIP blocks that contain errors
(BIPBLKCNT = 1).
Reserved.
37
Data Sheet
August 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Microprocessor Interface Description (continued)
Register Architecture Description (continued)
Table 15. Registers 0x00—0x16: Device-Level Control, Alarm, and Mask Bits (continued)
38
Address
(Hex)
Bit #
Name
Function
0x01
—
—
7
REI_EN
6
AUTO_LRDI
5
TXPAISINS
4
DJACTL
3
2
—
STS1SCR
1
STS1DSCR
0
STS1LB
The bits in register 0x01 are used to provision device-level
control bits. The functions of these bits are described
below.
REI_Enable. When REI_EN = 1, the device will automatically insert the appropriate REI into the transmitted Z2, G1,
V5 overhead bytes whenever it receives BIP errors. If
REI_EN = 0, then the automatic insertion of REI is disabled.
When AUTO_LRDI = 1, the device will automatically insert
line RDI.
When TXPAISINS = 1, the device will write all 1s into the
pointer bytes (H1—H3) and all of the synchronous payload
envelope (SPE).
The DJACTL is used to enable the use of the built-in digital
jitter attenuators. When DJACTL = 0, the gapped DS1/E1
clock and data are transmitted by the device; otherwise,
the smoothed clock and data are transmitted.
Reserved.
STS-1_Scramble. When STS1SCR = 1, the device scrambles the outgoing STS-1 frame according to the SONET
frame synchronous scrambling sequence 1 + x6 + x7. The
sequence is reset to 1111111 at the beginning of the byte
following the C1 byte and scrambles all of the STS-1 data
except the A1, A2, and C1 bytes. When this bit is 0, then
the transmit data is not scrambled.
STS-1_Descramble. When STS1DSCR = 1, the device
descrambles the incoming STS-1 frame according to the
SONET frame synchronous descrambling sequence
1 + x6 + x7. The sequence is reset to 1111111 at the beginning of the byte following the C1 byte and descrambles all
of the STS-1 data except the A1, A2, and C1 bytes. When
this bit is 0, then the received data is not descrambled.
STS-1_Loopback. When STS1LB = 1, the transmitted data
is looped back to the receive side. When this bit is 0, the
device uses the received data.
Reset
Default
(Hex)
0x00
Lucent Technologies Inc.
Data Sheet
August 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Microprocessor Interface Description (continued)
Register Architecture Description (continued)
Table 15. Registers 0x00—0x16: Device-Level Control, Alarm, and Mask Bits (continued)
Address
(Hex)
Bit #
Name
Function
0x02
—
—
7
6
RXSERIAL
TXSERIAL
5
4
RXPARITY
TXPARITY
3
2
1
0
RXSTS1EDGE
TXSTS1EDGE
RXDS1EDGE
TXDS1EDGE
The bits in register 0x02 are used to set the edges that
retime data into and out of the device.
Receive Serial Data, Transmit Serial Data. Both the
RXSERIAL and TXSERIAL bits are used to set the type of
STS-1 data. When either serial bit is written to 1, the STS-1
rail runs in serial mode; otherwise, the STS-1 rail runs in
parallel mode.
Both the RXPARITY and TXPARITY bits determine the
type of parity for data buses. When these bits are written
with 1, odd parity is used; otherwise, even parity is used.
When the edge register bits are set to 1, the data is retimed
(either in or out) by the rising clock edge; when set to a
logic 0, the data is retimed by the falling clock edge. Note
that the TSTS1SERIAL data always comes out on the rising edge of the TSTS1CLKOUT.
Reset
Default
(Hex)
0x00
Note: The TXSTS1EDGE (bit 2) should always be set to 0
to avoid potential race condition inside the device.
Lucent Technologies Inc.
39
Data Sheet
August 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Microprocessor Interface Description (continued)
Register Architecture Description (continued)
Table 15. Registers 0x00—0x16: Device-Level Control, Alarm, and Mask Bits (continued)
Address
(Hex)
Bit #
Name
Function
0x03
—
—
7
TRACEER
6
RXPARER
5
4
—
H4LOMF
3
STS1PAIS
2
STS1LOP
1
STS1LOF
0
STS1OOF
7
6
5
4
3
2
1
0
TRACEERMSK
RXPARERMSK
—
H4LOMFMSK
STS1PAISMSK
STS1LOPMSK
STS1LOFMSK
STS1OOFMSK
The bits in register 0x03 are used to report problems at the
receive STS-1 level.
The device monitors the received J1 byte for path trace
mismatches. When the received J1 byte pattern does not
match the previously received pattern, then TRACEER = 1.
This is an event bit and is held until read.
RXPARER = 1 reports a parity violation on the receive
STS-1 data bus when in parallel mode. This is an event bit
and is held until read.
Reserved.
The device monitors the incoming H4 byte for loss of multiframe indication (H4LOMF = 1). This is an event bit and is
held until read.
STS1PAIS = 1 reports path AIS as detected by the receive
pointer interpreter. This is a current state bit with a minimum persistence of 375 µs. The indications reset if the
condition is no longer true.
STS1LOP = 1 reports a loss of STS-1 pointer. This is a current state bit with a minimum persistence of 125 µs. The
indications reset if the condition is no longer true.
STS1LOF = 1 reports an out of frame condition that persists for more than 3 ms. This is a current state bit with a
minimum persistence of 3 ms. The indications reset if the
condition is no longer true.
STS1OOF = 1 reports an out of frame condition on the
receive STS-1 signal. This is a current state bit with a minimum persistence of 500 µs. The indications reset if the
condition is no longer true.
The bits in register 0x04 are used to mask the contributions
of the bits in register 0x03 to the microprocessor interrupt
output, INT. When any of these bits are at a logic 1 level,
the corresponding bit in register 0x03 is masked from contributing to the output interrupt. The reset default for this
register masks all of the bits in register 0x03.
0x04
40
Reset
Default
(Hex)
0x00
0xFF
Bit 5 is reserved.
Lucent Technologies Inc.
Data Sheet
August 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Microprocessor Interface Description (continued)
Register Architecture Description (continued)
Table 15. Registers 0x00—0x16: Device-Level Control, Alarm, and Mask Bits (continued)
Address
(Hex)
Bit #
Name
Function
0x05
—
—
7
ESOFCOM
6
VTSIZECOM
5
4
VTLOPCOM
VTRFIRDICOM
3
VTAISCOM
2
VTLABCOM
1
AISLOCCOM
0
STS1LOS
The bits in register 0x05 are used to report problems at the
receive DS1/E1 and VT level. The bits in this register are
composite bits. The bits that report the problems at the VT
level are located in 28 separate registers (one for each VT)
as described below. These composite bits are placed in the
register map to determine which type of error was
detected. When any one of the 28 VT bits indicates an
error, the corresponding composite bit indicates an error.
ESOFCOM = 1 reports that the device has experienced
either a receive or a transmit elastic store overflow. This is
an event bit and is held until read.
VTSIZECOM = 1 reports incorrect VT size bits. The valid
VT size bits are 11 for VT1.5 and 10 for VT2.
VTLOPCOM = 1 reports LOP-V.
VTRFIRDICOM = 1 reports the fact that the VT RFI/RDI
bits have been received as a new consistent value for three
consecutive superframes. This is an event bit and is held
until read.
VTAISCOM = 1 reports the fact that the V1 and V2 pointer
bytes are all 1s for three consecutive superframes.
VTLABCOM = 1 reports change of state of the VT label. In
order for this bit to be set, the device must detect three
consecutive consistent new values for the VT label. This is
an event bit and is held until read.
AISLOCCOM = 1 reports an AIS or LOC condition on DS1/
E1. This is a current state bit with a minimum persistence
of 2 ms. The indications reset if the condition is no longer
true.
STS1LOS = 1 reports an STS-1 loss of signal. The bits in
register 0x91 are used to set the number of 6.48 MHz clock
periods required to declare received STS-1 loss of signal. If
this value is 0x00, then STS1LOS is not declared. This is a
current state bit with a minimum persistence of 250 µs. The
indications reset if the condition is no longer true.
Lucent Technologies Inc.
Reset
Default
(Hex)
0x00
41
Data Sheet
August 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Microprocessor Interface Description (continued)
Register Architecture Description (continued)
Table 15. Registers 0x00—0x16: Device-Level Control, Alarm, and Mask Bits (continued)
Address
(Hex)
Bit #
Name
Function
0x06
7
6
5
4
3
2
1
0
ESOFMSK
VTSIZEMSK
VTLOPMSK
VTRFIRDIMSK
VTAISMSK
VTLABMSK
AISLOCMSK
STS1LOSMSK
The bits in register 0x06 are used to mask the contributions
of the bits in register 0x05 to the microprocessor interrupt
output, INT. When any of these bits is 1, the corresponding
bit in register 0x05 is masked from contributing to the output interrupt. The reset default for this register masks all of
the bits in register 0x05.
0x07
7—1
0
—
DS1_E1N
0x08
42
7
LATCH_TP
6
RCV_FRAME
5
4
RCV_PAT-1
RCV_PAT-0
3
ERROR_INS
2
XMT_FRAME
1
0
XMT_PAT-1
XMT_PAT-0
This register reports the hardware selected device mode.
Reserved. These bits are set to 0 at reset.
This bit reports the DS1_E1N value from the device input
pin.
The bits in register 0x08 are used to configure the test pattern generator and detector.
A 0 to 1 transition on LATCH_TP causes the running error
count to be latched and presented to the microprocessor.
RCV_FRAME = 1 causes a framed test pattern to be
expected; a 0 causes an unframed test pattern to be
expected.
RCV_PAT[1:0] determines the receive test pattern
sequence where 00 = QRSS, 01 = 223 – 1,
10 = 220 – 1, 11 = 215 – 1.
ERROR_INS causes a single error to be inserted in the
data (not frame) bits after a 0 to 1 transition.
XMT_FRAME = 1 causes a framed test pattern to be generated; a 0 causes an unframed test pattern to be generated.
XMTPAT-[1:0] determines the transmit test pattern
sequence where 00 = QRSS, 01 = 223 – 1,
10 = 220 – 1, 11 = 215 – 1.
Reset
Default
(Hex)
0xFF
0x01
0x00
Lucent Technologies Inc.
Data Sheet
August 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Microprocessor Interface Description (continued)
Register Architecture Description (continued)
Table 15. Registers 0x00—0x16: Device-Level Control, Alarm, and Mask Bits (continued)
Address
(Hex)
Bit #
Name
0x09
—
7
—
TP_DS1E1N
6
TP_INVERT
5
TPDROPSIDE
4
3
2
1
0
—
TPDROP-4
TPDROP-3
TPDROP-2
TPDROP-1
TPDROP-0
—
7
TPOOS
0x0B
6
5
4
3
2
1
0
7—0
TPERR-6
TPERR-5
TPERR-4
TPERR-3
TPERR-2
TPERR-1
TPERR-0
F2-[7:0]
0x0C
7—0
C2-[7:0]
0x0A
Lucent Technologies Inc.
Function
Reset
Default
(Hex)
The bits in register 0x09 are used to set up the test pattern. 0x00
TP_DS1E1N = 1 sets the frame sequence to DS1;
TP_DS1E1N = 0 sets the frame sequence to E1.
TP_INVERT = 1 forces the test pattern sequence to be
inverted.
When TPDROPSIDE = 1, the test pattern is dropped from
the SPE drop logic. The DS1/E1 output that is dropped is
described in the Microprocessor Interface Description (continued) section on page 50. When TPDROPSIDE = 0, the
DS1/E1 that is dropped is the same as described in the
DS1/E1 Insertion Selection section on page 47.
The TPDROP[4:0] bits are used to select the VT that needs
to be dropped.
The bits in register 0x0A indicate the condition of the test
pattern detector.
If the test pattern detector has been able to synchronize on
the dropped signal, then TPOOS = 0.
When TPOOS = 0, then the TPERR-[6:0] bits are used to
keep count of the number of bit errors the test pattern
detector has seen. This error count is cleared when the
register is read by the microprocessor.
0x80
The F2-[7:0] bits in register 0x0B are used to report the F2
receive byte in the path overhead.
The C2-[7:0] bits in register 0x0C are used to report the
received C2 label byte in the path overhead. The default
value for this register indicates path unequipped.
0x00
0x00
43
Data Sheet
August 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Microprocessor Interface Description (continued)
Register Architecture Description (continued)
Table 15. Registers 0x00—0x16: Device-Level Control, Alarm, and Mask Bits (continued)
Address
(Hex)
Bit #
Name
0x0D
—
—
0x0E
7
6
5
4
3
2
1
0
—
G1-5
G1-6
G1-7
G1-8
—
K2-6
K2-7
K2-8
—
7
6
5
4
3
2
1
0
C2#DET-3
C2#DET-2
C2#DET-1
C2#DET-0
F2#DET-3
F2#DET-2
F2#DET-1
F2#DET-0
—
—
7
6
5
4
3
2
1
0
G1#DET-3
G1#DET-2
G1#DET-1
G1#DET-0
K2#DET-3
K2#DET-2
K2#DET-1
K2#DET-0
7—0
F2INS-[7:0]
0x0F
0x10
44
Function
The bits in register 0x0D are used to report path and section overhead.
The G1-[5:8] are used to report the four least significant
bits of the G1 path overhead byte.
Reset
Default
(Hex)
0x00
Reserved.
The K2-[6:8] bits are used to report the three least significant bits of the K2 section overhead byte.
The bits in register 0x0E are used to set the number of consecutive, consistent values required by registers 0x0B and
0x0C before updating their values.
The C2#DET-[3:0] bits are used to set the number of consecutive and consistent values required before updating
C2-[7:0] bits in register 0x0C.
The F2#DET-[3:0] bits are used to set the number of consecutive and consistent values required before updating
F2-[7:0] bits in register 0x0B. Valid values for this register
range from 3 to 15. Any value less than 3 defaults to 2
inside the device.
The bits in register 0x0F are used to set the number of consecutive, consistent values required by register 0x0D
before updating their values.
The G1#DET-[3:0] bits are used to set the number of consecutive and consistent values required before updating
G1-[5:8] bits in register 0x0D.
The K2#DET-[3:0] bits are used to set the number of consecutive and consistent values required before updating
K2-[6:8] bits in register 0x0D. Valid values for this register
range from 3 to 15. Any value less than 3 defaults to 2
inside the device.
The F2INS-[7:0] bits in register 0x10 are used to set the
values to be transmitted in the F2 byte.
0x33
0x33
0x00
Lucent Technologies Inc.
Data Sheet
August 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Microprocessor Interface Description (continued)
Register Architecture Description (continued)
Table 15. Registers 0x00—0x16: Device-Level Control, Alarm, and Mask Bits (continued)
Address
(Hex)
Bit #
Name
Function
0x11
—
—
7
6
5
4
3
2
1
0
G1INS-5
G1INS-6
G1INS-7
G1INS-8
—
K2INS-6
K2INS-7
K2INS-8
The bits in register 0x11 are used to set the values to be
transmitted in the G1 and K2 bytes.
The G1INS-[5:8] bits are used to set values to be transmitted in the four least significant bits of the G1 byte. The
G1 byte is written by the microprocessor.
—
—
7—6
5
—
RBUSMODE
4
3
RBUSPOS-1
RBUSPOS-0
2
TBUSMODE
1
0
TBUSPOS-1
TBUSPOS-0
0x12
Lucent Technologies Inc.
Reserved.
The K2INS-[6:8] bits are used to set the values to be transmitted in the three least significant bits of the K2 byte.
AUTO_LRDI bit (bit 6 of register 0x01) should be set to 0
for K2INS-[6:8] insertion (i.e., K2 insertion) through the
microprocessor interface.
The bits in register 0x12 are used to set the bus mode of
operation for both the transmit and receive sides.
Reserved.
The RBUSMODE bit sets the STS-1 receive side of the
device to the bus mode of operation when a 1; otherwise,
the device is set to nonbus mode.
The RBUSPOS-[1:0] sets the time slot for the receive side.
00 causes the receive side not to listen. Otherwise, the
time slots are determined by the binary value of these bits
as follows:
01 = time slot 1
10 = time slot 2
11 = time slot 3
The TBUSMODE bit sets the STS-1 transmit side of the
device to the bus mode of operation when a 1; otherwise,
the device is set to nonbus mode.
The TBUSPOS-[1:0] sets the time slot for the transmit
sides. 00 causes the transmit side not to transmit. Otherwise, the time slots are determined by the binary value of
these bits as follows:
01 = time slot 1
10 = time slot 2
11 = time slot 3
Reset
Default
(Hex)
0x00
0x24
45
Data Sheet
August 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Microprocessor Interface Description (continued)
Register Architecture Description (continued)
Table 15. Registers 0x00—0x16: Device-Level Control, Alarm, and Mask Bits (continued)
Address
(Hex)
Bit #
Name
0x13
7—4
3
2
1
0
—
S1INS-3
S1INS-2
S1INS-1
S1INS-0
7
6
5
4
S1#DET-3
S1#DET-2
S1#DET-1
S1#DET-0
3
2
1
0
7—0
S1-3
S1-2
S1-1
S1-0
DEVID-[7:0]
—
7—4
3
2
1
0
—
—
DEVVER-3
DEVVER-2
DEVVER-1
DEVVER-0
0x14
0x15
0x16
46
Function
Reserved.
The S1INS-[3:0] bits in register 0x13 are used to set the
four least significant bits of the S1 path overhead byte.
Reset
Default
(Hex)
0x00
The bits in register 0x14 are for the S1 path overhead byte.
The S1#DET-[3:0] bits are used to set the number of consecutive, consistent values required by the receive S1 byte
before updating the value. Valid values for these registers
range from 3 to 15. Any value less than 3 defaults to 2
inside the device.
The S1-[3:0] bits are used to report the four least significant
bits of the S1 path overhead byte.
0x30
DEVID-[7:0] bits in register 0x15 are used to report the
device ID.
The DEVVER-[3:0] bits in register 0x16 are used to report
the device version. Anytime there are silicon changes that
modify the operation of this device, this register will be
incremented by 1.
0x51
—
Notes:
The reset default value is the device version.
Bits 7—4 are reserved.
Lucent Technologies Inc.
Data Sheet
August 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Microprocessor Interface Description (continued)
Register Architecture Description (continued)
DS1/E1 Insertion Selection
Table 16. Registers 0x17—0x32: DS1/E1 Insertion Selection
Address
(Hex)
Bit #
Name
Function
0x17—0x2B
—
7
—
DS1/E1AIS[1:21]
6
DS1/E1LOC[1:21]
5
DS1/E1LB[1:21]
4
3
2
1
0
DS1/E1INS4_[1:21]
DS1/E1INS3_[1:21]
DS1/E1INS2_[1:21]
DS1/E1INS1_[1:21]
DS1/E1INS0_[1:21]
Registers 0x17—0x2B report DS1 or E1 conditions.
The DS1/E1AIS[1:21] bits report the received DS1/E1
AIS condition. When any of these bits is 1, the corresponding DS1/E1 input has an AIS condition. This value
represents the current received state. The AIS condition
is not latched by these bits. The indication is reset when
the condition is no longer true.
The DS1/E1LOC[1:21] bits in bit 6 report the received
DS1/E1 loss of clock condition. When any of these bits
is 1, the corresponding DS1/E1 input has a received
loss of clock condition. This value represents the current received state. The loss of clock condition is not
latched by these bits. The indication is reset when the
condition is no longer true.
The DS1/E1LB[1:21] bits in bit 5 are used to force DS1/
E1 loopback from output to input. When any of these
bits is 1, the corresponding DS1/E1 input is overwritten
by the outgoing DS1/E1 signal for that location.
The DS1/E1INS[4:0]_[1:21] bits in registers 0x17—
0x2B are used to select the DS1/E1 input for the transmit VT1.5 slots. The DS1/E1 selected corresponds to
the decimal value of the programmed 5 bits. If these bits
contain 00000, the device will insert unequipped into
the corresponding VT1.5 slot. If these bits contain
11101—11110, the device will insert AIS-V into the corresponding VT1.5 slot. Since the device defaults all 28
of these registers to the value 00000, all of the 28 VT1.5
slots begin transmitting unequipped following reset. The
value 11111 inserts the test pattern. Addresses 0x17—
0x32 correspond to VT1.5s as shown in Table 17,
page 49.
Lucent Technologies Inc.
Reset
Default
(Hex)
Value is
0.
47
Data Sheet
August 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Microprocessor Interface Description (continued)
Register Architecture Description (continued)
Table 16. Registers 0x17—0x32: DS1/E1 Insertion Selection (continued)
Address
(Hex)
Bit #
Name
Function
0x2C—0x32
—
7
—
DS1AIS[22:28]
6
DS1LOC[22:28]
5
DS1LB[22:28]
4
3
2
1
0
DS1INS4_[22:28]
DS1INS3_[22:28]
DS1INS2_[22:28]
DS1INS1_[22:28]
DS1INS0_[22:28]
Registers 0x17—0x32 report DS1 conditions.
The DS1/E1AIS[1:21] and DS1AIS[22:28] bits report the
received DS1 AIS condition. When any of these bits is 1,
the corresponding DS1 input has an AIS condition. This
value represents the current received state. The AIS condition is not latched by these bits. The indication is reset
when the condition is no longer true.
The DS1/E1LOC[1:21] and DS1LOC[22:28] bits in bit 6
report the received DS1 loss of clock condition. When any
of these bits is 1, the corresponding DS1 input has a
received loss of clock condition. This value represents the
current received state. The loss of clock condition is not
latched by these bits. The indication is reset when the condition is no longer true.
The DS1/E1LB[1:21] and DS1LB[22:28] bits in bit 5 are
used to force DS1 loopback from output to input. When any
of these bits is 1, the corresponding DS1 input is overwritten by the outgoing DS1 signal for that location.
The DS1/E1INS[4:0]_[1:21] and DS1INS[4:0]_[22:28] bits
in registers 0x17—0x32 are used to select the DS1 input
for the transmit VT1.5 slots. The DS1 selected corresponds
to the decimal value of the programmed 5 bits. If these bits
contain 00000, the device will insert unequipped into the
corresponding VT1.5 slot. If these bits contain 11101—
11110, the device will insert AIS-V into the corresponding
VT1.5 slot. Since the device defaults all 28 of these registers to the value 00000, all of the 28 VT1.5 slots begin
transmitting unequipped following reset. The value 11111
inserts the test pattern. Addresses 0x17—0x32 correspond
to VT1.5s as shown in Table 17, page 49.
48
Reset
Default
(Hex)
Value is
0.
Lucent Technologies Inc.
Data Sheet
August 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Microprocessor Interface Description (continued)
Register Architecture Description (continued)
Table 17. DS1/E1 Insertion Selection Format
VT1.5 #
1
2
3
•
•
26
27
28
VT Group #
1
2
3
•
•
5
6
7
VT #
1
1
1
•
•
4
4
4
Address
17
18
19
•
•
30
31
32
5 Programmed DS1/E1INS[4:0]_x Bits
Bit 4
Bit 3 Bit 2 Bit 1 Bit 0
0
0
0
0
1
0
0
0
1
0
0
0
0
1
1
•
•
•
•
•
•
•
•
•
•
1
1
0
1
0
1
1
0
1
1
1
1
1
0
0
VT Drop Selection (0x33—0x4E)
Table 18. Registers 0x33—0x4E: VT Drop Selection
Address
(Hex)
Bit #
Name
0x33—0x4E
7
6
—
RXESOF[1:28]
5
TXESOF[1:28]
4
3
2
1
0
VTDROP4_[1:28]
VTDROP3_[1:28]
VTDROP2_[1:28]
VTDROP1_[1:28]
VTDROP0_[1:28]
Function
Reset
Default
(Hex)
Reserved.
Value is
0.
The RXESOF[1:28] bits (see VT Drop Selection Registers,
Table 14, page 25) report the receive elastic store overflow
condition. When any of these bits is 1, the corresponding
DS1/E1 output has experienced an elastic store overflow.
This value is latched by these bits until read by the microprocessor.
The TXESOF[1:28] bits (see Control, Alarm, and Mask Bit
Registers, Table 14, page 23) report the transmit elastic
store overflow condition. When any of these bits is 1, the
corresponding DS1/E1 input has experienced an elastic
store overflow. This value is latched by these bits until read
by the microprocessor.
These bits in registers 0x33—0x4E are used to select the
VT1.5 slot for the DS1/E1 outputs. The VT1.5 selected in
Table 17 corresponds to the decimal value of these programmed 5 bits. If these bits contain 00000, or 11101—
11111, then the device inserts the following:
00000 = device does not transmit any clock or data
11101 = device inserts a DS1 AIS into the corresponding
DS1/E1 slot
11110 = device inserts a E1 AIS into the corresponding
DS1/E1 slot
11111= device inserts the test pattern
Since the device defaults these bits in all 28 of these registers to 00000, there will be no clock or data in any of the
28 DS1 or 21 E1 slots after reset. VTDROP[4:0]_[1:28],
bits 00001—11100, correspond to the specific VT1.5
streams as shown in Table , page 50. Address 0x33—
0x4E correspond to VTs as shown in Table 20, also on
page 50.
Lucent Technologies Inc.
49
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Data Sheet
August 1999
Microprocessor Interface Description (continued)
Register Architecture Description (continued)
Table 19. VT Drop Selection Format
VT1.5 Drop #
1
2
3
•
•
26
27
28
VT Group #
1
2
3
•
•
5
6
7
VT #
1
1
1
•
•
4
4
4
5 Programmed DS1/E1INS[4:0]_x or VT Drop Data Bits
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0
0
0
0
1
0
0
0
1
0
0
0
0
1
1
•
•
•
•
•
•
•
•
•
•
1
1
0
1
0
1
1
0
1
1
1
1
1
0
0
Table 20. VT to Address Mapping
50
VT #
Address
1
33
2
34
3
35
•
•
•
•
26
4C
27
4D
28
4E
Lucent Technologies Inc.
Data Sheet
August 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Microprocessor Interface Description (continued)
Register Architecture Description (continued)
Tx VT Overhead Insertion Control (0x4F—0x6A)
Table 21. Registers 0x4F—0x6A: Tx VT Overhead Insertion Control
Address
(Hex)
Bit #
Name
Function
0x4F—0x6A
—
—
7
BIP2ERINS[1:28]
6
VTRFIRDIEN[1:28]
5
VTRFIINS[1:28]
4
VTRDIINS[1:28]
3
VTAISINS[1:28]
2
1
0
VTLABINS2_[1:28]
VTLABINS1_[1:28]
VTLABINS0_[1:28]
The bits in these registers provision the transmitted VT
overhead byte, V5.
Each BIP2ERINS[1:28] bit = 1 forces the selected VT to
transmit inverted BIP-2 bits which causes the downstream receiver to declare continuous BIP-2 errors.
The VTRFIRDIEN[1:28] bits control whether
RDI-V bits are inserted automatically by the device
(VTRFIRDIEN[1:28] = 1) or manually by the
microprocessor (VTRFIRDIEN[1:28] = 0).
The VTRFIINS[1:28] bits directly program the transmitted
RFI-V bits when the corresponding VTRFIRDIEN[1:28]
bits = 1.
The VTRDIINS[1:28] bits directly program the transmitted
RDI-V bits when the corresponding VTRFIRDIEN[1:28]
bits = 1.
Each VTAISINS[1:28] bit = 1 forces AIS-V to be written
into the corresponding VT slot. This consists of writing all
1s into the selected VT slot.
The VTLABINS[2:0]_[1:28] bits directly program the
transmitted VT label bits. These bits are used to carry
unequipped information (VTLABINS[2:0]_[1:28] = 000) as
well as specific payload mappings and AIS-V.
Lucent Technologies Inc.
Reset
Default
(Hex)
Value is
0.
51
Data Sheet
August 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Microprocessor Interface Description (continued)
Register Architecture Description (continued)
Rx VT Drop Monitoring (0x6B—0x86)
Table 22. Registers 0x6B—0x86: Rx VT Drop Monitoring
Address
(Hex)
Bit #
Name
0x6B—0x86
—
—
7
6
5
4
3
0x87
52
2
1
0
7—0
Function
The bits in register 0x6B—0x86 are used to report the VT
slot status.
VTSIZEER[1:28] The VTSIZEER[1:28] bits report incorrect VT size bits
when the value is 1. M = 1 reports an AIS or LOC condition
on DS1/E1. These are current state bits with a minimum
persistence of 500 µs. The indications reset if the condition
is no longer true.
VTLOP[1:28]
The VTLOP[1:28] bits report VT loss of pointer when the
value is 1. These are current state bits with a minimum persistence of 500 µs. The indications reset if the condition is
no longer true.
VTRDI1_[1:28] The VTRDI[1:0]_[1:28] bits report VT RDI. These are curVTRDI0_[1:28] rent state bits with a minimum persistence of 500 µs. The
indications reset if the condition is no longer true.
VTAIS[1:28]
Each VTAIS[1:28] bit = 1 reports that the V1 and V2 pointer
bytes are all 1s for three consecutive superframes. These
are current state bits with a minimum persistence of 1500
µs. The indications reset if the condition is no longer true.
VTLAB2_[1:28] The VTLAB[2:0]_[1:28] bits report the received VT labels.
VTLAB1_[1:28] These bits have a minimum persistence of 500 µs.
VTLAB0_[1:28]
—
Reserved.
Reset
Default
(Hex)
Value is
0.
0x00
Lucent Technologies Inc.
Data Sheet
August 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Microprocessor Interface Description (continued)
Register Architecture Description (continued)
Table 23. Registers 0x88—0x89: Signal Override Control
Address
(Hex)
Bit #
Name
Function
0x88
—
—
7
6
5
4
3
2
1
0
TVTG-7
TVTG-6
TVTG-5
TVTG-4
TVTG-3
TVTG-2
TVTG-1
TOVERRIDE
The bits in register 0x88 are used to override the DS1_E1N
signal pin. These bits represent the seven VT Groups and
can be individually programmed as follows.
If TVTG-1 . . . 7 = 1, the signal will be DS1; otherwise, the
signal will be E1.
—
—
7
6
5
4
3
2
1
0
RVTG-7
RVTG-6
RVTG-5
RVTG-4
RVTG-3
RVTG-2
RVTG-1
ROVERRIDE
0x89
Lucent Technologies Inc.
If TOVERRIDE = 1, then the type of signal in each VT
Group is determined by the 7 TVTG bits.
The bits in register 0x89 are used to override the DS1_E1N
signal pin. These bits represent the seven VT Groups and
can be individually programmed as follows.
If RVTG-1 . . . 7 = 1, the signal will be DS1; otherwise, the
signal will be E1.
Reset
Default
(Hex)
0x00
0x00
If ROVERRIDE = 1, then the type of signal in each VT
Group is determined by the 7 RVTG bits.
53
Data Sheet
August 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Microprocessor Interface Description (continued)
Register Architecture Description (continued)
Digital Jitter Attenuator Controls (0x8A—0x8F)
Table 24. Registers 0x8A—0x8F: Digital Jitter Attenuator Controls
Address
(Hex)
Bit #
Name
0x8A—0x8F
—
—
0x8A
0x8B
0x8C
0x8D
0x8E
0x8F
7—0
7—0
7—0
7—0
7—0
7—0
SCALETHR-[7:0]
DJASCALE-[15:8]
DJASCALE-[7:0]
DJAGTHR-[23:16]
DJAGTHR-[15:8]
DJAGTHR-[7:0]
54
Function
Reset
Default
(Hex)
The bits in registers 0x8A—0x8F are used to control variSee
ous aspects of the digital jitter attenuator. Two programma- below.
ble terms are used to set the 2nd order loop damping factor
and natural frequency of the PLL. These terms are the gain
threshold, set by DJAGTHR-[23:0] in registers
0x8D—0x8F, and scale value, set by DJASCALE-[15:0] in
registers 0x8B—0x8C. The PLL bandwidth can be set,
using the above registers, to accommodate various system
constraints.
Scale Threshold.
0xFF
Scale Value.
0x0F
0xCA
Gain Threshold.
0x00
0xFE
0x50
Lucent Technologies Inc.
Data Sheet
August 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Microprocessor Interface Description (continued)
Register Architecture Description (continued)
Table 25. Register 0x91: STS-1 LOS Detect/Test Pattern Edge Control
Address
(Hex)
Bit #
Name
Function
0x91
—
—
The bits in register 0x91 are used to set the number of
6.48 MHz clock periods required to declare received STS-1
loss of signal. The two least significant bits have a dual purpose and can also be used to program the edge on which
the QRSS pattern generator and detector data is clocked.
0x92—0xBE
7
6
5
4
3
2
1
LOSDET-7
LOSDET-6
LOSDET-5
LOSDET-4
LOSDET-3
LOSDET-2
LOSDET-1/
TP_EDGE-1
0
LOSDET-0/
TP_EDGE-0
7—0
—
Lucent Technologies Inc.
Reset
Default
(Hex)
0x00
If this value is 0x00, then LOS is not declared; otherwise,
the device looks for an all-zeros or all-ones input signal for
the binary equivalent of this value in clock periods to
declare LOS.
These bits are used to set the number of 6.48 MHz clock
periods required to declare received STS-1 loss of signal.
This bit has a dual purpose. It can either contribute to the
above count or can be programmed to set the edge on
which the test pattern detector data is clocked in. When set
to 0, the detector uses the rising edge of the selected input
clock to retime the data, or uses the falling edge otherwise.
This bit has a dual purpose. It can either contribute to the
above count or can be programmed to set the edge on
which the test pattern generator data is clocked out. When
set to 0, the generator uses the rising edge of the blue signal clock to retime the data, or uses the falling edge otherwise.
Reserved.
Value is
0.
55
Data Sheet
August 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Microprocessor Interface Description (continued)
Register Architecture Description (continued)
Block Control (0xBF)
Table 26. Register 0xBF: Block Control
56
Address
(Hex)
Bit #
Name
Function
0xBF
—
—
7—4
3
—
TJ1BYTE
2
RJ1BYTE
1
REI_CNTS
0
BIP_CNTS
The bits in register 0xBF control the information presented
to the microprocessor from the registers 0xC0—0xFF.
These last 64 bytes will display different results depending
on the value programmed into this byte. A hierarchy of
evaluation of these bytes occurs in the following three ways
presented in the description of bits 2, 1, 0.
Reserved. These bits are set to 0.
If TJ1BYTE = 1, the transmitted J1 byte values are presented. These registers are read/write. Any values written
into these registers will change the J1 byte values that are
transmitted.
If RJ1BYTE = 1, the received J1 bytes are presented
(read only).
If REI_CNTS = 1, REI error information is presented
(read only).
If BIP_CNTS = 1, BIP error information is presented,
regardless of the values of the other bits in this register
(read only).
Reset
Default
(Hex)
0x00
Lucent Technologies Inc.
Data Sheet
August 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Microprocessor Interface Description (continued)
Register Architecture Description (continued)
Detected BIP Errors (0xC0—0xFD)
Table 27. Registers 0xC0—0xFD: Detected BIP Errors
Note: Bits in registers 0xC0—0xFF can have one of four configurations, depending upon the setting of register
0xBF. When register 0xBF is set for BIP_CNTS = 1, the bytes in registers 0xC0—0xFD are used to count the
number of BIP errors detected by the device.
Address
(Hex)
Bit #
Name
0xC0
0xC1
0xC2
0xC3
0xC4
0xC5
0xC6—
0xFC*
7—0
7—0
7—0
7—0
7—0
7—0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
B1BIPCNT-[15:8]
B1BIPCNT-[7:0]
B2BIPCNT-[15:8]
B2BIPCNT-[7:0]
B3BIPCNT-[15:8]
B3BIPCNT-[7:0]
VT[1:28]PTR+3
VT[1:28]PTR+2
VT[1:28]PTR+1
VT[1:28]PTR+0
BIP2CNT11_[1:28]
BIP2CNT10_[1:28]
BIP2CNT9_[1:28]
BIP2CNT8_[1:28]
BIP2CNT7_[1:28]
BIP2CNT6_[1:28]
BIP2CNT5_[1:28]
BIP2CNT4_[1:28]
BIP2CNT3_[1:28]
BIP2CNT2_[1:28]
BIP2CNT1_[1:28]
BIP2CNT0_[1:28]
0xC7—
0xFD†
Function
Registers 0xC0—0xC5. The first six registers in the
block, 0xC0—0xC5, are the BIP errors detected by B1,
B2, and B3.
Registers 0xC6—0xFD. The remaining registers in the
block indicate the errors seen by the BIP-2 error detectors in the individual VT1.5 slots.
Reset
Default
(Hex)
Value is
0.
Value is
0.
Since the BIP-2 errors only require 12 bits, the VT pointer
increment counts are also presented in these registers.
The values in all of these counters are latched by the
LATCH_CNT bit in register 0x00. (See the STS-1/AU-3
Terminate section, page 16 and page 17.)
* These registers are not contiguous, i.e., every other register in this group is shown (0xC6, 0xC8, 0xCA, . . . 0xFC) per the register map, page
29 and page 30.
† These registers are not contiguous, i.e., every other register in this group is shown (0xC7, 0xC9, 0xCB, . . . 0xFD) per the register map, page
29 and page 30.
Table 28. Registers 0xFE, 0xFF: Received SONET/SDH Pointer Value
When register 0xBF is set for BIP_CNTS = 1, the bytes in registers 0xFE—0xFF are used to report the received
SONET/SDH pointer value.
Address
(Hex)
Bit #
Name
0xFE
7—0
SPTR+[7:0]
0xFF
7—0
SPTR–[7:0]
Lucent Technologies Inc.
Function
Register 0xFE. The SPTR+[7:0] bits report the SONET
pointer increment value.
Register 0xFF. The SPTR–[7:0] bits report the SONET
pointer decrement value.
Reset
Default
(Hex)
0x00
0x00
57
Data Sheet
August 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Microprocessor Interface Description (continued)
Register Architecture Description (continued)
Detected REI Errors (0xC0—0xFD)
Table 29. Registers 0xC0—0xFD: Detected REI Errors
Note: Bits in registers 0xC0—0xFF can have one of four configurations, depending upon the setting of register
0xBF. When register 0xBF is set for BIP_CNTS = 0 and REI_CNTS = 1, the bytes in registers 0xC0—0xFD
are used to count the number of REI errors detected by the device.
Address
(Hex)
Bit #
Name
0xC0
0xC1
0xC2
0xC3
0xC4
0xC5
0xC6—
0xFC*
7—0
7—0
7—0
7—0
7—0
7—0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
—
0xC7—
0xFD†
B2REI-[15:8]
B2REI-[7:0]
B3REI-[15:8]
B3REI-[7:0]
VT[1:28]PTR–3
VT[1:28]PTR–2
VT[1:28]PTR–1
VT[1:28]PTR–0
—
VTREI10_[1:28]
VTREI9_[1:28]
VTREI8_[1:28]
VTREI7_[1:28]
VTREI6_[1:28]
VTREI5_[1:28]
VTREI4_[1:28]
VTREI3_[1:28]
VTREI2_[1:28]
VTREI1_[1:28]
VTREI0_[1:28]
Function
Reset
Default
(Hex)
Value is
0.
Reserved. These bits are set to 0.
Registers 0xC2—0xC5. The registers, 0xC2—0xC5, are
the REI errors detected by B2 and B3 (see the STS-1/AU-3
Terminate section, page 16 and page 17).
Registers 0xC6—0xFD. The remaining registers in the
block indicate the errors seen by the REI error detectors in
the individual VT1.5 slots. Since the VT REI errors only
require 11 bits, the VT pointer decrement counts are also
presented in these registers. The values in all of these
counters is latched by the LATCH_CNT bit
(bit 3) in register 0x00. (See the STS-1/AU-3 Terminate
section, page 16 and page 17.)
Note: In registers 0xC6—0xFC, bit 3 is reserved.
* These registers are not contiguous, i.e., every other register in this group is shown (0xC6, 0xC8, 0xCA, . . . 0xFC) per the register map, page
31 and page 32.
† These registers are not contiguous, i.e., every other register in this group is shown (0xC7, 0xC9, 0xCB, . . . 0xFD) per the register map, page
31 and page 32.
Table 30. Registers 0xFE—0xFF: Reserved
When register 0xBF is set for BIP_CNTS = 0 and REI_CNTS = 1, the bytes in registers 0xFE—0xFF are reserved.
58
Address
(Hex)
Bit #
Name
0xFE
0xFF
7—0
7—0
—
Function
Reserved. These bits are set to 0.
Reset
Default
(Hex)
0x00
0x00
Lucent Technologies Inc.
Data Sheet
August 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Microprocessor Interface Description (continued)
Register Architecture Description (continued)
Receive J1 Path Trace Bytes (0xC0—0xFF)
Table 31. Registers 0xC0—0xFF: Receive J1 Path Trace Bytes
Note: Bits in registers 0xC0—0xFF can have one of four configurations, depending upon the setting of register
0xBF. When register 0xBF is set for BIP_CNTS = 0 and REI_CNTS = 0 and RJ1BYTE = 1, the bytes in registers 0xC0—0xFF are used to read the received 64 path trace bytes.
Address
(Hex)
Bit #
Name
0xC0—0xFF
7
6
5
4
3
2
1
0
RJ1BYTE7_[64:1]
RJ1BYTE6_[64:1]
RJ1BYTE5_[64:1]
RJ1BYTE4_[64:1]
RJ1BYTE3_[64:1]
RJ1BYTE2_[64:1]
RJ1BYTE1_[64:1]
RJ1BYTE0_[64:1]
Function
Reset
Default
(Hex)
The receive J1 path trace byte RJ1BYTE[7:0]_64 corre- Value is
sponds to the first byte in the 64-byte sequence, while the
0.
J1 path trace byte RJ1BYTE[7:0]_1 corresponds to the
last byte in the 64-byte sequence. These specified
receive J1 byte values are continuously written, modulo
64, into the 0xC0—0xFF registers. If any received byte
does not match the previously received byte for its location, then TRACEER bit (bit 7) in register 0x03 is set to 1.
Transmit J1 Path Trace Bytes (0xC0—0xFF)
Table 32. Registers 0xC0—0xFF: Transmit J1 Path Trace Bytes
Note: Bits in registers 0xC0—0xFF can have one of four configurations, depending upon the setting of register
0xBF. When register 0xBF is set for BIP_CNTS = 0 and RJ1BYTE = 1 and TJ1BYTE = 1, the bytes in registers 0xC0—0xFF are used to provision the transmit 64 path trace bytes.
Address
(Hex)
Bit #
Name
0xC0—0xFF
7
6
5
4
3
2
1
0
TJ1BYTE7_[64:1]
TJ1BYTE6_[64:1]
TJ1BYTE5_[64:1]
TJ1BYTE4_[64:1]
TJ1BYTE3_[64:1]
TJ1BYTE2_[64:1]
TJ1BYTE1_[64:1]
TJ1BYTE0_[64:1]
Lucent Technologies Inc.
Function
Reset
Default
(Hex)
The transmit J1 path trace byte TJ1BYTE[7:0]_64 corre- Value is
0.
sponds to the first byte in the 64-byte sequence, while the
J1 path trace byte TJ1BYTE[7:0]_1 corresponds to the
last byte in the 64-byte sequence. These registers can be
written by the microprocessor.
59
Data Sheet
August 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Microprocessor Interface Description (continued)
I/O Timing
The I/O timing specifications for the microprocessor interface are given in Table 33. The microprocessor interface
pins use CMOS I/O levels (see pages 20—22 for pin listings). All outputs, except the address/data bus AD[7:0], are
rated for a capacitive load of 50 pF. The AD[7:0] outputs are rated for a 100 pF load. The minimum read and write
cycle time is 200 ns for all device configurations.
Table 33. Microprocessor Interface I/O Timing Specifications
Symbol
Configuration
t1
Modes 1 & 2
Parameter
Setup
(ns)
(Min)
Hold
(ns)
(Min)
Delay
(ns)
(Max)
Address Valid to AS Asserted (Read, Write)
5
—
—
t2
AS Asserted to Address Invalid (Read, Write)
—
10
—
t3
AS Asserted to DS Asserted
0
—
—
t4
R/W High (Read) to DS Asserted
25
—
—
t5
DS Asserted (Read, Write) to DTACK Asserted
—
—
20
t6
DTACK Asserted to Data Valid (Read)
—
—
24
t7
DS Asserted (Read) to Data Valid
—
—
44
t8
DS Negated (Read, Write) to AS Negated
—
—
—
t9
DS Negated (Read) to Data Invalid
—
—
15
t10
DS Negated (Read) to DTACK Negated
—
—
15
t11
AS (Read, Write) Asserted Width
—
75
—
t12
DS (Read) Asserted Width
—
35
—
t13
AS Asserted to R/W Low (Write)
7
—
—
t14
R/W Low (Write) to DS Asserted
20
—
—
t15
Data Valid to DS Asserted (Write)
7.5
—
—
t16
DS Negated to DTACK Negated (Write)
—
—
20
t17
DS Negated to Data Invalid (Write)
—
7.5
—
t18
DS (Write) Asserted Width
—
35
—
Address Valid to ALE Asserted Low (Read, Write)
15
—
—
t19
Modes 3 & 4
t20
ALE Asserted Low (Read, Write) to Address Invalid
—
10
—
t21
ALE Asserted Low to RD Asserted (Read)
30
—
—
t22
RD Asserted (Read) to Data Valid
—
—
90
t23
RD Asserted (Read) to RDY Asserted
—
—
75
t24
RD Negated to Data Invalid (Read)
—
—
25
t25
RD Negated to RDY Negated (Read)
—
—
25
t26
ALE Asserted Low to WR Asserted (Write)
35
—
—
t27
CS Asserted to RDY Asserted Low
—
—
16
t28
Data Valid to WR Asserted (Write)
25
—
—
t29
WR Asserted (Write) to RDY Asserted
—
—
73
t30
WR Negated to RDY Negated (Write)
—
—
22
t31
WR Negated to Data Invalid
—
25
—
t32
ALE Asserted (Read, Write) Width
—
150
—
t33
RD Asserted (Read) Width
—
100
—
t34
WR Asserted (Write) Width
—
100
—
The read and write timing diagrams for all four microprocessor interface modes are shown in Figures 3—10.
60
Lucent Technologies Inc.
Data Sheet
August 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Microprocessor Interface Description (continued)
I/O Timing (continued)
MINIMUM READ CYCLE
CS
t11
AS
t2
t1
t8
A[7:0]
VALID ADDRESS
R/W
t4
t3
t12
DS
t6
t10
t5
DTACK
t9
t7
VALID DATA
AD[7:0]
5-3685(F).br.4
Figure 3. Mode 1—Read Cycle Timing (MPMODE = 0, MPMUX = 0)
MINIMUM WRITE CYCLE
CS
t11
AS
t2
t1
t8
VALID ADDRESS
A[7:0]
t13
t14
R/W
t18
DS
t5
t16
DTACK
t17
t15
VALID DATA
AD[7:0]
5-3686(F).br.5
Figure 4. Mode 1—Write Cycle Timing (MPMODE = 0, MPMUX = 0)
Lucent Technologies Inc.
61
Data Sheet
August 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Microprocessor Interface Description (continued)
I/O Timing (continued)
MINIMUM READ CYCLE
CS
t11
AS
t8
R/W
t4
t3
t12
DS
t7
t10
t5
t6
DTACK
t2
t9
t1
AD[7:0]
VALID
DATA
VALID
ADDRESS
VALID
ADDRESS
VALID DATA
5-3687(F)r.12
Figure 5. Mode 2—Read Cycle Timing (MPMODE = 0, MPMUX = 1)
MINIMUM WRITE CYCLE
CS
t11
AS
t13
t8
t14
R/W
t18
DS
t16
t5
DTACK
t2
t1
AD[7:0]
VALID
DATA
VALID
ADDRESS
t15
t17
VALID
ADDRESS
VALID DATA
5-3688(F)r.12
Figure 6. Mode 2—Write Cycle Timing (MPMODE = 0, MPMUX = 1)
62
Lucent Technologies Inc.
Data Sheet
August 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Microprocessor Interface Description (continued)
I/O Timing (continued)
MINIMUM READ CYCLE
CS
t32
ALE
t19
t20
A[7:0]
VALID ADDRESS
t21
t33
RD
t22
t24
AD[7:0]
VALID DATA
t27
t23
t25
RDY
5-3689(F).br.4
Figure 7. Mode 3—Read Cycle Timing (MPMODE = 1, MPMUX = 0)
MINIMUM WRITE CYCLE
CS
t32
ALE
t19
t20
VALID ADDRESS
A[7:0]
t26
t34
WR
t28
t31
VALID DATA
AD[7:0]
t29
t27
t30
RDY
5-3690(F).br.3
Figure 8. Mode 3—Write Cycle Timing (MPMODE = 1, MPMUX = 0)
Lucent Technologies Inc.
63
Data Sheet
August 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Microprocessor Interface Description (continued)
I/O Timing (continued)
MINIMUM READ CYCLE
CS
t32
ALE
t21
t33
RD
t19
AD[7:0]
t22
t24
VALID
ADDRESS
VALID
DATA
t23
t27
VALID
ADDRESS
VALID DATA
t25
t20
RDY
5-3691(F)r.12
Figure 9. Mode 4—Read Cycle Timing (MPMODE = 1, MPMUX = 1)
MINIMUM WRITE CYCLE
CS
t32
ALE
t26
t34
WR
t19
t20
AD[7:0]
VALID
DATA
t27
VALID
ADDRESS
t28
t31
VALID
ADDRESS
VALID DATA
t29
t30
RDY
5-3692(F)r.13
Figure 10. Mode 4—Write Cycle Timing (MPMODE = 1, MPMUX = 1)
64
Lucent Technologies Inc.
Data Sheet
August 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Absolute Maximum Ratings
Stresses in excess of the absolute maximum ratings can cause permanent or latent damage to the device. These
are absolute stress ratings only. Functional operation of the device is not implied at these or any other conditions in
excess of those given in the operational sections of this device specification. Exposure to absolute maximum ratings for extended periods can adversely affect device reliability.
Table 34. Absolute Maximum Ratings
Parameter
Power Supply (dc Voltage)
Input Voltage
Output Voltage
Storage Temperature
Ambient Operating Temperature Range
Symbol
VDD
VI
VO
Tstg
TA
Min
–0.5
–0.3
—
–65
–40
Max
4.6
5.5
3.63
125
85
Unit
V
V
V
°C
°C
Handling Precautions
Although protection circuitry has been designed into this device, proper precautions should be taken to avoid exposure to electrostatic discharge (ESD) during handling and mounting. Lucent employs a human-body model (HBM)
and charged-device model (CDM) for ESD-susceptibility testing and protection design evaluation. ESD voltage
thresholds are dependent on the circuit parameters used in the defined model. No industry-wide standard has
been adopted for the CDM. However, a standard HBM (resistance = 1500 Ω, capacitance = 100 pF) is widely used
and, therefore, can be used for comparison purposes. The HBM ESD threshold presented here was obtained by
using these circuit parameters.
Table 35. ESD Threshold Voltage
Model
HBM
CDM (all pins except corner pins)
CDM (all corner pins)
Lucent Technologies Inc.
Voltage (volts)
2000
500
1000
65
Data Sheet
August 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Operating Conditions
Table 36. Recommended Operating Conditions
Parameter
Power Supply (dc Voltage)
Ground
Input Voltage, High
Input Voltage, Low
Ambient Temperature
Power Dissipation, DS1
(TA = 23 °C, VDD = 3.3 V):
Full Loopback
Broadcast
Standby
Power Dissipation, E1
(TA = 23 °C, VDD = 3.3 V):
Full Loopback
Broadcast
Standby
Symbol
VDD
VSS
VIH
VIL
TA
PD
Min
3.14
—
—
—
–40
Typ
3.3
0.0
VDD – 1.0
VSS
—
Max
3.46
—
5.25
1.0
85
Unit
V
V
V
V
°C
—
—
—
380
380
360
—
—
—
mW
mW
mW
—
—
—
450
450
430
—
—
—
mW
mW
mW
Electrical Characteristics
Table 37. Logic Interface Characteristics
An internal 100 kΩ pull-up is provided on the ICT, RESET, CS, TCK, TDI, TMS, TRST, RSTS1DATA[7:0],
RSTS1PAR, E1BLUECLK, RCLK[28:1], and RDATA[28:1] pins. This requires these input pins to sink no more than
20 µA. All buffers use CMOS levels.
Parameter
Input Voltage:
Low
High
Input Leakage
Output Voltage:
Low
High
Input Capacitance
Load Capacitance*
Symbol
Test Conditions
—
Min
Max
Unit
1.0
VDD
1.0
V
V
µA
0.5
VDD
3.0
25
V
V
pF
pF
VIL
VIH
IL
—
GND
VDD – 1.0
—
VOL
VOH
CI
CL
–5.0 mA
5.0 mA
—
—
GND
VDD – 1.0
—
—
* 100 pF allowed for AD[7:0] (pins 48 to 50 and 55 to 59).
66
Lucent Technologies Inc.
Data Sheet
August 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Timing Characteristics
Operational Timing
The operational timing parameters can be grouped separately for clocks, inputs, and outputs. Table 38 lists the
transmit and receive input clock specifications for this device. (For definitions of the signal names, see the pin
descriptions in Table 1, pages 7—9.)
Table 38. Input Clock Specifications
Signal Name
Parameter
Min
Max
Unit
Input Clock Signals
TSTS1CLKIN
Frequency
51.839
51.841
MHz
Clock Pulse High Time
40
60
%
Peak-to-Peak Jitter
—
1
%
19.439
19.441
MHz
Clock Pulse High Time
40
60
%
Peak-to-Peak Jitter
—
1
%
6.479
6.481
MHz
40
60
%
Frequency
Frequency
Clock Pulse High Time
Peak-to-Peak Jitter
RCLK[1:28]
(DS1 Mode)
RCLK[1:21]
(E1 Mode)
RSTS1CLK
—
1
%
1.5437
1.5443
MHz
Clock Pulse High Time
40
60
%
Peak-to-Peak Jitter
—
1
%
Frequency
Frequency
2.0484
2.0476
MHz
Clock Pulse High Time
40
60
%
Peak-to-Peak Jitter
—
1
%
51.839
51.841
MHz
Clock Pulse High Time
40
60
%
Peak-to-Peak Jitter
—
1
%
Frequency
0.5
12
MHz
Clock Pulse High Time
40
60
%
Peak-to-Peak Jitter
—
1
%
Rise/Fall Time
—
15
ns
Frequency
JTAG Signal
TCK
Lucent Technologies Inc.
67
Data Sheet
August 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Timing Characteristics (continued)
Operational Timing (continued)
Table 39 lists the setup time (tSU) and hold time (tH) specifications for the receive input and JTAG signals. The digital system interface timing is shown in Figure 11.
Table 39. Input Timing Specifications
Input Name
Setup Time
(tSU)
Reference CLK*
Min
Hold Time
(tH)
Max
Min
Max
Unit
Receive Signals
TSTS1SYNC
TSTS1CLKIN
5
—
2
—
ns
RDATA[1:28]
RCLK[1:28] ↑↓
50
—
40
—
ns
RSTS1DATA[7:0]
RSTS1CLK ↑↓
15
—
2
—
ns
RSTS1PAR
RSTS1CLK ↑↓
15
—
2
—
ns
RSTS1SERIAL
RSTS1CLK ↑↓
5
—
2
—
ns
TDI
TCK ↑
—
50
—
ns
JTAG Signal
*
50
These clock edges are programmable through the microprocessor interface.
Notes:
↑ represents a low-to-high transition.
↓ represents a high-to-low transition.
CLOCK IN
tSU
tH
DATA IN
CLOCK OUT
tPD
DATA OUT
5-5342(F)r.5
Figure 11. Interface Data Timing
68
Lucent Technologies Inc.
Data Sheet
August 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Timing Characteristics (continued)
Operational Timing (continued)
The output clock specifications are shown in Table 40.
Table 40. Output Clock Specifications
Signal Name
Rise Time
Fall Time
tR
tF
Test
Conditions
Frequency
Unit
Min
Max
Min
Max
TCLK[1:28]
(DS1 Mode)
1.544 MHz ± 5%
CL = 50 pF
—
30
—
30
ns
TCLK[1:28]
(E1 Mode)
2.048 MHz ± 5%
CL = 50 pF
—
30
—
30
ns
TSTS1CLKOUT*
51.84 MHz ± 5%
CL = 15 pF
—
3
—
3
ns
19.44 MHz ± 5%
CL = 15 pF
—
3
—
3
ns
6.48 MHz ± 5%
CL = 15 pF
—
3
—
3
ns
* The duty-cycle distortion added to the TSTS1CLKOUT signal is ≤2% worst case when measured from 1.5 V in to 1.5 V out with a 2 ns rise
time input.
Table 41 lists the propagation delay (tPD) specifications for the output signals. The digital system interface timing is
shown in Figure 11, page 68.
Table 41. Output Timing Specifications
Propagation Delay *
Output Name
TDATA[28:1]
TSTS1DATA[7:0]
TSTS1PAR
TSTS1DATA7
Reference CLK
TCLK[1:28] ↑↓
TSTS1CLKIN ↑
TSTS1CLKIN ↑
TSTS1CLKIN ↑
TDO
TCK ↓
Test
Conditions
Transmit Signals
CL = 25 pF
CL = 15 pF
CL = 15 pF
CL = 15 pF
JTAG Signal
CL = 50 pF
tPD
Unit
Min
Max
40
2
2
0
190
12
12
3.5
ns
ns
ns
ns
1.5
17
ns
* Propagation delay skew, tPLH—tPHL, is ±200 ps.
Notes:
↑ represents a low-to-high transition.
↓ represents a high-to-low transition.
Lucent Technologies Inc.
69
Data Sheet
August 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Timing Characteristics (continued)
Transmit Sync Timing
In all transmit modes, the first bit/byte of the J0, J1, and V1 bytes are coincident with the sync pulse. The second
and third pulses in this composite signal are only needed to force V1 superframe alignment. If there are three sync
pulses as shown below, then V1 will be forced. The serial mode transmit sync timing is shown below in Figure 12.
TSTS1CLK
TSTS1SYNC
TSTS1DATA
J0-7
J0-6
J0-5
J0-4
J0-3
J0-2
J0-1
J0-0
J1-7
J1-6
J1-5
J1-4
J1-3
J1-2
J1-1
J1-0
V1-7
V1-6
V1-5
V1-4
V1-3
V1-2
V1-1
V1-0
5-6347(F)r.1
Note: The - symbol followed by a number represents the bit number in the byte.
Figure 12. Serial Mode Transmit Sync Timing
The bus mode transmit sync timing is shown below in Figure 13.
TSTS1CLK
TSTS1SYNC
TSTS1DATA
J0#1
J0#2
J0#3
J1#1
J1#2
J1#3
V1#1
V1#2
V1#3
5-6347(F).a
Note: The # symbol followed by a number represents the active device on the bus.
Figure 13. Bus Mode Transmit Sync Timing
70
Lucent Technologies Inc.
Data Sheet
August 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Timing Characteristics (continued)
Transmit Sync Timing (continued)
The nonbus parallel mode transmit sync timing is shown below in Figure 14.
TSTS1CLK
TSTS1SYNC
TSTS1DATA
J0
J1
V1
5-6347(F).b
Figure 14. Nonbus Parallel Mode Transmit Sync Timing
Receive Sync Timing
The only receive mode that requires a sync pulse is the bus mode. The sync pulse is required to align the device to
time slot #1. The bus parallel mode receive sync timing is shown below in Figure 15.
RSTS1CLK
RSTS1SERIAL
RSTS1DATA
J0#1
J0#2
J0#3
J1#1
J1#2
J1#3
V1#1
V1#2
V1#3
5-6347(F).cr.1
Note: The # symbol followed by a number represents the active device on the bus.
Figure 15. Bus Parallel Mode Receive Sync Timing
Lucent Technologies Inc.
71
Data Sheet
August 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Typical Uses
Path Termination Multiplex
Using the device without internal loopbacks results in an SDH/SONET path terminating multiplex, as shown in
Figure 16.
TMPR28051
T7693
QUAD LIU
DS1/E1 #1 IN
LIU
SPE
GENERATE
ELASTIC
STORE
TMUX03155
VT
GENERATE
DS1/E1 #1 OUT
SPE
INSERTION
LOGIC
DS1/E1 #n IN
LIU
ELASTIC
STORE
VT
GENERATE
JITTER
ATTENUATE
VT
TERMINATE
STS-1 OUT
STS/STM
MUX
LOGIC
STS-1 IN
STS/STM
DEMUX
LOGIC
DS1/E1 #n OUT
SPE
DROP
LOGIC
JITTER
ATTENUATE
SPE
LOCATE
SPE
TERMINATE
VT
TERMINATE
5-4876(F)r.9
Note: n represents 28 or 21 for DS1 or E1, respectively.
Figure 16. SDH/SONET Path Termination Multiplex Application
Digital Cross Connect
Using the device with STS-1 internal loopbacks results in a digital cross connect, as shown in Figure 17.
TMPR28051
SPE
GENERATE
T7693
QUAD LIU
DS1/E1
#1 IN
LIU
ELASTIC
STORE
VT
GENERATE
SPE
INSERTION
LOGIC
DS1/E1
#n IN
LIU
ELASTIC
STORE
T7693
QUAD LIU
VT
GENERATE
SPE
LOCATE
SPE
TERMINATE
VT
TERMINATE
LIU
DS1/E1
#1 OUT
VT
TERMINATE
LIU
DS1/E1
#n OUT
SPE
DROP
LOGIC
5-4878(F)r.8
Note: n represents 28 or 21 for DS1 or E1, respectively.
Figure 17. Digital Cross Connect Application
72
Lucent Technologies Inc.
Data Sheet
August 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Typical Uses (continued)
Test Pattern Use—Complete System
The internal test pattern generator can be used in conjunction with DS1 or E1 LIU devices that have built-in loopbacks (such as the Lucent T7698FL3/T7693) to do a complete system test, as shown in Figure 18.
LIU
TMPR28051
MAPPER
TMPR28051
MAPPER
LIU
DS1/E1 AIS
DS1/E1 IN
TEST
PATTERN
DROP
TEST
PATTERN
INSERT
TEST
PATTERN
DROP
DS1/E1 IN
DS1/E1 AIS
LOOPBACK
MODE
TEST PATTERN SOURCE
OPTIONAL TEST PATTERN DROP
LOOPBACK
MODE
5-4879(F)r.7
Figure 18. Test Pattern Usage for Complete System
Test Pattern Use—End to End
The internal test pattern generator can be used to test connectivity within a link by setting up a test pattern insertion at one end and a drop at the other, as shown in Figure 19.
TMPR28051
MAPPER
TEST
PATTERN
INSERT
TEST PATTERN SOURCE
TMPR28051
MAPPER
TEST
PATTERN
DROP
TEST PATTERN DROP
5-4880(F)r.7
Figure 19. Test Pattern Usage for End-to-End Operation
Lucent Technologies Inc.
73
Data Sheet
August 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Outline Diagram
208-Pin SQFP
Dimensions are in millimeters.
30.60 ± 0.20
28.00 ± 0.20
PIN #1 IDENTIFIER ZONE
208
157
1
156
28.00
± 0.20
30.60
± 0.20
105
52
53
104
DETAIL A
DETAIL B
3.40 ± 0.20
4.10 MAX
SEATING PLANE
0.08
0.50 TYP
0.25 MIN
1.30 REF
0.25
0.090/0.200
GAGE PLANE
SEATING PLANE
0.17/0.27
0.50/0.75
DETAIL A
0.10
M
DETAIL B
5-2196(F)r.14
74
Lucent Technologies Inc.
Data Sheet
August 1999
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Ordering Information
Device Code
Package
Temperature
Comcode
(Ordering Number)
TMPR28051-3-SL5
208-Pin SQFP
–40 °C to +85 °C
108421678
DS99-068SONT Replaces DS98-100TIC to Incorporate the Following Updates
1. Page 1, added bulleted items concerning 3.3 V operation, and alarm and control standards.
2. Page 5, Description (continued) section, replaced the Lucent T7690/T7693 Quad Line Transceiver interfacing
device with the Lucent T7698FL3/T7693 Quad Line Transceiver.
3. Page 5, Figure 1, Block Diagram, clarified block flow.
4. Page 6, changed pin 184 and all corresponding references to TCK.
5. Page 7, clarified Pin 102.
6. Page 10, organized Nomenclature Assumptions section from the text at the beginning of the Description section.
7. Page 10—page 19, clarified block descriptions.
8. Page 14, 2nd paragraph, corrected the explanation of the reduced H4 coding sequence format from “alternate
between” to “take on the following values.”
9. Page 23—page 36, updated register map.
10. Page 37—page 59, updated register description text and placed text in tables.
11. Page 42, Table , Registers 0x00—0x16: Device-Level Control, Alarm, and Mask Bits, corrected the test pattern sequence for register XMT_PAT-0, bits 01 and 11 combinations.
12. Page 49, Table 18, Registers 0x33—0x4E: VT Drop Selection, corrected VTxDROP, bits 4 through 0, to
VT_DROP[4:0]_[1:28].
13. Page 54, Table 24, Registers 0x8A—0x8F: Digital Jitter Attenuator Controls, added the register default values.
14. Page 65, Table 34, Absolute Maximum Ratings, updated table, including input and output voltages.
15. Page 65, Table 35, ESD Threshold Voltage, added parameters and values.
16. Page 66, Table 36, Recommended Operating Conditions, updated to list 3.3 V power dissipation for DS1
and E1.
17. Page 67, Table 38, Input Clock Specifications, added to the document.
18. Page 69, Table 40, Output Clock Specifications, added to the document.
19. Page 70, Transmit Sync Timing section, expanded and corrected.
20. Page 71, Figure 15, Bus Parallel Mode Receive Sync Timing, corrected pin name.
21. Page 75, updated device code.
22. TMPR28051 STS-1/AU-3 (STM-0) Mapper Device Advisory for Version 2 of the Device,
TMPR28051 STS-1/AU-3 (STM-0) Mapper Device Advisory for Version 3 of the Device,
TMPR28051 STS-1/AU-3 (STM-0) Mapper Device Advisory for Version 4 of the Device,
TMPR28051 STS-1/AU-3 (STM-0) Data Addendum, included all printed advisories and an addendum through
version 4, each published in April 1999, (AY99-026SONT, AY99-027SONT, AY99-028SONT,
DA99-009SONT). An advisory was not issued for version 1 of the device.
Lucent Technologies Inc.
75
TMPR28051 STS-1/AU-3 (STM-0) Mapper
Data Sheet
August 1999
For additional information, contact your Microelectronics Group Account Manager or the following:
INTERNET:
http://www.lucent.com/micro
E-MAIL:
[email protected]
N. AMERICA: Microelectronics Group, Lucent Technologies Inc., 555 Union Boulevard, Room 30L-15P-BA, Allentown, PA 18103
1-800-372-2447, FAX 610-712-4106 (In CANADA: 1-800-553-2448, FAX 610-712-4106)
ASIA PACIFIC: Microelectronics Group, Lucent Technologies Singapore Pte. Ltd., 77 Science Park Drive, #03-18 Cintech III, Singapore 118256
Tel. (65) 778 8833, FAX (65) 777 7495
CHINA:
Microelectronics Group, Lucent Technologies (China) Co., Ltd., A-F2, 23/F, Zao Fong Universe Building, 1800 Zhong Shan Xi Road,
Shanghai 200233 P. R. China Tel. (86) 21 6440 0468, ext. 316, FAX (86) 21 6440 0652
JAPAN:
Microelectronics Group, Lucent Technologies Japan Ltd., 7-18, Higashi-Gotanda 2-chome, Shinagawa-ku, Tokyo 141, Japan
Tel. (81) 3 5421 1600, FAX (81) 3 5421 1700
EUROPE:
Data Requests: MICROELECTRONICS GROUP DATALINE: Tel. (44) 7000 582 368, FAX (44) 1189 328 148
Technical Inquiries: GERMANY: (49) 89 95086 0 (Munich), UNITED KINGDOM: (44) 1344 865 900 (Ascot),
FRANCE: (33) 1 40 83 68 00 (Paris), SWEDEN: (46) 8 600 7070 (Stockholm), FINLAND: (358) 9 4354 2800 (Helsinki),
ITALY: (39) 02 6608131 (Milan), SPAIN: (34) 1 807 1441 (Madrid)
Lucent Technologies Inc. reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application. No
rights under any patent accompany the sale of any such product(s) or information.
Copyright © 1999 Lucent Technologies Inc.
All Rights Reserved
August 1999
DS99-068SONT (Replaces DS98-100TIC)