SN74LVCU04A HEX INVERTER www.ti.com SCAS282M – JANUARY 1993 – REVISED FEBRUARY 2005 FEATURES • • • • D, DB, DGV, NS, OR PW PACKAGE (TOP VIEW) Operates From 1.65 V to 3.6 V Inputs Accept Voltages to 5.5 V Max tpd of 3.8 ns Typical VOLP (Output Ground Bounce) <0.8 V at VCC = 3.3 V, TA = 25°C Typical VOHV (Output VOH Undershoot) >2 V at VCC = 3.3 V, TA = 25°C Inputs Accept Voltages to 5.5 V Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II ESD Protection Exceeds JESD 22 – 2000-V Human-Body Model (A114-A) – 200-V Machine Model (A115-A) – 1000-V Charged-Device Model (C101) • • • • 1A 1Y 2A 2Y 3A 3Y GND 1 14 2 13 3 12 4 11 5 10 6 9 7 8 VCC 6A 6Y 5A 5Y 4A 4Y DESCRIPTION/ORDERING INFORMATION This hex inverter is designed for 1.65-V to 3.6-V VCC operation. The SN74LVCU04A contains six independent inverters with unbuffered outputs and performs the Boolean function Y = A. Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of these devices as translators in a mixed 3.3-V/5-V system environment. ORDERING INFORMATION PACKAGE (1) TA Reel of 2500 SN74LVCU04ADR Reel of 250 SN74LVCU04ADT SOP – NS Reel of 2000 SN74LVCU04ANSR LVCU04A SSOP – DB Reel of 2000 SN74LVCU04ADBR LCU04A Tube of 90 SN74LVCU04APW Reel of 2000 SN74LVCU04APWR Reel of 250 SN74LVCU04APWT Reel of 2000 SN74LVCU04ADGVR TSSOP – PW TVSOP – DGV (1) TOP-SIDE MARKING SN74LVCU04AD SOIC – D –40°C to 85°C ORDERABLE PART NUMBER Tube of 50 LVCU04A LCU04A LCU04A Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. FUNCTION TABLE (EACH INVERTER) INPUT A OUTPUT Y H L L H Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Copyright © 1993–2005, Texas Instruments Incorporated SN74LVCU04A HEX INVERTER www.ti.com SCAS282M – JANUARY 1993 – REVISED FEBRUARY 2005 LOGIC DIAGRAM, EACH INVERTER (POSITIVE LOGIC) A Y Absolute Maximum Ratings (1) over operating free-air temperature range (unless otherwise noted) MIN MAX VCC Supply voltage range –0.5 6.5 V VI Input voltage range (2) –0.5 6.5 V –0.5 VCC + 0.5 range (2) (3) UNIT VO Output voltage IIK Input clamp current VI < 0 –50 mA IOK Output clamp current VO < 0 –50 mA IO Continuous output current ±50 mA ±100 mA Continuous current through VCC or GND D package 86 DB package θJA Tstg (1) (2) (3) (4) 2 Package thermal impedance (4) Storage temperature range V 96 DGV package 127 NS package 76 PW package 113 –65 150 °C/W °C Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed. The value of VCC is provided in the recommended operating conditions table. The package thermal impedance is calculated in accordance with JESD 51-7. SN74LVCU04A HEX INVERTER www.ti.com SCAS282M – JANUARY 1993 – REVISED FEBRUARY 2005 Recommended Operating Conditions (1) MIN MAX VCC VIH Operating Supply voltage 1.65 Data retention only High-level input voltage VCC = 1.65 V 1.32 VCC = 2.3 V 1.84 VCC = 2.7 V 2.16 VCC = 3 V V 2.88 VCC = 1.65 V Low-level input voltage V 2.4 VCC = 3.6 V VIL 3.6 1.5 UNIT 0.4 VCC = 2.3 V 0.5 VCC = 2.7 V to 3.6 V V 0.65 VI Input voltage 0 5.5 V VO Output voltage 0 VCC V VCC = 1.65 V IOH High-level output current –4 VCC = 2.3 V –8 VCC = 2.7 V –12 VCC = 3 V –24 VCC = 1.65 V IOL TA (1) Low-level output current mA 4 VCC = 2.3 V 8 VCC = 2.7 V 12 VCC = 3 V 24 Operating free-air temperature –40 85 mA °C All unused inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004. Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted) PARAMETER VOH VOL VCC MIN TYP (1) MAX VIL = 0 V 1.65 V to 3.6 V IOH = –4 mA, VIL = 0 V 1.65 V 1.2 IOH = –8 mA, VIL =0 V 2.3 V 1.7 2.7 V 2.2 V VIL = 0 V 3V 2.4 IOH = –24 mA, VIL = 0 V 3V 2.2 IOL = 100 µA, VIH = VCC 1.65 V to 3.6 V 0.2 IOL = 4 mA, VIH = VCC 1.65 V 0.45 IOL = 8 mA, VIH = VCC 2.3 V 0.7 IOL = 12 mA, VIH = VCC 2.7 V 0.4 IOL = 24 mA, VIH = VCC 3V 0.55 II VI = 5.5 V or GND VI = VCC or GND, IO = 0 ∆ICC One input at VCC – 0.6 V, Other inputs at VCC or GND VI = VCC or GND UNIT VCC – 0.2 IOH = –12 mA, ICC Ci (1) TEST CONDITIONS IOH = –100 µA, V 3.6 V ±5 µA 3.6 V 10 µA 2.7 V to 3.6 V 500 µA 3.3 V 5 pF All typical values are at VCC = 3.3 V, TA = 25°C. 3 SN74LVCU04A HEX INVERTER www.ti.com SCAS282M – JANUARY 1993 – REVISED FEBRUARY 2005 Switching Characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1) PARAMETER tpd FROM (INPUT) TO (OUTPUT) A Y VCC = 1.8 V ± 0.15 V VCC = 2.5 V ± 0.2 V VCC = 2.7 V VCC = 3.3 V ± 0.3 V UNIT MIN MAX MIN MAX MIN MAX MIN MAX 1 7.3 1 6.7 1 4.7 1 3.8 ns 1 ns tsk(o) Operating Characteristics TA = 25°C PARAMETER Cpd 4 Power dissipation capacitance per inverter TEST CONDITIONS VCC = 1.8 V VCC = 2.5 V VCC = 3.3 V TYP TYP TYP f = 10 MHz 3 4 5 UNIT pF SN74LVCU04A HEX INVERTER www.ti.com SCAS282M – JANUARY 1993 – REVISED FEBRUARY 2005 PARAMETER MEASUREMENT INFORMATION VLOAD S1 RL From Output Under Test CL (see Note A) Open GND RL TEST S1 tPLH/tPHL tPLZ/tPZL tPHZ/tPZH Open VLOAD GND LOAD CIRCUIT INPUTS VCC 1.8 V ± 0.15 V 2.5 V ± 0.2 V 2.7 V 3.3 V ± 0.3 V VI tr/tf VCC VCC 2.7 V 2.7 V ≤2 ns ≤2 ns ≤2.5 ns ≤2.5 ns VM VLOAD CL RL V∆ VCC/2 VCC/2 1.5 V 1.5 V 2 × VCC 2 × VCC 6V 6V 30 pF 30 pF 50 pF 50 pF 1 kΩ 500 Ω 500 Ω 500 Ω 0.15 V 0.15 V 0.3 V 0.3 V VI Timing Input VM 0V tw tsu VI Input VM VM th VI Data Input VM VM 0V 0V VOLTAGE WAVEFORMS PULSE DURATION VOLTAGE WAVEFORMS SETUP AND HOLD TIMES VI VM Input VM 0V tPLH VOH Output VM VOL tPHL VM VM 0V Output Waveform 1 S1 at VLOAD (see Note B) tPLH tPLZ VLOAD/2 VM tPZH VOH Output VM tPZL tPHL VM VI Output Control VM VOL VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS Output Waveform 2 S1 at GND (see Note B) VOL + V∆ VOL tPHZ VM VOH - V∆ VOH ≈0 V VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING NOTES: A. CL includes probe and jig capacitance. B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω. D. The outputs are measured one at a time, with one transition per measurement. E. tPLZ and tPHZ are the same as tdis. F. tPZL and tPZH are the same as ten. G. tPLH and tPHL are the same as tpd. H. All parameters and waveforms are not applicable to all devices. Figure 1. Load Circuit and Voltage Waveforms 5 PACKAGE OPTION ADDENDUM www.ti.com 9-Aug-2005 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing Pins Package Eco Plan (2) Qty SN74LVCU04AD ACTIVE SOIC D 14 SN74LVCU04ADBLE OBSOLETE SSOP DB 14 SN74LVCU04ADBR ACTIVE SSOP DB 14 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LVCU04ADBRE4 ACTIVE SSOP DB 14 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LVCU04ADE4 ACTIVE SOIC D 14 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LVCU04ADGVR ACTIVE TVSOP DGV 14 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LVCU04ADGVRE4 ACTIVE TVSOP DGV 14 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LVCU04ADR ACTIVE SOIC D 14 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LVCU04ADRE4 ACTIVE SOIC D 14 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LVCU04ADT ACTIVE SOIC D 14 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LVCU04ADTE4 ACTIVE SOIC D 14 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LVCU04ANSR ACTIVE SO NS 14 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LVCU04ANSRE4 ACTIVE SO NS 14 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LVCU04APW ACTIVE TSSOP PW 14 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LVCU04APWE4 ACTIVE TSSOP PW 14 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LVCU04APWG4 ACTIVE TSSOP PW 14 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LVCU04APWLE OBSOLETE TSSOP PW 14 SN74LVCU04APWR ACTIVE TSSOP PW 14 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LVCU04APWRE4 ACTIVE TSSOP PW 14 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LVCU04APWRG4 ACTIVE TSSOP PW 14 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LVCU04APWT ACTIVE TSSOP PW 14 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LVCU04APWTE4 ACTIVE TSSOP PW 14 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 50 Green (RoHS & no Sb/Br) TBD 50 TBD (1) Lead/Ball Finish CU NIPDAU Call TI Call TI MSL Peak Temp (3) Level-1-260C-UNLIM Call TI Call TI The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. Addendum-Page 1 PACKAGE OPTION ADDENDUM www.ti.com 9-Aug-2005 (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 2 MECHANICAL DATA MPDS006C – FEBRUARY 1996 – REVISED AUGUST 2000 DGV (R-PDSO-G**) PLASTIC SMALL-OUTLINE 24 PINS SHOWN 0,40 0,23 0,13 24 13 0,07 M 0,16 NOM 4,50 4,30 6,60 6,20 Gage Plane 0,25 0°–8° 1 0,75 0,50 12 A Seating Plane 0,15 0,05 1,20 MAX PINS ** 0,08 14 16 20 24 38 48 56 A MAX 3,70 3,70 5,10 5,10 7,90 9,80 11,40 A MIN 3,50 3,50 4,90 4,90 7,70 9,60 11,20 DIM 4073251/E 08/00 NOTES: A. B. C. D. All linear dimensions are in millimeters. This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side. Falls within JEDEC: 24/48 Pins – MO-153 14/16/20/56 Pins – MO-194 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MECHANICAL DATA MSSO002E – JANUARY 1995 – REVISED DECEMBER 2001 DB (R-PDSO-G**) PLASTIC SMALL-OUTLINE 28 PINS SHOWN 0,38 0,22 0,65 28 0,15 M 15 0,25 0,09 8,20 7,40 5,60 5,00 Gage Plane 1 14 0,25 A 0°–ā8° 0,95 0,55 Seating Plane 2,00 MAX 0,10 0,05 MIN PINS ** 14 16 20 24 28 30 38 A MAX 6,50 6,50 7,50 8,50 10,50 10,50 12,90 A MIN 5,90 5,90 6,90 7,90 9,90 9,90 12,30 DIM 4040065 /E 12/01 NOTES: A. B. C. D. All linear dimensions are in millimeters. This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion not to exceed 0,15. Falls within JEDEC MO-150 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MECHANICAL DATA MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999 PW (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE 14 PINS SHOWN 0,30 0,19 0,65 14 0,10 M 8 0,15 NOM 4,50 4,30 6,60 6,20 Gage Plane 0,25 1 7 0°– 8° A 0,75 0,50 Seating Plane 0,15 0,05 1,20 MAX PINS ** 0,10 8 14 16 20 24 28 A MAX 3,10 5,10 5,10 6,60 7,90 9,80 A MIN 2,90 4,90 4,90 6,40 7,70 9,60 DIM 4040064/F 01/97 NOTES: A. B. C. D. All linear dimensions are in millimeters. This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion not to exceed 0,15. Falls within JEDEC MO-153 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Applications Amplifiers amplifier.ti.com Audio www.ti.com/audio Data Converters dataconverter.ti.com Automotive www.ti.com/automotive DSP dsp.ti.com Broadband www.ti.com/broadband Interface interface.ti.com Digital Control www.ti.com/digitalcontrol Logic logic.ti.com Military www.ti.com/military Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork Microcontrollers microcontroller.ti.com Security www.ti.com/security Telephony www.ti.com/telephony Video & Imaging www.ti.com/video Wireless www.ti.com/wireless Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265 Copyright 2005, Texas Instruments Incorporated