ePVP6300 VFD Controller Product Specification VERSION 1.92 ELAN MICROELECTRONICS CORP. Nov 2004 Trademark Acknowledgments IBM is a registered trademark and PS/2 is a trademark of IBM. Microsoft, MS, MS-DOS, and Windows are registered trademarks of Microsoft Corporation. © 2003 ELAN Microelectronics Corporation All Rights Reserved Printed in Taiwan, ROC, 05/252004 (Version 1.7) The contents of in this specification are subject to change without notice. ELAN Microelectronics assumes no responsibility for errors that may appear in this specification. ELAN Microelectronics makes no commitment to update, or to keep current, the information contained in this specification. The software (if any) described in this specification is furnished under a license or nondisclosure agreement, and may be used or copied only in accordance with the terms of the agreement. ELAN Microelectronics products are not intended for use in life support appliances, devices, or systems. Use of ELAN Microelectronics products in such application is not supported and is prohibited. NO PART OF THIS SPECIFICATION MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM OR BY ANY MEANS WITHOUT THE EXPRESS WRITTEN PERMISSION OF ELAN MICROELECTRONICS. Specification Revision History Version Revision Description Date 1.0 Initial version 2003/6/15 1.4 1. 2004/1/16 Revised Display control command 2. Revised external interrupt function (Port9,0 ~ Port9,4) 1.5 1. Revised error describe 2. Added SPI function timing diagram 2004/3/24 3. Revised display Segment Data Buffers stored registers 1.6 1. revise error describe 2004/4/26 2、Add bonding coordinates subsidiary 1.7 ADD Relevant Pins assigment ADD Package Information Revices DC Electrical Characteristic Revices cpu Feature Describe 2004/06/23 1.8 additional remark SPI function modify Package Information 2004/8/10 1.9 additional 2004/9/16 1.91 Revised CONT register describe remark Application notes 2004/9/24 Updata Pckage Information 1.92 IC name change 2004/11/4 Revised Operation Voltage VS PLL Operation frequency ii ePVP6300 Specification Contents Read Me First! ..............................................................................................................vi 1 General Description...............................................................................................1 2. Feature....................................................................................................................1 2.1 2.2 2.3 2.4 2.5 2.6 2.7 3 CPU ........................................................................................................................................ 1 SPI.......................................................................................................................................... 1 GPIO....................................................................................................................................... 2 ADC ........................................................................................................................................ 2 VFD ........................................................................................................................................ 2 POR........................................................................................................................................ 2 PACKAGE .............................................................................................................................. 2 Application .............................................................................................................2 VFD controller ..................................................................................................................................... 2 4 Pin Configuration...................................................................................................3 5 Functional Block Diagram.....................................................................................4 5.1 Ports Mapping for HV and GPIO ............................................................................................ 5 5.1.1 HV Port Mapping ................................................................................................5 5.1.2 GPIO Port Mapping ............................................................................................5 5.2 Relevant Pins for programming mode .............................................................5 6 Pin Descriptions ....................................................................................................6 7 Function Descriptions ...........................................................................................8 7.1 7.2 Operation Registers Configuration......................................................................................... 8 Operation Registers Description ............................................................................................ 9 7.2.1 R0 (Indirect Address Register) ................................................................................... 9 7.2.2 R1 (TCC) .................................................................................................................... 9 7.2.3 R2 (Program Counter) ................................................................................................ 9 7.2.4 R3 (Status, Page Selection) ..................................................................................... 10 7.2.5 R4 (RAM Selection For Common Registers R20 ~ R3F))........................................ 12 7.2.6 R5 (PORT5 Output Data, Program Page Selection) ................................................ 12 7.2.7 R6 (PORT6 Output Data, SPI Data Buffer) .............................................................. 13 7.2.8 R7 (PORT7 Output Data, ADC , Counter1 Data ...................................................... 14 7.2.9 R8 (PORT8 Output data, Data RAM address) , Counter2_LB data ......................... 16 7.2.10 R9 (PORT9 I/O Data, Data RAM Data Buffer), Counter2_HB Data ................................................................................................... 17 e PV6300 Specification iii 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10 8 I/O Port ................................................................................................................................. 32 RESET7.4 ..................................................................................................................... 32 Wake Up............................................................................................................................... 33 7.6.1 SLEEP Mode, RA(6 ;7) = 0 + "SLEP" Instruction..................................................... 33 7.6.2 IDLE mode, RA(6 ;7) = 1 + "SLEP" Instruction. ....................................................... 33 7.6.3 Wake-up from SLEEP Mode..................................................................................... 33 7.6.4 Wake-up from IDLE Mode ........................................................................................ 34 Interrupts .............................................................................................................................. 34 Instruction Set ...................................................................................................................... 34 Bonding Coordinates Subsidiary.......................................................................................... 37 7.10.1 Pad Configuration..................................................................................................... 37 7.10.2 Pad Name and Coordinates Table ........................................................................... 38 Segment Data Buffers .........................................................................................39 8.1 iv 7.2.11 RA (PLL, Main Clock Selection, Watchdog Timer), ADC Output Data Buffer , Counter3 Data................................................................. 18 7.2.12 RB (PORTB I/O Data Buffer, PORT9 Switches)....................................................... 20 7.2.13 RC (PORTC I/O Data , Counter5 Data).................................................................... 21 7.2.14 RD (Interrupt Flag,).................................................................................................. 21 7.2.15 RE (Interrupt Flags, Wake-up)................................................................................. 22 7.2.16 RF (Interrupt Flags) .................................................................................................. 22 7.2.17 R10~R3F (General Purpose Registers) ................................................................... 23 Special Purpose Registers ................................................................................................... 23 7.3.1 A (Accumulator) ........................................................................................................ 23 7.3.2 CONT (Control Register) .......................................................................................... 23 7.3.3 IOC 5 (PORT5 Switches) ......................................................................................... 25 7.3.4 IOC 8 ........................................................................................................................ 25 7.3.5 IOC9 (PORT9 I/O Control) ....................................................................................... 26 7.3.6 IOCA ......................................................................................................................... 27 7.3.7 IOCB (PORTB I/O Control, PORTB Switch) ............................................................ 27 7.3.8 IOCC (PORTC I/O Control) ...................................................................................... 28 7.3.9 IOCD (Interrupt Mask, Prescaler of CN3 ~ CN5) ..................................................... 29 7.3.10 IOCE (Interrupt Mask) .............................................................................................. 29 7.3.11 IOCF (Interrupt Mask ).............................................................................................. 29 Application notes ................................................................................................................... 32 Commands ........................................................................................................................... 41 8.1.1 Display Mode Setting Command [00]....................................................................... 42 8.1.2 Data Setting Command [01] ..................................................................................... 43 8.1.3 Display Control Command [10] ................................................................................ 44 8.1.4 Address Setting Command [11]................................................................................ 44 ePVP6300 Specification 9 RC/Crystal OSC....................................................................................................44 9.1 9.2 9.3 9.4 9.5 9.6 General Description.............................................................................................................. 44 Features ............................................................................................................................... 44 Block Diagram ...................................................................................................................... 44 Pin Description ..................................................................................................................... 44 Electrical ............................................................................................................................... 44 Macro Area ........................................................................................................................... 44 10 Absolute Operation Maximum Ratings ..............................................................45 11 DC Electrical Characteristic................................................................................45 12 AC Electrical Characteristic................................................................................46 12.1 CPU Instruction Timing (Ta = -20°C ~ 70°C, VDD=5V, VSS=0V) ....................................... 46 12.2 12.3 12.4 AC Timing Characteristic (VDD=5V, Ta=+25°C) .................................................................. 47 ePVP6300 Operating Voltage (X Axis Min VDD ; Y Axis Main CLK) ......................... 47 AC Timing Diagrams ........................................................................................................... 48 13 Key & Switch Scanning and Display Timing .....................................................49 14 Serial/Parallel Communication Format ..............................................................50 14.1 14.2 Reception (Command/Data Write) ....................................................................................... 50 Transmission (Data Read) ................................................................................................... 50 15 Switching Characteristic Waveform ...................................................................50 15.1 Switching Characteristics (Ta = - 20 to + 70°C, VDD = 4.5 to 5.5V, VEE = VDD - 45V) .... 51 16 Serial I/F Sets Display Data Sequence ...............................................................52 16.1 16.2 Updating Display Memory by Incrementing Address ........................................................... 52 Updating Specific Address ................................................................................................... 52 17 Application ...........................................................................................................53 17.1 17.2 17.3 VFD Controller for DVD Player ............................................................................................ 53 VFD Controller for Cascade Applaication............................................................................. 53 APPLICATION CIRCUIT ...................................................................................................... 54 18 Package Information ........................................................................................................ 55 e PV6300 Specification v Read Me First! Before using the chip, spare a few minutes to take a look at the following important notes. 1. Some bits in the registers are undefined. The values in these bits are unknown and should not be used. These bits are designated with a dash “–” symbol as its bit name in this specification. 2. The following table shows the definitions of the various register designations used to identify bit types, bit name, and bit number. Some definitions will appear quite frequently in the specification. RA PAGE0 7 6 5 RAB7 RAB6 R/W -0 R/W -0 Bit type read/write (default value=0) 4 3 2 BAB5 RAB4 - R-1 R/W -1 read/write (default value=1) RAB2 1 RAB1 RAB0 R R-0 R/W read only (w/o default value) 0 read/write (w/o default value) Bit name Bit number Register name and its page vi (undefined) not allowed to use read only (default value=1) read only (default value=0) ePVP6300 Specification ePVP6300 VFD Controller 1 General Description The ePVP6300 is an 8-bit RISC type vacuum fluorescent display (VFD) controller equipped with low power consumption and high speed CMOS technology. This integrated single chip features on_chip watchdog timer (WDT), one time programming ROM (OTP), data RAM, programmable real time clock/counter, internal interrupt, power down mode, built-in four-wire SPI, 10-bit A/D converter, IR detector, and high voltage output for VFD application. 2. Feature 2.1 CPU Clock source:Crystal Oscillator or RC Oscillator Crystal Oscillator (32.768KHz): with a external crystal RC Oscillator (32.768KHz): with a external 470Kohm resistor 16k x 13 on chip Program ROM. 256 x 8 on chip data RAM 144 x 8 general purpose registers 16 level stack for subroutine nesting 5 channel 8-bit counters: real time clock/counter (TCC) ,COUNTER1, COUNTER3, COUNTER4, COUNTER5 1 channel 16-bit counter: COUNTER2 On-chip watchdog timer (WDT) 99.9% single instruction cycle commands Four operation modes Mode CPU Status Main Clock 32.768kHz Clock Status Description Sleep mode Turn off Turn off Turn off Idle mode Turn off Turn off Turn on Green mode Turn on Turn off Turn on Normal mode Turn on Turn on Turn on RA(6) = 0 RA(7) = 0 + "SLEP" instruction RA(6) = 0 RA(7) = 1 +"SLEP" instruction. RA(6) = 0 RA(6) = 1 * Main clock can be programmed from 447.829k to 17.91MH by internal PLL * 8 main clocks: 447.829K, 895.658K, 1.791M , 3.582M , 7.165M , 10.747M , 14.331M and 17.91MHz 13 interrupt source, 5 external (IR , INT1~INT4 ), 8 internal (SPI, ADC, TCC, COUNTER1~5) 2.2 SPI Serial interface for Clock, Data Input, Data Output, and Strobe pins This specification is subject to change without further notice. 11/04.2004 (V1.92) 1 of 63 ePVP6300 VFD Controller 2.3 GPIO GPIO 9 Port(8 bit): general purpose input/output; LED output ;interrupt function GPIO B Port(7 bit): general purpose input/output for power down/MPEG power/Reset control GPIO C Port(8 bit): general purpose input/output for switch and key scanning (12x4 matrix) 2.4 ADC 6 channel 10-bit successive approximation A/D converter Internal (VDD) or external voltage reference 2.5 VFD Multiple display modes (9-segment & 19-digit to 20-segment & 8-digit) External resistor not necessary for driver outputs.(P-ch open-drain + pull-down resistor output) 2.6 POR 2.0V voltage detector for Power-on reset 2.7 PACKAGE 63-pin die or 64-pin LQFP 3 Application VFD controller 2 of 63 11.04.2004 (V1.92) This specification is subject to change without further notice. ePVP6300 VFD Controller GPIO94 GPIO95 GPIO96 GPIO97 GPIOC0 GPIOC1 GPIOC2 GPIOC3 GPIOC4/STB GPIOC5/CLK GPIOC6/DOUT GPIOC7/DIN NC NC PLLC Pin Configuration OSCI 4 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 OSCO 1 48 GPIO93 CRYXRC 2 47 GPIO92 VSS 3 46 GPIO91 AVSS 4 45 GPIO90 GPIOB0 5 44 /RESET GPIOB1 6 43 VEE GPIOB2 7 42 P54 (SG1/KS1) GPIOB3 8 ePVP6300 LQFP 64 41 P55 (SG2/KS2) GPIOB4 9 GPIOB5 10 (62-Pin Die or 64-Pin LQFP-64L) 39 P57 (SG4/KS4) 40 P56 (SG3/KS3) GPIOB6 11 38 P60 (SG5/KS5) AVDD 12 37 P61 (SG6/KS6) VDD 13 36 P62 (SG7/KS7) VDD 14 35 P63 (SG8/KS8) P87(GR1) 15 34 P64 (SG9/KS9) P86 (GR2 16 33 P65 (GR19/SG10/KS10) P66 (GR18/SG11/KS11) P67 (GR17/SG12/KS12) P70 (GR16/SG13) P71 (GR15/SG14) P72 (GR14/SG15) P73 (GR13/SG16) P74 (GR12/SG17) P75 (GR11/SG18) P76 (GR10/SG190) P77 (GR9/SG20) P80 (GR8) P81 (GR7) P82 (GR6) P83 (GR5) P84 (GR4) P85 (GR3) 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Fig. 1 Pin Assignment This specification is subject to change without further notice. 11/04.2004 (V1.92) 3 of 63 ePVP6300 VFD Controller 5 Functional Block Diagram DOUT DIN Serial Data Interface CLK STB MCU 8 OSCI 8 OSC OSCO OTP Segment Driver/ ADC GPIO9[0:7] GPIOB[0:6] GPIOC[0:7] 3 Grid Driver/ High Breakdown Driver Data RAM 8 5 Timer 7 GPIO 4 8 PLL IR P87 (GR1) … P80 (GR8) P77 (GR9/SG20) … P70 (GR16/SG13) P67 (GR17/SG12/KS12) … P65 (GR19/SG10/KS10) P64 (SG9/KS9) … P60 (SG5/KS5) P57 (SG4/KS4) … P54 (SG1/KS1) Real Time Clock CRYXRC /RESET PLLC VDDx3 VSS VEE AVDD AVSS Fig. 2a Block Diagram XIN XOUT PLLC WDT Timer Oscillator Timing Control R2 ROM STACK Prescaler R1(TCC) Interrupt Control Data RAM Instruction Register ALU R3 General RAM Control Sleep And Wakeup On I/O port R5 Instruction Decoder R4 ACC Data & Control Bus SPI IOC5 IOC6 IOC7 IOC8 IOC9 IOCB R5 R6 R7 R8 R9 RB RC Port5 (HV) Port6 (HV) Port7 (HV) Port8 (HV) Port9 PortB PortC P54~P57 P60~P67 P70~P77 P80~P87 P90~P97 PB0~PB6 IOCC PC0~PC3 Fig. 2b Block Diagram 4 of 63 11.04.2004 (V1.92) This specification is subject to change without further notice. ePVP6300 VFD Controller 5.1 Ports Mapping for HV and GPIO 5.1.1 HV Port Mapping Port HV Port HV Port HV Port HV - P60 P24/SG5/KS5 P70 GR16/P16/SG13 P80 GR8/P8 - P61 P23/SG6/KS6 P71 GR15/P15/SG14 P81 GR7/P7 - P62 P22/SG7/KS7 P72 GR14/P14/SG15 P82 GR6/P6 - P63 P21/SG8/KS8 P73 GR13/P13/SG16 P83 GR5/P5 P54 SG1/KS1 P64 P20/SG9/KS9 P74 GR12/P12/SG17 P84 GR4/P4 P55 SG2/KS2 P65 GR19/P19/SG10/KS10 P75 GR11/P11/SG18 P85 GR3/P3 P56 SG3/KS3 P66 GR18/P18/SG11/KS11 P76 GR10/P10/SG19 P86 GR2/P2 P57 SG4/KS4 P67 GR17/P17/SG12/KS12 P77 GR9/P9/SG20 P87 GR1/P1 5.1.2 GPIO Port Mapping Port GPIO Port P90 GPIO90/LED0/IR PB0 P91 GPIO Port GPIO Port GPIO GPIOB0/VREF PC0 GPIOC0/Key1 PC0 GPIOC0/Key1 GPIO91/LED1/INT1 PB1 GPIOB1/AD1 PC1 GPIOC1/Key2 PC1 GPIOC1/Key2 P92 GPIO92/LED2/INT2 PB2 GPIOB2/AD2 PC2 GPIOC2/Key3 PC2 GPIOC2/Key3 P93 GPIO93/LED3/INT3 PB3 GPIOB3/AD3 PC3 GPIOC3/Key4 PC3 GPIOC3/Key4 P94 GPIO94/LED4/INT4 PB4 GPIOB4/AD4 PC4 GPIOC4/STB PC4 GPIOC4/STB P95 GPIO95/LED5 PB5 GPIOB5/AD5 PC5 GPIOC5/CLK PC5 GPIOC5/CLK P96 GPIO96/LED6 PB6 GPIOB6/AD6 PC6 GPIOC6/DOUT PC6 GPIOC6/DOUT P97 GPIO97/LED7 - PC7 GPIOC7/ DIN PC0 GPIOC0/Key1 – 5.2 Relevant Pins for programming mode OTP PIN NAME VDD VPP DINCK ACLK PGMB OEB DATA GND MASK ROM PIN NAME AVDD /RESTER PC3 PC2 P92 P91 P90 GND This specification is subject to change without further notice. 11/04.2004 (V1.92) 5 of 63 ePVP6300 VFD Controller 6 Pin Descriptions Pin No. Pin Name 61,62 NC 13,14 VDD 57 STB/GPIOC4 I/O # Description Note 2 - I/O 2 Logic power supply 1 1. Serial Interface Strobe input pin. While the STB goes low, it will cause interrupt event. The data input after the STB has fallen is processed as a command. When this pin is “HIGH,” CLK is ignored. Schmitt Pull-up 2. Programmable Internal pull high 3. GPIOC4 function 58 CLK/GPIOC5 I/O 1 1. Clock input pin. This pin reads serial data at the rising edge and outputs data at the falling edge. Schmitt 2. Programmable Internal pull high Pull-up 3. GPIOC5 function 1. Data output pin (N-channel, Open-Drain) 59 DOUT/GPIOC6 I/O 1 2. This pin outputs serial data at the falling edge of the shift clock Schmitt (starting from lower bit). Pull-up 3. Programmable internal pull high 4. GPIOC6 function 60 DIN/GPIOC7 I/O 1 1. Data input pin. This pin inputs serial data at the rising edge of the shift clock (starting from lower bit.) Schmitt 2. Programmable Internal pull high Pull-up 3. GPIOC7 function General Purpose I/O pins: 53 – 54 GPIOC0 – GPIOC3 I/O 4 1. Key data input to these pins is latched at the end of display cycle. Schmitt 2. These pins constitute 4-bit general-purpose input/output port. Pull-up 3. Programmable Internal Pull-High 4. Wake-up Function 15-22 (B Cell) 23-30 (B Cell) 31-33 (B Cell) 34-38 (A Cell) 6 of 63 GR1 – GR8 O 8 O 8 GR16/ SG13 SG5/KS5 11.04.2004 (V1.92) 2. High breakdown output 1. High voltage grid output O 3 GR19 /SG10/KS10 SG9/KS9 – ∼ 3. High voltage segment output GR17/SG12/KS12 – 2. High breakdown output 1. High voltage grid output GR9/P9/SG20 – 1. High voltage grid output 2. High breakdown output 3. High voltage segment output 4. Matrix key scan output 1. High breakdown output O 5 2. High voltage segment output 3. Matrix key scan output This specification is subject to change without further notice. ePVP6300 VFD Controller 39-42 (C Cell) 1. High voltage segment output SG4/KS4 – SG1/KS1 I/O 4 2. Matrix key scan output 3. General Purpose Input pins: p54~p57 1. General Purpose I/O pins 45 – 52 GPIO90/LED0 – GPIO97/LED7 2. LED output pin (20mA) I/O 8 Schmitt 3. IR Detector Pull-up 4. Interrupt Function 5. Programmable Internal Pull-High 12 AVDD I 1 Analog Power 63 PLLC I 1 Phase Lock Loop Capacitor (connect a Capacitor 0.01 to 0.047u to the Ground). 4 AVSS I 1 Analog Ground 64 OSCI I 1 Crystal Oscillator input pin (32, 768KHz) or resister input pin for RC Oscillator 1 OSCO O 1 Crystal Oscillator output pin (32, 768KHz) 3 VSS - 1 Connect this pin to GND of the system General Purpose I/O pins: 1. Power Module CTRL 5-11 GPIOB0 – GPIOB6 I/O 7 2. MPEG Power CTRL 3. Reset CTRL 4. ADC/VREF 5. ADC/AD1~AD6 1. Normal (Open)→ select Crystal Oscillator 2 CRYXRC I 1 44 /RESET I 1 Low active RESET signal input 43 VEE - 1 Pull-down level (VDD-(-40V)max) 2. Connect to GND → select RC Oscillator This specification is subject to change without further notice. Pull-up Schmitt 11/04.2004 (V1.92) 7 of 63 ePVP6300 VFD Controller 7 Function Descriptions 7.1 Operation Registers Configuration R PAGE Registers Addr R PAGE0 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F Indirect addressing TCC PC Page, Status RAM bank, RSR Port5 Output data Port6 Output data Port7 Output data Port8 Output data Port9 I/O data PLL, Main clock,WDTE PortB I/O data PortC I/O data Interrupt flag Interrupt flag, Wake-up control Interrupt flag 10 : 1F 16 bytes Common registers 20 : 3F Bank0 ~ Bank3 Common registers (32x8 for each bank) 00 01 02 03 04 05 06 07 Port9 I/O control 0A 8 of 63 Program ROM page ADC control Data RAM address Data RAM data buffer ADC output data buffer Port9 pull high PortC pull high SPI data buffer Counter1 data Counter2 LB data Counter2 HB data Counter3 data Counter4 data Counter5 data Port5 switch 08 0B 0C 0D 0E 0F R PAGE2 IOC PAGE Registers IOC PAGE0 IOC PAGE1 Addr 09 R PAGE1 PortB I/O control PortC I/O control Interrupt mask Interrupt mask Interrupt mask 11.04.2004 (V1.92) Clock source (CN2,CN1) Prescaler (CN2,CN1) Clock source (CN4,CN3) Prescaler (CN4,CN3) Clock source (CN5) Prescaler (CN5) PortB switch PortC switch This specification is subject to change without further notice. ePVP6300 VFD Controller 7.2 Operation Registers Description 7.2.1 R0 (Indirect Address Register) R0 is not a physically implemented register. It is used as indirect address pointer. Any instruction using R0 as register actually accesses data pointed by the RAM Select Register (R4). Example: Mov A, @0x20 Mov 0x04, A Mov A, @0xAA Mov 0x00, A ;store an address at R4 for indirect address ;write data 0xAA to R20 at Bank0 through R0 7.2.2 R1 (TCC) TCC data buffer. Increased by 16.384KHz or by the instruction cycle clock (controlled by CONT register). Written and read by the program as any other register. 7.2.3 R2 (Program Counter) The structure is depicted in Fig.3 below. Generates 16k × 13 external ROM addresses to the relative programming instruction codes. "JMP" instruction allows the direct loading of the low 10 program counter bits. "CALL" instruction loads the low 10 bits of the PC, PC+1, and then push into the stack. "RET'' ("RETL k," "RETI") instruction loads the program counter with the contents at the top of stack. "MOV R2, A" allows the loading of an address from the A register to the PC, and the ninth and tenth bits are cleared to "0''. "ADD R2, A" allows a relative address to be added to the current PC, and contents of the ninth and tenth bits are cleared to "0''. R5(PAGE) PC CALL and INTERRUPT A13 A12 A11 A10 A9 A8 0000 0001 0010 A7~A0 PAGE0 0000~03FF PAGE1 0400~07FF PAGE2 0800~0BFF 1110 PAGE14 3800~3BFF 1111 PAGE15 3C00~3FFF RET RETL RETI INTERRUPT STACK1 STACK2 STACK3 STACK4 STACK5 STACK6 STACK7 STACK8 STACK9 STACK10 STACK11 STACK12 STACK13 STACK14 STACK15 STACK16 ACC,R3,R5(PAGE) restore store 3 bytes register Fig. 3 Program Counter Organization This specification is subject to change without further notice. 11/04.2004 (V1.92) 9 of 63 ePVP6300 VFD Controller "TBL" allows a relative address to be added to the current PC, and the contents of the ninth and tenth bits do not change. The most significant bit (A10~A13) will be loaded with the contents of bit PS0~PS3 in the status register (R5 PAGE 1) upon execution of a "JMP,” "CALL,” "ADD R2, A.” or "MOV R2, A'' instruction. If an interrupt is triggered, PROGRAM ROM will jump to address 0x08 at Page0. The CPU will automatically store ACC, R3 status, and R5 PAGE 1, and they will be restored after execution of instruction RETI. 7.2.4 R3 (Status, Page Selection) (Status Flag, Page Selection Bits) Bit 7 RPAGE1 R/W-0 Bit 6 Bit 5 RPAGE0 IOCPAGE R/W-0 R/W-0 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 T P Z DC C R R R/W R/W R/W Bit 0 (C) : Carry flag The carry flag is affected by following operation : a. Addition : CF as a carry out indicator, when the addition operation has a carry-out, CF will be "1", in another word, if the operation has no carry-out, CF will be "0". b. Subtraction : CF as a borrow-in indicator, when the subtraction operation must has a borrow-in, the CF will be "0", in another word, if no borrow-in, CF will be "1". c. Comparision : CF is as a borrow-in indicator for Comparision operation as the same as subtraction operation. d. Rotation : CF shifts into the empty bit of accumulator for the rotation and holds the shift out data after rotation. Bit 1 (DC) : Auxiliary carry flag Bit 2 (Z) : Zero flag ZF is affected by the result of ALU, if the ALU operation generate a "0" result, the ZF will be "1", otherwise, the ZF will be "0". 10 of 63 Bit 3 (P) : Power down bit Set to 1 during power on or by a "WDTC" command and reset to 0 by a "SLEP" command. Bit 4 (T) : Time-out bit Set to 1 by the "SLEP" and "WDTC" command, or during power up and reset to 0 by WDT timeout. 11.04.2004 (V1.92) This specification is subject to change without further notice. ePVP6300 VFD Controller Event T P WDT wake up from sleep mode 0 0 WDT time out (not sleep mode) 0 1 /RESET wake up from sleep 1 0 Power up 1 1 Low pulse on /RESET x X Remarks x : don't care Bit 5 (IOCPAGE) : Change IOC5 ~ IOCE to another page 0/1 IOC page0 / IOC page1 Bit 6 (RPAGE0 ~ RPAGE1) : Change R5 ~ RC to another page (see Section 7.1 Operation Registers Configuration for details.) (RPAGE1, RPAGE0) R page # selected (0,0) R page 0 (0,1) R page 1 (1,x) R page 2 This specification is subject to change without further notice. 11/04.2004 (V1.92)11 of 63 ePVP6300 VFD Controller 7.2.5 R4 (RAM Selection For Common Registers R20 ~ R3F)) (RAM Selection Register) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 RB1 RB0 RSR5 RSR4 RSR3 RSR2 RSR1 RSR0 R/W-0 R/W-0 R/W R/W R/W R/W R/W R/W Bit 0 ~ Bit 5 (RSR0 ~ RSR5) : Indirect address for common Registers R20 ~ R3F. RSR bits are used to select up to 32 registers (R20 to R3F) in the indirect address mode. Bit 6 ~ Bit 7 (RB0 ~ RB1) : Bank selection bits for common Registers R20 ~ R3F. These selection bits are used to determine which bank is activated among the 4 banks for 32 register (R20 to R3F). Refer to Section 7.1 Operation Registers Configuration for details. 7.2.6 R5 (PORT5 Output Data, Program Page Selection) a) PAGE 0 (PORT5 Output Data Register for HV or General Purpose Input pins: p54~p57) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 P57 P56 P55 P54 - - - - W-0 W-0 W-0 W-0 - - - - b) PAGE 1 (Program ROM Page Register) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 AD9 AD8 - - PS3 PS2 PS1 PS0 R R - - R/W-0 R/W-0 R/W-0 R/W-0 Bit 0 ~ Bit 3 (PS0 ~ PS3) : Program page selection bits PS3 PS2 PS1 PS0 Program Memory Page (Address) 0 0 0 0 Page 0 0 0 0 1 Page 1 0 0 1 0 Page 2 0 0 1 1 Page 3 : : : : : : : : : : 1 1 1 0 Page 14 1 1 1 1 Page 15 PAGE instruction is used to select the program page to be accessed. The selected program page is maintained by Elan compiler. PAGE instruction will change your program by inserting the instruction within program. 12 of 63 11.04.2004 (V1.92) This specification is subject to change without further notice. ePVP6300 VFD Controller 7.2.7 R6 (PORT6 Output Data, SPI Data Buffer) a) PAGE 0 (PORT6 Output Data Register for HV) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 P67 P66 P65 P64 P63 P62 P61 P60 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 b) PAGE 2 (SPI Data Buffer) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 SPIB7 SPIB6 SPIB5 SPIB4 SPIB3 SPIB2 SPIB1 SPIB0 R/W R/W R/W R/W R/W R/W R/W R/W Bit 0 ~ Bit 7 (SPIB0 ~ SPIB7) : SPI data buffer If you write data to this register, the data will write to SPIW register. If you read this data, it will read the data from SPIR register. Please refer to the following figure. If you read this data, it will read the data from SPIR register. Please refer to the following figure. RBF_INT Read/Write STB CLK STB_INT Shift Register DIN DOUT Fig. 4a SPI Block Diagram STB When Write the data to SPI buffer, the hardware knows for serial output mode The first byte data by R/W buffer sends to the shift register The first byte data by shift register transmission finish & Second byte data by R/W buffer sends to the shift register DIN DOUT SCK STB-INT RBF-INT SOUT The second byte data writer to the SPI buffer SPI function start The first byte data writer to the SPI buffe The third byte data writer to the SPI buffer SPI data transmission application note:: The following conditions have to conform RBF interrupt flag must =1 RBF interrupt mask must =1 STB must = low CLK must = Hi Fig. 4b SPI Timing Diagram This specification is subject to change without further notice. 11/04.2004 (V1.92)13 of 63 ePVP6300 VFD Controller 7.2.8 R7 (PORT7 Output Data, ADC , Counter1 Data a) PAGE 0 (PORT7 Output Data Register for HV) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 P77 P76 P75 P74 P73 P72 P71 P70 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 b) PAGE 1 (ADC Control Bit) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 IN2 IN1 IN0 ADCLK1 ADCLK0 ADPWR ADRES ADST R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 Bit 0(ADST) : AD converter start to sample By setting to “1,” the AD will start to sample the data. This bit is automatically cleared by hardware after a sampling. Bit 1(ADRES) : Resolution selection for ADC 0 ADC is an 8-bit resolution When 8-bit resolution is selected, the most significant (MSB) 8-bit data output of the internal 10-bit ADC will be mapped to RA PAGE1. Therefore, R5 PAGE1 Bit 6 ~ 7 will be of no use. 1 ADC is 10-bit resolution When 10-bit resolution is selected, 10-bit data output of the internal 10-bit ADC will be exactly mapped to RA PAGE1 and R5 PAGE1 Bit 6 ~7. Bit 2(ADPWR) : AD converter power control, 1/0 enable/disable Bit 3 ~ Bit 4 (ADCLK0 ~ ADCLK1) : AD circuit ‘s sampling clock source. For PLL Clock = 895.658kHz ~ 17.9MHz (CLK2~CLK0 = 001 ~ 110) ADCLK1 ADCLK0 Sampling Rate Operation Voltage 0 0 74.6K >=3.5V 0 1 37.4K >=3.0V 1 0 18.7K >=2.5V 1 1 9.3K >=2.5V For PLL Clock = 447.829kHz (CLK2~CLK0 = 000) 14 of 63 11.04.2004 (V1.92) ADCLK1 ADCLK0 Sampling rate Operation voltage 0 0 37.4K >=3.0V 0 1 18.7K >=3.0V 1 0 9.3K >=2.5V 1 1 4.7K >=2.5V This specification is subject to change without further notice. ePVP6300 VFD Controller This is a CMOS multi-channel 10-bit successive approximation A/D converter. Features: 74.6kHz maximum conversion speed at 5V Adjusted full scale input External reference voltage input or internal (VDD) reference voltage 6 analog inputs multiplexed into one A/D converter Power down mode for power saving A/D conversion complete interrupt Interrupt register, A/D control and status register, and A/D data register PLL fpll Programmable divider 1/Mx fad c Divider Nx fs 10-bit ADC ADC output ADCLK1~ADCLK0 ENPLL CLK2 ~ CLK0 Fig. 5 ADC Voltage Control Logic fpll Mx fadcon = fadc / 12 fs Nx = 1 Nx = 2 Nx = 4 Nx = 8 14.331MHz 16 895.658kHz 74.638kHz 37.391kHz 18.659khz 9.329kHz 10.747MHz 12 895.658kHz 74.638kHz 37.391kHz 18.659khz 9.329kHz 7.165MHz 8 895.658kHz 74.638kHz 37.391kHz 18.659khz 9.329kHz 3.582MHz 4 895.658kHz 74.638kHz 37.391kHz 18.659khz 9.329kHz 1.791MHz 2 895.658kHz 74.638kHz 37.391kHz 18.659khz 9.329kHz 895.658kHz 1 895.658kHz 74.638kHz 37.391kHz 18.659khz 9.329kHz 447.829kHz 1 447.829kHz 37.391kHz 18.659khz 9.329kHz 4.665kHz Bit 5 ~ Bit 7 (IN0 ~ IN2) : Input channel selection of AD converter These two bits can choose one of the three AD inputs. IN2 IN1 IN0 Input 0 0 0 AD1 0 0 1 AD2 0 1 0 AD3 0 1 1 AD4 1 0 0 AD5 1 0 1 AD6 This specification is subject to change without further notice. 11/04.2004 (V1.92)15 of 63 ePVP6300 VFD Controller c) PAGE 2 (Counter 1 Data Register) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 CN17 CN16 CN15 CN14 CN13 CN12 CN11 CN10 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 Bit 0 ~ Bit 7 (CN10 ~ CN17) : Counter1 buffer that you can read and write. Counter1 is an 8-bit up-counter with 8-bit prescaler that allows you to use R7 PAGE2 to preset and read the counter (write preset). After an interruption, it will reload the preset value. 7.2.9 R8 (PORT8 Output data, Data RAM address) , Counter2_LB data a) PAGE 0 (PORT8 Output Data Register for HV) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 P87 P86 P85 P84 P83 P82 P81 P80 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 b) PAGE 1 (Data RAM Address Register) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 RAM_A7 RAM_A6 RAM_A5 RAM_A4 RAM_A3 RAM_A2 RAM_A1 RAM_A0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 Bit 0 ~ Bit 7 (RAM_A0 ~ RAM_A7) : data RAM address c) PAGE 2 (Counter2 Low Byte Data Register) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 CN27 CN26 CN25 CN24 CN23 CN22 CN21 CN20 R/W R/W R/W R/W R/W R/W R/W R/W Bit 0 ~ Bit 7 (CN20 ~ CN27) : Counter2_LB's buffer that you can read and write. Counter2 is a 16-bit up-counter with 8-bit prescaler that allows you to use R8 PAGE2 to preset and read the counter.(write preset). After an interruption, it will reload the preset value. 16 of 63 11.04.2004 (V1.92) This specification is subject to change without further notice. ePVP6300 VFD Controller 7.2.10 R9 (PORT9 I/O Data, Data RAM Data Buffer) ,Counter2_HB Data a) PAGE 0 (PORT9 I/O Data Register) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 P97 P96 P95 P94 P93 P92 P91 P90 R/W R/W R/W R/W R/W R/W R/W R/W Bit 0 ~ Bit 7 (P90 ~ P97) : 8-bit PORT9(0~7) I/O data register You can use IOC register to define input or output each bit, and to define the pull high condition. Bit 0: 1. P90 : can be defined as Input/Output 2. LED0 : can be defined as Output 3. IR Input : can be defined as Input and IR is enabled (when IOCF Bit7 is set to 1) Bit 1 ~ Bit4: 1. P91~P94 : can be defined as Input/Output 2. LED1~LED4 : can be defined as Output 3. INT1~INT4 : can be defined as Input Bit 5 ~ Bit7: 1. P95~P97 : can be defined as Input/Output 2. LED5~LED7 : can be defined as Output b) PAGE 1 (Data RAM Data Register) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 RAM_D7 RAM_D6 RAM_D5 RAM_D4 RAM_D3 RAM_D2 RAM_D1 RAM_D0 R/W R/W R/W R/W R/W R/W R/W R/W Bit 0 ~ Bit 7 (RAM_D0 ~ RAM_D7) : Data RAM’s data c) PAGE 2 (Counter2 High Byte Data Register) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 CN215 CN214 CN213 CN212 CN211 CN210 CN29 CN28 R/W R/W R/W R/W R/W R/W R/W R/W Bit 0 ~ Bit 7 (CN28 ~ CN215) : Counter2_HB's buffer that you can read and write. Counter2 is a 16-bit up-counter with 8-bit prescaler that allows you to use R9 PAGE2 to preset and read the counter (write preset). After an interruption, it will reload the preset value. This specification is subject to change without further notice. 11/04.2004 (V1.92)17 of 63 ePVP6300 VFD Controller 7.2.11 RA (PLL, Main Clock Selection, Watchdog Timer), ADC Output Data Buffer , Counter3 Data a) PAGE 0 (PLL Enable Bit, Main Clock Selection Bits, Watchdog Timer Enable Bit) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 IDLE PLLEN CLK2 CLK1 CLK0 - - WDTEN R/W-0 R/W-0 R/W-0 R/W-1 R/W-1 R/W-0 Bit 0 (WDTEN) : Watch dog control bit You can use WDTC instruction to clear watch dog counter. The counter clock source is 32768/2 Hz. If the prescaler is assigned to TCC, Watch dog will time out by (1/32768 )*2 * 256 = 15.616mS. If the prescaler is assigned to WDT, the time out interval will be longer depending on the prescaler. Ratio. 0/1 disable/enable Bit 1~Bit 2 : Unused Bit 3 ~ Bit 5 (CLK0 ~ CLK2) : MAIN clock selection bits You can select different frequencies for the main clock with CLK1 and CLK2. All the available clock selections are listed below. PLLEN CLK2 CLK1 CLK0 Sub clock MAIN clock 1 0 0 0 32.768kHz 447.829kHz 447.829kHz (Normal mode) 1 0 0 1 32.768kHz 895.658kHz 895.658kHz (Normal mode) 1 0 1 0 32.768kHz 1.791MHz 1.791MHz (Normal mode) 1 0 1 1 32.768kHz 3.582MHz 3.582MHz (Normal mode) 1 1 0 0 32.768kHz 7.165MHz 7.165MHz (Normal mode) 1 1 0 1 32.768kHz 10.747MHz 10.747MHz (Normal mode) 1 1 1 0 32.768kHz 14.331MHz 14.331MHz (Normal mode) 1 1 1 1 0 Don’t care Don’t care Don’t care Bit 6 (PLLEN) : CPU clock 32.768kHz 17.91MHz 17.91MHz (Normal mode) 32.768kHz Don’t care 32.768kHz (Green mode) PLL's power control bit which is CPU mode control register 0/1 disable PLL/enable PLL If PLL is enabled, CPU will operate at normal mode (high frequency). Otherwise, it will run at green mode (low frequency, 32768 Hz). 447.8293kHz ~17.9132M Hz CLK2 ~ CLK0 PLL circuit 1 switch ENPLL System clock 0 Sub-clock 32.768kHz Fig. 6 The Relation Between 32.768kHz and PLL 18 of 63 11.04.2004 (V1.92) This specification is subject to change without further notice. ePVP6300 VFD Controller Bit 7 (IDLE) : SLEEP or IDLE mode control as set by SLEP instruction. 0/1 SLEEP mode/IDLE mode. This bit allows SLEP instruction to decide which power saving mode to execute. The status after wake-up and the wake-up source list is as the shown below. Wakeup Signal SLEEP Mode IDLE Mode RA(7,6)=(0,0) + SLEP RA(7,6)=(1,0) + SLEP TCC time out IOCF Bit0=1 No function 1) Wake-up 2) Jump to next instruction after SLEP COUNTER1 time out IOCF Bit1=1 No function 1) Wake-up 2) Jump to next instruction after SLEP COUNTER2 time out IOCF Bit2=1 No function 1) Wake-up 2) Jump to next instruction after SLEP COUNTER3 time out IOCD Bit0=1 No function 1) Wake-up 2) Jump to next instruction after SLEP COUNTER4 time out IOCD Bit1=1 No function 1) Wake-up 2) Jump to next instruction after SLEP COUNTER5 time out IOCD Bit2=1 No function 1) Wake-up 2) Jump to next instruction after SLEP PORT90(IR function) IOCF Bit3=1 Reset and jump 1) Wake-up to Address 0 2) Jump to next instruction after SLEP WDT time out Reset and jump 1) Wake-up to Address 0 2) Next instruction PORTC(0~3)(Key1~Key4) Reset and Jump 1) Wake-up 2) Jump to next instruction after SLEP RE PAGE0 Bit3 or Bit4 or Bit5 or Bit6 = 1 to Address 0 PORT9(1~4) IOCF Bit4 or Bit5 or Bit6 =1 or Bit7=1 Reset and Jump 1) Wake-up to Address 0 2) Jump to next instruction after SLEP NOTES: 1 PORT90 wakeup function is controlled by IOCF Bit 3. It is a falling edge or rising edge trigger (controlled by CONT register Bit7). 2. PORT91 wakeup function is controlled by IOCF Bit 4. It is a falling edge trigger. 3. PORT92 ~ PORT94 wakeup functions are controlled by IOCF. They are falling edge triggers. 4. PORTC0 ~ PORTC3 wakeup functions are controlled by RE PAGE0 Bit 0 ~ Bit 3. They are falling edge triggers. b) PAGE 1 (ADC Output Data Register) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0 R R R R R R R R Bit 0 ~ Bit 7 (AD01~ AD7) : These 8 bits are full ADC data buffer This specification is subject to change without further notice. 11/04.2004 (V1.92)19 of 63 ePVP6300 VFD Controller c) PAGE 2 (Counter3 Data Register) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 CN37 CN36 CN35 CN34 CN33 CN32 CN31 CN30 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 Bit 0 ~ Bit 7 (CN30 ~ CN37) : Counter3's buffer that you can read and write. Counter3 is an 8-bit up-counter with 8-bit prescaler that allows you to use RA PAGE2 to preset and read the counter (write preset). After an interruption, it will reload the preset value. 7.2.12 RB (PORTB I/O Data Buffer, PORT9 Switches) a) PAGE 0 (PORTB I/O Data Register) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 - PB6 PB5 PB4 PB3 PB2 PB1 PB0 R-0 R/W R/W R/W R/W R/W R/W R/W Bit 0 ~ Bit 6 (PB0 ~ PB6) : 7-bit PORTB (0~6) I/O data register You can use IOC register to define each bit as input or output. When the PORTB is switched to ADC– Bit 0: is defined as VREF Bit 1 ~ Bit 6: is defined as AD1~AD6 b) PAGE 1 (PORT9, Pull High) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 PH97 PH96 PH95 PH94 PH93 PH92 PH91 PH90 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 Bit 0 ~ Bit 7 (PH90 ~ PH97) : PORT9 Bit0 ~ Bit7 pull high control register 0 disable pull high function. 1 enable pull high function c) PAGE 2 (Counter4 Data Register) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 CN47 CN46 CN45 CN44 CN43 CN42 CN41 CN40 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 Bit 0 ~ Bit 7 (CN40 ~ CN47) : Counter4 buffer that you can read and write. Counter 4 is an 8-bit up-counter with 8-bit prescaler that allows you to use RB PAGE2 to preset and read the counter.(write preset). After an interruption, it will reload the preset value. 20 of 63 11.04.2004 (V1.92) This specification is subject to change without further notice. ePVP6300 VFD Controller 7.2.13 RC (PORTC I/O Data , Counter5 Data) a) PAGE 0 I/O Data Buffer/Serial Signal Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 PC7 PC6 PC5 PC4 PC3 PC2 PC1 PC0 R/W R/W R/W R/W R/W R/W R/W R/W Bit 0 ~ Bit 3 :1. PC0 ~ PC3 are defined as Input/Output 2. KEY1 ~ KEY4 are defined as Keyscan Input Bit 4 :1. PC4 is defined as Input/Output 2. STB = Serial strobe signal Bit 5 :1. PC5 is defined as Input/Output 2. CLK = Serial clock signal Bit 6 :1. PC6 is defined as Input/Output 2. SDO = Serial data out Bit 7 :1. PC7 is defined as Input/Output 2. SDI = Serial data in b) PAGE 1 (PORTC, Pull High) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 PHC7 PHC6 PHC5 PHC4 PHC3 PHC2 PHC1 PHC0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 Bit 0 ~ Bit 7 (PHC0 ~ PHC7) : PORTC Bit0 ~ Bit7 pull high control register 0 disable pull high function. 1 enable pull high function d) PAGE 2 (Counter5 Data Register) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 CN57 CN56 CN55 CN54 CN53 CN52 CN51 CN50 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 Bit 0 ~ Bit 7 (CN50 ~ CN57) : Counter5 buffer that you can read and write. Counter5 is an 8-bit up-counter with 8-bit prescaler that allows you to use RC PAGE2 to preset and read the counter (write preset). After an interruption, it will reload the preset value. 7.2.14 RD (Interrupt Flag,) a) PAGE 0 (Interrupt Flags Register) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 - - - - - CNT5 CNT4 CNT3 - - - - - R/W-0 R/W-0 R/W-0 NOTE: "1" means interrupt request, "0" means non-interrupt Bit 0 (CNT3) : Counter3 timer overflow interrupt flag. Set when counter3 timer overflows. Bit 1 (CNT4) : Counter4 timer overflow interrupt flag. Set when counter4 timer overflows. Bit 2 (CNT5) : Counter5 timer overflow interrupt flag. Set when counter5 timer overflows. This specification is subject to change without further notice. 11/04.2004 (V1.92)21 of 63 ePVP6300 VFD Controller 7.2.15 RE (Interrupt Flags, Wake-up) a) PAGE 0 (Interrupt Flags, Wake-up Control Bits) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 - RBF ADI STB /WUPC3 /WUPC2 /WUPC1 /WUPC0 - R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 Bit 0 (/WUPC0) : PORTC0 wake-up control, 0/1 disable/enable PC0 pin wake-up function Bit 1 (/WUPC1) : PORTC1 wake-up control, 0/1 disable/enable PC1 pin wake-up function Bit 2 (/WUPC2) : PORTC2 wake-up control, 0/1 disable/enable PC2 pin wake-up function Bit 3 (/WUPC3) : PORTC3 wake-up control, 0/1 disable/enable PC3 pin wake-up function Bit 4(STB) : SPI data transfer start interrupt. While the STB signal goes low, it will issue this interrupt. Bit 5 (ADI) : ADC interrupt flag after sampling Bit 6 (RBF) : SPI data transfer complete interrupt If the SPI RBF signal contains a rising edge signal, CPU will set this bit (RBF set to "1" after data are completely transferred). Bit 7(-) : Not used 7.2.16 RF (Interrupt Flags) a) PAGE 0 (Interrupt Status Register) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 INT4 INT3 INT2 INT1 IR CNT2 CNT1 TCIF R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 NOTE: "1" means interrupt request, "0" means non-interrupt Bit 0 (TCIF) : TCC timer overflow interrupt flag, Set when TCC timer overflows. Bit 1 (CNT1) : Counter1 timer overflow interrupt flag. Set when Counter1 timer overflows. Bit 2 (CNT2) : Counter2 timer overflow interrupt flag. Set when Counter2 timer overflows. Bit 3 (IR) : External INT pin interrupt flag. If PORT90 contains a falling /rising edge (controlled by CONT register) trigger signal, CPU will set this bit. Bit 4 (INT1) : External INT1 pin interrupt flag, If PORT91 contains a falling edge trigger signal, CPU will set this bit. Bit 5(INT2) : External INT2 pin interrupt flag. If PORT92 has a falling edge trigger signal, CPU will set this bit. Bit 6 : (INT3) : External INT3 pin interrupt flag. If PORT93 has a falling edge trigger signal, CPU will set this bit. Bit 7(INT4) : External IR interrupt flag. If PORT94 has a falling edge trigger signal, CPU will set this bit. 22 of 63 11.04.2004 (V1.92) This specification is subject to change without further notice. ePVP6300 VFD Controller Trigger edge is as shown below: Signal Trigger TCC Time out COUNTER1 Time out COUNTER2 Time out COUNTER3 Time out COUNTER4 Time out COUNTER5 Time out IR Falling Rising edge INT1 Falling edge INT2 Falling edge INT3 Falling edge INT4 Falling edge 7.2.17 R10~R3F (General Purpose Registers) R10 ~ R1F, R20 ~ R3F (Banks 0 ~ 3) : all are general purpose registers. 7.3 Special Purpose Registers 7.3.1 A (Accumulator) Internal data transfer, or instruction operand holding. It is not an addressable register. 7.3.2 CONT (Control Register) CONT register is readable (CONTR) and writable (CONTW). Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 P90EG INT TS RETBK PAB PSR2 PSR1 PSR0 Bit 0 ~ Bit 2 (PSR0 ~ PSR2) : TCC/WDT prescaler bits PSR2 PSR1 PSR0 TCC Rate WDT Rate 0 0 0 1:2 1:1 0 0 1 1:4 1:2 0 1 0 1:8 1:4 0 1 1 1:16 1:8 1 0 0 1:32 1:16 1 0 1 1:64 1:32 1 1 0 1:128 1:64 1 1 1 1:256 1:128 This specification is subject to change without further notice. 11/04.2004 (V1.92)23 of 63 ePVP6300 VFD Controller Bit 3 (PAB) : Prescaler assignment bit 0/1 TCC/WDT When in WDT mode (Bit 3 = 1), the prescaler is cleared by the WDTC and SLEP instructions. Likewise, when in TCC mode (Bit 3 = 0), the prescaler will can NOT be cleared by SLEP instructions. An 8-bit counter is provided as prescaler for the TCC or WDT. The prescaler is available for the TCC only or for the WDT only at a given time. An 8 bit counter is made available for TCC or WDT as determined by the status of Bit 3 (PAB) of the CONT register. Both TCC and prescaler are cleared each time a write to TCC instruction is executed. (See the table above for the prescaler ratio under CONT register and Fig.7 below for the TCC/WDT block diagram.) Bit 4 (RETBK) : Return value backup control for interrupt routine 0/1 disable/enable When this bit is set to 1, the CPU will store ACC, R3 status, and R5 PAGE 1 automatically after an interrupt is triggered. It will be restored after instruction RETI. When this bit is set to 0, you need to store ACC, R3, and R5 PAGE 1 in you program. Bit 5 (TS) : TCC signal source 0 internal instruction cycle clock timing = ( 2 / system clock) * prescaler* (256 – count vaule) 1 16.384kHz timing = ( 1 /16.384k) * prescaler * (256 – count vaule) Bit 6 (INT) Bit 7 (P90EG) : INT enable flag 0 interrupt masked by DISI or hardware interrupt 1 interrupt enabled by ENI/RETI instructions : Interrupt edge type of P90 0 P90 interruption source is a rising edge signal. 1 P90 interruption source is a falling edge signal. 16.38KHz Fig. 7 TCC & WDT Block Diagram 24 of 63 11.04.2004 (V1.92) This specification is subject to change without further notice. ePVP6300 VFD Controller 7.3.3 IOC 5 (PORT5 Switches) a) Page 1 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 P57S P56S P55S P54S R/W-0 R/W-0 R/W-0 R/W-0 Bit 2 Bit 1 Bit 0 Bit 4 ~ Bit 7 (P54S~P57S) : Port5 I/O direction control register 0 set the relative I/O pin as output HV 1 set the relative I/O pin into high impedance 7.3.4 IOC 8 a) PAGE 1 (Clock Source and Prescaler for COUNTER1 and COUNTER2) Bit 7 CNT2S R/W-0 Bit 6 Bit 5 Bit 4 Bit 3 C2_PSC2 C2_PSC1 C2_PSC0 R/W-0 R/W-0 R/W-0 CNT1S R/W-0 Bit 2 Bit 1 Bit 0 C1_PSC2 C1_PSC1 C1_PSC0 R/W-0 R/W-0 R/W-0 Bit 0 ~ Bit 2 (C1_PSC0 ~ C1_PSC2) : COUNTER1 prescaler ratio Bit 3 (CNT1S) : COUNTER1 clock source 0 16.384kHz timing = ( 1 /16.384k) * prescaler * (256 – count vaule) 1 system clock timing = ( 2 / system clock) * prescaler* (256 – count vaule) COUNTER1 C1_PSC2 C1_PSC1 C1_PSC0 0 0 0 1:2 0 0 1 1:4 0 1 0 1:8 0 1 1 1:16 1 0 0 1:32 1 0 1 1:64 1 1 0 1:128 1 1 1 1:256 Bit 4 ~ Bit 6 (C2_PSC0 ~ C2_PSC2) : COUNTER2 prescaler ratio COUNTER2 C2_PSC2 C2_PSC1 C2_PSC0 0 0 0 1:2 0 0 1 1:4 0 1 0 1:8 0 1 1 1:16 1 0 0 1:32 1 0 1 1:64 1 1 0 1:128 1 1 1 1:256 This specification is subject to change without further notice. 11/04.2004 (V1.92)25 of 63 ePVP6300 VFD Controller Bit 7 (CNT2S) : COUNTER2 clock source 0 16.384kHz timing = ( 1 /16.384k) * prescaler * (256 – count vaule) 1 system clock timing = ( 2 / system clock) * prescaler* (256 – count vaule) 7.3.5 IOC9 (PORT9 I/O Control) a) PAGE 0 (PORT9 I/O Control Register) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 IOC97 IOC96 IOC95 IOC94 IOC93 IOC92 IOC91 IOC90 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 Bit 0 ~ Bit 7 (IOC90 ~ IOC97) : PORT9 (0~7) I/O direction control register 0 set the relative I/O pin as output 1 set the relative I/O pin into high impedance b) PAGE 1 ( Clock Source and Prescaler for COUNTER3 and COUNTER4) Bit 7 CNT4S R/W-0 Bit 6 Bit 5 Bit 4 Bit 3 C4_PSC2 C4_PSC1 C4_PSC0 R/W-0 R/W-0 R/W-0 CNT3S R/W-0 Bit 2 Bit 1 Bit 0 C3_PSC2 C3_PSC1 C3_PSC0 R/W-0 R/W-0 R/W-0 Bit 0 ~ Bit 2 (C3_PSC0 ~ C3_PSC2) : COUNTER3 prescaler ratio COUNTER3 C3_PSC2 C3_PSC1 C3_PSC0 0 0 0 1:2 0 0 1 1:4 0 1 0 1:8 0 1 1 1:16 1 0 0 1:32 1 0 1 1:64 1 1 0 1:128 1 1 1 1:256 Bit 3 (CNT3S) : COUNTER3 clock source 0 16.384kHz timing = ( 1 /16.384k) * prescaler * (256 – count vaule) 1 system clock timing = ( 2 / system clock) * prescaler* (256 – count vaule) Bit 4 ~ Bit 6 (C4_PSC0 ~ C4_PSC2) : COUNTER4 prescaler ratio 26 of 63 COUNTER4 C4_PSC2 C4_PSC1 C4_PSC0 0 0 0 1:2 0 0 1 1:4 0 1 0 1:8 0 1 1 1:16 1 0 0 1:32 11.04.2004 (V1.92) This specification is subject to change without further notice. ePVP6300 VFD Controller 1 0 1 1:64 1 1 0 1:128 1 1 1 1:256 Bit 7 (CNT4S) : COUNTER4 clock source 0 16.384kHz timing = ( 1 /16.384k) * prescaler * (256 – count vaule) 1 system clock timing = ( 2 / system clock) * prescaler* (256 – count vaule) 7.3.6 IOCA a) PAGE 1 (Clock Source and Prescaler for COUNTER5 ) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 - - - - CNT5S - - - - R/W-0 Bit 2 Bit 1 Bit 0 C5_PSC2 C5_PSC1 C5_PSC0 R/W-0 R/W-0 R/W-0 Bit 0 ~ Bit 2 (C5_PSC0 ~ C5_PSC2) : COUNTER5 prescaler ratio COUNTER4 C5_PSC2 C5_PSC1 C5_PSC0 0 0 0 1:2 0 0 1 1:4 0 1 0 1:8 0 1 1 1:16 1 0 0 1:32 1 0 1 1:64 1 1 0 1:128 1 1 1 1:256 Bit 3 (CNT5S) : COUNTER5 clock source 0 16.384kHz timing = ( 1 /16.384k) * prescaler * (256 – count vaule) 1 system clock timing = ( 2 / system clock) * prescaler* (256 – count vaule) 7.3.7 IOCB (PORTB I/O Control, PORTB Switch) a) PAGE 0 (PORTB I/O Control Register) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 - IOCB6 IOCB5 IOCB4 IOCB3 IOCB2 IOCB1 IOCB0 R-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 Bit 0 ~ Bit 6 (IOCB0 ~ IOCB 6) : PORTB (0~6) I/O direction control register 0 set the relative I/O pin as output 1 set the relative I/O pin into high impedance This specification is subject to change without further notice. 11/04.2004 (V1.92)27 of 63 ePVP6300 VFD Controller b) PAGE 1 (PORTB Switches) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 - PB6S PB5S PB4S PB3S PB2S PB1S PB0S - R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 Bit 0 (PB0S) : Select between AD Voltage Reference pin or I/O PORTB0 pin 0 PB0 (I/O PORTB0) pin is selected and ADC reference voltage sourced 1 from internal VDD VREF (ADC external reference voltage input) pin is selected Bit 1 (PB1S) : Select between normal I/O PORTB1 pin or ADC Channel 1 input AD1 pin 0 PB1 (I/O PORTB1) pin is selected 1 AD1 (ADC Channel 1 input) pin is selected Bit 2 (PB2S) : Select between normal I/O PORTB2 pin or ADC Channel 2 input AD2 pin 0 PB2 (I/O PORTB2) pin is selected 1 AD2 (ADC Channel 2 input) pin is selected Bit 3 (PB3S) : Select between normal I/O PORTB3 pin or ADC Channel 3 input AD3 pin 0 PB3 (I/O PORTB3) pin is selected 1 AD3 (ADC Channel 3 input) pin is selected Bit 4 (PB4S) : Select between normal I/O PORTB4 pin or ADC Channel 4 input AD4 pin 0 PB4 (I/O PORTB4) pin is selected 1 AD4 (ADC Channel 4 input) pin is selected Bit 5 (PB5S) Select between normal I/O PORTB5 pin or ADC Channel 5 input AD5 pin 0 PB5 (I/O PORTB5) pin is selected 1 AD5 (ADC Channel 5 input) pin is selected Bit 6 (PB6S) : Select between normal I/O PORTB5 pin or ADC Channel 6 input AD6 pin 0 PB6 (I/O PORTB6) pin is selected 1 AD6 (ADC Channel 6 input) pin is selected 7.3.8 IOCC (PORTC I/O Control) a) PAGE 0 (PORTC I/O Control Register) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 IOCC7 IOCC6 IOCC5 IOCC4 IOCC3 IOCC2 IOCC1 IOCC0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 Bit 0 ~ Bit 7 (IOCC0 ~ IOCC7) : PORTC(0~7) I/O direction control register 0 set the relative I/O pin as output 1 set the relative I/O pin into high impedance b) PAGE 1 (PORTC Switches) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 PC7S PC6S PC5S PC4S - - - - R/W-1 R/W-1 R/W-1 R/W-1 - - - - Bit 4 (PC4S) : Select STB or I/O PORTC4 pin 28 of 63 11.04.2004 (V1.92) This specification is subject to change without further notice. ePVP6300 VFD Controller 0 1 PC4 (I/O PORTC4) pin is selected STB pin is selected Bit 5 (PC5S) : Select CLK or I/O PORTC5 pin 0 PC5 (I/O PORTC5) pin is selected 1 CLK pin is selected Bit 6 (PC6S) : Select DOUT or I/O PORTC6 pin 0 PC6 (I/O PORTC6) pin is selected 1 DOUT pin is selected (N-channel,Open-Drain) Bit 7 (PC7S) : Select DIN or I/O PORTC7 pin 0 PC7 (I/O PORTC7) pin is selected 1 DIN pin is selected 7.3.9 IOCD (Interrupt Mask, Prescaler of CN3 ~ CN5) a) PAGE 0 (Interrupt Mask) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 - - - - - CNT5 CNT4 CNT3 - - - - - R/W-0 R/W-0 R/W-0 Bit 0 ~ 3 : Interrupt enable bit 0 disable interrupt 1 enable interrupt 7.3.10 IOCE (Interrupt Mask) a) PAGE 0 (Interrupt Mask) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 - RBF ADI STB - - - - - R/W-0 R/W-0 R/W-0 - - - - Bit 4 (STB) : STB goes LOW interrupt mask. 0/1 disable/enable interrupt Bit 5 (ADI) : ADC interrupt flag after a sampling 0/1 disable/enable interrupt Bit 6 (RBF) : SPI’s RBF interrupt mask 0/1 disable/enable interrupt 7.3.11 IOCF (Interrupt Mask ) a) PAGE 0 (Interrupt Mask Register) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 INT4 INT3 INT2 INT1 IR CNT2 CNT1 TCIF R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 Bit 0 ~ 7: Interrupt enable bit 0 disable interrupt 1 enable interrupt The status after interrupt and the interrupt source lists are as shown in the table below. This specification is subject to change without further notice. 11/04.2004 (V1.92)29 of 63 ePVP6300 VFD Controller Interrupt Signal TCC time out IOCF bit0=1 And "ENI" IDLE Mode GREEN Mode RA(7,6)=(1,0) RA(7,6)=(x,0) RA(7,6)=(x,1) + SLEP no SLEP no SLEP Interrupt Interrupt (jump to Address 8 on Page0) (jump to Address 8 on Page0) Interrupt (jump to Address 8 on Page0) Interrupt (jump to Address 8 on Page0) 1) Wake-up 2) Interrupt (jump to Address 8 on Page0) 3) After RETI instruction, jump to SLEP Next instruction 1) Wake-up COUNTER1 time out 2) Interrupt (jump to Address 8 on Page0) IOCF bit1=1 3) After RETI instruction, jump to And "ENI" SLEP Next instruction 1) Wake-up COUNTER2 time out 2) Interrupt (jump to Address 8 on IOCF bit2=2 Page0) And "ENI" 3) After RETI instruction, jump to SLEP Next instruction 1) Wake-up COUNTER3 time out 2) Interrupt (jump to Address 8 on IOCD bit0=1 Page0) And "ENI" 3) After RETI instruction, jump to SLEP Next instruction 1) Wake-up COUNTER4 time out 2) Interrupt (jump to Address 8 on IOCD bit1=1 Page0) And "ENI" NORMAL Mode 3) After RETI instruction, jump to SLEP Next instruction 1) Wake-up COUNTER5 time out 2) Interrupt (jump to Address 8 on IOCD bit2=1 Page0) And "ENI" 3) After RETI instruction, jump to SLEP Next instruction INT1~4 1) Wake-up IOCF bit4=1 or IOCF 2)Interrupt (jump to Address 8 on bit5=1 IOCF bit6 = 1 Page0) or IOCF bit7= 1 3) after RETI instruction, jump to And “ENI SLEP Next instruction Interrupt (jump to Address 8 on Page0) Interrupt (jump to Address 8 on Page0) Interrupt Interrupt (jump to Address 8 on Page0) (jump to Address 8 on Page0) Interrupt Interrupt (jump to Address 8 on Page0) (jump to Address 8 on Page0) Interrupt Interrupt (jump to Address 8 on Page0) (jump to Address 8 on Page0) Interrupt Interrupt (jump to Address 8 on Page0) (jump to Address 8 on Page0) Interrupt Interrupt (jump to Address 8 on Page0) (jump to Address 8 on Page0) Interrupt Interrupt (jump to Address 8 on Page0) (jump to Address 8 on Page0) Interrupt Interrupt (jump to Address 8 (jump to Address 8 1) Wake-up IR IOCF bit3= 1 And “ENI 2) Interrupt (jump to Address 8 on Page0) 3) After RETI instruction, jump to SLEP Next instruction ADI IOCE bit5 = 1 No function And “ENI RBF IOCE bit6 = 1 30 of 63 11.04.2004 (V1.92) No function This specification is subject to change without further notice. ePVP6300 VFD Controller And “ENI on Page0) on Page0) STB Interrupt Interrupt (jump to Address 8 on Page0) (jump to Address 8 on Page0) IOCE bit4 = 1 No function And “ENI NOTES: 1. PORT90 interrupt function is controlled by IOCF Bit 3. It is a falling edge or rising edge trigger (controlled by CONT register Bit7). 2. PORT9 (1~4) interrupt functions are controlled by IOCF Bits 4, 5, 6, & 7). They are falling edge triggers. 3. STB interrupt source function is controlled by IOCE PAGE0 Bit 4. It is falling edge trigger after the STB goes low. 7.4 Application notes 1、Call-table instruction:: Because the call-table instruction can only change the Program Counter's bit7 ~ bit0 at each time, only 256 addresses can be searched once. But each program page contains 1024 addresses, if call each 256 addresses as a zone, Then each page constitutes by four zones. When a table overlaps two zones, a bug would occur during address searching. So the member of program must examine the .LST file at any time, the .LST file will jot down the information that Assembler generated, for example source code, the coding of instruction , instruction address, error message etc. 2、Operation requirement for the CPU: The system frequency must adds a latency time ( 14.33 MHz about 250 ms ;17.91 MHz about 450 ms.). After RA register was setting, it will offer the stable system frequency for the operation. This specification is subject to change without further notice. 11/04.2004 (V1.92)31 of 63 ePVP6300 VFD Controller 7.5 I/O Port The I/O registers are bi-directional tri-state I/O ports. The I/O ports can be defined as "input" or "output" pins by the I/O control registers under program control. The I/O data registers and I/O control registers are both readable and writable. The I/O interface circuit is shown in Fig.22. PCRD PORT Q P R Q C L Q P R Q C L D CLK PCWR D CLK IOD PDWR PDRD 0 1 M U X Fig. 8 The Circuit of I/O Port and I/O Control Register 7.6 RESET A RESET can be caused by any of the following: 1. Power on reset 2. WDT timeout (if enabled and in GREEN or NORMAL mode) 3. /RESET pin pull low Once a RESET occurs, the following functions are performed. The oscillator is running, or will be started. The Program Counter (R2) is set to all "0". When power on, the upper 3 bits of R3 and the upper 2 bits of R4 are cleared. The Watchdog timer and prescaler counter are cleared. The Watchdog timer is disabled. The CONT register is set to all "1" 32 of 63 11.04.2004 (V1.92) This specification is subject to change without further notice. ePVP6300 VFD Controller The other registers’ (Bit 7 ~ Bit 0) default values are as follows. Address R Register PAGE 0 R Register PAGE 1 R Register PAGE 2 xxxx0000 00000000 R Register IOC Register IOC Register PAGE 3 PAGE 0 PAGE 1 0x4 00xxxxxx 0x5 0000xxxx 0x6 00000000 0x7 00000000 00000000 xxxxxxxx 0x8 00000000 00000000 xxxxxxxx 0x9 00000000 xxxxxxxx xxxxxxxx 0xA 00011xx0 xxxxxxxx xxxxxxxx 0xB 00000000 00000000 xxxxxxxx x1111111 x0000000 0xC 1011xxxx 00000000 xxxxxxxx 1111xxxx 1111xxxx 0xD xxxxx000 xxxxx000 0xE X0000000 x000xxxx 0xF 00000000 00000000 xxxxxxxx 00000000 11111111 00000000 00000000 7.7 Wake Up The controller features two types of sleep mode for power saving: 7.7.1 SLEEP Mode, RA(6 ;7) = 0 + "SLEP" Instruction Under this mode, the controller turns off all the CPU and crystal. However, other circuits with power control like key tone control or PLL control (with register enabled), has to be turned off through software. 7.7.2 IDLE mode, RA(6 ;7) = 1 + "SLEP" Instruction. With this mode, the controller only turns the CPU off. The crystal remains running. 7.7.3 Wake-up from SLEEP Mode 1. WDT time out 2. External interrupt 3. /RESET pull low Any of these cases will reset the controller and run the program from address zero. The status is just like the power-on-reset condition. Be sure to enable circuit after cases 1 or 2 occurs. This specification is subject to change without further notice. 11/04.2004 (V1.92)33 of 63 ePVP6300 VFD Controller 7.7.4 Wake-up from IDLE Mode 1. WDT time out 2. External interrupt 3. Internal interrupt like counters All these cases requires you to enable the circuit before entering IDLE mode. All the registers values are preserved when "SLEP" instruction is executed and restored after wake-up. During execution of case 2 or 3, controller will wake up and jump to address 0x08 for interruption sub-routine. After performing the sub-routine ("RETI" instruction), the program will jump to the next instruction following the "SLEP" instruction. 7.8 Interrupts RD, RE, and RF are the interrupt status registers which record the interrupt request in flag bit. IOCD, IOCE, & IOCF are their interrupt mask registers respectively. Global interrupt is enabled by ENI instruction and is disabled by DISI instruction. When one of the interrupts (when enabled) is generated, it will cause the next instruction to be fetched from address 008H. Once in the interrupt service routine, the source of the interrupt can be determined by polling the flag bits in their respective (RD, RE, and RF) registers. The interrupt flag bit must be cleared in the software before leaving the interrupt service routine and enabling interrupts to avoid recursive interrupts. 7.9 Instruction Set The Instruction set has the following features: 1. Every bit of any register can be set, cleared, or tested directly. 2. The I/O register can be treated as a general register. That is, the same instruction can operates on I/O register. The symbol "R" represents a register designator which specifies which one of the 64 registers (including operational registers and general purpose registers) is to be utilized by the instruction. Bits 6 and 7 in R4 determine the selected register bank. "b'' represents a bit field designator which selects the number of the bit located in the Register "R,” and affected by the operation. "k'' represents an 8 or 10-bit constant or literal value. Instruction Binary HEX Mnemonic Operation Status Affected Instruction Cycle 0 0000 0000 0000 0000 NOP No Operation None 1 0 0000 0000 0001 0001 DAA Decimal Adjust A C 1 0 0000 0000 0010 0002 CONTW A → CONT None 1 0 0000 0000 0011 0003 SLEP 0 → WDT, Stop oscillator T,P 1 0 0000 0000 0100 0004 WDTC 0 → WDT T,P 1 0 0000 0000 rrrr 000r IOW R A → IOCR None 1 0 0000 0001 0000 0010 ENI Enable Interrupt None 1 34 of 63 11.04.2004 (V1.92) This specification is subject to change without further notice. ePVP6300 VFD Controller 0 0000 0001 0001 0011 DISI Disable Interrupt None 1 0 0000 0001 0010 0012 RET [Top of Stack] → PC None 2 0 0000 0001 0011 0013 RETI [Top of Stack] → PC Enable Interrupt None 2 0 0000 0001 0100 0014 CONTR CONT → A None 1 0 0000 0001 rrrr 001r IOR R IOCR → A None 1 0 0000 0010 0000 0020 TBL R2+A → R2 bits 9,10 do not clear Z,C,DC 2 0 0000 01rr rrrr 00rr MOV R,A A→R None 1 0 0000 1000 0000 0080 CLRA 0→A Z 1 0 0000 11rr rrrr 00rr CLR R 0→R Z 1 0 0001 00rr rrrr 01rr SUB A,R R-A → A Z,C,DC 1 0 0001 01rr rrrr 01rr SUB R,A R-A → R Z,C,DC 1 0 0001 10rr rrrr 01rr DECA R R-1 → A Z 1 0 0001 11rr rrrr 01rr DEC R R-1 → R Z 1 0 0010 00rr rrrr 02rr OR A,R A∨R→A Z 1 0 0010 01rr rrrr 02rr OR R,A A∨R→R Z 1 0 0010 10rr rrrr 02rr AND A,R A&R→A Z 1 0 0010 11rr rrrr 02rr AND R,A A&R→R Z 1 0 0011 00rr rrrr 03rr XOR A,R A⊕R→A Z 1 0 0011 01rr rrrr 03rr XOR R,A A⊕R→R Z 1 0 0011 10rr rrrr 03rr ADD A,R A+R→A Z,C,DC 1 0 0011 11rr rrrr 03rr ADD R,A A+R→R Z,C,DC 1 0 0100 00rr rrrr 04rr MOV A,R R→A Z 1 0 0100 01rr rrrr 04rr MOV R,R R→R Z 1 0 0100 10rr rrrr 04rr COMA R /R → A Z 1 0 0100 11rr rrrr 04rr COM R /R → R Z 1 0 0101 00rr rrrr 05rr INCA R R+1 → A Z 1 0 0101 01rr rrrr 05rr INC R R+1 → R Z 1 0 0101 10rr rrrr 05rr DJZA R R-1 → A, skip if zero None 2 if skip 0 0101 11rr rrrr 05rr DJZ R R-1 → R, skip if zero None 2 if skip 0 0110 00rr rrrr 06rr RRCA R R(n) → A(n-1) R(0) → C, C → A(7) C 1 0 0110 01rr rrrr 06rr RRC R R(n) → R(n-1) R(0) → C, C → R(7) C 1 0 0110 10rr rrrr 06rr RLCA R R(n) → A(n+1) R(7) → C, C → A(0) C 1 0 0110 11rr rrrr 06rr RLC R R(n) → R(n+1) R(7) → C, C → R(0) C 1 0 0111 00rr rrrr 07rr SWAPA R R(0-3) → A(4-7) R(4-7) → A(0-3) None 1 0 0111 01rr rrrr 07rr SWAP R R(0-3) ↔ R(4-7) None 1 This specification is subject to change without further notice. 11/04.2004 (V1.92)35 of 63 ePVP6300 VFD Controller 0 0111 10rr rrrr 07rr JZA R R+1 → A, skip if zero None 2 if skip 0 0111 11rr rrrr 07rr JZ R R+1 → R, skip if zero None 2 if skip 0 100b bbrr rrrr 0xxx BC R,b 0 → R(b) None 1 0 101b bbrr rrrr 0xxx BS R,b 1 → R(b) None 1 0 110b bbrr rrrr 0xxx JBC R,b if R(b)=0, skip None 2 if skip 0 111b bbrr rrrr 0xxx JBS R,b if R(b)=1, skip None 2 if skip 1 00kk kkkk kkkk 1kkk CALL k PC+1 → [SP] (Page, k) → PC None 2 1 01kk kkkk kkkk 1kkk JMP k (Page, k) → PC None 2 1 1000 kkkk kkkk 18kk MOV A,k k→A None 1 1 1001 kkkk kkkk 19kk OR A,k A∨k→A Z 1 1 1010 kkkk kkkk 1Akk AND A,k A&k→A Z 1 1 1011 kkkk kkkk 1Bkk XOR A,k A⊕k→A Z 1 1 1100 kkkk kkkk 1Ckk RETL k k → A, [Top of Stack] → PC None 2 1 1101 kkkk kkkk 1Dkk SUB A,k k-A → A Z,C,DC 1 1 1110 0000 0001 1E01 INT PC+1 → [SP] 001H → PC None 1 1 1110 100k kkkk 1E8k PAGE k K->R5(4:0) None 1 1 1111 kkkk kkkk 1Fkk ADD A,k k+A → A Z,C,DC 1 36 of 63 11.04.2004 (V1.92) This specification is subject to change without further notice. ePVP6300 VFD Controller 7.10Bonding Coordinates Subsidiary Chip size : Substrate: P substrate Chip size : 2710 *2580 uM 7.10.1 Pad Configuration Fig. 9 ePVP6300 Pad Configuration This specification is subject to change without further notice. 11/04.2004 (V1.92)37 of 63 ePVP6300 VFD Controller 7.10.2 Pad Name and Coordinates Table 38 of 63 11.04.2004 (V1.92) This specification is subject to change without further notice. ePVP6300 VFD Controller This specification is subject to change without further notice. 11/04.2004 (V1.92)39 of 63 ePVP6300 VFD Controller 8 Segment Data Buffers The ePVP6300 chip provides a total of 256 bytes data RAM. On the other hand, display Segment Data Buffers can be stored either in the data RAM of 256 bytes sizes (00h~40h) or in the common registers of Bank 2 and Bank 3 (20h~3Fh). a) Data RAM Address 00h~38h 57X8 Segment Data Buffers 39h~3Eh 6X8 Key Scanning Data Buffers 3Fh SW data register 40h LED data register b) Common Registers Address 40 of 63 11.04.2004 (V1.92) 20 Bank0~Bank3 : Common registers 3F (32x8 for each bank) This specification is subject to change without further notice. ePVP6300 VFD Controller These buffers store display RAM. The display RAM stores the data transmitted from an external device to the ePVP6300 through the serial interface and is assigned addresses as follows, in units of 8 bits: b0 b3 b4 b7 X X HL X X HU Lower 4 bits Higher 4 bits Only the lower 4 bits of the addresses assigned to SEG17 through SEG20 are valid and the higher 4 bits are ignored. c) Display Memory Addresses: Seg1 Seg4 Seg8 Seg12 Seg16 Seg20 00 HL 00 HU 01 HL 01 HU 02 HL DIG1 03 HL 03 HU 04 HL 04 HU 05 HL DIG2 06 HL 06 HU 07 HL 07 HU 08 HL DIG3 09 HL 09 HU 0A HL 0A HU 0B HL DIG4 0C HL 0C HU 0D HL 0D HU 0E HL DIG5 0F HL 0F HU 10 HL 10 HU 11 HL DIG6 12 HL 12 HU 13 HL 13 HU 14 HL DIG7 15 HL 15 HU 16 HL 16 HU 17 HL DIG8 18 HL 18 HU 19 HL 19 HU 1A HL DIG9 1B HL 1B HU 1C HL 1C HU 1D HL DIG10 1E HL 1E HU 1F HL 1F HU 20 HL DIG11 21 HL 21 HU 22 HL 22 HU 23 HL DIG12 24 HL 24 HU 25 HL 25 HU 26 HL DIG13 27 HL 27 HU 28 HL 28 HU 29 HL DIG14 2A HL 2A HU 2B HL 2B HU 2C HL DIG15 2D HL 2D HU 2E HL 2E HU 2F HL DIG16 30 HL 30 HU 31 HL 31 HU 32 HL DIG17 33 HL 33 HU 34 HL 34 HU 35 HL DIG18 36 HL 36 HU 37 HL 37 HU 38 HL DIG19 This specification is subject to change without further notice. 11/04.2004 (V1.92)41 of 63 ePVP6300 VFD Controller b) Key Scanning Data Buffers: KEY1 KEY2 KEY3 SEG12/KS12 SEG11/KS11 SEG10/KS10 SEG9/KS9 SEG8/KS8 SEG7/KS7 SEG6/KS6 SEG5/KS5 SEG4/KS4 SEG3/KS3 SEG2/KS2 SEG1/KS1 KEY4 Fig. 10 12 x 4 Configuration Key Matrix The key matrix is of 12 x 4 configuration is as shown in the above figure. The data of each key is stored as illustrated below, and is read by a read command, starting from the least significant bit. KEY1….KEY4 KEY1….KEY4 SEG1/KS1 SEG2/KS2 SEG3/KS3 SEG4/KS4 SEG5/KS5 SEG6/KS6 SEG7/KS7 SEG8/KS8 SEG9/KS9 SEG10/KS10 SEG11/KS11 SEG12/KS12 b0 -- -- b3 b4 -- -- b7 Reading sequence When the most significant bit of data (SEG12, b7) has been read, the least significant bit of the next data (SEG1, b0) is read. 8.1 Commands A command sets the display mode and status of the VFD driver. The first 1 byte (b0 to b7) inputted to the ePVP6300 through the DIN pin after the STB pin has fallen, is regarded as a command. Interrupt event will occur when STB pin is falling. If STB mode is high while a command/data are being transmitted, serial communication is initialized, and the command/data being transmitted is invalidated (however, the command/data already transmitted remain valid). 42 of 63 11.04.2004 (V1.92) This specification is subject to change without further notice. ePVP6300 VFD Controller 8.1.1 Display Mode Setting Command [00] This command initializes the ePVP6300 and selects Display mode number of segments and grids (1/8 to 1/19-duty, 9 segments to 20 segments) as illustrated below. When Display Mode command is executed, display is forcibly turned off, and key scanning is also stopped. To resume display, a display ON command must be executed. If the same Display mode is selected, nothing is performed. When power is turned “ON,” default Display mode is “19-digit, 9-segment.” MSB b7 b6 b5 b4 b3 b2 b1 b0 0 0 0 0 1 1 1 1 LSB Initial value Display mode Not Relevant 0000 : 8 digits, 20 segments. 0001 : 9 digits, 19 segments. 0010 : 10 digits, 18 segments. 0011 : 11 digits, 17 segments. 1000 : 12 digits, 16 segments. 1001 : 13 digits, 15 segments. 1010 : 14 digits, 14 segments. 1011 : 15 digits, 13 segments. 1100 : 16 digits, 12 segments. 1101 : 17 digits, 11 segments. Default setting 1110 : 18 digits, 10 segments. 1111 : 19 digits, 9 segments. Fig. 11 Display Mode Setting Command Selection This specification is subject to change without further notice. 11/04.2004 (V1.92)43 of 63 ePVP6300 VFD Controller 8.1.2 Data Setting Command [01] This command sets data write and data read modes. The default settings at power “ON” are: Address Increment Mode: “Address increment mode.” Test Mode: “Normal operation mode.” MSB b7 b6 b5 b4 b3 b2 b1 b0 0 1 0 0 0 0 0 0 LSB Initial value Not Relevant 00 : Write data to display memory. 01 : Write data to LED port. 10 : Read key port switch data 11 : Read switch status. Sets address increment mode (display memory) 0 : Increments address after data has been written. 1 : Fixes address. Fig. 12 Data Setting Command Selection 8.1.3 Display Control Command [10] When power is turned “ON,” the following default conditions prevails: 4/64-pulse width is set and the display is turned off Key & switch scanning is stopped MSB b7 b6 b5 b4 b3 b2 b1 b0 1 0 0 0 0 0 0 0 Turns on/off display. 0 : Display off (key & switch scan continues) 1 : Display on. LSB Initial value Sets dimming 000 : Sets pulse width to 1/16 001 : Sets pulse width to 2/16 010 : Sets pulse width to 4/16 011 : Sets pulse width to 10/16 100 : Sets pulse width to 11/16 101 : Sets pulse width to 12/16 110 : Sets pulse width to 13/16 111 : Sets pulse width to 14/16 Fig. 13 Display Control Command Selection 44 of 63 11.04.2004 (V1.92) This specification is subject to change without further notice. ePVP6300 VFD Controller 8.1.4 Address Setting Command [11] This command sets an address of the display memory. When power is turned “ON”, the default address is set to 00H. MSB b7 b6 b5 b4 b3 b2 b1 b0 1 1 0 0 0 0 0 0 LSB Initial value Address ( 00H - 38H ) Fig. 14 Address Setting Command Selection If address 39H or higher is set, the data is ignored until a correct address is set. This specification is subject to change without further notice. 11/04.2004 (V1.92)45 of 63 ePVP6300 VFD Controller 9 RC/Crystal OSC 9.1 General Description This oscillator is designed for the ePVP6300 chip as clock source. 9.2 Features RC oscillator: 32.768K Hz Operating voltage: 2.2~5.5V. o o Operating temperature: -20 C ~ 70 C 9.3 Block Diagram VDD XOUT 32768 KHz OSCI 470 Kohm 27 pf CRYXRC 27 pf XOUT OSCI VSS Fig. 15 RC/Crystal OSC Block Diagram 9.4 Pin Description Name I/O Type Description Remarks XIN I Crystal or RC oscillator connection pin XOUT O Crystal oscillator output pin VDD - Power supply (+) pin VSS - Power supply (–) pin 9.5 Electrical (Condition : VDD = 4.5 to 5.5V, Ta = -20°C to 70°C ) Parameters Sym. Min. Typ. Max. Unit Starting oscillation voltage Vs - 2.0 3.2 V Stable time Ts - 5 10 clk Vdd = 5.0V Current consumption Idd - 2 3 mA Vdd = 5.0V 45 50 55 % ∂f/∂V - 1 1.5 % ∆f - 1 2 % - ±6 ±10 % Duty cycle Frequency/Voltage deviation Frequency/Temperature deviation Frequency vs. Process deviation 46 of 63 11.04.2004 (V1.92) Conditions This specification is subject to change without further notice. ePVP6300 VFD Controller 10 Absolute Operation Maximum Ratings Absolute maximum ratings (Ta = 25°C, Vss = 0 V) Parameter Symbol Ratings Unit Logic supply voltage VDD -0.5 to + 6 V Driver supply voltage VEE VDD +0.5 to VDD - 45 V Logic input voltage VI -0.5 to VDD +0.5 V VFD driver output voltage VO VEE -0.5 to VDD +0.5 V LED driver output current IO1 +25 mA VFD driver output current IO2 -40 (Grid) mA -15 (Segment) Operating ambient temperature Topt -40 to +85 °C Storage temperature Tstg -65 to +150 °C 11 DC Electrical Characteristic (Ta = -20 to +70°C, VDD = 4.5 to 5.5V, Vss = 0V, VEE = VDD - 45V) Parameter Symbol Min. Typ. Max. Unit Test conditions GPIOB Digital Input Voltage High VIH 0.8VDD - VDD V Digital Input Voltage Low IOL VSS - 0.2VDD V Schmitt Trigger Negative Going Threshold Voltage VT- 1.5 1.8 2.1 Schmitt Trigger Positive Going Threshold Voltage VT+ 2.9 3.2 3.5 V Input Leakage Current IIN - - ±1 uA GPIOB, VIN = VDD or VSS Pull Up Resister RPU 50 75 100 KΩ GPIOC, GPO9, CLK, STB, DOUT, DIN , CRYXRC and /RESET @ VDD=5V Digital Output Voltage High VOH 0.8VDD - VDD V Digital Output Voltage Low VOL VSS - 0.2VDD V Digital Output High Current IOH1 -2 -4 -5 mA VOH=2.4V / DOUT, GPIOB, GPIOC Digital Output Low Current IOL1 2 4 5 mA VOL=0.4V / DOUT, GPIOB, GPIOC Digital Output High Current IOH2 -15 -18 -25 mA VOH=2.4V / GPIO9 Digital Output Low Current IOL2 15 18 25 mA VOL=0.4V / GPIO9 HV Output Current IOH1 -6 -4 -3 mA GPIOC, GPO9, CLK, STB, DIN and /RESET,GPIOB DOUT, GPIOB, GPIOC Vo = VDD –2V,(VDD=5V) SEG1/KS1 to SEG4/KS4, P24/SG5/KS5 to P20/SG9/KS9. Vo = VDD –2V,(VDD=5V) HV Output Current IOH2 -15 -13 -11 mA GR1/P1 to GR8/P8, GR9/P9/SG20 to GR16/P16/SG13, This specification is subject to change without further notice. 11/04.2004 (V1.92)47 of 63 ePVP6300 VFD Controller GR17/P17/SG12/KS12 to GR19/P19/SG10/KS10 HV leakage current HV Output pull-down resistor Power down current IHVLEAK 5 8 10 uA Vo = VDD –45V, driver off RL 40 80 120 KΩ Driver output (VEE= -25V) - 1.5 µA All input and I/O pin at VDD, output pin floating, WDT disabled 30 60 µA VDD =3V CLK=32.768KHz, all analog circuits disabled, all input and I/O pin at VDD, output pin floating 65 90 µA VDD =5V CLK=32.768KHz, all analog circuits disabled, all input and I/O pin at VDD, output pin floating 30 45 µA VDD =3V CLK=32.768KHz, all analog circuits disabled, all input and I/O pin at VDD, output pin floating 45 60 µA VDD =5V CLK=32.768KHz, all analog circuits disabled, all input and I/O pin at VDD, output pin floating 1.3 2 mA /RESET=High, CLK=3.582MHz, all analog circuits disabled, output pin floating ISB1 (SLEEP mode) Low clock current (GREEN mode) ISB2 Crystal oscillation operating mode Low clock current (IDLE mode) ISB3 Crystal oscillation operating mode Operating supply current (Normal mode) ICC Crystal oscillation operating mode 12 AC Electrical Characteristic 12.1 CPU Instruction Timing (Ta = -20°C ~ 70°C, VDD=5V, VSS=0V) Parameter Symbol Condition Input CLK duty cycle Dclk Instruction cycle time Tins Device delay hold time Tdrh TCC input period Ttcc Note 1 Watchdog timer period Twdt Ta = 25°C Min Typ Max Unit 45 50 55 % 32.768kHz 60 us 3.582MHz 550 ns 16 ms (Tins+20)/N ns 16 ms NOTE: N= selected prescaler ratio 48 of 63 11.04.2004 (V1.92) This specification is subject to change without further notice. ePVP6300 VFD Controller 12.2 AC Timing Characteristic (VDD=5V, Ta=+25°C) Description Symbol Min Tosc 400 Typ Max Unit 1500 ms 10 us Oscillator timing characteristic 32.768kHz OSC start up 3.579MHz PLL 5 SPI timing characteristic (CPU clock 3.58MHz and Fsco = 3.582Mhz /2) /SS set-up time Tcss 560 ns /SS hold time Tcsh 250 SCLK high time Thi 250 ns SCLK low time Tlo 250 ns SCLK rising time Tr 15 30 ns SCLK falling time Tf 15 30 ns SDI set-up time to the reading edge of SCLK Tisu 25 ns SDI hold time to the reading edge of SCLK Tihd 25 ns SDO disable time Tdis 560 ns 12.3 ePVP6300 Operating Voltage VS main clock (X Axis Min VDD ; Y Axis Main CLK) MHz 17.91 14.33 10.74 7.16 3.58 1.79 2.2 3 3.3 4 5 5.5 V Fig. 16 Operation Voltage XY Axis This specification is subject to change without further notice. 11/04.2004 (V1.92)49 of 63 ePVP6300 VFD Controller 12.4 AC Timing Diagrams Fig. 17a A/C Test Input/Output Waveform Fig. 17b RESET Timing Diagram ins Fig. 17c TCC Input Timing Diagram 50 of 63 11.04.2004 (V1.92) This specification is subject to change without further notice. ePVP6300 VFD Controller 13 Key & Switch Scanning and Display Timing The key & switch scanning and display timing diagram is given below. One cycle of key & switch scanning consists of 2 frames. The data of the 12 x 4 matrix is stored in the RAM. 31.25 us 470 us 500 us GRID 1 output 1/16 4/16 6/16 8/16 10/16 12/16 14/16 16/16 GRID 2 output SEG 1 output SEG 2 output SEG 3 output DISP ≒ 500us Key & Switch scan data GRID 1 GRID 1 output GRID 2 output GRID 3 output GRID n output SEG1 output SEG2 output 1/16 4/16 10/16 GRID 2 GRID 3 GRID n DIG1 2/16 14/16 2/16 SEG3 output SEGn output 1 frame = TDISP * (n+1) Fig. 18 Key & Switch Scanning and Display Timing Diagram This specification is subject to change without further notice. 11/04.2004 (V1.92)51 of 63 ePVP6300 VFD Controller 14 Serial/Parallel Communication Format 14.1 Reception (Command/Data Write) If data is contiguous STB DIN CLK b0 b1 b2 b6 b7 1 2 3 7 8 Fig. 19 Data Reception Timing Diagram 14.2 Transmission (Data Read) ST DI b0 b1 b2 b3 b4 b5 b6 b7 b0 b1 b2 b3 b4 b5 DOU CL 1 2 3 4 5 6 7 8 1 2 3 4 5 6 * tWAIT Data reading Data reading Fig. 20 Data Transmission Timing Diagram When data is read, a wait time “tWAIT” is necessary between the rising of the eighth clock that has set the command and the falling of the first clock that has read the data. NOTE: The wait time is adjustable according to different applications. 15 Switching Characteristic Waveform f OSC OSC 50 % Fig. 21a Switching Characteristic Waveform 52 of 63 11.04.2004 (V1.92) This specification is subject to change without further notice. ePVP6300 VFD Controller PWSTB STB PWCLK PWCLK t SETUP t HOLD t CLKSTB CLK Data in t PZL t PLZ Data out t TZH tTHZ 90% Sn/Gn 10% Fig. 21b Switching Characteristic Timing Diagram 15.1 Switching Characteristics (Ta = - 20 to + 70°C, VDD = 4.5 to 5.5V, VEE = VDD - 45V) Parameter Symbol Min. Typ. Max. Unit Oscillation frequency tOSC - 32.768 - KHz Propagation delay tPLZ - - 300 ns CLK→DOUT time tPZL - - 100 ns CL = 15pF, RL = 10KΩ 2 us tTZH1 Test Conditions SEG1/KS1 to SEG4/KS4, SG5/KS5 to SG9/KS9. CL = 100Pf GR1 to GR8 VEE=-25V GR9/SG20 to Rise time tTZH2 0.5 µs GR9/ SG13, GR17/SG12/KS12 to GR19/SG10/KS10 Fall time tTHZ 100 110 120 µs Data input clock freq. fmax - 1 1.25 MHz 15 pF CL = 100pF, VEE=-25V,SEGn, GRIDn Duty = 50 %, CLK Input capacitance CI Clock pulse width PWCLK 400 500 - ns Strobe pulse width PWSTB 0.8 1 - µs Data setup time tSETUP 100 - - ns Data hold time tHOLD 100 - - ns tCLKSTB 0.8 1 - µs CLK↑→STB↑ tWAIT - - - µs CLK↑→CLK↑* Clock-Strobe time Wait time This specification is subject to change without further notice. 11/04.2004 (V1.92)53 of 63 ePVP6300 VFD Controller 16 Serial I/F Sets Display Data Sequence 16.1 Updating Display Memory by Incrementing Address STB CLK Data input Command1 Command2 Command3 Data 1 Data n Command4 Fig. 22 incrementing Address Timing Diagram Where: Command 1 : Display mode Command 2 : Sets data Command 3 : Sets address Data 1 to n : Transfers display data (57 bytes max.) Command 4 : Controls display 16.2 Updating Specific Address STB CLK Data input Command2 Command3 Data Command3 Data n Fig. 23 Specific Address Timing Diagram Where: 54 of 63 Command 2 : Sets data Command 3 : Sets address Data : Display data 11.04.2004 (V1.92) This specification is subject to change without further notice. ePVP6300 VFD Controller 17 Application 17.1 VFD Controller for DVD Player Front-end Back-end Bitstream Servo Controller RF SDRAM MMU VPU 4 X86/51 /RISC APU STB,DIN,DOUT,CLK ePV6300 VFD Controller FLASH IR Fig. 23 Block Diagram for DVD Player Application 17.2 VFD Controller for Cascade Applaication Din,Dout,CLK,STB 4 I/O SPI 4 ePV6300 4 SPI SPI ePV300 ePV6300 DVD/DVR 27s~8s 28 28 Segment 1G~19G Grid Fig. 24 Block Diagram for Cascade Application This specification is subject to change without further notice. 11/04.2004 (V1.92)55 of 63 ePVP6300 VFD Controller 17.3 APPLICATION CIRCUIT R1 1k DOUT VDD CRYSTAL1 32.768KHz VDD VDD SPI connect R1 470k 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 OSCI PLLC NC62 NC61 DIN DOUT CLK STB GPIOC3 GPIOC2 GPIOC1 GPIOC0 GPIO97 GPIO96 GPIO95 GPIO94 OSCO CRYXRC VSS AVSS GPIOB0 GPIOB1 GPIOB2 GPIOB3 GPIOB4 GPIOB5 GPIOB6 AVDD VDD1 VDD2 GR1 GR2 ePV6300 LQFP GPIO93 GPIO92 GPIO91 GPIO90 /RESET VEE SG1/KS1 SG2/KS2 SG3/KS3 SG4/KS4 SG5/KS5 SG6/KS6 SG7/KS7 SG8/KS8 SG9/KS9 GR19/SG10/KS10 /RESET 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 C3 0.1uf /RESET VEE C2 0.1uf VSS 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 VSS 0.1uf C1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 GR3 GR4 GR5 GR6 GR7 GR8 GR9/SG20 GR10/SG19 GR11/SG18 GR12/SG17 GR13/SG16 GR14/SG15 GR15/SG14 GR16/SG13 GR17/SG12/KS12 GR18/SG11/KS11 AVDD 8P4R 100Ω DIN DOUT STB CLK VSS OSCI VSS VSS AVSS 1 2 3 4 5 VSS 27pf OSCO VSS C4 0.01uf C5 27pf 4 3 2 1 VSS C6 JP1 5 6 7 8 OSCO OSCI RN1 L1 VCC AVDD L2 C7 4.7uF/16V VSS C8 0.1uf AVSS INDUCTOR IRON (FB) 56 of 63 11.04.2004 (V1.92) This specification is subject to change without further notice. ePVP6300 VFD Controller Package Information (1) Package Type: Plastic LQFP-64 DETAIL " A " D D1 E L E1 L1 64 1 e Symbal A A1 A2 D D1 E E1 e c c1 b b1 L L1 Min 0.05 1.35 8.90 6.90 8.90 6.900 θ 0° 0.09 0.09 0.13 0.13 0.45 Normal 1.40 9.00 7.00 9.00 7.00 0.4 BSC 0.18 0.16 0.60 1.00 REF. 3.5° Max 1.60 0.15 1.45 9.10 7.10 9.10 7.100 0.20 0.16 0.23 0.19 0.75 7° A2 A b A1 DETAIL " B " c1 c b b1 This specification is subject to change without further notice. 11/04.2004 (V1.92)57 of 63