HYNIX GL494

GL494
GL494
PWM CONTROL CIRCUIT
Pin Configuration
Description
The GL494 incorporates on a single monolithic chip all the
functions required in the construction of a pulse-widthmodulation control circuit. Designed primarily for power
supply control, the GL494 contains an on-chip 5-volt
regulator, two error amplifiers, adjustable oscillator, deadtime control comparator, pulse-steering flip-flop, and
output-control circuitry. The uncommitted output
transistors pro-vide either common-emitter or emitterfollower output capability. Push-pull or single-ended
output operation may be selected through the outputcontrol function. The ar-chitecture of the GL494 prohibits
the possibility of either output being pulsed twice during
push-pull operation.
NONINV INPUT
1
16
NON INV INPUT
INV. INPUT
2
15
INV. INPUT
FEEDBACK
3
14
REF. OUT
4
13
OUTPUT CONTROL
Cr
5
12
Vcc
Rr
6
11
C2
GND
7
10
E2
C1
8
9
E1
DEAD TIME CONTROL
Features
— Complete PWM Power Control Circuitry
— Uncommitted Outputs for 200mA Sink or Source
— Output Control Selects Single-Ended or Push-Pull
Operation
— Internal Circuitry Prohibits Double Pulse at Either
Output
— Internal Regulator Provides a Stable 5V Reference
Supply
— Variable Dead-Time Provides Control Over Total
Range
Function Table
Output Control
Output Function
Grounded
Single-ended or Parallel Output
At Vref
Normal Push-Pull Operation
Block Diagram
RT
CT
OUTPUT
CONTROL
OSCILLATOR
(See Function Table)
DEAD
TIME
CONTROL
PULSE STEERING
FLIP FLOP
Q
0.1V
T
(4)
ERROR AMPLIFIERS
NONINVERTING(1)
+
INPUT
INVERTING
INPUT
(2)
INVERTING
INPUT
FEEDBACK
Q
PWM
COMPARATOR
(15)
E1(9) C1(8)
−
ERROR AMP1
NONINVERTING(16)
INPUT
(13)
+
−
VCC
(12)
REFERENCE
REGULATOR
ERROR AMP2
REF OUT
(14)
GND
(7)
(3)
1
E1(10) C2(11)
GL494
Absolute Maximum Ratings
Supply Voltage, VCC ……………………………………………………………………….. 41
Amplifier Input Voltage ……………………………………………………………….. VCC +0.3
Collector Output Voltage ……………………………………………………………………… 41
Continuous Total dissipation at (or below) 25 °C ………………………………………. 1000
Operating Free-Air Temperature Range ……………………………………………… -20 to 85
Storage Temperature Range ……………………………………………………….….. -65 to 150
Collector Output Current ………………………………………………………………….. 250
V
V
V
mW
°C
°C
mA
Recommended Operation Conditions
PARAMETER
MIN
MAX
UNIT
Supply Voltage, VCC
7
40
V
Amplifier Input Voltage, V1
-0.3
VCC -2
V
Collector Output Voltage, Vo
40
V
Collector Output Current
(Each Transistor)
200
mA
Current Into Feed back Terminal
0.3
mA
Timing Capacitor, C T
0.47
10,000
nF
Timing Resistor, R T
1.8
500
KΩ
Oscillator Frequency
1
300
KHz
°C
Operating Free-Air Temperature
-20
85
Electrical Characteristics (Temperature −20 ~ 85°C , VCC =15V, f=10KHz)
Reference Section
PARAMETER
TEST CONDITIONS
MIN
TYP(1)
MAX
UNIT
4.75
5
5.25
V
Output voltage ( Vref )
IO = 1mA
Input regulation
VCC = 7 V to 40V, TA = 25°C
2
25
mV
Output regulation
IO = 1 to 10mA, TA = 25°C
1
15
mV
Output Voltage change
with temperature
TA = −20°C to 85°C
0.2
1
%
Short-circuit
Output current(2)
Vref = 0
35
mA
Oscillator Section
PARAMETER
TEST CONDITIONS
MIN
TYP(1)
MAX
UNIT
Frequency
C T = 0.01µF , R T = 12 kΩ
10
KHz
Standard deviation
of frequency (3)
All values of VCC ,
C T , R T , TA Constant
10
%
Frequency change with
Voltage
VCC = 7 V to 40V, TA = 25°C
0.1
%
Frequency change with
temperature
C T = 0.01µF , R T = 12 kΩ
TA = −20°C to 85°C
2
2
%
GL494
Dead Time Control Section
PARAMETER
TEST CONDITIONS
Input bias current (pin 4)
VI=0 to 5.25V
Maximum duty cycle,
Each output
VI ( pin 4) =0V
Input threshold voltage
(pin 4)
MIN
TYP(1)
MAX
UNIT
-2
-10
µA
45
Zero duty cycle
%
3
Maximum duty cycle
3.3
0
V
V
Error Amp Sections
PARAMETER
TEST CONDITIONS
MIN
TYP(1)
MAX
UNIT
Input offset voltage
VO( PIN3) = 2.5V
2
10
mV
Input offset current
VO( PIN3) = 2.5V
25
250
nA
Input bias current
VO( PIN3) = 2.5V
0.2
1
µA
Common-mode input
voltage range
VCC = 7V to 40V
Open-loop voltage
Amplification
∆VO = 3V, VO = 0.5 to3.
5V
LOW
-0.3
HIGH
VCC − 2
70
Unity-gain bandwidth
V
95
dB
800
KHz
Common-mode rejection ratio
VCC = 40V , TA = 25°C
65
80
dB
Output sink current (pin 3)
VID = −15mV to –5V,
VO( pin 3) = 0.7V
0.3
0.7
mA
Output source current (pin 3)
VID = 15mV to 5V,
VO( pin 3) = 3.5V
-2
mA
PWM Comparaor Section
PARAMETER
TEST CONDITIONS
MIN
TYP(1)
MAX
UNIT
4
4.5
V
Input threshold voltage (pin 3)
Zero duty cycle
Input sink current (pin 3)
VO( pin 3) = 0.7V
0.3
0.7
TEST CONDITIONS
MIN
TYP(1)
MAX
UNIT
Common-emitter configuration,
See Test Circuit 3
100
200
ns
25
100
ns
Emitter-follower configuration,
See Test Circuit 4
100
200
ns
40
100
ns
mA
Switching Characteristics
PARAMETER
Output Voltage rise time
Output Voltage fall time
Output Voltage rise time
Output Voltage fall time
3
GL494
Output Section
PARAMETER
TEST CONDITIONS
Collector off-state current
VCE = 40V, VCC = 40V
Emitter off-state current
VCC = VC = 40V, VE = 0
MIN TYP(1) MAX UNIT
2
100
mA
-100
mA
Collector-emitter Common-emitter
Saturation voltage Emitter-follower
VE = 0, I C = 200mA
1.1
1.3
VC = 15V, I E = −200mA
1.5
2.5
Output control input current
VI = Vref
V
3.5
mA
TYP(1)
MAX
UNIT
VCC = 15V
6
10
mA
VCC = 40V
9
15
mA
Total Device
PARAMETER
Standby supply current
Average supply current
TEST CONDITIONS
All other inputs &
Outputs open
V( pin 4) = 2V
See Test circuit 1
MIN
7.5
Notes:
(1)
All typical values except for temperature coefficients are at TA = 25 °C
(2)
Duration of the short circuit should not exceed one second.
(3)
Standard deviation is a measure of the statistical distribution about the mean as derived from the formula
N
σ=
∑ (X n − X ) 2
n =1
N −1
4
mA
GL494
Parameter Measurement Information
1.Dead time and Feedback Control
Vcc=15V
TEST
INPUTS
0
Vcc
VOLTAGE
AT C2
OUTPUT 1
DEAD TIME (4)
(8) C1
(9) E1
12kΩ FEEDBACK (3)
Re (6)
Cr (5)
(11) C2
0.01µF
(+) (16) ERROR (12) E2
(-) (15)
AMP
(+) (1)
ERROR
(-) (2)
AMP
(14) REF
OUTPUT
50kΩ
CONTROL GND (7) OUT
Vcc
VOLTAGE
AT C1
150Ω 150Ω
2W 2W
0
OUTPUT 2
VOLTAGE
AT CT
THRESHOLD VOLTAGE
DEAD-TIME
CONTROL
INTPUT
(13)
FEEDBACK
0V
THRESHOLD VOLTAGE
0.7V
MAX
0%
DUTY
CYCLE
TEST CIRCUIT
MAX
VOLTAGE WAVEFORMS
2. Error Amplifier Characteristics
+
ERROR AMPLIFIER
UNDER TEST
FEEDBACK
TERMINAL
V1
–
+
VREF
–
OTHER
ERROR
AMPLIFIER
3. Common-Emitter Configuration
15V
(EACH OUTPUT
CIRCUIT)
68Ω
2W
90%
90%
OUTPUT
CL=15pF
(INCLUDES PROBE AND
JIG CAPACITANCE)
10%
tr
TEST CIRCUIT
10%
tf
OUTPUT VOLTAGE WAVEFORM
5
0%
GL494
4. Emitter-Follower Configuration
(EACH OUTPUT
EIRCUIT)
15V
90%
90%
10%
10%
OUTPUT
68Ω
2W
tr
tf
CL=15pF
(INCLUDES PROBE AND
JIG CAPACITANCE)
TEST CIRCUIT
OUTPUT VOLTAGE WAVEFORM
Typical Performance Curves
FIGURE 1 – OSCILLATOR FREQUENCY versus
TIMING RESISTANCE
100k
0.001 µF
10k
AVOL, OPEN-LOOP VOATAGE GAIN (db)
300k
Vcc=15V
CT=0.01 µF
1k
0.1 µF
100
0.1 µF
30
1k
2k
5k
10k
20k
50k
FIGURE 2 – OPEN LOOP VOLTAGE GAIN AND PHASE
versus FREQUENCY
20
100
100k 200k 500k 1M
90
0
70
AVOL
60
ACH OUTPUT
%DT. PERCENT DEADTIME, EACH OUTPUT
10
9
7
CT=0.01 µF
6
-40
-80
40
-100
30
-120
20
-140
10
-160
0
1.0
10
100
1k
10k
100k
-80
1M
f, FREQUENCY (Hz)
FIGURE 3 – PERCENT DEAD TIME
versus OSCILLATOR FREQUENCY
Vcc=15V
Voc=Vref
V(PIN4)=0V
-20
-60
θ
50
RT, TIMING RESISTANCE (Ω)
8
Vcc=15V
Vo=3V
RL=2kΩ
80
FIGURE 4 – PERCENT DUTY CYCLE versus
DEAD-TIME CONTROL VOLTAGE
50
Vcc=15V
Voc=Vref
1) CT=0.01
RT=10k
2) CT=0.001
RT=30K
40
30
1
5
20
4
2
3
0.01 µF
2
10
1
0
0
100
1k
10k
100k
0
fo, OSCILLATOR FREQUENCY (Hz)
1.0
2.0
DEAD TIME CONTROL VOLTAGE (V)
6
3.0
3.5
GL494
1.9
FIGURE 5 – EMITTER-FOLLOWER CONFIGURATION
OUTPUT-SATURATION VOLTAGE
versus EMITTER CURRENT
1.3
1.2
Vcc=15V
1.7
VCE(SAT), SATURATION VOLTAGE (V)
VCE(SAT), SATURATION VOLTAGE (V)
1.8
1.6
1.5
1.4
1.3
1.2
1.1
0
50
100
150
200
250
IE, EMITTER CURRENT (mA)
FUGURE 7 – STANDBY-SUPPLY CURRENT
versus SUPPLY VOLTAGE
8.0
Icc, SUPPLY CURRENT (mA)
FIGURE 6 – COMMON-EMITTER CONFIGURATION
OUTPUT-SATURATION VOLTAGE
versus COLLECTOR CURRENT
7.0
6.0
5.0
4.0
3.0
2.0
1.0
0
0
5.0
10
15
20
25
30
35
40
Vcc, SUPPLY VOLTAGE (V)
7
Vcc=15V
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0
50
100
150
200
Ic, COLLECTOR CURRENT (mA)
250