VITESSE VSC6464

VITESSE
SEMICONDUCTOR CORPORATION
Advance Product Information
64x64 Crosspoint Switch
VSC6464
Features
• Synchronous or Asynchronous Operation
• Single Ended ECL I/O
• 500Mb/s Asynchronous Operation
• Separate Input and Output Register Clocks
• 250Mb/s Synchronous Operation
• Single Supply: -2V + 5% @ 8 Watts (Max.)
• <750ps Output to Output Skew (Synchronous)
• Commercial (0o to +70oC) Temperature Range
• <1.5ns Skew Input to Output (Asynchronous)
• Package: 208PQFP
General Description
The VSC6464 is a 64x64 asynchronous (flow-through) or synchronous (clocked) high-speed crosspoint
switch. Any input can be multiplexed to any, some, or all outputs. The switch is fully non-blocking. All I/Os are
single-ended ECL. The part is packaged in a 208-pin plastic quad flat pack and consumes less than 8 Watts from
a single -2V power supply.
In the asynchronous mode, high speed digital data up to 500Mb/s can be switched with less than 25% pulse
width distortion. Skew is less than 1.5 ns between any two paths through the switch. In broadcast operation (one
input routed to two or more outputs), any two outputs will exhibit less than 750ps of skew.
In the synchronous mode, high-speed digital data up to 250 Mb/s can be switched with less than 750ps output-to-output skew. The input and output registers have separate clock inputs.
VSC6464 Functional Block Diagram
MODE
DIN<63:0>
2:1
MUX
2:1
MUX
64 x 64:1
MUX
REG
DOUT<63:0>
REG
CKI
CKO
SERS
SERD
SERC
G52219-0, Rev. 2.0
8/4/98
SERIAL
TO
PARALLEL
DEC
64 6-BIT
REGISTERS
 VITESSE SEMICONDUCTOR CORPORATION
741 Calle Plano, Camarillo, CA 93012 • 805/388-3700 • FAX: 805/987-5896
Page 1
VITESSE
SEMICONDUCTOR CORPORATION
Advance Product Information
64x64 Crosspoint Switch
VSC6464
Functional Description
This Crosspoint Switch connects any of the 64 inputs to any combination of 64 output channels, according
to a user defined bit pattern stored in each channel’s control register.
Signals from the 64 inputs (DIN_0 through DIN_63) are connected to the 64 output channels (DOUT_0
through DOUT_63) through sixty-four 64:1 multiplexers. The traffic pattern is controllable by data stored in
sixty-four 6-bit control registers with each register corresponding to an output channel. The six bits are a binary
numerical representation of the input channel selected (i.e.: 000000 corresponds to DIN_0, 000001 corresponds
to DIN_1, etc.). An additional six bit register is used to address the output channel being programmed. These six
bits are a binary numerical representation of the output channel (ie.: 000000 corresponds to DOUT_0, 000001
corresponds to DOUT_1, etc.). All twelve configuration bits are loaded through a three-pin serial port.
The crosspoint is configured through a serial data port consisting of three pins: SERS, SERC, and SERD.
SERS is used to select the crosspoint for configuration. SERC is a serial clock signal whose rising edge samples
the serial data on SERD when SERS is active (HI). The serial data stream applied to SERD consists of the six
bits of address, followed by the six bits of data. Address information is used to identify one of the 64 output
channels, a valid value is between 0 and 63. Data information selects a specific input to be directed to the
addressed output, valid values are between 0 and 63. Both address and data information are received MSB first.
A serial load cycle consists of activating serial select (SERS), pulsing serial clock 12 times (with valid data surrounding each rising edge), then deactivating serial select (SERS). Deactivating serial select before the twelfth
rising edge of SERC will abort the load cycle. Serial select (SERS) must be deactivated for 10ns following a
power up. Any additional clocking of SERC during a load cycle, beyond that described above, is ignored.
The MODE pin determines the operating mode of the Crosspoint: synchronous or asynchronous, as shown
in Table 1.
A test output (TESTO) is provided for internal visibility, this signal will go high when a thirteenth rising
edge is applied during a load cycle; TESTO goes low when either SERS is lowered, or a fourteenth SERC edge
is received during a load cycle. This output can be left unconnected if desired, to reduce noise and power dissipation.
Table 1: Crosspoint Mode (MODE)
Function
Page 2
MODE
Asynchronous 64x64
0
Synchronous 64x64
1
 VITESSE SEMICONDUCTOR CORPORATION
741 Calle Plano, Camarillo, CA 93012 • 805/388-3700 • FAX: 805/987-5896
G52219-0, Rev. 2.0
8/4/98
VITESSE
SEMICONDUCTOR CORPORATION
Advance Product Information
64x64 Crosspoint Switch
VSC6464
AC Characteristics (Over recommended operating conditions)
Figure 1 Output Loading
Output
4pF
50Ω
VTT
Figure 2 VSC6464 Configuration Timing Diagram
SERC
TSH
TSS
SERS
TDS TDH
SERD
A5
A4
A3
A2
A1
A0
D5
D4
D3
D2
D1
D0
Note: A5 is MSB of A<5:0>, D5 is MSB of D<5:0>.
Table 2: VSC6464 Asynchronous Timing Table
Parameters
Description
Min
Typ
Max
Units
TSS
SERS setup time with respect to SERC
10
-
-
ns
TSH
SERS hold time with respect to SERC
10
-
-
ns
TDS
SERD setup time with respect to SERC
10
-
-
ns
TDH
SERD setup time with respect to SERC
10
-
-
ns
G52219-0, Rev. 2.0
8/4/98
 VITESSE SEMICONDUCTOR CORPORATION
741 Calle Plano, Camarillo, CA 93012 • 805/388-3700 • FAX: 805/987-5896
Page 3
VITESSE
SEMICONDUCTOR CORPORATION
Advance Product Information
64x64 Crosspoint Switch
VSC6464
Figure 3 VSC6464 Asynchronous Timing Diagram
T PW
DIN<63:0>
T AMX
DOUT<63:0>
TAMN TASKW
Table 3: VSC6464 Asynchronous Timing Table
Parameters
Description
Min
Typ
Max
Units
TPW
Minimum DIN<63:0> pulse width, 50% input
1.25
-
-
ns
TAMX
DIN<63:0> to DOUT<63:0> propagation delay
-
-
6.5
ns
TAMN
DIN<63:0> to DOUT<63:0> propagation delay
2.2
-
-
ns
TASKW
DOUT<63:0> asynchronous mode data skew (any input
to any output, add 0.1 for SSO)
-
-
1.4
ns
TASKW
DOUT<63:0> asynchronous mode data skew (broadcast,
add 0.1 for SSO)
-
-
0.75
ns
Duty Cycle Distortion, @500Mb/s(1)
-
-
25
%
-
Note: 1.) Duty cycle distortion = (duty cycle in - duty cyle out)/duty cycle in * 100%, measured with a 2ns pulse width.
Figure 4 VSC6464 Synchronous Data Input Timing Diagram
CKI
TINSU T INH
DIN<63:0>
Table 4: VSC6464 Synchronous Data Input Timing Table
Parameters
Page 4
Description
Min
Typ
Max
Units
-
-
250
MHz
FMAX
Maximum CKI frequency, 50% input
TINSU
DIN<63:0> data setup time with respect to CKI
0.5
-
-
ns
TINH
DIN<63:0> data hold time with respect to CKI
0.4
-
-
ns
 VITESSE SEMICONDUCTOR CORPORATION
741 Calle Plano, Camarillo, CA 93012 • 805/388-3700 • FAX: 805/987-5896
G52219-0, Rev. 2.0
8/4/98
VITESSE
SEMICONDUCTOR CORPORATION
Advance Product Information
64x64 Crosspoint Switch
VSC6464
Figure 5 VSC6464 Synchronous Data Output Timing Diagram
CKO
T SMX
DOUT<63:0>
TSMN TSSKW
Table 5: VSC6464 Synchronous Data Output Timing Table
Parameters
Description
Min
Typ
Max
Units
FMAX
Maximum CKO frequency, 50% input
-
-
250
MHz
TSMX
Maximum propagation delay CKO toDOUT<63:0>
-
-
3.7
ns
TSMN
Minimum propagation delay CKO to DOUT<63:0>
1.4
-
-
ns
TSSKW
DOUT<63:0> synchronous mode data skew
(add 0.1 for SSO)
-
-
0.75
ns
Figure 6 VSC6464 Synchronous Mode Clock Relationship
T
CKI
TCC
CKO
Table 6: VSC6464 Synchronous Data Output Timing Table
Parameters
TCC
Description
CKO relative to CKI, 50% input
Min
Typ
Max
Units
0.1
-
0.8
ns
Note: A nominal delay of 0.25 ns between input and output clocks can be achieved by a trace on the pc board run directly from
the input clock pin to the output clock pin. In this case, the clock signal should be connected to the input pin with the delay
supplied by the pc board trace.
G52219-0, Rev. 2.0
8/4/98
 VITESSE SEMICONDUCTOR CORPORATION
741 Calle Plano, Camarillo, CA 93012 • 805/388-3700 • FAX: 805/987-5896
Page 5
VITESSE
SEMICONDUCTOR CORPORATION
Advance Product Information
64x64 Crosspoint Switch
VSC6464
DC Characteristics
Table 7: ECL Inputs and Outputs
Parameter
VOH
VOL
VIH
VIL
IIH
IIL
Description
Min
Typ
Max
Units
Conditions
Output HIGH voltage
-1020
-
-700
mV
-
Output LOW voltage
-2000
-
-1620
mV
-
Input HIGH voltage
-1100
-
-700
mV
-
Input LOW voltage
-2000
-
-1540
mV
-
Input HIGH current
-
-
200
uA
VIN=VIH (max)
Input LOW current
-50
-
-
uA
VIN=VIL (min)
Power Dissipation
Table 8: VSC6464 Power Supply Currents
Parameter
Description
ITT
Power supply current from VTT
PD
Power dissipation (Note: Specified with outputs open circuit.)
(Max)
Units
3.8
A
8
W
Absolute Maximum Ratings(1)
Power Supply Voltage (VTT) Potential to GND ............................................................................. -2.5 V to +0.5 V
ECL Input Voltage Applied ................................................................................................... +0.5 V to VTT -0.5 V
Output Current (IOUT) ................................................................................................................................... 50 mA
Case Temperature Under Bias (TC) ................................................................................................-55o to + 125oC
Storage Temperature (TSTG)............................................................................................................-65o to + 150oC
Note: Caution: Stresses listed under “Absolute Maximum Ratings” may be applied to devices one at a time without causing permanent damage. Functionality at or exceeding the values listed is not implied. Exposure to these values for extended periods may affect device reliability.
Recommended Operating Conditions
Power Supply Voltage (VTT) ................................................................................................................ -2.0 V+0.1V
Commercial Operating Temperature Range* (T) .................................................................................. 0o to 70oC
* Lower limit of specification is ambient temperature and upper limit is case temperature.
ESD Ratings
Proper ESD procedures should be used when handling this product. The VSC6464 is rated to the following
ESD voltages based on the human body model:
1. All pins are rated at or above 1500V.
Notes: 1) Load=50Ω to -2.0V.
Page 6
 VITESSE SEMICONDUCTOR CORPORATION
741 Calle Plano, Camarillo, CA 93012 • 805/388-3700 • FAX: 805/987-5896
G52219-0, Rev. 2.0
8/4/98
VITESSE
SEMICONDUCTOR CORPORATION
Advance Product Information
64x64 Crosspoint Switch
VSC6464
Pin Descriptions
Table 9: Pin Identification
Signal
Pin
VCC
2-5, 15, 18, 24, 28, 29, 35, 38, 4851, 61-63, 69, 72, 75, 79, 82, 85, 88,
94-96, 106-109, 119, 122, 128, 132,
133, 139, 142, 152-155, 165-167,
173, 176, 179, 183, 186, 189, 192,
198-200
0V Ground Connection.
VTT
8, 21, 27, 32, 45, 57, 78, 100, 112,
125, 131, 136, 149, 161, 182, 204
-2V Supply Connection.
DIN_0-DIN_63
156-160, 162-164, 201-203, 205207, 1, 12-14, 16-17, 19-20, 22-23,
25, 30-31, 33-34, 36-37, 39-40, 5256, 58-60, 97-99, 101-105, 118,
120-121, 123-124, 126-127, 129,
134-135, 137-138, 140-141, 143
I
The 64 ECL Signal Inputs.
DOUT_0DOUT_63
10-9, 7-6, 197-193, 191-190, 188187, 185-184, 181-180, 178-177,
175-174, 172-168, 151-150, 148145, 116-113, 111, 93-89, 87-86,
84-83, 81-80, 77-76, 74-73, 71-70,
68-64, 47-46, 44-42
O
The 64 ECL Signal Outputs.
SERS
117
I
ECL Serial Select Signal
SERC
11
I
ECL Serial Clock Signal.
SERD
41
I
ECL Serial Data Signal.
CKI
26
I
ECL Synchronous Mode Input Register Clock Signal.
CKO
130
I
ECL Synchronous Mode Output Register Clock
Signal.
MODE
144
I
ECL Synchronous Mode Enable Signal.
TESTO
110
O
do not use.
VSCTE
208
I
test input, connect to -2V for normal operation
G52219-0, Rev. 2.0
8/4/98
I/O
Description
 VITESSE SEMICONDUCTOR CORPORATION
741 Calle Plano, Camarillo, CA 93012 • 805/388-3700 • FAX: 805/987-5896
Page 7
VITESSE
SEMICONDUCTOR CORPORATION
Advance Product Information
64x64 Crosspoint Switch
VSC6464
Package Information
The VSC6464 is packaged in a 208 PQFP with an integral heat sink as shown in the figure below.
208 PQFP Package Drawing
HEATSINK INTRUSION
NOTE 1
157
PIN 208
PIN 1
Key
156
E1
52
105
53
104
D1
D
TOP VIEW
e
10°
E
mm
Tolerances
A
4.07
MAX
A1
0.25
MIN
A2
3.49
±.10
D
30.60
±.4
D1
28.00
±.10
E
30.60
±.4
E1
28.00
±.10
L
0.60
+.15/-.10
e
0.50
BASIC
b
0.22
±.05
θ
0° - 10°
R1
.15
TYP
R
.25
MAX
A2
10°
R
R1
0° MIN
A
A1
0.25
θ
0.17 MAX
L
NOTES:
(1) Exposed Heatspreader will be either
20.32 ±.50 round or 12.0 ± .50 square
(2) Drawing not to scale.
Package #: 101-228-6, Issue #:1
b
Page 8
 VITESSE SEMICONDUCTOR CORPORATION
741 Calle Plano, Camarillo, CA 93012 • 805/388-3700 • FAX: 805/987-5896
G52219-0, Rev. 2.0
8/4/98
VITESSE
SEMICONDUCTOR CORPORATION
Advance Product Information
64x64 Crosspoint Switch
VSC6464
Thermal Information
Figure 7 ΘCA vs Air Velocity for the 208 PQFP (28mmx28mmx3.2mm)
Case to Air Thermal Resistance
(oC/W)
25
20
Air Vel.
LFPM
Theta(ca)
oC/W
15
0
21.8
10
100
15.8
200
13.8
400
10.7
600
9.5
5
0
200
400
600
Air Velocity (LFPM)
ΘCA measurement method: Semi-standard G38-87, in a wind tunnel
Semi-standard G42-88/JEDEC JC 15.1 #1 FR4 PCB 3”x4.5”x0.62”
0
Notice
This document contains information about a product during its fabrication or early sampling phase of development. The information contained in this document is based on design targets, simulation results or early prototype test results. Characteristic data and other specifications are subject to change without notice. Therefore
the reader is cautioned to confirm that this datasheet is current prior to design or order placement.
Warning
Vitesse Semiconductor Corporation’s product are not intended for use in life support appliances, devices or
systems. Use of a Vitesse product in such applications without written consent is prohibited.
G52219-0, Rev. 2.0
8/4/98
 VITESSE SEMICONDUCTOR CORPORATION
741 Calle Plano, Camarillo, CA 93012 • 805/388-3700 • FAX: 805/987-5896
Page 9
VITESSE
SEMICONDUCTOR CORPORATION
Advance Product Information
64x64 Crosspoint Switch
VSC6464
Application Notes
Figure 8 Multiple-Crosspoint Synchronous System Configuration
SYSTEM_CK
CKO
CKI
REG
REG
XPNT0
DATA_OUT
SERS
SERC
DOUT
SERD
DIN
SERS
SERD
SERC
MODE
DATA_IN
XPNT_0_SEL
SERIAL_CK
MODE = ‘1’
SERIAL_DATA
XPNT_1_SEL
MODE
XPNT1
CKI
DIN
REG
DOUT
DATA_OUT
CKO
REG
DATA_IN
SYSTEM_CK
High-speed designs using single-ended ECL signals need careful design to avoid noise and crosstalk problems. The following suggestions can aid obtaining a reliable system:
1. Wide noise margins on input signals.
2. Avoid SSOs. Simultaneous switching outputs will degrade timing margins by increasing AC delay values, and reducing noisethresholds.
3. Provide good signal terminations and well-matched board traces in addition to well-controlled power
supplies.
Page 10
 VITESSE SEMICONDUCTOR CORPORATION
741 Calle Plano, Camarillo, CA 93012 • 805/388-3700 • FAX: 805/987-5896
G52219-0, Rev. 2.0
8/4/98