EMC EPVP6300

ePVP6300
VFD Controller
Product
Specification
VERSION
1.92
ELAN MICROELECTRONICS CORP.
Nov 2004
Trademark Acknowledgments
IBM is a registered trademark and PS/2 is a trademark of IBM.
Microsoft, MS, MS-DOS, and Windows are registered trademarks of Microsoft Corporation.
© 2003 ELAN Microelectronics Corporation
All Rights Reserved
Printed in Taiwan, ROC, 05/252004 (Version 1.7)
The contents of in this specification are subject to change without notice. ELAN Microelectronics assumes no
responsibility for errors that may appear in this specification. ELAN Microelectronics makes no commitment to update,
or to keep current, the information contained in this specification. The software (if any) described in this specification is
furnished under a license or nondisclosure agreement, and may be used or copied only in accordance with the terms of the
agreement.
ELAN Microelectronics products are not intended for use in life support appliances, devices, or systems. Use of ELAN
Microelectronics products in such application is not supported and is prohibited.
NO PART OF THIS SPECIFICATION MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM OR BY ANY
MEANS WITHOUT THE EXPRESS WRITTEN PERMISSION OF ELAN MICROELECTRONICS.
Specification Revision History
Version
Revision Description
Date
1.0
Initial version
2003/6/15
1.4
1.
2004/1/16
Revised Display control command
2. Revised external interrupt function (Port9,0 ~ Port9,4)
1.5
1.
Revised error describe
2.
Added SPI function timing diagram
2004/3/24
3. Revised display Segment Data Buffers stored registers
1.6
1.
revise error describe
2004/4/26
2、Add bonding coordinates subsidiary
1.7
ADD Relevant Pins assigment
ADD Package Information
Revices DC Electrical Characteristic
Revices cpu Feature Describe
2004/06/23
1.8
additional remark SPI function
modify Package Information
2004/8/10
1.9
additional
2004/9/16
1.91
Revised CONT register describe
remark Application notes
2004/9/24
Updata Pckage Information
1.92
IC name change
2004/11/4
Revised Operation Voltage VS PLL Operation frequency
ii
ePVP6300 Specification
Contents
Read Me First! ..............................................................................................................vi
1
General Description...............................................................................................1
2.
Feature....................................................................................................................1
2.1
2.2
2.3
2.4
2.5
2.6
2.7
3
CPU ........................................................................................................................................ 1
SPI.......................................................................................................................................... 1
GPIO....................................................................................................................................... 2
ADC ........................................................................................................................................ 2
VFD ........................................................................................................................................ 2
POR........................................................................................................................................ 2
PACKAGE .............................................................................................................................. 2
Application .............................................................................................................2
VFD controller ..................................................................................................................................... 2
4
Pin Configuration...................................................................................................3
5
Functional Block Diagram.....................................................................................4
5.1
Ports Mapping for HV and GPIO ............................................................................................ 5
5.1.1 HV Port Mapping ................................................................................................5
5.1.2 GPIO Port Mapping ............................................................................................5
5.2
Relevant Pins for programming mode .............................................................5
6
Pin Descriptions ....................................................................................................6
7
Function Descriptions ...........................................................................................8
7.1
7.2
Operation Registers Configuration......................................................................................... 8
Operation Registers Description ............................................................................................ 9
7.2.1 R0 (Indirect Address Register) ................................................................................... 9
7.2.2 R1 (TCC) .................................................................................................................... 9
7.2.3 R2 (Program Counter) ................................................................................................ 9
7.2.4 R3 (Status, Page Selection) ..................................................................................... 10
7.2.5 R4 (RAM Selection For Common Registers R20 ~ R3F))........................................ 12
7.2.6 R5 (PORT5 Output Data, Program Page Selection) ................................................ 12
7.2.7 R6 (PORT6 Output Data, SPI Data Buffer) .............................................................. 13
7.2.8 R7 (PORT7 Output Data, ADC , Counter1 Data ...................................................... 14
7.2.9 R8 (PORT8 Output data, Data RAM address) , Counter2_LB data ......................... 16
7.2.10 R9 (PORT9 I/O Data, Data RAM Data Buffer),
Counter2_HB Data ................................................................................................... 17
e PV6300 Specification
iii
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
8
I/O Port ................................................................................................................................. 32
RESET7.4
..................................................................................................................... 32
Wake Up............................................................................................................................... 33
7.6.1 SLEEP Mode, RA(6 ;7) = 0 + "SLEP" Instruction..................................................... 33
7.6.2 IDLE mode, RA(6 ;7) = 1 + "SLEP" Instruction. ....................................................... 33
7.6.3 Wake-up from SLEEP Mode..................................................................................... 33
7.6.4 Wake-up from IDLE Mode ........................................................................................ 34
Interrupts .............................................................................................................................. 34
Instruction Set ...................................................................................................................... 34
Bonding Coordinates Subsidiary.......................................................................................... 37
7.10.1 Pad Configuration..................................................................................................... 37
7.10.2 Pad Name and Coordinates Table ........................................................................... 38
Segment Data Buffers .........................................................................................39
8.1
iv
7.2.11 RA (PLL, Main Clock Selection, Watchdog Timer),
ADC Output Data Buffer , Counter3 Data................................................................. 18
7.2.12 RB (PORTB I/O Data Buffer, PORT9 Switches)....................................................... 20
7.2.13 RC (PORTC I/O Data , Counter5 Data).................................................................... 21
7.2.14 RD (Interrupt Flag,).................................................................................................. 21
7.2.15 RE (Interrupt Flags, Wake-up)................................................................................. 22
7.2.16 RF (Interrupt Flags) .................................................................................................. 22
7.2.17 R10~R3F (General Purpose Registers) ................................................................... 23
Special Purpose Registers ................................................................................................... 23
7.3.1 A (Accumulator) ........................................................................................................ 23
7.3.2 CONT (Control Register) .......................................................................................... 23
7.3.3 IOC 5 (PORT5 Switches) ......................................................................................... 25
7.3.4 IOC 8 ........................................................................................................................ 25
7.3.5 IOC9 (PORT9 I/O Control) ....................................................................................... 26
7.3.6 IOCA ......................................................................................................................... 27
7.3.7 IOCB (PORTB I/O Control, PORTB Switch) ............................................................ 27
7.3.8 IOCC (PORTC I/O Control) ...................................................................................... 28
7.3.9 IOCD (Interrupt Mask, Prescaler of CN3 ~ CN5) ..................................................... 29
7.3.10 IOCE (Interrupt Mask) .............................................................................................. 29
7.3.11 IOCF (Interrupt Mask ).............................................................................................. 29
Application notes ................................................................................................................... 32
Commands ........................................................................................................................... 41
8.1.1 Display Mode Setting Command [00]....................................................................... 42
8.1.2 Data Setting Command [01] ..................................................................................... 43
8.1.3 Display Control Command [10] ................................................................................ 44
8.1.4 Address Setting Command [11]................................................................................ 44
ePVP6300 Specification
9
RC/Crystal OSC....................................................................................................44
9.1
9.2
9.3
9.4
9.5
9.6
General Description.............................................................................................................. 44
Features ............................................................................................................................... 44
Block Diagram ...................................................................................................................... 44
Pin Description ..................................................................................................................... 44
Electrical ............................................................................................................................... 44
Macro Area ........................................................................................................................... 44
10 Absolute Operation Maximum Ratings ..............................................................45
11 DC Electrical Characteristic................................................................................45
12 AC Electrical Characteristic................................................................................46
12.1
CPU Instruction Timing (Ta = -20°C ~ 70°C, VDD=5V, VSS=0V) ....................................... 46
12.2
12.3
12.4
AC Timing Characteristic (VDD=5V, Ta=+25°C) .................................................................. 47
ePVP6300 Operating Voltage (X Axis
Min VDD ; Y Axis
Main CLK) ......................... 47
AC Timing Diagrams ........................................................................................................... 48
13 Key & Switch Scanning and Display Timing .....................................................49
14 Serial/Parallel Communication Format ..............................................................50
14.1
14.2
Reception (Command/Data Write) ....................................................................................... 50
Transmission (Data Read) ................................................................................................... 50
15 Switching Characteristic Waveform ...................................................................50
15.1
Switching Characteristics (Ta = - 20 to + 70°C, VDD = 4.5 to 5.5V, VEE = VDD - 45V) .... 51
16 Serial I/F Sets Display Data Sequence ...............................................................52
16.1
16.2
Updating Display Memory by Incrementing Address ........................................................... 52
Updating Specific Address ................................................................................................... 52
17 Application ...........................................................................................................53
17.1
17.2
17.3
VFD Controller for DVD Player ............................................................................................ 53
VFD Controller for Cascade Applaication............................................................................. 53
APPLICATION CIRCUIT ...................................................................................................... 54
18 Package Information ........................................................................................................ 55
e PV6300 Specification
v
Read Me First!
Before using the chip, spare a few minutes to take a look at the following important notes.
1. Some bits in the registers are undefined. The values in these bits are unknown and
should not be used. These bits are designated with a dash “–” symbol as its bit name in this
specification.
2. The following table shows the definitions of the various register designations used to
identify bit types, bit name, and bit number. Some definitions will appear quite frequently in
the specification.
RA
PAGE0
7
6
5
RAB7
RAB6
R/W -0
R/W -0
Bit type
read/write
(default value=0)
4
3
2
BAB5
RAB4
-
R-1
R/W -1
read/write
(default value=1)
RAB2
1
RAB1
RAB0
R
R-0
R/W
read only
(w/o default value)
0
read/write
(w/o default value)
Bit name
Bit number
Register name and its page
vi
(undefined) not allowed to use
read only
(default value=1)
read only
(default value=0)
ePVP6300 Specification
ePVP6300
VFD Controller
1
General Description
The ePVP6300 is an 8-bit RISC type vacuum fluorescent display (VFD) controller equipped
with low power consumption and high speed CMOS technology. This integrated single chip
features on_chip watchdog timer (WDT), one time programming ROM (OTP), data RAM,
programmable real time clock/counter, internal interrupt, power down mode, built-in four-wire
SPI, 10-bit A/D converter, IR detector, and high voltage output for VFD application.
2. Feature
2.1 CPU
Clock source:Crystal Oscillator or RC Oscillator
Crystal Oscillator (32.768KHz): with a external crystal
RC Oscillator (32.768KHz): with a external 470Kohm resistor
16k x 13 on chip Program ROM.
256 x 8 on chip data RAM
144 x 8 general purpose registers
16 level stack for subroutine nesting
5 channel 8-bit counters: real time clock/counter (TCC) ,COUNTER1, COUNTER3,
COUNTER4, COUNTER5
1 channel 16-bit counter: COUNTER2
On-chip watchdog timer (WDT)
99.9% single instruction cycle commands
Four operation modes
Mode
CPU Status
Main Clock
32.768kHz Clock
Status
Description
Sleep mode
Turn off
Turn off
Turn off
Idle mode
Turn off
Turn off
Turn on
Green mode
Turn on
Turn off
Turn on
Normal mode
Turn on
Turn on
Turn on
RA(6) = 0
RA(7) = 0 + "SLEP" instruction
RA(6) = 0
RA(7) = 1 +"SLEP" instruction.
RA(6) = 0
RA(6) = 1
* Main clock can be programmed from 447.829k to 17.91MH by internal PLL
* 8 main clocks: 447.829K, 895.658K, 1.791M , 3.582M , 7.165M , 10.747M ,
14.331M and 17.91MHz
13 interrupt source, 5 external (IR , INT1~INT4 ), 8 internal (SPI, ADC, TCC,
COUNTER1~5)
2.2 SPI
Serial interface for Clock, Data Input, Data Output, and Strobe pins
This specification is subject to change without further notice.
11/04.2004 (V1.92) 1 of 63
ePVP6300
VFD Controller
2.3 GPIO
GPIO 9 Port(8 bit): general purpose input/output; LED output ;interrupt function
GPIO B Port(7 bit): general purpose input/output for power down/MPEG power/Reset
control
GPIO C Port(8 bit): general purpose input/output for switch and key scanning (12x4
matrix)
2.4 ADC
6 channel 10-bit successive approximation A/D converter
Internal (VDD) or external voltage reference
2.5 VFD
Multiple display modes (9-segment & 19-digit to 20-segment & 8-digit)
External resistor not necessary for driver outputs.(P-ch open-drain + pull-down resistor
output)
2.6 POR
2.0V voltage detector for Power-on reset
2.7 PACKAGE
63-pin die or 64-pin LQFP
3
Application
VFD controller
2 of 63
11.04.2004 (V1.92)
This specification is subject to change without further notice.
ePVP6300
VFD Controller
GPIO94
GPIO95
GPIO96
GPIO97
GPIOC0
GPIOC1
GPIOC2
GPIOC3
GPIOC4/STB
GPIOC5/CLK
GPIOC6/DOUT
GPIOC7/DIN
NC
NC
PLLC
Pin Configuration
OSCI
4
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
OSCO 1
48 GPIO93
CRYXRC 2
47 GPIO92
VSS 3
46 GPIO91
AVSS 4
45 GPIO90
GPIOB0 5
44 /RESET
GPIOB1 6
43 VEE
GPIOB2 7
42 P54 (SG1/KS1)
GPIOB3 8
ePVP6300
LQFP 64
41 P55 (SG2/KS2)
GPIOB4 9
GPIOB5 10
(62-Pin Die or 64-Pin LQFP-64L)
39 P57 (SG4/KS4)
40 P56 (SG3/KS3)
GPIOB6 11
38 P60 (SG5/KS5)
AVDD 12
37 P61 (SG6/KS6)
VDD 13
36 P62 (SG7/KS7)
VDD 14
35 P63 (SG8/KS8)
P87(GR1) 15
34 P64 (SG9/KS9)
P86 (GR2 16
33 P65 (GR19/SG10/KS10)
P66 (GR18/SG11/KS11)
P67 (GR17/SG12/KS12)
P70 (GR16/SG13)
P71 (GR15/SG14)
P72 (GR14/SG15)
P73 (GR13/SG16)
P74 (GR12/SG17)
P75 (GR11/SG18)
P76 (GR10/SG190)
P77 (GR9/SG20)
P80 (GR8)
P81 (GR7)
P82 (GR6)
P83 (GR5)
P84 (GR4)
P85 (GR3)
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Fig. 1 Pin Assignment
This specification is subject to change without further notice.
11/04.2004 (V1.92) 3 of 63
ePVP6300
VFD Controller
5
Functional Block Diagram
DOUT
DIN
Serial
Data
Interface
CLK
STB
MCU
8
OSCI
8
OSC
OSCO
OTP
Segment Driver/
ADC
GPIO9[0:7]
GPIOB[0:6]
GPIOC[0:7]
3
Grid Driver/
High Breakdown
Driver
Data RAM
8
5
Timer
7
GPIO
4
8
PLL
IR
P87 (GR1)
…
P80 (GR8)
P77 (GR9/SG20)
…
P70 (GR16/SG13)
P67 (GR17/SG12/KS12)
…
P65 (GR19/SG10/KS10)
P64 (SG9/KS9)
…
P60 (SG5/KS5)
P57 (SG4/KS4)
…
P54 (SG1/KS1)
Real Time Clock
CRYXRC /RESET
PLLC
VDDx3
VSS
VEE
AVDD
AVSS
Fig. 2a Block Diagram
XIN XOUT PLLC
WDT
Timer
Oscillator
Timing Control
R2
ROM
STACK
Prescaler
R1(TCC)
Interrupt
Control
Data
RAM
Instruction
Register
ALU
R3
General
RAM
Control Sleep
And Wakeup
On I/O port
R5
Instruction
Decoder
R4
ACC
Data & Control Bus
SPI
IOC5
IOC6
IOC7
IOC8
IOC9
IOCB
R5
R6
R7
R8
R9
RB
RC
Port5
(HV)
Port6
(HV)
Port7
(HV)
Port8
(HV)
Port9
PortB
PortC
P54~P57
P60~P67
P70~P77
P80~P87
P90~P97
PB0~PB6
IOCC
PC0~PC3
Fig. 2b Block Diagram
4 of 63
11.04.2004 (V1.92)
This specification is subject to change without further notice.
ePVP6300
VFD Controller
5.1 Ports Mapping for HV and GPIO
5.1.1 HV Port Mapping
Port
HV
Port
HV
Port
HV
Port
HV
-
P60
P24/SG5/KS5
P70
GR16/P16/SG13
P80
GR8/P8
-
P61
P23/SG6/KS6
P71
GR15/P15/SG14
P81
GR7/P7
-
P62
P22/SG7/KS7
P72
GR14/P14/SG15
P82
GR6/P6
-
P63
P21/SG8/KS8
P73
GR13/P13/SG16
P83
GR5/P5
P54
SG1/KS1
P64
P20/SG9/KS9
P74
GR12/P12/SG17
P84
GR4/P4
P55
SG2/KS2
P65
GR19/P19/SG10/KS10
P75
GR11/P11/SG18
P85
GR3/P3
P56
SG3/KS3
P66
GR18/P18/SG11/KS11
P76
GR10/P10/SG19
P86
GR2/P2
P57
SG4/KS4
P67
GR17/P17/SG12/KS12
P77
GR9/P9/SG20
P87
GR1/P1
5.1.2 GPIO Port Mapping
Port
GPIO
Port
P90
GPIO90/LED0/IR
PB0
P91
GPIO
Port
GPIO
Port
GPIO
GPIOB0/VREF
PC0
GPIOC0/Key1
PC0
GPIOC0/Key1
GPIO91/LED1/INT1 PB1
GPIOB1/AD1
PC1
GPIOC1/Key2
PC1
GPIOC1/Key2
P92
GPIO92/LED2/INT2 PB2
GPIOB2/AD2
PC2
GPIOC2/Key3
PC2
GPIOC2/Key3
P93
GPIO93/LED3/INT3 PB3
GPIOB3/AD3
PC3
GPIOC3/Key4
PC3
GPIOC3/Key4
P94
GPIO94/LED4/INT4 PB4
GPIOB4/AD4
PC4
GPIOC4/STB
PC4
GPIOC4/STB
P95
GPIO95/LED5
PB5
GPIOB5/AD5
PC5
GPIOC5/CLK
PC5
GPIOC5/CLK
P96
GPIO96/LED6
PB6
GPIOB6/AD6
PC6
GPIOC6/DOUT
PC6
GPIOC6/DOUT
P97
GPIO97/LED7
-
PC7
GPIOC7/ DIN
PC0
GPIOC0/Key1
–
5.2 Relevant Pins for programming mode
OTP PIN NAME
VDD
VPP
DINCK
ACLK
PGMB
OEB
DATA
GND
MASK ROM PIN NAME
AVDD
/RESTER
PC3
PC2
P92
P91
P90
GND
This specification is subject to change without further notice.
11/04.2004 (V1.92) 5 of 63
ePVP6300
VFD Controller
6
Pin Descriptions
Pin No.
Pin Name
61,62
NC
13,14
VDD
57
STB/GPIOC4
I/O
#
Description
Note
2
-
I/O
2
Logic power supply
1
1. Serial Interface Strobe input pin. While the STB goes low, it
will cause interrupt event. The data input after the STB has
fallen is processed as a command. When this pin is “HIGH,”
CLK is ignored.
Schmitt
Pull-up
2. Programmable Internal pull high
3. GPIOC4 function
58
CLK/GPIOC5
I/O
1
1. Clock input pin. This pin reads serial data at the rising edge
and outputs data at the falling edge.
Schmitt
2. Programmable Internal pull high
Pull-up
3. GPIOC5 function
1. Data output pin (N-channel, Open-Drain)
59
DOUT/GPIOC6
I/O
1
2. This pin outputs serial data at the falling edge of the shift clock
Schmitt
(starting from lower bit).
Pull-up
3. Programmable internal pull high
4. GPIOC6 function
60
DIN/GPIOC7
I/O
1
1. Data input pin. This pin inputs serial data at the rising edge of
the shift clock (starting from lower bit.)
Schmitt
2. Programmable Internal pull high
Pull-up
3. GPIOC7 function
General Purpose I/O pins:
53 – 54
GPIOC0 – GPIOC3
I/O
4
1. Key data input to these pins is latched at the end of display
cycle.
Schmitt
2. These pins constitute 4-bit general-purpose input/output port.
Pull-up
3. Programmable Internal Pull-High
4. Wake-up Function
15-22
(B Cell)
23-30
(B Cell)
31-33
(B Cell)
34-38
(A Cell)
6 of 63
GR1 – GR8
O
8
O
8
GR16/ SG13
SG5/KS5
11.04.2004 (V1.92)
2. High breakdown output
1. High voltage grid output
O
3
GR19 /SG10/KS10
SG9/KS9
–
∼
3. High voltage segment output
GR17/SG12/KS12
–
2. High breakdown output
1. High voltage grid output
GR9/P9/SG20
–
1. High voltage grid output
2. High breakdown output
3. High voltage segment output
4. Matrix key scan output
1. High breakdown output
O
5
2. High voltage segment output
3. Matrix key scan output
This specification is subject to change without further notice.
ePVP6300
VFD Controller
39-42
(C Cell)
1. High voltage segment output
SG4/KS4 – SG1/KS1
I/O
4
2. Matrix key scan output
3. General Purpose Input pins: p54~p57
1. General Purpose I/O pins
45 – 52
GPIO90/LED0 –
GPIO97/LED7
2. LED output pin (20mA)
I/O
8
Schmitt
3. IR Detector
Pull-up
4. Interrupt Function
5. Programmable Internal Pull-High
12
AVDD
I
1
Analog Power
63
PLLC
I
1
Phase Lock Loop Capacitor (connect a Capacitor 0.01 to 0.047u
to the Ground).
4
AVSS
I
1
Analog Ground
64
OSCI
I
1
Crystal Oscillator input pin (32, 768KHz) or resister input pin for
RC Oscillator
1
OSCO
O
1
Crystal Oscillator output pin (32, 768KHz)
3
VSS
-
1
Connect this pin to GND of the system
General Purpose I/O pins:
1. Power Module CTRL
5-11
GPIOB0 – GPIOB6
I/O
7
2. MPEG Power CTRL
3. Reset CTRL
4. ADC/VREF
5. ADC/AD1~AD6
1. Normal (Open)→ select Crystal Oscillator
2
CRYXRC
I
1
44
/RESET
I
1
Low active RESET signal input
43
VEE
-
1
Pull-down level (VDD-(-40V)max)
2. Connect to GND → select RC Oscillator
This specification is subject to change without further notice.
Pull-up
Schmitt
11/04.2004 (V1.92) 7 of 63
ePVP6300
VFD Controller
7
Function Descriptions
7.1 Operation Registers Configuration
R PAGE Registers
Addr
R PAGE0
00
01
02
03
04
05
06
07
08
09
0A
0B
0C
0D
0E
0F
Indirect addressing
TCC
PC
Page, Status
RAM bank, RSR
Port5 Output data
Port6 Output data
Port7 Output data
Port8 Output data
Port9 I/O data
PLL, Main clock,WDTE
PortB I/O data
PortC I/O data
Interrupt flag
Interrupt flag, Wake-up control
Interrupt flag
10
:
1F
16 bytes
Common registers
20
:
3F
Bank0 ~ Bank3
Common registers
(32x8 for each bank)
00
01
02
03
04
05
06
07
Port9 I/O control
0A
8 of 63
Program ROM page
ADC control
Data RAM address
Data RAM data buffer
ADC output data buffer
Port9 pull high
PortC pull high
SPI data buffer
Counter1 data
Counter2 LB data
Counter2 HB data
Counter3 data
Counter4 data
Counter5 data
Port5 switch
08
0B
0C
0D
0E
0F
R PAGE2
IOC PAGE Registers
IOC PAGE0
IOC PAGE1
Addr
09
R PAGE1
PortB I/O control
PortC I/O control
Interrupt mask
Interrupt mask
Interrupt mask
11.04.2004 (V1.92)
Clock source (CN2,CN1)
Prescaler (CN2,CN1)
Clock source (CN4,CN3)
Prescaler (CN4,CN3)
Clock source (CN5)
Prescaler (CN5)
PortB switch
PortC switch
This specification is subject to change without further notice.
ePVP6300
VFD Controller
7.2 Operation Registers Description
7.2.1 R0 (Indirect Address Register)
R0 is not a physically implemented register. It is used as indirect address pointer. Any
instruction using R0 as register actually accesses data pointed by the RAM Select Register
(R4).
Example:
Mov A, @0x20
Mov 0x04, A
Mov A, @0xAA
Mov 0x00, A
;store an address at R4 for indirect address
;write data 0xAA to R20 at Bank0 through R0
7.2.2 R1 (TCC)
TCC data buffer. Increased by 16.384KHz or by the instruction cycle clock (controlled by
CONT register).
Written and read by the program as any other register.
7.2.3 R2 (Program Counter)
The structure is depicted in Fig.3 below.
Generates 16k × 13 external ROM addresses to the relative programming instruction codes.
"JMP" instruction allows the direct loading of the low 10 program counter bits.
"CALL" instruction loads the low 10 bits of the PC, PC+1, and then push into the stack.
"RET'' ("RETL k," "RETI") instruction loads the program counter with the contents at the top of
stack.
"MOV R2, A" allows the loading of an address from the A register to the PC, and the ninth and
tenth bits are cleared to "0''.
"ADD R2, A" allows a relative address to be added to the current PC, and contents of the ninth
and tenth bits are cleared to "0''.
R5(PAGE)
PC
CALL and
INTERRUPT
A13 A12 A11 A10
A9 A8
0000
0001
0010
A7~A0
PAGE0
0000~03FF
PAGE1
0400~07FF
PAGE2
0800~0BFF
1110
PAGE14
3800~3BFF
1111
PAGE15
3C00~3FFF
RET
RETL
RETI
INTERRUPT
STACK1
STACK2
STACK3
STACK4
STACK5
STACK6
STACK7
STACK8
STACK9
STACK10
STACK11
STACK12
STACK13
STACK14
STACK15
STACK16
ACC,R3,R5(PAGE)
restore
store
3 bytes register
Fig. 3 Program Counter Organization
This specification is subject to change without further notice.
11/04.2004 (V1.92) 9 of 63
ePVP6300
VFD Controller
"TBL" allows a relative address to be added to the current PC, and the contents of the ninth
and tenth bits do not change. The most significant bit (A10~A13) will be loaded with the
contents of bit PS0~PS3 in the status register (R5 PAGE 1) upon execution of a "JMP,”
"CALL,” "ADD R2, A.” or "MOV R2, A'' instruction.
If an interrupt is triggered, PROGRAM ROM will jump to address 0x08 at Page0. The CPU will
automatically store ACC, R3 status, and R5 PAGE 1, and they will be restored after execution
of instruction RETI.
7.2.4 R3 (Status, Page Selection)
(Status Flag, Page Selection Bits)
Bit 7
RPAGE1
R/W-0
Bit 6
Bit 5
RPAGE0 IOCPAGE
R/W-0
R/W-0
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
T
P
Z
DC
C
R
R
R/W
R/W
R/W
Bit 0 (C) : Carry flag
The carry flag is affected by following operation :
a. Addition : CF as a carry out indicator, when the addition operation has a carry-out, CF will
be "1", in another word, if the operation has no carry-out, CF will be "0".
b. Subtraction : CF as a borrow-in indicator, when the subtraction operation must has a
borrow-in, the CF will be "0", in another word, if no borrow-in, CF will be "1".
c. Comparision : CF is as a borrow-in indicator for Comparision operation as the same as
subtraction
operation.
d. Rotation : CF shifts into the empty bit of accumulator for the rotation and holds the shift out
data after rotation.
Bit 1 (DC) : Auxiliary carry flag
Bit 2 (Z) :
Zero flag
ZF is affected by the result of ALU, if the ALU operation generate a "0" result, the ZF will be
"1", otherwise, the ZF will be "0".
10 of 63
Bit 3 (P) :
Power down bit
Set to 1 during power on or by a "WDTC" command and reset to 0 by a "SLEP"
command.
Bit 4 (T) :
Time-out bit
Set to 1 by the "SLEP" and "WDTC" command, or during power up and reset to 0
by WDT timeout.
11.04.2004 (V1.92)
This specification is subject to change without further notice.
ePVP6300
VFD Controller
Event
T
P
WDT wake up from sleep mode
0
0
WDT time out (not sleep mode)
0
1
/RESET wake up from sleep
1
0
Power up
1
1
Low pulse on /RESET
x
X
Remarks
x : don't care
Bit 5 (IOCPAGE) : Change IOC5 ~ IOCE to another page
0/1
IOC page0 / IOC page1
Bit 6 (RPAGE0 ~ RPAGE1) : Change R5 ~ RC to another page (see Section 7.1 Operation
Registers Configuration for details.)
(RPAGE1, RPAGE0)
R page # selected
(0,0)
R page 0
(0,1)
R page 1
(1,x)
R page 2
This specification is subject to change without further notice.
11/04.2004 (V1.92)11 of 63
ePVP6300
VFD Controller
7.2.5 R4 (RAM Selection For Common Registers R20 ~ R3F))
(RAM Selection Register)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
RB1
RB0
RSR5
RSR4
RSR3
RSR2
RSR1
RSR0
R/W-0
R/W-0
R/W
R/W
R/W
R/W
R/W
R/W
Bit 0 ~ Bit 5 (RSR0 ~ RSR5) : Indirect address for common Registers R20 ~ R3F.
RSR bits are used to select up to 32 registers (R20 to R3F) in
the indirect address mode.
Bit 6 ~ Bit 7 (RB0 ~ RB1) :
Bank selection bits for common Registers R20 ~ R3F.
These selection bits are used to determine which bank is
activated among the 4 banks for 32 register (R20 to R3F).
Refer to Section 7.1 Operation Registers Configuration for
details.
7.2.6 R5 (PORT5 Output Data, Program Page Selection)
a) PAGE 0 (PORT5 Output Data Register for HV or General Purpose Input pins:
p54~p57)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
P57
P56
P55
P54
-
-
-
-
W-0
W-0
W-0
W-0
-
-
-
-
b) PAGE 1 (Program ROM Page Register)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
AD9
AD8
-
-
PS3
PS2
PS1
PS0
R
R
-
-
R/W-0
R/W-0
R/W-0
R/W-0
Bit 0 ~ Bit 3 (PS0 ~ PS3) : Program page selection bits
PS3 PS2 PS1 PS0
Program Memory
Page (Address)
0
0
0
0
Page 0
0
0
0
1
Page 1
0
0
1
0
Page 2
0
0
1
1
Page 3
:
:
:
:
:
:
:
:
:
:
1
1
1
0
Page 14
1
1
1
1
Page 15
PAGE instruction is used to select the program page to be accessed. The selected program
page is maintained by Elan compiler. PAGE instruction will change your program by inserting
the instruction within program.
12 of 63
11.04.2004 (V1.92)
This specification is subject to change without further notice.
ePVP6300
VFD Controller
7.2.7 R6 (PORT6 Output Data, SPI Data Buffer)
a) PAGE 0 (PORT6 Output Data Register for HV)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
P67
P66
P65
P64
P63
P62
P61
P60
W-0
W-0
W-0
W-0
W-0
W-0
W-0
W-0
b) PAGE 2 (SPI Data Buffer)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
SPIB7
SPIB6
SPIB5
SPIB4
SPIB3
SPIB2
SPIB1
SPIB0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Bit 0 ~ Bit 7 (SPIB0 ~ SPIB7) : SPI data buffer
If you write data to this register, the data will write to SPIW register. If you read this data, it will read
the data from SPIR register. Please refer to the following figure.
If you read this data, it will read the data from SPIR register. Please refer to the following figure.
RBF_INT
Read/Write
STB
CLK
STB_INT
Shift Register
DIN
DOUT
Fig. 4a SPI Block Diagram
STB
When Write the data to SPI buffer, the
hardware knows for serial output mode
The first byte data by R/W buffer
sends to the shift register
The first byte data by shift register transmission finish
&
Second byte data by R/W buffer sends to the shift register
DIN
DOUT
SCK
STB-INT
RBF-INT
SOUT
The second byte data writer to the SPI buffer
SPI function start
The first byte data writer to the SPI buffe
The third byte data writer to the SPI buffer
SPI data transmission application note::
The following conditions have to conform
RBF interrupt flag must =1
RBF interrupt mask must =1
STB must = low
CLK must = Hi
Fig. 4b SPI Timing Diagram
This specification is subject to change without further notice.
11/04.2004 (V1.92)13 of 63
ePVP6300
VFD Controller
7.2.8 R7 (PORT7 Output Data, ADC , Counter1 Data
a) PAGE 0 (PORT7 Output Data Register for HV)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
P77
P76
P75
P74
P73
P72
P71
P70
W-0
W-0
W-0
W-0
W-0
W-0
W-0
W-0
b) PAGE 1 (ADC Control Bit)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
IN2
IN1
IN0
ADCLK1
ADCLK0
ADPWR
ADRES
ADST
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
Bit 0(ADST) : AD converter start to sample
By setting to “1,” the AD will start to sample the data. This bit is automatically
cleared by hardware after a sampling.
Bit 1(ADRES) : Resolution selection for ADC
0
ADC is an 8-bit resolution
When 8-bit resolution is selected, the most significant (MSB) 8-bit data output
of the internal 10-bit ADC will be mapped to RA PAGE1. Therefore, R5
PAGE1 Bit 6 ~ 7 will be of no use.
1
ADC is 10-bit resolution
When 10-bit resolution is selected, 10-bit data output of the internal 10-bit ADC
will be exactly mapped to RA PAGE1 and R5 PAGE1 Bit 6 ~7.
Bit 2(ADPWR) : AD converter power control, 1/0
enable/disable
Bit 3 ~ Bit 4 (ADCLK0 ~ ADCLK1) : AD circuit ‘s sampling clock source.
For PLL Clock = 895.658kHz ~ 17.9MHz (CLK2~CLK0 = 001 ~ 110)
ADCLK1
ADCLK0
Sampling Rate
Operation Voltage
0
0
74.6K
>=3.5V
0
1
37.4K
>=3.0V
1
0
18.7K
>=2.5V
1
1
9.3K
>=2.5V
For PLL Clock = 447.829kHz (CLK2~CLK0 = 000)
14 of 63
11.04.2004 (V1.92)
ADCLK1
ADCLK0
Sampling rate
Operation voltage
0
0
37.4K
>=3.0V
0
1
18.7K
>=3.0V
1
0
9.3K
>=2.5V
1
1
4.7K
>=2.5V
This specification is subject to change without further notice.
ePVP6300
VFD Controller
This is a CMOS multi-channel 10-bit successive approximation A/D converter.
Features:
74.6kHz maximum conversion speed at 5V
Adjusted full scale input
External reference voltage input or internal (VDD) reference voltage
6 analog inputs multiplexed into one A/D converter
Power down mode for power saving
A/D conversion complete interrupt
Interrupt register, A/D control and status register, and A/D data register
PLL
fpll
Programmable
divider
1/Mx
fad
c
Divider
Nx
fs
10-bit
ADC
ADC output
ADCLK1~ADCLK0
ENPLL
CLK2 ~ CLK0
Fig. 5 ADC Voltage Control Logic
fpll
Mx
fadcon = fadc / 12
fs
Nx = 1
Nx = 2
Nx = 4
Nx = 8
14.331MHz
16
895.658kHz
74.638kHz
37.391kHz
18.659khz
9.329kHz
10.747MHz
12
895.658kHz
74.638kHz
37.391kHz
18.659khz
9.329kHz
7.165MHz
8
895.658kHz
74.638kHz
37.391kHz
18.659khz
9.329kHz
3.582MHz
4
895.658kHz
74.638kHz
37.391kHz
18.659khz
9.329kHz
1.791MHz
2
895.658kHz
74.638kHz
37.391kHz
18.659khz
9.329kHz
895.658kHz
1
895.658kHz
74.638kHz
37.391kHz
18.659khz
9.329kHz
447.829kHz
1
447.829kHz
37.391kHz
18.659khz
9.329kHz
4.665kHz
Bit 5 ~ Bit 7 (IN0 ~ IN2) : Input channel selection of AD converter
These two bits can choose one of the three AD inputs.
IN2
IN1
IN0
Input
0
0
0
AD1
0
0
1
AD2
0
1
0
AD3
0
1
1
AD4
1
0
0
AD5
1
0
1
AD6
This specification is subject to change without further notice.
11/04.2004 (V1.92)15 of 63
ePVP6300
VFD Controller
c) PAGE 2 (Counter 1 Data Register)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
CN17
CN16
CN15
CN14
CN13
CN12
CN11
CN10
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
Bit 0 ~ Bit 7 (CN10 ~ CN17) : Counter1 buffer that you can read and write.
Counter1 is an 8-bit up-counter with 8-bit prescaler that allows
you to use R7 PAGE2 to preset and read the counter (write
preset). After an interruption, it will reload the preset value.
7.2.9 R8 (PORT8 Output data, Data RAM address) , Counter2_LB data
a) PAGE 0 (PORT8 Output Data Register for HV)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
P87
P86
P85
P84
P83
P82
P81
P80
W-0
W-0
W-0
W-0
W-0
W-0
W-0
W-0
b) PAGE 1 (Data RAM Address Register)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
RAM_A7
RAM_A6
RAM_A5
RAM_A4
RAM_A3
RAM_A2
RAM_A1
RAM_A0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
Bit 0 ~ Bit 7 (RAM_A0 ~ RAM_A7) : data RAM address
c) PAGE 2 (Counter2 Low Byte Data Register)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
CN27
CN26
CN25
CN24
CN23
CN22
CN21
CN20
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Bit 0 ~ Bit 7 (CN20 ~ CN27) : Counter2_LB's buffer that you can read and write.
Counter2 is a 16-bit up-counter with 8-bit prescaler that allows
you to use R8 PAGE2 to preset and read the counter.(write
preset). After an interruption, it will reload the preset value.
16 of 63
11.04.2004 (V1.92)
This specification is subject to change without further notice.
ePVP6300
VFD Controller
7.2.10 R9 (PORT9 I/O Data, Data RAM Data Buffer) ,Counter2_HB Data
a) PAGE 0 (PORT9 I/O Data Register)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
P97
P96
P95
P94
P93
P92
P91
P90
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Bit 0 ~ Bit 7 (P90 ~ P97) : 8-bit PORT9(0~7) I/O data register
You can use IOC register to define input or output each bit, and to
define the pull high condition.
Bit 0:
1. P90
: can be defined as Input/Output
2. LED0
: can be defined as Output
3. IR Input
: can be defined as Input and IR is enabled
(when IOCF Bit7 is set to 1)
Bit 1 ~ Bit4:
1. P91~P94
: can be defined as Input/Output
2. LED1~LED4 : can be defined as Output
3. INT1~INT4
: can be defined as Input
Bit 5 ~ Bit7:
1. P95~P97
: can be defined as Input/Output
2. LED5~LED7 : can be defined as Output
b) PAGE 1 (Data RAM Data Register)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
RAM_D7
RAM_D6
RAM_D5
RAM_D4
RAM_D3
RAM_D2
RAM_D1
RAM_D0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Bit 0 ~ Bit 7 (RAM_D0 ~ RAM_D7) : Data RAM’s data
c) PAGE 2 (Counter2 High Byte Data Register)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
CN215
CN214
CN213
CN212
CN211
CN210
CN29
CN28
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Bit 0 ~ Bit 7 (CN28 ~ CN215) : Counter2_HB's buffer that you can read and write.
Counter2 is a 16-bit up-counter with 8-bit prescaler that allows
you to use R9 PAGE2 to preset and read the counter (write
preset). After an interruption, it will reload the preset value.
This specification is subject to change without further notice.
11/04.2004 (V1.92)17 of 63
ePVP6300
VFD Controller
7.2.11 RA (PLL, Main Clock Selection, Watchdog Timer),
ADC Output Data Buffer , Counter3 Data
a) PAGE 0 (PLL Enable Bit, Main Clock Selection Bits,
Watchdog Timer Enable Bit)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
IDLE
PLLEN
CLK2
CLK1
CLK0
-
-
WDTEN
R/W-0
R/W-0
R/W-0
R/W-1
R/W-1
R/W-0
Bit 0 (WDTEN) : Watch dog control bit
You can use WDTC instruction to clear watch dog counter. The counter
clock source is 32768/2 Hz. If the prescaler is assigned to TCC, Watch dog
will time out by (1/32768 )*2 * 256 = 15.616mS. If the prescaler is assigned
to WDT, the time out interval will be longer depending on the prescaler.
Ratio.
0/1
disable/enable
Bit 1~Bit 2 : Unused
Bit 3 ~ Bit 5 (CLK0 ~ CLK2) : MAIN clock selection bits
You can select different frequencies for the main clock with CLK1 and
CLK2. All the available clock selections are listed below.
PLLEN
CLK2
CLK1
CLK0
Sub clock
MAIN clock
1
0
0
0
32.768kHz
447.829kHz
447.829kHz (Normal mode)
1
0
0
1
32.768kHz
895.658kHz
895.658kHz (Normal mode)
1
0
1
0
32.768kHz
1.791MHz
1.791MHz (Normal mode)
1
0
1
1
32.768kHz
3.582MHz
3.582MHz (Normal mode)
1
1
0
0
32.768kHz
7.165MHz
7.165MHz (Normal mode)
1
1
0
1
32.768kHz
10.747MHz
10.747MHz (Normal mode)
1
1
1
0
32.768kHz
14.331MHz
14.331MHz (Normal mode)
1
1
1
1
0
Don’t care Don’t care Don’t care
Bit 6 (PLLEN) :
CPU clock
32.768kHz
17.91MHz
17.91MHz (Normal mode)
32.768kHz
Don’t care
32.768kHz (Green mode)
PLL's power control bit which is CPU mode control register
0/1
disable PLL/enable PLL
If PLL is enabled, CPU will operate at normal mode (high frequency).
Otherwise, it will run at green mode (low frequency, 32768 Hz).
447.8293kHz ~17.9132M Hz
CLK2 ~ CLK0
PLL circuit
1
switch
ENPLL
System clock
0
Sub-clock
32.768kHz
Fig. 6 The Relation Between 32.768kHz and PLL
18 of 63
11.04.2004 (V1.92)
This specification is subject to change without further notice.
ePVP6300
VFD Controller
Bit 7 (IDLE) : SLEEP or IDLE mode control as set by SLEP instruction.
0/1
SLEEP mode/IDLE mode.
This bit allows SLEP instruction to decide which power saving mode to execute.
The status after wake-up and the wake-up source list is as the shown below.
Wakeup Signal
SLEEP Mode
IDLE Mode
RA(7,6)=(0,0)
+ SLEP
RA(7,6)=(1,0)
+ SLEP
TCC time out
IOCF Bit0=1
No function
1) Wake-up
2) Jump to next instruction after SLEP
COUNTER1 time out
IOCF Bit1=1
No function
1) Wake-up
2) Jump to next instruction after SLEP
COUNTER2 time out
IOCF Bit2=1
No function
1) Wake-up
2) Jump to next instruction after SLEP
COUNTER3 time out
IOCD Bit0=1
No function
1) Wake-up
2) Jump to next instruction after SLEP
COUNTER4 time out
IOCD Bit1=1
No function
1) Wake-up
2) Jump to next instruction after SLEP
COUNTER5 time out
IOCD Bit2=1
No function
1) Wake-up
2) Jump to next instruction after SLEP
PORT90(IR function)
IOCF Bit3=1
Reset and jump 1) Wake-up
to Address 0
2) Jump to next instruction after SLEP
WDT time out
Reset and jump 1) Wake-up
to Address 0
2) Next instruction
PORTC(0~3)(Key1~Key4)
Reset and Jump 1) Wake-up
2) Jump to next instruction after SLEP
RE PAGE0 Bit3 or Bit4 or Bit5 or Bit6 = 1 to Address 0
PORT9(1~4)
IOCF Bit4 or Bit5 or Bit6 =1 or Bit7=1
Reset and Jump 1) Wake-up
to Address 0
2) Jump to next instruction after SLEP
NOTES: 1 PORT90 wakeup function is controlled by IOCF Bit 3. It is a falling edge or rising edge
trigger (controlled by CONT register Bit7).
2. PORT91 wakeup function is controlled by IOCF Bit 4. It is a falling edge trigger.
3. PORT92 ~ PORT94 wakeup functions are controlled by IOCF. They are falling edge
triggers.
4. PORTC0 ~ PORTC3 wakeup functions are controlled by RE PAGE0 Bit 0 ~ Bit 3. They are
falling edge triggers.
b) PAGE 1 (ADC Output Data Register)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
AD7
AD6
AD5
AD4
AD3
AD2
AD1
AD0
R
R
R
R
R
R
R
R
Bit 0 ~ Bit 7 (AD01~ AD7) : These 8 bits are full ADC data buffer
This specification is subject to change without further notice.
11/04.2004 (V1.92)19 of 63
ePVP6300
VFD Controller
c) PAGE 2 (Counter3 Data Register)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
CN37
CN36
CN35
CN34
CN33
CN32
CN31
CN30
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
Bit 0 ~ Bit 7 (CN30 ~ CN37) : Counter3's buffer that you can read and write.
Counter3 is an 8-bit up-counter with 8-bit prescaler that allows
you to use RA PAGE2 to preset and read the counter (write
preset). After an interruption, it will reload the preset value.
7.2.12 RB (PORTB I/O Data Buffer, PORT9 Switches)
a) PAGE 0 (PORTB I/O Data Register)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
-
PB6
PB5
PB4
PB3
PB2
PB1
PB0
R-0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Bit 0 ~ Bit 6 (PB0 ~ PB6) :
7-bit PORTB (0~6) I/O data register
You can use IOC register to define each bit as input or output.
When the PORTB is switched to ADC–
Bit 0: is defined as VREF
Bit 1 ~ Bit 6: is defined as AD1~AD6
b) PAGE 1 (PORT9, Pull High)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
PH97
PH96
PH95
PH94
PH93
PH92
PH91
PH90
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
Bit 0 ~ Bit 7 (PH90 ~ PH97) : PORT9 Bit0 ~ Bit7 pull high control register
0
disable pull high function.
1
enable pull high function
c) PAGE 2 (Counter4 Data Register)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
CN47
CN46
CN45
CN44
CN43
CN42
CN41
CN40
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
Bit 0 ~ Bit 7 (CN40 ~ CN47) : Counter4 buffer that you can read and write.
Counter 4 is an 8-bit up-counter with 8-bit prescaler that allows
you to use RB PAGE2 to preset and read the counter.(write
preset). After an interruption, it will reload the preset value.
20 of 63
11.04.2004 (V1.92)
This specification is subject to change without further notice.
ePVP6300
VFD Controller
7.2.13 RC (PORTC I/O Data , Counter5 Data)
a) PAGE 0 I/O Data Buffer/Serial Signal
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
PC7
PC6
PC5
PC4
PC3
PC2
PC1
PC0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Bit 0 ~ Bit 3 :1. PC0 ~ PC3 are defined as Input/Output
2. KEY1 ~ KEY4 are defined as Keyscan Input
Bit 4
:1. PC4 is defined as Input/Output
2. STB = Serial strobe signal
Bit 5
:1. PC5 is defined as Input/Output
2. CLK = Serial clock signal
Bit 6
:1. PC6 is defined as Input/Output
2. SDO = Serial data out
Bit 7
:1. PC7 is defined as Input/Output
2. SDI = Serial data in
b) PAGE 1 (PORTC, Pull High)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
PHC7
PHC6
PHC5
PHC4
PHC3
PHC2
PHC1
PHC0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
Bit 0 ~ Bit 7 (PHC0 ~ PHC7) : PORTC Bit0 ~ Bit7 pull high control register
0
disable pull high function.
1
enable pull high function
d) PAGE 2 (Counter5 Data Register)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
CN57
CN56
CN55
CN54
CN53
CN52
CN51
CN50
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
Bit 0 ~ Bit 7 (CN50 ~ CN57) : Counter5 buffer that you can read and write.
Counter5 is an 8-bit up-counter with 8-bit prescaler that allows
you to use RC PAGE2 to preset and read the counter (write
preset). After an interruption, it will reload the preset value.
7.2.14 RD (Interrupt Flag,)
a) PAGE 0 (Interrupt Flags Register)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
-
-
-
-
-
CNT5
CNT4
CNT3
-
-
-
-
-
R/W-0
R/W-0
R/W-0
NOTE: "1" means interrupt request, "0" means non-interrupt
Bit 0 (CNT3) : Counter3 timer overflow interrupt flag. Set when counter3 timer overflows.
Bit 1 (CNT4) : Counter4 timer overflow interrupt flag. Set when counter4 timer overflows.
Bit 2 (CNT5) : Counter5 timer overflow interrupt flag. Set when counter5 timer overflows.
This specification is subject to change without further notice.
11/04.2004 (V1.92)21 of 63
ePVP6300
VFD Controller
7.2.15 RE (Interrupt Flags, Wake-up)
a) PAGE 0 (Interrupt Flags, Wake-up Control Bits)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
-
RBF
ADI
STB
/WUPC3
/WUPC2
/WUPC1
/WUPC0
-
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
Bit 0 (/WUPC0) : PORTC0 wake-up control,
0/1
disable/enable PC0 pin wake-up function
Bit 1 (/WUPC1) : PORTC1 wake-up control, 0/1
disable/enable PC1 pin wake-up function
Bit 2 (/WUPC2) : PORTC2 wake-up control,
0/1
disable/enable PC2 pin wake-up function
Bit 3 (/WUPC3) : PORTC3 wake-up control,
0/1
disable/enable PC3 pin wake-up function
Bit 4(STB)
: SPI data transfer start interrupt.
While the STB signal goes low, it will issue this interrupt.
Bit 5 (ADI)
: ADC interrupt flag after sampling
Bit 6 (RBF)
: SPI data transfer complete interrupt
If the SPI RBF signal contains a rising edge signal, CPU will set this bit
(RBF set to "1" after data are completely transferred).
Bit 7(-)
: Not used
7.2.16 RF (Interrupt Flags)
a) PAGE 0 (Interrupt Status Register)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
INT4
INT3
INT2
INT1
IR
CNT2
CNT1
TCIF
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
NOTE: "1" means interrupt request, "0" means non-interrupt
Bit 0 (TCIF)
: TCC timer overflow interrupt flag, Set when TCC timer overflows.
Bit 1 (CNT1)
: Counter1 timer overflow interrupt flag. Set when Counter1 timer overflows.
Bit 2 (CNT2)
: Counter2 timer overflow interrupt flag. Set when Counter2 timer overflows.
Bit 3 (IR)
: External INT pin interrupt flag. If PORT90 contains a falling /rising edge
(controlled by CONT register) trigger signal, CPU will set this bit.
Bit 4 (INT1)
: External INT1 pin interrupt flag, If PORT91 contains a falling edge trigger
signal, CPU will set this bit.
Bit 5(INT2)
: External INT2 pin interrupt flag. If PORT92 has a falling edge trigger
signal, CPU will set this bit.
Bit 6 : (INT3)
: External INT3 pin interrupt flag. If PORT93 has a falling edge trigger
signal, CPU will set this bit.
Bit 7(INT4)
: External IR interrupt flag. If PORT94 has a falling edge trigger signal, CPU
will set this bit.
22 of 63
11.04.2004 (V1.92)
This specification is subject to change without further notice.
ePVP6300
VFD Controller
Trigger edge is as shown below:
Signal
Trigger
TCC
Time out
COUNTER1
Time out
COUNTER2
Time out
COUNTER3
Time out
COUNTER4
Time out
COUNTER5
Time out
IR
Falling
Rising edge
INT1
Falling edge
INT2
Falling edge
INT3
Falling edge
INT4
Falling edge
7.2.17 R10~R3F (General Purpose Registers)
R10 ~ R1F, R20 ~ R3F (Banks 0 ~ 3) : all are general purpose registers.
7.3 Special Purpose Registers
7.3.1 A (Accumulator)
Internal data transfer, or instruction operand holding. It is not an addressable register.
7.3.2 CONT (Control Register)
CONT register is readable (CONTR) and writable (CONTW).
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
P90EG
INT
TS
RETBK
PAB
PSR2
PSR1
PSR0
Bit 0 ~ Bit 2 (PSR0 ~ PSR2) : TCC/WDT prescaler bits
PSR2
PSR1
PSR0
TCC Rate
WDT Rate
0
0
0
1:2
1:1
0
0
1
1:4
1:2
0
1
0
1:8
1:4
0
1
1
1:16
1:8
1
0
0
1:32
1:16
1
0
1
1:64
1:32
1
1
0
1:128
1:64
1
1
1
1:256
1:128
This specification is subject to change without further notice.
11/04.2004 (V1.92)23 of 63
ePVP6300
VFD Controller
Bit 3 (PAB)
: Prescaler assignment bit
0/1
TCC/WDT
When in WDT mode (Bit 3 = 1), the prescaler is cleared by the WDTC and
SLEP instructions. Likewise, when in TCC mode (Bit 3 = 0), the prescaler
will can NOT be cleared by SLEP instructions.
An 8-bit counter is provided as prescaler for the TCC or WDT. The
prescaler is available for the TCC only or for the WDT only at a given time.
An 8 bit counter is made available for TCC or WDT as determined by the
status of Bit 3 (PAB) of the CONT register.
Both TCC and prescaler are cleared each time a write to TCC instruction is
executed. (See the table above for the prescaler ratio under CONT register
and Fig.7 below for the TCC/WDT block diagram.)
Bit 4 (RETBK)
: Return value backup control for interrupt routine
0/1
disable/enable
When this bit is set to 1, the CPU will store ACC, R3 status, and R5 PAGE 1
automatically after an interrupt is triggered. It will be restored after
instruction RETI. When this bit is set to 0, you need to store ACC, R3, and
R5 PAGE 1 in you program.
Bit 5 (TS)
: TCC signal source
0
internal instruction cycle clock
timing = ( 2 / system clock) * prescaler* (256 – count vaule)
1
16.384kHz
timing = ( 1 /16.384k) * prescaler * (256 – count vaule)
Bit 6 (INT)
Bit 7 (P90EG)
: INT enable flag
0
interrupt masked by DISI or hardware interrupt
1
interrupt enabled by ENI/RETI instructions
: Interrupt edge type of P90
0
P90 interruption source is a rising edge signal.
1
P90 interruption source is a falling edge signal.
16.38KHz
Fig. 7 TCC & WDT Block Diagram
24 of 63
11.04.2004 (V1.92)
This specification is subject to change without further notice.
ePVP6300
VFD Controller
7.3.3 IOC 5 (PORT5 Switches)
a) Page 1
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
P57S
P56S
P55S
P54S
R/W-0
R/W-0
R/W-0
R/W-0
Bit 2
Bit 1
Bit 0
Bit 4 ~ Bit 7 (P54S~P57S) : Port5 I/O direction control register
0
set the relative I/O pin as output HV
1
set the relative I/O pin into high impedance
7.3.4 IOC 8
a) PAGE 1 (Clock Source and Prescaler for COUNTER1 and COUNTER2)
Bit 7
CNT2S
R/W-0
Bit 6
Bit 5
Bit 4
Bit 3
C2_PSC2 C2_PSC1 C2_PSC0
R/W-0
R/W-0
R/W-0
CNT1S
R/W-0
Bit 2
Bit 1
Bit 0
C1_PSC2 C1_PSC1 C1_PSC0
R/W-0
R/W-0
R/W-0
Bit 0 ~ Bit 2 (C1_PSC0 ~ C1_PSC2) : COUNTER1 prescaler ratio
Bit 3 (CNT1S) : COUNTER1 clock source
0
16.384kHz
timing = ( 1 /16.384k) * prescaler * (256 – count vaule)
1
system clock
timing = ( 2 / system clock) * prescaler* (256 – count vaule)
COUNTER1
C1_PSC2
C1_PSC1
C1_PSC0
0
0
0
1:2
0
0
1
1:4
0
1
0
1:8
0
1
1
1:16
1
0
0
1:32
1
0
1
1:64
1
1
0
1:128
1
1
1
1:256
Bit 4 ~ Bit 6 (C2_PSC0 ~ C2_PSC2) : COUNTER2 prescaler ratio
COUNTER2
C2_PSC2
C2_PSC1
C2_PSC0
0
0
0
1:2
0
0
1
1:4
0
1
0
1:8
0
1
1
1:16
1
0
0
1:32
1
0
1
1:64
1
1
0
1:128
1
1
1
1:256
This specification is subject to change without further notice.
11/04.2004 (V1.92)25 of 63
ePVP6300
VFD Controller
Bit 7 (CNT2S) : COUNTER2 clock source
0
16.384kHz
timing = ( 1 /16.384k) * prescaler * (256 – count vaule)
1
system clock
timing = ( 2 / system clock) * prescaler* (256 – count vaule)
7.3.5
IOC9 (PORT9 I/O Control)
a) PAGE 0 (PORT9 I/O Control Register)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
IOC97
IOC96
IOC95
IOC94
IOC93
IOC92
IOC91
IOC90
R/W-1
R/W-1
R/W-1
R/W-1
R/W-1
R/W-1
R/W-1
R/W-1
Bit 0 ~ Bit 7 (IOC90 ~ IOC97) : PORT9 (0~7) I/O direction control register
0
set the relative I/O pin as output
1
set the relative I/O pin into high impedance
b) PAGE 1 ( Clock Source and Prescaler for COUNTER3 and COUNTER4)
Bit 7
CNT4S
R/W-0
Bit 6
Bit 5
Bit 4
Bit 3
C4_PSC2 C4_PSC1 C4_PSC0
R/W-0
R/W-0
R/W-0
CNT3S
R/W-0
Bit 2
Bit 1
Bit 0
C3_PSC2 C3_PSC1 C3_PSC0
R/W-0
R/W-0
R/W-0
Bit 0 ~ Bit 2 (C3_PSC0 ~ C3_PSC2) : COUNTER3 prescaler ratio
COUNTER3
C3_PSC2
C3_PSC1
C3_PSC0
0
0
0
1:2
0
0
1
1:4
0
1
0
1:8
0
1
1
1:16
1
0
0
1:32
1
0
1
1:64
1
1
0
1:128
1
1
1
1:256
Bit 3 (CNT3S) : COUNTER3 clock source
0
16.384kHz
timing = ( 1 /16.384k) * prescaler * (256 – count vaule)
1
system clock
timing = ( 2 / system clock) * prescaler* (256 – count vaule)
Bit 4 ~ Bit 6 (C4_PSC0 ~ C4_PSC2) : COUNTER4 prescaler ratio
26 of 63
COUNTER4
C4_PSC2
C4_PSC1
C4_PSC0
0
0
0
1:2
0
0
1
1:4
0
1
0
1:8
0
1
1
1:16
1
0
0
1:32
11.04.2004 (V1.92)
This specification is subject to change without further notice.
ePVP6300
VFD Controller
1
0
1
1:64
1
1
0
1:128
1
1
1
1:256
Bit 7 (CNT4S) : COUNTER4 clock source
0
16.384kHz
timing = ( 1 /16.384k) * prescaler * (256 – count vaule)
1
system clock
timing = ( 2 / system clock) * prescaler* (256 – count vaule)
7.3.6 IOCA
a) PAGE 1 (Clock Source and Prescaler for COUNTER5 )
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
-
-
-
-
CNT5S
-
-
-
-
R/W-0
Bit 2
Bit 1
Bit 0
C5_PSC2 C5_PSC1 C5_PSC0
R/W-0
R/W-0
R/W-0
Bit 0 ~ Bit 2 (C5_PSC0 ~ C5_PSC2) : COUNTER5 prescaler ratio
COUNTER4
C5_PSC2
C5_PSC1
C5_PSC0
0
0
0
1:2
0
0
1
1:4
0
1
0
1:8
0
1
1
1:16
1
0
0
1:32
1
0
1
1:64
1
1
0
1:128
1
1
1
1:256
Bit 3 (CNT5S) : COUNTER5 clock source
0
16.384kHz
timing = ( 1 /16.384k) * prescaler * (256 – count vaule)
1
system clock
timing = ( 2 / system clock) * prescaler* (256 – count vaule)
7.3.7 IOCB (PORTB I/O Control, PORTB Switch)
a) PAGE 0 (PORTB I/O Control Register)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
-
IOCB6
IOCB5
IOCB4
IOCB3
IOCB2
IOCB1
IOCB0
R-1
R/W-1
R/W-1
R/W-1
R/W-1
R/W-1
R/W-1
R/W-1
Bit 0 ~ Bit 6 (IOCB0 ~ IOCB 6) : PORTB (0~6) I/O direction control register
0
set the relative I/O pin as output
1
set the relative I/O pin into high impedance
This specification is subject to change without further notice.
11/04.2004 (V1.92)27 of 63
ePVP6300
VFD Controller
b) PAGE 1 (PORTB Switches)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
-
PB6S
PB5S
PB4S
PB3S
PB2S
PB1S
PB0S
-
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
Bit 0 (PB0S) : Select between AD Voltage Reference pin or I/O PORTB0 pin
0
PB0 (I/O PORTB0) pin is selected and ADC reference voltage sourced
1
from internal VDD
VREF (ADC external reference voltage input) pin is selected
Bit 1 (PB1S) : Select between normal I/O PORTB1 pin or ADC Channel 1 input AD1 pin
0
PB1 (I/O PORTB1) pin is selected
1
AD1 (ADC Channel 1 input) pin is selected
Bit 2 (PB2S) : Select between normal I/O PORTB2 pin or ADC Channel 2 input AD2 pin
0
PB2 (I/O PORTB2) pin is selected
1
AD2 (ADC Channel 2 input) pin is selected
Bit 3 (PB3S) : Select between normal I/O PORTB3 pin or ADC Channel 3 input AD3 pin
0
PB3 (I/O PORTB3) pin is selected
1
AD3 (ADC Channel 3 input) pin is selected
Bit 4 (PB4S) : Select between normal I/O PORTB4 pin or ADC Channel 4 input AD4 pin
0
PB4 (I/O PORTB4) pin is selected
1
AD4 (ADC Channel 4 input) pin is selected
Bit 5 (PB5S) Select between normal I/O PORTB5 pin or ADC Channel 5 input AD5 pin
0
PB5 (I/O PORTB5) pin is selected
1
AD5 (ADC Channel 5 input) pin is selected
Bit 6 (PB6S) : Select between normal I/O PORTB5 pin or ADC Channel 6 input AD6 pin
0
PB6 (I/O PORTB6) pin is selected
1
AD6 (ADC Channel 6 input) pin is selected
7.3.8 IOCC (PORTC I/O Control)
a) PAGE 0 (PORTC I/O Control Register)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
IOCC7
IOCC6
IOCC5
IOCC4
IOCC3
IOCC2
IOCC1
IOCC0
R/W-1
R/W-1
R/W-1
R/W-1
R/W-1
R/W-1
R/W-1
R/W-1
Bit 0 ~ Bit 7 (IOCC0 ~ IOCC7) : PORTC(0~7) I/O direction control register
0
set the relative I/O pin as output
1
set the relative I/O pin into high impedance
b) PAGE 1 (PORTC Switches)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
PC7S
PC6S
PC5S
PC4S
-
-
-
-
R/W-1
R/W-1
R/W-1
R/W-1
-
-
-
-
Bit 4 (PC4S) : Select STB or I/O PORTC4 pin
28 of 63
11.04.2004 (V1.92)
This specification is subject to change without further notice.
ePVP6300
VFD Controller
0
1
PC4 (I/O PORTC4) pin is selected
STB pin is selected
Bit 5 (PC5S) : Select CLK or I/O PORTC5 pin
0
PC5 (I/O PORTC5) pin is selected
1
CLK pin is selected
Bit 6 (PC6S) : Select DOUT or I/O PORTC6 pin
0
PC6 (I/O PORTC6) pin is selected
1
DOUT pin is selected (N-channel,Open-Drain)
Bit 7 (PC7S) : Select DIN or I/O PORTC7 pin
0
PC7 (I/O PORTC7) pin is selected
1
DIN pin is selected
7.3.9 IOCD (Interrupt Mask, Prescaler of CN3 ~ CN5)
a) PAGE 0 (Interrupt Mask)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
-
-
-
-
-
CNT5
CNT4
CNT3
-
-
-
-
-
R/W-0
R/W-0
R/W-0
Bit 0 ~ 3 : Interrupt enable bit
0
disable interrupt
1
enable interrupt
7.3.10 IOCE (Interrupt Mask)
a) PAGE 0 (Interrupt Mask)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
-
RBF
ADI
STB
-
-
-
-
-
R/W-0
R/W-0
R/W-0
-
-
-
-
Bit 4 (STB) : STB goes LOW interrupt mask.
0/1
disable/enable interrupt
Bit 5 (ADI) :
ADC interrupt flag after a sampling
0/1
disable/enable interrupt
Bit 6 (RBF) : SPI’s RBF interrupt mask
0/1
disable/enable interrupt
7.3.11 IOCF (Interrupt Mask )
a) PAGE 0 (Interrupt Mask Register)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
INT4
INT3
INT2
INT1
IR
CNT2
CNT1
TCIF
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
Bit 0 ~ 7: Interrupt enable bit
0
disable interrupt
1
enable interrupt
The status after interrupt and the interrupt source lists are as shown in the table below.
This specification is subject to change without further notice.
11/04.2004 (V1.92)29 of 63
ePVP6300
VFD Controller
Interrupt Signal
TCC time out
IOCF bit0=1
And "ENI"
IDLE Mode
GREEN Mode
RA(7,6)=(1,0)
RA(7,6)=(x,0)
RA(7,6)=(x,1)
+ SLEP
no SLEP
no SLEP
Interrupt
Interrupt
(jump to Address 8
on Page0)
(jump to Address 8
on Page0)
Interrupt
(jump to Address 8
on Page0)
Interrupt
(jump to Address 8
on Page0)
1) Wake-up
2) Interrupt (jump to Address 8 on
Page0)
3) After RETI instruction, jump to
SLEP Next instruction
1) Wake-up
COUNTER1 time out 2) Interrupt (jump to Address 8 on
Page0)
IOCF bit1=1
3) After RETI instruction, jump to
And "ENI"
SLEP Next instruction
1) Wake-up
COUNTER2 time out 2) Interrupt (jump to Address 8 on
IOCF bit2=2
Page0)
And "ENI"
3) After RETI instruction, jump to
SLEP Next instruction
1) Wake-up
COUNTER3 time out 2) Interrupt (jump to Address 8 on
IOCD bit0=1
Page0)
And "ENI"
3) After RETI instruction, jump to
SLEP Next instruction
1) Wake-up
COUNTER4 time out 2) Interrupt (jump to Address 8 on
IOCD bit1=1
Page0)
And "ENI"
NORMAL Mode
3) After RETI instruction, jump to
SLEP Next instruction
1) Wake-up
COUNTER5 time out 2) Interrupt (jump to Address 8 on
IOCD bit2=1
Page0)
And "ENI"
3) After RETI instruction, jump to
SLEP Next instruction
INT1~4
1) Wake-up
IOCF bit4=1 or IOCF 2)Interrupt (jump to Address 8 on
bit5=1 IOCF bit6 = 1 Page0)
or IOCF bit7= 1
3) after RETI instruction, jump to
And “ENI
SLEP Next instruction
Interrupt
(jump to Address 8
on Page0)
Interrupt
(jump to Address 8
on Page0)
Interrupt
Interrupt
(jump to Address 8
on Page0)
(jump to Address 8
on Page0)
Interrupt
Interrupt
(jump to Address 8
on Page0)
(jump to Address 8
on Page0)
Interrupt
Interrupt
(jump to Address 8
on Page0)
(jump to Address 8
on Page0)
Interrupt
Interrupt
(jump to Address 8
on Page0)
(jump to Address 8
on Page0)
Interrupt
Interrupt
(jump to Address 8
on Page0)
(jump to Address 8
on Page0)
Interrupt
Interrupt
(jump to Address 8
on Page0)
(jump to Address 8
on Page0)
Interrupt
Interrupt
(jump to Address 8
(jump to Address 8
1) Wake-up
IR
IOCF bit3= 1
And “ENI
2) Interrupt (jump to Address 8 on
Page0)
3) After RETI instruction, jump to
SLEP Next instruction
ADI
IOCE bit5 = 1
No function
And “ENI
RBF
IOCE bit6 = 1
30 of 63
11.04.2004 (V1.92)
No function
This specification is subject to change without further notice.
ePVP6300
VFD Controller
And “ENI
on Page0)
on Page0)
STB
Interrupt
Interrupt
(jump to Address 8
on Page0)
(jump to Address 8
on Page0)
IOCE bit4 = 1
No function
And “ENI
NOTES: 1. PORT90 interrupt function is controlled by IOCF Bit 3. It is a falling edge or rising edge
trigger (controlled by CONT register Bit7).
2. PORT9 (1~4) interrupt functions are controlled by IOCF Bits 4, 5, 6, & 7). They are falling
edge triggers.
3. STB interrupt source function is controlled by IOCE PAGE0 Bit 4. It is falling edge trigger
after the STB goes low.
7.4 Application notes
1、Call-table instruction::
Because the call-table instruction can only change the Program Counter's bit7 ~ bit0 at
each time, only 256 addresses can be searched once.
But each program page contains 1024 addresses, if call each 256 addresses as a zone, Then
each page constitutes by four zones.
When a table overlaps two zones, a bug would occur during address searching.
So the member of program must examine the .LST file at any time, the .LST file will jot
down the information that Assembler generated, for example source code, the coding of
instruction , instruction address, error message etc.
2、Operation requirement for the CPU:
The system frequency must adds a latency time ( 14.33 MHz about 250 ms ;17.91 MHz
about 450 ms.). After RA register was setting, it will offer the stable system frequency for
the operation.
This specification is subject to change without further notice.
11/04.2004 (V1.92)31 of 63
ePVP6300
VFD Controller
7.5 I/O Port
The I/O registers are bi-directional tri-state I/O ports. The I/O ports can be defined as "input" or
"output" pins by the I/O control registers under program control. The I/O data registers and I/O
control registers are both readable and writable. The I/O interface circuit is shown in Fig.22.
PCRD
PORT
Q
P
R
Q
C
L
Q
P
R
Q
C
L
D
CLK
PCWR
D
CLK
IOD
PDWR
PDRD
0
1
M
U
X
Fig. 8 The Circuit of I/O Port and I/O Control Register
7.6 RESET
A RESET can be caused by any of the following:
1. Power on reset
2. WDT timeout (if enabled and in GREEN or NORMAL mode)
3. /RESET pin pull low
Once a RESET occurs, the following functions are performed.
The oscillator is running, or will be started.
The Program Counter (R2) is set to all "0".
When power on, the upper 3 bits of R3 and the upper 2 bits of R4 are cleared.
The Watchdog timer and prescaler counter are cleared.
The Watchdog timer is disabled.
The CONT register is set to all "1"
32 of 63
11.04.2004 (V1.92)
This specification is subject to change without further notice.
ePVP6300
VFD Controller
The other registers’ (Bit 7 ~ Bit 0) default values are as follows.
Address
R Register
PAGE 0
R Register
PAGE 1
R Register
PAGE 2
xxxx0000
00000000
R Register IOC Register IOC Register
PAGE 3
PAGE 0
PAGE 1
0x4
00xxxxxx
0x5
0000xxxx
0x6
00000000
0x7
00000000
00000000
xxxxxxxx
0x8
00000000
00000000
xxxxxxxx
0x9
00000000
xxxxxxxx
xxxxxxxx
0xA
00011xx0
xxxxxxxx
xxxxxxxx
0xB
00000000
00000000
xxxxxxxx
x1111111
x0000000
0xC
1011xxxx
00000000
xxxxxxxx
1111xxxx
1111xxxx
0xD
xxxxx000
xxxxx000
0xE
X0000000
x000xxxx
0xF
00000000
00000000
xxxxxxxx
00000000
11111111
00000000
00000000
7.7 Wake Up
The controller features two types of sleep mode for power saving:
7.7.1 SLEEP Mode, RA(6 ;7) = 0 + "SLEP" Instruction
Under this mode, the controller turns off all the CPU and crystal. However, other circuits with
power control like key tone control or PLL control (with register enabled), has to be turned off
through software.
7.7.2 IDLE mode, RA(6 ;7) = 1 + "SLEP" Instruction.
With this mode, the controller only turns the CPU off. The crystal remains running.
7.7.3 Wake-up from SLEEP Mode
1. WDT time out
2. External interrupt
3. /RESET pull low
Any of these cases will reset the controller and run the program from address zero. The status
is just like the power-on-reset condition. Be sure to enable circuit after cases 1 or 2 occurs.
This specification is subject to change without further notice.
11/04.2004 (V1.92)33 of 63
ePVP6300
VFD Controller
7.7.4 Wake-up from IDLE Mode
1. WDT time out
2. External interrupt
3. Internal interrupt like counters
All these cases requires you to enable the circuit before entering IDLE mode. All the registers
values are preserved when "SLEP" instruction is executed and restored after wake-up.
During execution of case 2 or 3, controller will wake up and jump to address 0x08 for
interruption sub-routine. After performing the sub-routine ("RETI" instruction), the program will
jump to the next instruction following the "SLEP" instruction.
7.8 Interrupts
RD, RE, and RF are the interrupt status registers which record the interrupt request in flag bit.
IOCD, IOCE, & IOCF are their interrupt mask registers respectively. Global interrupt is
enabled by ENI instruction and is disabled by DISI instruction. When one of the interrupts
(when enabled) is generated, it will cause the next instruction to be fetched from address
008H. Once in the interrupt service routine, the source of the interrupt can be determined by
polling the flag bits in their respective (RD, RE, and RF) registers.
The interrupt flag bit must be cleared in the software before leaving the interrupt service
routine and enabling interrupts to avoid recursive interrupts.
7.9 Instruction Set
The Instruction set has the following features:
1. Every bit of any register can be set, cleared, or tested directly.
2. The I/O register can be treated as a general register. That is, the same instruction can
operates on I/O register.
The symbol "R" represents a register designator which specifies which one of the 64 registers
(including operational registers and general purpose registers) is to be utilized by the
instruction. Bits 6 and 7 in R4 determine the selected register bank. "b'' represents a bit field
designator which selects the number of the bit located in the Register "R,” and affected by the
operation. "k'' represents an 8 or 10-bit constant or literal value.
Instruction Binary
HEX
Mnemonic
Operation
Status
Affected
Instruction
Cycle
0 0000 0000 0000
0000
NOP
No Operation
None
1
0 0000 0000 0001
0001
DAA
Decimal Adjust A
C
1
0 0000 0000 0010
0002
CONTW
A → CONT
None
1
0 0000 0000 0011
0003
SLEP
0 → WDT, Stop oscillator
T,P
1
0 0000 0000 0100
0004
WDTC
0 → WDT
T,P
1
0 0000 0000 rrrr
000r
IOW R
A → IOCR
None
1
0 0000 0001 0000
0010
ENI
Enable Interrupt
None
1
34 of 63
11.04.2004 (V1.92)
This specification is subject to change without further notice.
ePVP6300
VFD Controller
0 0000 0001 0001
0011
DISI
Disable Interrupt
None
1
0 0000 0001 0010
0012
RET
[Top of Stack] → PC
None
2
0 0000 0001 0011
0013
RETI
[Top of Stack] → PC
Enable Interrupt
None
2
0 0000 0001 0100
0014
CONTR
CONT → A
None
1
0 0000 0001 rrrr
001r
IOR R
IOCR → A
None
1
0 0000 0010 0000
0020
TBL
R2+A → R2 bits 9,10 do not clear Z,C,DC
2
0 0000 01rr rrrr
00rr
MOV R,A
A→R
None
1
0 0000 1000 0000
0080
CLRA
0→A
Z
1
0 0000 11rr rrrr
00rr
CLR R
0→R
Z
1
0 0001 00rr rrrr
01rr
SUB A,R
R-A → A
Z,C,DC
1
0 0001 01rr rrrr
01rr
SUB R,A
R-A → R
Z,C,DC
1
0 0001 10rr rrrr
01rr
DECA R
R-1 → A
Z
1
0 0001 11rr rrrr
01rr
DEC R
R-1 → R
Z
1
0 0010 00rr rrrr
02rr
OR A,R
A∨R→A
Z
1
0 0010 01rr rrrr
02rr
OR R,A
A∨R→R
Z
1
0 0010 10rr rrrr
02rr
AND A,R
A&R→A
Z
1
0 0010 11rr rrrr
02rr
AND R,A
A&R→R
Z
1
0 0011 00rr rrrr
03rr
XOR A,R
A⊕R→A
Z
1
0 0011 01rr rrrr
03rr
XOR R,A
A⊕R→R
Z
1
0 0011 10rr rrrr
03rr
ADD A,R
A+R→A
Z,C,DC
1
0 0011 11rr rrrr
03rr
ADD R,A
A+R→R
Z,C,DC
1
0 0100 00rr rrrr
04rr
MOV A,R
R→A
Z
1
0 0100 01rr rrrr
04rr
MOV R,R
R→R
Z
1
0 0100 10rr rrrr
04rr
COMA R
/R → A
Z
1
0 0100 11rr rrrr
04rr
COM R
/R → R
Z
1
0 0101 00rr rrrr
05rr
INCA R
R+1 → A
Z
1
0 0101 01rr rrrr
05rr
INC R
R+1 → R
Z
1
0 0101 10rr rrrr
05rr
DJZA R
R-1 → A, skip if zero
None
2 if skip
0 0101 11rr rrrr
05rr
DJZ R
R-1 → R, skip if zero
None
2 if skip
0 0110 00rr rrrr
06rr
RRCA R
R(n) → A(n-1)
R(0) → C, C → A(7)
C
1
0 0110 01rr rrrr
06rr
RRC R
R(n) → R(n-1)
R(0) → C, C → R(7)
C
1
0 0110 10rr rrrr
06rr
RLCA R
R(n) → A(n+1)
R(7) → C, C → A(0)
C
1
0 0110 11rr rrrr
06rr
RLC R
R(n) → R(n+1)
R(7) → C, C → R(0)
C
1
0 0111 00rr rrrr
07rr
SWAPA R
R(0-3) → A(4-7)
R(4-7) → A(0-3)
None
1
0 0111 01rr rrrr
07rr
SWAP R
R(0-3) ↔ R(4-7)
None
1
This specification is subject to change without further notice.
11/04.2004 (V1.92)35 of 63
ePVP6300
VFD Controller
0 0111 10rr rrrr
07rr
JZA R
R+1 → A, skip if zero
None
2 if skip
0 0111 11rr rrrr
07rr
JZ R
R+1 → R, skip if zero
None
2 if skip
0 100b bbrr rrrr
0xxx
BC R,b
0 → R(b)
None
1
0 101b bbrr rrrr
0xxx
BS R,b
1 → R(b)
None
1
0 110b bbrr rrrr
0xxx
JBC R,b
if R(b)=0, skip
None
2 if skip
0 111b bbrr rrrr
0xxx
JBS R,b
if R(b)=1, skip
None
2 if skip
1 00kk kkkk kkkk
1kkk
CALL k
PC+1 → [SP]
(Page, k) → PC
None
2
1 01kk kkkk kkkk
1kkk
JMP k
(Page, k) → PC
None
2
1 1000 kkkk kkkk
18kk
MOV A,k
k→A
None
1
1 1001 kkkk kkkk
19kk
OR A,k
A∨k→A
Z
1
1 1010 kkkk kkkk
1Akk
AND A,k
A&k→A
Z
1
1 1011 kkkk kkkk
1Bkk
XOR A,k
A⊕k→A
Z
1
1 1100 kkkk kkkk
1Ckk
RETL k
k → A, [Top of Stack] → PC
None
2
1 1101 kkkk kkkk
1Dkk
SUB A,k
k-A → A
Z,C,DC
1
1 1110 0000 0001
1E01
INT
PC+1 → [SP]
001H → PC
None
1
1 1110 100k kkkk
1E8k
PAGE k
K->R5(4:0)
None
1
1 1111 kkkk kkkk
1Fkk
ADD A,k
k+A → A
Z,C,DC
1
36 of 63
11.04.2004 (V1.92)
This specification is subject to change without further notice.
ePVP6300
VFD Controller
7.10Bonding Coordinates Subsidiary
Chip size :
Substrate: P substrate
Chip size : 2710 *2580 uM
7.10.1 Pad Configuration
Fig. 9 ePVP6300 Pad Configuration
This specification is subject to change without further notice.
11/04.2004 (V1.92)37 of 63
ePVP6300
VFD Controller
7.10.2 Pad Name and Coordinates Table
38 of 63
11.04.2004 (V1.92)
This specification is subject to change without further notice.
ePVP6300
VFD Controller
This specification is subject to change without further notice.
11/04.2004 (V1.92)39 of 63
ePVP6300
VFD Controller
8
Segment Data Buffers
The ePVP6300 chip provides a total of 256 bytes data RAM. On the other hand, display
Segment Data Buffers can be stored either in the data RAM of 256 bytes sizes (00h~40h) or in
the common registers of Bank 2 and Bank 3 (20h~3Fh).
a) Data RAM Address
00h~38h
57X8 Segment Data Buffers
39h~3Eh
6X8 Key Scanning Data Buffers
3Fh
SW data register
40h
LED data register
b) Common Registers Address
40 of 63
11.04.2004 (V1.92)
20
Bank0~Bank3
:
Common registers
3F
(32x8 for each bank)
This specification is subject to change without further notice.
ePVP6300
VFD Controller
These buffers store display RAM. The display RAM stores the data transmitted from an external
device to the ePVP6300 through the serial interface and is assigned addresses as follows, in units
of 8 bits:
b0
b3 b4
b7
X X HL
X X HU
Lower 4 bits
Higher 4 bits
Only the lower 4 bits of the addresses assigned to SEG17 through SEG20 are valid and the
higher 4 bits are ignored.
c) Display Memory Addresses:
Seg1
Seg4
Seg8
Seg12
Seg16
Seg20
00 HL
00 HU
01 HL
01 HU
02 HL
DIG1
03 HL
03 HU
04 HL
04 HU
05 HL
DIG2
06 HL
06 HU
07 HL
07 HU
08 HL
DIG3
09 HL
09 HU
0A HL
0A HU
0B HL
DIG4
0C HL
0C HU
0D HL
0D HU
0E HL
DIG5
0F HL
0F HU
10 HL
10 HU
11 HL
DIG6
12 HL
12 HU
13 HL
13 HU
14 HL
DIG7
15 HL
15 HU
16 HL
16 HU
17 HL
DIG8
18 HL
18 HU
19 HL
19 HU
1A HL
DIG9
1B HL
1B HU
1C HL
1C HU
1D HL
DIG10
1E HL
1E HU
1F HL
1F HU
20 HL
DIG11
21 HL
21 HU
22 HL
22 HU
23 HL
DIG12
24 HL
24 HU
25 HL
25 HU
26 HL
DIG13
27 HL
27 HU
28 HL
28 HU
29 HL
DIG14
2A HL
2A HU
2B HL
2B HU
2C HL
DIG15
2D HL
2D HU
2E HL
2E HU
2F HL
DIG16
30 HL
30 HU
31 HL
31 HU
32 HL
DIG17
33 HL
33 HU
34 HL
34 HU
35 HL
DIG18
36 HL
36 HU
37 HL
37 HU
38 HL
DIG19
This specification is subject to change without further notice.
11/04.2004 (V1.92)41 of 63
ePVP6300
VFD Controller
b)
Key Scanning Data Buffers:
KEY1
KEY2
KEY3
SEG12/KS12
SEG11/KS11
SEG10/KS10
SEG9/KS9
SEG8/KS8
SEG7/KS7
SEG6/KS6
SEG5/KS5
SEG4/KS4
SEG3/KS3
SEG2/KS2
SEG1/KS1
KEY4
Fig. 10 12 x 4 Configuration Key Matrix
The key matrix is of 12 x 4 configuration is as shown in the above figure.
The data of each key is stored as illustrated below, and is read by a read command, starting
from the least significant bit.
KEY1….KEY4
KEY1….KEY4
SEG1/KS1
SEG2/KS2
SEG3/KS3
SEG4/KS4
SEG5/KS5
SEG6/KS6
SEG7/KS7
SEG8/KS8
SEG9/KS9
SEG10/KS10
SEG11/KS11
SEG12/KS12
b0 -- -- b3
b4 -- -- b7
Reading sequence
When the most significant bit of data (SEG12, b7) has been read, the least significant bit of the
next data (SEG1, b0) is read.
8.1 Commands
A command sets the display mode and status of the VFD driver.
The first 1 byte (b0 to b7) inputted to the ePVP6300 through the DIN pin after the STB pin has
fallen, is regarded as a command. Interrupt event will occur when STB pin is falling.
If STB mode is high while a command/data are being transmitted, serial communication is
initialized, and the command/data being transmitted is invalidated (however, the
command/data already transmitted remain valid).
42 of 63
11.04.2004 (V1.92)
This specification is subject to change without further notice.
ePVP6300
VFD Controller
8.1.1 Display Mode Setting Command [00]
This command initializes the ePVP6300 and selects Display mode number of segments and
grids (1/8 to 1/19-duty, 9 segments to 20 segments) as illustrated below.
When Display Mode command is executed, display is forcibly turned off, and key scanning is
also stopped. To resume display, a display ON command must be executed. If the same
Display mode is selected, nothing is performed.
When power is turned “ON,” default Display mode is “19-digit, 9-segment.”
MSB
b7
b6
b5
b4
b3
b2
b1
b0
0
0
0
0
1
1
1
1
LSB
Initial value
Display mode
Not Relevant
0000 : 8 digits, 20 segments.
0001 : 9 digits, 19 segments.
0010 : 10 digits, 18 segments.
0011 : 11 digits, 17 segments.
1000 : 12 digits, 16 segments.
1001 : 13 digits, 15 segments.
1010 : 14 digits, 14 segments.
1011 : 15 digits, 13 segments.
1100 : 16 digits, 12 segments.
1101 : 17 digits, 11 segments.
Default setting
1110 : 18 digits, 10 segments.
1111 : 19 digits, 9 segments.
Fig. 11 Display Mode Setting Command Selection
This specification is subject to change without further notice.
11/04.2004 (V1.92)43 of 63
ePVP6300
VFD Controller
8.1.2 Data Setting Command [01]
This command sets data write and data read modes. The default settings at power “ON” are:
Address Increment Mode: “Address increment mode.”
Test Mode: “Normal operation mode.”
MSB b7
b6
b5
b4
b3
b2
b1
b0
0
1
0
0
0
0
0
0
LSB
Initial value
Not Relevant
00 : Write data to display memory.
01 : Write data to LED port.
10 : Read key port switch data
11 : Read switch status.
Sets address increment mode (display memory)
0 : Increments address after data has been written.
1 : Fixes address.
Fig. 12 Data Setting Command Selection
8.1.3 Display Control Command [10]
When power is turned “ON,” the following default conditions prevails:
4/64-pulse width is set and the display is turned off
Key & switch scanning is stopped
MSB
b7
b6
b5
b4
b3
b2
b1
b0
1
0
0
0
0
0
0
0
Turns on/off display.
0 : Display off (key & switch scan continues)
1 : Display on.
LSB
Initial value
Sets dimming
000 : Sets pulse width to 1/16
001 : Sets pulse width to 2/16
010 : Sets pulse width to 4/16
011 : Sets pulse width to 10/16
100 : Sets pulse width to 11/16
101 : Sets pulse width to 12/16
110 : Sets pulse width to 13/16
111 : Sets pulse width to 14/16
Fig. 13 Display Control Command Selection
44 of 63
11.04.2004 (V1.92)
This specification is subject to change without further notice.
ePVP6300
VFD Controller
8.1.4 Address Setting Command [11]
This command sets an address of the display memory. When power is turned “ON”, the
default address is set to 00H.
MSB b7
b6
b5
b4
b3
b2
b1
b0
1
1
0
0
0
0
0
0
LSB
Initial value
Address ( 00H - 38H )
Fig. 14 Address Setting Command Selection
If address 39H or higher is set, the data is ignored until a correct address is set.
This specification is subject to change without further notice.
11/04.2004 (V1.92)45 of 63
ePVP6300
VFD Controller
9
RC/Crystal OSC
9.1 General Description
This oscillator is designed for the ePVP6300 chip as clock source.
9.2 Features
RC oscillator: 32.768K Hz
Operating voltage: 2.2~5.5V.
o
o
Operating temperature: -20 C ~ 70 C
9.3 Block Diagram
VDD
XOUT
32768 KHz
OSCI
470 Kohm
27 pf
CRYXRC
27 pf
XOUT
OSCI
VSS
Fig. 15 RC/Crystal OSC Block Diagram
9.4 Pin Description
Name
I/O Type
Description
Remarks
XIN
I
Crystal or RC oscillator connection pin
XOUT
O
Crystal oscillator output pin
VDD
-
Power supply (+) pin
VSS
-
Power supply (–) pin
9.5 Electrical
(Condition : VDD = 4.5 to 5.5V, Ta = -20°C to 70°C )
Parameters
Sym.
Min.
Typ.
Max.
Unit
Starting oscillation voltage
Vs
-
2.0
3.2
V
Stable time
Ts
-
5
10
clk
Vdd = 5.0V
Current consumption
Idd
-
2
3
mA
Vdd = 5.0V
45
50
55
%
∂f/∂V
-
1
1.5
%
∆f
-
1
2
%
-
±6
±10
%
Duty cycle
Frequency/Voltage deviation
Frequency/Temperature deviation
Frequency vs. Process deviation
46 of 63
11.04.2004 (V1.92)
Conditions
This specification is subject to change without further notice.
ePVP6300
VFD Controller
10 Absolute Operation Maximum Ratings
Absolute maximum ratings (Ta = 25°C, Vss = 0 V)
Parameter
Symbol
Ratings
Unit
Logic supply voltage
VDD
-0.5 to + 6
V
Driver supply voltage
VEE
VDD +0.5 to VDD - 45
V
Logic input voltage
VI
-0.5 to VDD +0.5
V
VFD driver output voltage
VO
VEE -0.5 to VDD +0.5
V
LED driver output current
IO1
+25
mA
VFD driver output current
IO2
-40 (Grid)
mA
-15 (Segment)
Operating ambient temperature
Topt
-40 to +85
°C
Storage temperature
Tstg
-65 to +150
°C
11 DC Electrical Characteristic
(Ta = -20 to +70°C, VDD = 4.5 to 5.5V, Vss = 0V, VEE = VDD - 45V)
Parameter
Symbol
Min.
Typ.
Max.
Unit
Test conditions
GPIOB
Digital Input Voltage High
VIH
0.8VDD
-
VDD
V
Digital Input Voltage Low
IOL
VSS
-
0.2VDD
V
Schmitt Trigger Negative
Going Threshold Voltage
VT-
1.5
1.8
2.1
Schmitt Trigger Positive
Going Threshold Voltage
VT+
2.9
3.2
3.5
V
Input Leakage Current
IIN
-
-
±1
uA
GPIOB, VIN = VDD or VSS
Pull Up Resister
RPU
50
75
100
KΩ
GPIOC, GPO9, CLK, STB, DOUT,
DIN , CRYXRC and /RESET @
VDD=5V
Digital Output Voltage High
VOH
0.8VDD
-
VDD
V
Digital Output Voltage Low
VOL
VSS
-
0.2VDD
V
Digital Output High Current
IOH1
-2
-4
-5
mA
VOH=2.4V / DOUT, GPIOB, GPIOC
Digital Output Low Current
IOL1
2
4
5
mA
VOL=0.4V / DOUT, GPIOB, GPIOC
Digital Output High Current
IOH2
-15
-18
-25
mA
VOH=2.4V / GPIO9
Digital Output Low Current
IOL2
15
18
25
mA
VOL=0.4V / GPIO9
HV Output Current
IOH1
-6
-4
-3
mA
GPIOC, GPO9, CLK, STB, DIN and
/RESET,GPIOB
DOUT, GPIOB, GPIOC
Vo = VDD –2V,(VDD=5V)
SEG1/KS1 to SEG4/KS4,
P24/SG5/KS5 to P20/SG9/KS9.
Vo = VDD –2V,(VDD=5V)
HV Output Current
IOH2
-15
-13
-11
mA
GR1/P1 to GR8/P8,
GR9/P9/SG20 to GR16/P16/SG13,
This specification is subject to change without further notice.
11/04.2004 (V1.92)47 of 63
ePVP6300
VFD Controller
GR17/P17/SG12/KS12 to
GR19/P19/SG10/KS10
HV leakage current
HV Output pull-down
resistor
Power down current
IHVLEAK
5
8
10
uA
Vo = VDD –45V, driver off
RL
40
80
120
KΩ
Driver output (VEE= -25V)
-
1.5
µA
All input and I/O pin at VDD, output
pin floating, WDT disabled
30
60
µA
VDD =3V CLK=32.768KHz, all
analog circuits disabled, all input and
I/O pin at VDD, output pin floating
65
90
µA
VDD =5V CLK=32.768KHz, all
analog circuits disabled, all input and
I/O pin at VDD, output pin floating
30
45
µA
VDD =3V CLK=32.768KHz, all
analog circuits disabled, all input and
I/O pin at VDD, output pin floating
45
60
µA
VDD =5V CLK=32.768KHz, all
analog circuits disabled, all input and
I/O pin at VDD, output pin floating
1.3
2
mA
/RESET=High, CLK=3.582MHz, all
analog circuits disabled, output pin
floating
ISB1
(SLEEP mode)
Low clock current
(GREEN mode)
ISB2
Crystal oscillation
operating mode
Low clock current
(IDLE mode)
ISB3
Crystal oscillation operating
mode
Operating supply current
(Normal mode)
ICC
Crystal oscillation operating
mode
12 AC Electrical Characteristic
12.1 CPU Instruction Timing
(Ta = -20°C ~ 70°C, VDD=5V, VSS=0V)
Parameter
Symbol
Condition
Input CLK duty cycle
Dclk
Instruction cycle time
Tins
Device delay hold time
Tdrh
TCC input period
Ttcc
Note 1
Watchdog timer period
Twdt
Ta = 25°C
Min
Typ
Max
Unit
45
50
55
%
32.768kHz
60
us
3.582MHz
550
ns
16
ms
(Tins+20)/N
ns
16
ms
NOTE: N= selected prescaler ratio
48 of 63
11.04.2004 (V1.92)
This specification is subject to change without further notice.
ePVP6300
VFD Controller
12.2 AC Timing Characteristic (VDD=5V, Ta=+25°C)
Description
Symbol
Min
Tosc
400
Typ
Max
Unit
1500
ms
10
us
Oscillator timing characteristic
32.768kHz
OSC start up
3.579MHz PLL
5
SPI timing characteristic (CPU clock 3.58MHz and Fsco = 3.582Mhz /2)
/SS set-up time
Tcss
560
ns
/SS hold time
Tcsh
250
SCLK high time
Thi
250
ns
SCLK low time
Tlo
250
ns
SCLK rising time
Tr
15
30
ns
SCLK falling time
Tf
15
30
ns
SDI set-up time to the reading edge of SCLK
Tisu
25
ns
SDI hold time to the reading edge of SCLK
Tihd
25
ns
SDO disable time
Tdis
560
ns
12.3 ePVP6300 Operating Voltage VS main clock
(X Axis
Min VDD ; Y Axis
Main CLK)
MHz
17.91
14.33
10.74
7.16
3.58
1.79
2.2
3
3.3
4
5
5.5
V
Fig. 16 Operation Voltage XY Axis
This specification is subject to change without further notice.
11/04.2004 (V1.92)49 of 63
ePVP6300
VFD Controller
12.4 AC Timing Diagrams
Fig. 17a A/C Test Input/Output Waveform
Fig. 17b RESET Timing Diagram
ins
Fig. 17c TCC Input Timing Diagram
50 of 63
11.04.2004 (V1.92)
This specification is subject to change without further notice.
ePVP6300
VFD Controller
13 Key & Switch Scanning and Display Timing
The key & switch scanning and display timing diagram is given below. One cycle of key &
switch scanning consists of 2 frames. The data of the 12 x 4 matrix is stored in the RAM.
31.25 us
470 us
500 us
GRID 1
output
1/16
4/16
6/16
8/16
10/16
12/16
14/16
16/16
GRID 2
output
SEG 1
output
SEG 2
output
SEG 3
output
DISP ≒ 500us
Key & Switch scan data
GRID 1
GRID 1
output
GRID 2
output
GRID 3
output
GRID n
output
SEG1
output
SEG2
output
1/16
4/16
10/16
GRID 2
GRID 3
GRID n
DIG1
2/16
14/16
2/16
SEG3
output
SEGn
output
1 frame = TDISP * (n+1)
Fig. 18 Key & Switch Scanning and Display Timing Diagram
This specification is subject to change without further notice.
11/04.2004 (V1.92)51 of 63
ePVP6300
VFD Controller
14 Serial/Parallel Communication Format
14.1 Reception (Command/Data Write)
If data is contiguous
STB
DIN
CLK
b0
b1
b2
b6
b7
1
2
3
7
8
Fig. 19 Data Reception Timing Diagram
14.2 Transmission (Data Read)
ST
DI
b0 b1 b2 b3 b4 b5 b6 b7
b0 b1 b2 b3 b4 b5
DOU
CL
1
2
3
4
5
6
7
8
1
2
3
4
5
6
* tWAIT
Data reading
Data reading
Fig. 20 Data Transmission Timing Diagram
When data is read, a wait time “tWAIT” is necessary between the rising of the eighth clock that
has set the command and the falling of the first clock that has read the data.
NOTE: The wait time is adjustable according to different applications.
15 Switching Characteristic Waveform
f OSC
OSC
50 %
Fig. 21a Switching Characteristic Waveform
52 of 63
11.04.2004 (V1.92)
This specification is subject to change without further notice.
ePVP6300
VFD Controller
PWSTB
STB
PWCLK
PWCLK
t SETUP
t HOLD
t CLKSTB
CLK
Data in
t PZL
t PLZ
Data out
t TZH
tTHZ
90%
Sn/Gn
10%
Fig. 21b Switching Characteristic Timing Diagram
15.1 Switching Characteristics (Ta = - 20 to + 70°C,
VDD = 4.5 to 5.5V, VEE = VDD - 45V)
Parameter
Symbol
Min.
Typ.
Max.
Unit
Oscillation frequency
tOSC
-
32.768
-
KHz
Propagation delay
tPLZ
-
-
300
ns
CLK→DOUT
time
tPZL
-
-
100
ns
CL = 15pF, RL = 10KΩ
2
us
tTZH1
Test Conditions
SEG1/KS1 to
SEG4/KS4,
SG5/KS5 to SG9/KS9.
CL = 100Pf GR1 to GR8
VEE=-25V GR9/SG20 to
Rise time
tTZH2
0.5
µs
GR9/ SG13,
GR17/SG12/KS12 to
GR19/SG10/KS10
Fall time
tTHZ
100
110
120
µs
Data input clock freq.
fmax
-
1
1.25
MHz
15
pF
CL = 100pF, VEE=-25V,SEGn, GRIDn
Duty = 50 %, CLK
Input capacitance
CI
Clock pulse width
PWCLK
400
500
-
ns
Strobe pulse width
PWSTB
0.8
1
-
µs
Data setup time
tSETUP
100
-
-
ns
Data hold time
tHOLD
100
-
-
ns
tCLKSTB
0.8
1
-
µs
CLK↑→STB↑
tWAIT
-
-
-
µs
CLK↑→CLK↑*
Clock-Strobe time
Wait time
This specification is subject to change without further notice.
11/04.2004 (V1.92)53 of 63
ePVP6300
VFD Controller
16 Serial I/F Sets Display Data Sequence
16.1 Updating Display Memory by Incrementing Address
STB
CLK
Data input
Command1
Command2
Command3
Data 1
Data n
Command4
Fig. 22 incrementing Address Timing Diagram
Where:
Command 1
: Display mode
Command 2
: Sets data
Command 3
: Sets address
Data 1 to n
: Transfers display data (57 bytes max.)
Command 4
: Controls display
16.2 Updating Specific Address
STB
CLK
Data input Command2 Command3
Data
Command3
Data n
Fig. 23 Specific Address Timing Diagram
Where:
54 of 63
Command 2
: Sets data
Command 3
: Sets address
Data
: Display data
11.04.2004 (V1.92)
This specification is subject to change without further notice.
ePVP6300
VFD Controller
17 Application
17.1 VFD Controller for DVD Player
Front-end
Back-end
Bitstream
Servo
Controller
RF
SDRAM
MMU
VPU
4
X86/51
/RISC
APU
STB,DIN,DOUT,CLK
ePV6300
VFD
Controller
FLASH
IR
Fig. 23 Block Diagram for DVD Player Application
17.2 VFD Controller for Cascade Applaication
Din,Dout,CLK,STB
4
I/O
SPI
4
ePV6300
4
SPI
SPI
ePV300
ePV6300
DVD/DVR
27s~8s
28
28
Segment
1G~19G
Grid
Fig. 24 Block Diagram for Cascade Application
This specification is subject to change without further notice.
11/04.2004 (V1.92)55 of 63
ePVP6300
VFD Controller
17.3 APPLICATION CIRCUIT
R1 1k
DOUT
VDD
CRYSTAL1
32.768KHz
VDD
VDD
SPI connect
R1
470k
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
OSCI
PLLC
NC62
NC61
DIN
DOUT
CLK
STB
GPIOC3
GPIOC2
GPIOC1
GPIOC0
GPIO97
GPIO96
GPIO95
GPIO94
OSCO
CRYXRC
VSS
AVSS
GPIOB0
GPIOB1
GPIOB2
GPIOB3
GPIOB4
GPIOB5
GPIOB6
AVDD
VDD1
VDD2
GR1
GR2
ePV6300 LQFP
GPIO93
GPIO92
GPIO91
GPIO90
/RESET
VEE
SG1/KS1
SG2/KS2
SG3/KS3
SG4/KS4
SG5/KS5
SG6/KS6
SG7/KS7
SG8/KS8
SG9/KS9
GR19/SG10/KS10
/RESET
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
C3
0.1uf
/RESET
VEE
C2
0.1uf
VSS
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
VSS
0.1uf
C1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
GR3
GR4
GR5
GR6
GR7
GR8
GR9/SG20
GR10/SG19
GR11/SG18
GR12/SG17
GR13/SG16
GR14/SG15
GR15/SG14
GR16/SG13
GR17/SG12/KS12
GR18/SG11/KS11
AVDD
8P4R 100Ω
DIN
DOUT
STB
CLK
VSS
OSCI
VSS
VSS
AVSS
1
2
3
4
5
VSS
27pf
OSCO
VSS
C4
0.01uf
C5
27pf
4
3
2
1
VSS
C6
JP1
5
6
7
8
OSCO
OSCI
RN1
L1
VCC
AVDD
L2
C7
4.7uF/16V
VSS
C8
0.1uf
AVSS
INDUCTOR IRON (FB)
56 of 63
11.04.2004 (V1.92)
This specification is subject to change without further notice.
ePVP6300
VFD Controller
Package Information
(1) Package Type: Plastic LQFP-64
DETAIL " A "
D
D1
E
L
E1
L1
64
1
e
Symbal
A
A1
A2
D
D1
E
E1
e
c
c1
b
b1
L
L1
Min
0.05
1.35
8.90
6.90
8.90
6.900
θ
0°
0.09
0.09
0.13
0.13
0.45
Normal
1.40
9.00
7.00
9.00
7.00
0.4 BSC
0.18
0.16
0.60
1.00 REF.
3.5°
Max
1.60
0.15
1.45
9.10
7.10
9.10
7.100
0.20
0.16
0.23
0.19
0.75
7°
A2
A
b
A1
DETAIL " B "
c1
c
b
b1
This specification is subject to change without further notice.
11/04.2004 (V1.92)57 of 63