TI SN74CBTLV16212VR

SCDS044I − DECEMBER 1997 − REVISED OCTOBER 2003
D Member of the Texas Instruments
D
D
D
D
D
D
DGG, DGV, OR DL PACKAGE
(TOP VIEW)
Widebus Family
4-Ω Switch Connection Between Two Ports
Rail-to-Rail Switching on Data I/O Ports
Ioff Supports Partial-Power-Down Mode
Operation
Break-Before-Make Feature
Latch-Up Performance Exceeds 100 mA Per
JESD 78, Class II
ESD Protection Exceeds JESD 22
− 2000-V Human-Body Model (A114-A)
− 200-V Machine Model (A115-A)
S0
1A1
1A2
2A1
2A2
3A1
3A2
GND
4A1
4A2
5A1
5A2
6A1
6A2
7A1
7A2
VCC
8A1
GND
8A2
9A1
9A2
10A1
10A2
11A1
11A2
12A1
12A2
description/ordering information
The SN74CBTLV16212 provides 24 bits of
high-speed bus switching or exchanging. The low
on-state resistance of the switch allows
connections to be made with minimal propagation
delay.
The device operates as a 24-bit bus switch or a
12-bit bus exchanger, which provides data
exchanging between the four signal ports via the
data-select (S0, S1, S2) terminals.
This
device
is
fully
specified
for
partial-power-down applications using Ioff. The Ioff
feature ensures that damaging current will not
backflow through the device when it is powered
down. The device has isolation during power off.
1
56
2
55
3
54
4
53
5
52
6
51
7
50
8
49
9
48
10
47
11
46
12
45
13
44
14
43
15
42
16
41
17
40
18
39
19
38
20
37
21
36
22
35
23
34
24
33
25
32
26
31
27
30
28
29
S1
S2
1B1
1B2
2B1
2B2
3B1
GND
3B2
4B1
4B2
5B1
5B2
6B1
6B2
7B1
7B2
8B1
GND
8B2
9B1
9B2
10B1
10B2
11B1
11B2
12B1
12B2
The SN74CBTLV16212 is specified by the
break-before-make feature to have no through
current when switching between B ports.
ORDERING INFORMATION
TOP-SIDE
MARKING
Tube
SN74CBTLV16212DL
Tape and reel
SN74CBTLV16212DLR
TSSOP − DGG
Tape and reel
SN74CBTLV16212GR
TVSOP − DGV
Tape and reel
SN74CBTLV16212VR
SSOP − DL
−40°C to 85°C
ORDERABLE
PART NUMBER
PACKAGE†
TA
CBTLV16212
CBTLV16212
CN212
† Package drawings, standard packing quantities, thermal data, symbolization, and PCB design
guidelines are available at www.ti.com/sc/package.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Widebus is a trademark of Texas Instruments.
Copyright  2003, Texas Instruments Incorporated
!"# $ %&'# "$ (&)*%"# +"#',
+&%#$ %! # $('%%"#$ (' #-' #'!$ '."$ $#&!'#$
$#"+"+ /""#0, +&%# (%'$$1 +'$ # '%'$$"*0 %*&+'
#'$#1 "** (""!'#'$,
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
SCDS044I − DECEMBER 1997 − REVISED OCTOBER 2003
FUNCTION TABLE
INPUTS
2
INPUTS/OUTPUTS
S2
S1
S0
L
L
L
L
L
H
L
FUNCTION
A1
A2
L
Z
Z
Disconnect
H
B1
Z
A1 port = B1 port
B2
Z
A1 port = B2 port
L
H
H
Z
B1
A2 port = B1 port
H
L
L
Z
B2
A2 port = B2 port
H
L
H
Z
Z
Disconnect
H
H
L
B1
B2
A1 port = B1 port
A2 port = B2 port
H
H
H
B2
B1
A1 port = B2 port
A2 port = B1 port
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SCDS044I − DECEMBER 1997 − REVISED OCTOBER 2003
logic diagram (positive logic)
2
1A1
54
1B1
SW
SW
SW
3
53
SW
1A2
12A1
27
1B2
30
SW
12B1
SW
SW
28
29
SW
12A2
12B2
1
S0
56
S1
55
S2
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
3
SCDS044I − DECEMBER 1997 − REVISED OCTOBER 2003
simplified schematic, each FET switch
A
B
(OE)
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage range, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 4.6 V
Input voltage range, VI (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 4.6 V
Continuous channel current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 mA
Input clamp current, IIK (VI < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −50 mA
Package thermal impedance, θJA (see Note 2): DGG package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64°C/W
DGV package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48°C/W
DL package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56°C/W
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. The package thermal impedance is calculated in accordance with JESD 51-7.
recommended operating conditions (see Note 3)
VCC
Supply voltage
VIH
High-level control input voltage
VCC = 2.3 V to 2.7 V
VCC = 2.7 V to 3.6 V
VIL
Low-level control input voltage
VCC = 2.3 V to 2.7 V
VCC = 2.7 V to 3.6 V
MIN
MAX
2.3
3.6
UNIT
V
1.7
V
2
0.7
0.8
V
TA
Operating free-air temperature
−40
85
°C
NOTE 3: All unused control inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report,
Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
4
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SCDS044I − DECEMBER 1997 − REVISED OCTOBER 2003
electrical characteristics over recommended operating free-air temperature range (unless
otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP†
MAX
UNIT
−1.2
V
VIK
II
VCC = 3 V,
VCC = 3.6 V,
II = −18 mA
VI = VCC or GND
Ioff
ICC
VCC = 0,
VCC = 3.6 V,
VI or VO = 0 to 3.6 V
IO = 0,
VCC = 3.6 V,
VI = 3 V or 0
One input at 3 V,
VO = 3 V or 0,
S1, S2, and S3 = GND
VI = 0
II = 64 mA
II = 24 mA
5
VCC = 2.3 V,
TYP at VCC = 2.5 V
5
8
VI = 1.7 V,
II = 15 mA
27
40
5
7
VI = 0
II = 64 mA
II = 24 mA
5
7
∆ICC‡
Control inputs
Ci
Control inputs
Cio(OFF)
ron§
VCC = 3 V
VI = VCC or GND
Other inputs at VCC or GND
±1
µA
10
µA
10
µA
300
µA
5
pF
8
pF
8
Ω
VI = 2.4 V,
II = 15 mA
10
15
† All typical values are at VCC = 3.3 V (unless otherwise noted), TA = 25°C.
‡ This is the increase in supply current for each input that is at the specified voltage level, rather than VCC or GND.
§ Measured by the voltage drop between the A and B terminals at the indicated current through the switch. On-state resistance is determined by
the lower of the voltages of the two (A or B) terminals.
switching characteristics over recommended operating free-air temperature range (unless
otherwise noted) (see Figure 1)
VCC = 2.5 V
± 0.2 V
FROM
(INPUT)
TO
(OUTPUT)
tpd¶
A or B
B or A
tpd
S
B or A
3
11.1
ten
S
A or B
3
10.9
PARAMETER
MIN
MAX
VCC = 3.3 V
± 0.3 V
MIN
0.15
UNIT
MAX
0.25
ns
3
8.8
ns
3
8.6
ns
tdis
S
A or B
1
8.7
2
8.8
ns
¶ The propagation delay is the calculated RC time constant of the typical on-state resistance of the switch and the specified load capacitance, when
driven by an ideal voltage source (zero output impedance).
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5
SCDS044I − DECEMBER 1997 − REVISED OCTOBER 2003
PARAMETER MEASUREMENT INFORMATION
2 × VCC
RL
From Output
Under Test
S1
Open
GND
CL
(see Note A)
TEST
S1
tPLH/tPHL
tPLZ/tPZL
tPHZ/tPZH
Open
2 × VCC
GND
RL
LOAD CIRCUIT
VCC
CL
RL
V∆
2.5 V ±0.2 V
3.3 V ±0.3 V
30 pF
50 pF
500 Ω
500 Ω
0.15 V
0.3 V
VCC
Timing Input
VCC/2
0V
tw
tsu
VCC
VCC/2
Input
VCC/2
th
VCC
VCC/2
Data Input
VCC/2
0V
0V
VOLTAGE WAVEFORMS
PULSE DURATION
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
VCC
VCC/2
Input
VCC/2
0V
tPHL
tPLH
VOH
VCC/2
Output
VCC/2
VOL
VOH
Output
VCC/2
VCC/2
VOL
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
INVERTING AND NONINVERTING OUTPUTS
VCC/2
Output
Waveform 2
S1 at GND
(see Note B)
VCC/2
0V
t
Output PZL
Waveform 1
S1 at 2 × VCC
(see Note B)
tPLH
tPHL
VCC
Output
Control
tPLZ
VCC
VCC/2
VOL + V∆
VOL
tPHZ
tPZH
VCC/2
VOH − V∆
VOH
≈0 V
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
LOW- AND HIGH-LEVEL ENABLING
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω, tr ≤ 2 ns, tf ≤ 2 ns.
D. The outputs are measured one at a time with one transition per measurement.
E. tPLZ and tPHZ are the same as tdis.
F. tPZL and tPZH are the same as ten.
G. tPLH and tPHL are the same as tpd.
H. All parameters and waveforms are not applicable to all devices.
Figure 1. Load Circuit and Voltage Waveforms
6
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
PACKAGE OPTION ADDENDUM
www.ti.com
18-Jul-2006
PACKAGING INFORMATION
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
74CBTLV16212DLG4
ACTIVE
SSOP
DL
56
74CBTLV16212DLRG4
ACTIVE
SSOP
DL
74CBTLV16212GRE4
ACTIVE
TSSOP
74CBTLV16212VRE4
ACTIVE
SN74CBTLV16212DL
20
Lead/Ball Finish
MSL Peak Temp (3)
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
56
1000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
DGG
56
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TVSOP
DGV
56
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
ACTIVE
SSOP
DL
56
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74CBTLV16212DLR
ACTIVE
SSOP
DL
56
1000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74CBTLV16212GR
ACTIVE
TSSOP
DGG
56
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74CBTLV16212VR
ACTIVE
TVSOP
DGV
56
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
20
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS
compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
Addendum-Page 1
MECHANICAL DATA
MPDS006C – FEBRUARY 1996 – REVISED AUGUST 2000
DGV (R-PDSO-G**)
PLASTIC SMALL-OUTLINE
24 PINS SHOWN
0,40
0,23
0,13
24
13
0,07 M
0,16 NOM
4,50
4,30
6,60
6,20
Gage Plane
0,25
0°–8°
1
0,75
0,50
12
A
Seating Plane
0,15
0,05
1,20 MAX
PINS **
0,08
14
16
20
24
38
48
56
A MAX
3,70
3,70
5,10
5,10
7,90
9,80
11,40
A MIN
3,50
3,50
4,90
4,90
7,70
9,60
11,20
DIM
4073251/E 08/00
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
Falls within JEDEC: 24/48 Pins – MO-153
14/16/20/56 Pins – MO-194
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MSSO001C – JANUARY 1995 – REVISED DECEMBER 2001
DL (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
48 PINS SHOWN
0.025 (0,635)
0.0135 (0,343)
0.008 (0,203)
48
0.005 (0,13) M
25
0.010 (0,25)
0.005 (0,13)
0.299 (7,59)
0.291 (7,39)
0.420 (10,67)
0.395 (10,03)
Gage Plane
0.010 (0,25)
1
0°–ā8°
24
0.040 (1,02)
A
0.020 (0,51)
Seating Plane
0.110 (2,79) MAX
0.004 (0,10)
0.008 (0,20) MIN
PINS **
28
48
56
A MAX
0.380
(9,65)
0.630
(16,00)
0.730
(18,54)
A MIN
0.370
(9,40)
0.620
(15,75)
0.720
(18,29)
DIM
4040048 / E 12/01
NOTES: A.
B.
C.
D.
All linear dimensions are in inches (millimeters).
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
Falls within JEDEC MO-118
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MTSS003D – JANUARY 1995 – REVISED JANUARY 1998
DGG (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
48 PINS SHOWN
0,27
0,17
0,50
48
0,08 M
25
6,20
6,00
8,30
7,90
0,15 NOM
Gage Plane
1
0,25
24
0°– 8°
A
0,75
0,50
Seating Plane
0,15
0,05
1,20 MAX
PINS **
0,10
48
56
64
A MAX
12,60
14,10
17,10
A MIN
12,40
13,90
16,90
DIM
4040078 / F 12/97
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold protrusion not to exceed 0,15.
Falls within JEDEC MO-153
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:
Products
Applications
Amplifiers
amplifier.ti.com
Audio
www.ti.com/audio
Data Converters
dataconverter.ti.com
Automotive
www.ti.com/automotive
DSP
dsp.ti.com
Broadband
www.ti.com/broadband
Interface
interface.ti.com
Digital Control
www.ti.com/digitalcontrol
Logic
logic.ti.com
Military
www.ti.com/military
Power Mgmt
power.ti.com
Optical Networking
www.ti.com/opticalnetwork
Microcontrollers
microcontroller.ti.com
Security
www.ti.com/security
Low Power Wireless www.ti.com/lpw
Mailing Address:
Telephony
www.ti.com/telephony
Video & Imaging
www.ti.com/video
Wireless
www.ti.com/wireless
Texas Instruments
Post Office Box 655303 Dallas, Texas 75265
Copyright  2006, Texas Instruments Incorporated