[AKD4390-SA] AKD4390-SA AK4390 Sound quality evaluation board Rev.2 General Description AKD4390-SA is an evaluation board, which is 32Bit ΔΣDAC. The AKD4390-SA includes a LPF which can add differential analog outputs from the AK4390 and also has a digital interface. Therefore, it is evaluate sound quality of the AK4390. Ordering Guide AKD4390-SA --- Sound quality evaluation board for AK4390 Function On-board Analog output buffer circuit On-board digital audio interface. (AK4115) 2nd Order LPF Lch DIR COAX In AK4115 AK4390 Opt In Rch Figure 1. Block diagram * Circuit diagram are attached at the end of this manual. COAX is recommended for an evaluation of the Sound quality. <KM093004> 1 2009/02 [AKD4390-SA] Operation sequence 1) Set up the power supply lines. (See “Other jumpers set-up”.) Name Color Voltage +15V Red +12∼+15V -15V Blue -12∼-15V AGND Black 0V Comments Regulator, Power supply for Op-amp. Attention This jack is always needed. Power line Power supply for Op-amp. This jack is always needed. Power line GND This jack is always needed. Table 1. Set up of power supply lines Each supply line should be distributed from the power supply unit. 2) Set-up the jumper pins 3) Set-up the DIP switches. (See the followings.) 4) Power on The AK4390 should be reset once bringing SW3 (PDN) “L” upon power-up. <KM093004> 2 2009/02 [AKD4390-SA] Evaluation mode 1. DIR(COAX) (default) The DIR generates MCLK, BICK, LRCK and SDATA from the received data through BNC connector (J7). It is possible for the evaluation using such as CD test disk. Setting:R87 = open; R88 = short (0Ω) COAX is recommended for an evaluation of the Sound quality. 2. DIR(Optical) The DIR generates MCLK, BICK, LRCK and SDATA from the received data through Optical connector (PORT2). It is possible for the evaluation using such as CD test disk. Setting:R87 = short (0Ω); 3. R88 = open All clocks are fed through the PORT1. Setting: -R54, R55, R56, R58 = open -R50, R51, R52 = 100Ω; R53 = 5.1Ω DIP Switch setting [SW1]: AK4115 setting No. Pin 1 2 OCKS1 OCKS0 OFF ON Master Clock setting of AK4115 Refer to Table 4 Default ON OFF Table 2. SW1 setting [SW2]: AK4390 setting No. Pin OFF ON Default 1 2 P/S Serial mode Parallel mode OFF Table 3. SW2 setting <KM093004> 3 2009/02 [AKD4390-SA] The frequency of the master clock output is set by OCKS0 and OCKS1 as shown in Table 4. OCKS1 OFF ON ON OCKS0 OFF OFF ON MCLK Frequency 256fs @fs=88.2/96kHz 512fs @fs=32/44.1/48kHz 128fs @fs=176.4/192kHz (Default) Table 4. MCLK Setting SW3 setting [SW3](PDN): Reset of AK4390. Select “H” during operation. External Analog Circuit The differential output circuit and LPF is implemented on board. The differential outputs of AK4390 is buffered by non-inverted circuit(2nd st order LPF, fc=106.4k, Q=0.698, G=+3.9dB). LPF adds differential outputs(1 order LPF, fc=284k, G=-0.84dB). LME49710NA is used for op-amp on this board that has low noise and high voltage torelance characteristics. Analog signal is output via BNC connectors on the board. The output level is about 2.8Vrms (typ@VREF=5.0V) by BNC. +15 6.8n + 220 AOUTL- + 6.8n 10k 220 LME49710NA 7 3 2 + 4 -15 10u 0.1u 6 + 10u 620 620 6.8n + 220 3 + 2 - 6.8n 2 - 4 3 + 7 Lch 1.0n LME49710NA 10u 6 4 680 100 6 0.1u + 1.2k 10k AOUTL+ + 220 LME49710NA 7 100u +10u 1.0n 1.2k 680 0.1u 560 0.1u 560 100u 0.1u 10u + 10u 0.1u Figure 2. External Analog Filter AKD4390-SA 40kHz (Double) 80kHz (quad) Filter Internal Filter -0.3dB -1dB External LPF -0.12dB -1.3dB Total -0.42dB -2.3dB This table shows typical value. Table 5. Frequency Responses <KM093004> 4 2009/02 [AKD4390-SA] Control Software Manual Set-up of evaluation board and control software 1. Set up the AKD4390-SA according to previous term. 2. Connect IBM-AT compatible PC with AKD4390-SA by 10-line type flat cable (packed with AKD4390-SA). Take care of the direction of 10pin header. (Please install the driver in the CD-ROM when this control software is used on Windows 2000/XP. Please refer “Installation Manual of Control Software Driver by AKM device control software”. In case of Windows95/98/ME, this installation is not needed. This control software does not operate on Windows NT.) 3. Insert the CD-ROM labeled “AKD4390-SA Evaluation Kit” into the CD-ROM drive. 4. Access the CD-ROM drive and double-click the icon of “akd4390-SA.exe” to set up the control program. 5. Then please evaluate according to the follows. Operation flow Keep the following flow. 1. Set up the control program according to explanation above. 2. Click “Port Reset” button. Explanation of each buttons 1. [Port Reset] : 2. [Write default] : 3. [All Write] : 4. [Function1] : 5. [Function2] : 6. [Function3] : 7. [Function4] : 8. [Function5]: 9. [SAVE] : 10. [OPEN] : 11. [Write] : Set up the USB interface board (AKDUSBIF-A) . Initialize the register of AK4390. Write all registers that is currently displayed. Dialog to write data by keyboard operation. Dialog to write data by keyboard operation. The sequence of register setting can be set and executed. The sequence that is created on [Function3] can be assigned to buttons and executed. The register setting that is created by [SAVE] function on main window can be assigned to buttons and executed. Save the current register setting. Write the saved values to all register. Dialog to write data by mouse operation. Indication of data Input data is indicated on the register map. Red letter indicates “H” or “1” and blue one indicates “L” or “0”. Blank is the part that is not defined in the datasheet. <KM093004> 5 2009/02 [AKD4390-SA] Explanation of each dialog 1. [Write Dialog] : Dialog to write data by mouse operation There are dialogs corresponding to each register. Click the [Write] button corresponding to each register to set up the dialog. If you check the check box, data becomes “H” or “1”. If not, “L” or “0”. If you want to write the input data to AK4390, click [OK] button. If not, click [Cancel] button. 2. [Function1 Dialog] : Dialog to write data by keyboard operation Address Box: Data Box: Input registers address in 2 figures of hexadecimal. Input registers data in 2 figures of hexadecimal. If you want to write the input data to AK4390, click [OK] button. If not, click [Cancel] button. 3. [Function2 Dialog] : Dialog to evaluate ATT Address Box: Input registers address in 2 figures of hexadecimal. Start Data Box: Input starts data in 2 figures of hexadecimal. End Data Box: Input end data in 2 figures of hexadecimal. Interval Box: Data is written to AK4390 by this interval. Step Box: Data changes by this step. Mode Select Box: If you check this check box, data reaches end data, and returns to start data. [Example] Start Data = 00, End Data = 09 Data flow: 00 01 02 03 04 05 06 07 08 09 09 08 07 06 05 04 03 02 01 00 If you do not check this check box, data reaches end data, but does not return to start data. [Example] Start Data = 00, End Data = 09 Data flow: 00 01 02 03 04 05 06 07 08 09 If you want to write the input data to AK4390, click [OK] button. If not, click [Cancel] button. <KM093004> 6 2009/02 [AKD4390-SA] 4. [Save] and [Open] 4-1. [Save] Save the current register setting data. The extension of file name is “akr”. (Operation flow) (1) Click [Save] Button. (2) Set the file name and push [Save] Button. The extension of file name is “akr”. 4-2. [Open] The register setting data saved by [Save] is written to AK4390. The file type is the same as [Save]. (Operation flow) (1) Click [Open] Button. (2) Select the file (*.akr) and Click [Open] Button. <KM093004> 7 2009/02 [AKD4390-SA] 5. [Function3 Dialog] The sequence of register setting can be set and executed. (1) Click [F3] Button. (2) Set the control sequence. Set the address, Data and Interval time. Set “-1” to the address of the step where the sequence should be paused. (3) Click [Start] button. Then this sequence is executed. The sequence is paused at the step of Interval="-1". Click [START] button, the sequence restarts from the paused step. This sequence can be saved and opened by [Save] and [Open] button on the Function3 window. The extension of file name is “aks”. Figure 3. Window of [F3] <KM093004> 8 2009/02 [AKD4390-SA] 6. [Function4 Dialog] The sequence that is created on [Function3] can be assigned to buttons and executed. When [F4] button is clicked, the window as shown in Figure opens. Figure 4. [F4] window <KM093004> 9 2009/02 [AKD4390-SA] 6-1. [OPEN] buttons on left side and [START] buttons (1) Click [OPEN] button and select the sequence file (*.aks). The sequence file name is displayed as shown in Figure . Figure 5. [F4] window(2) (2) Click [START] button, then the sequence is executed. 6-2. [SAVE] and [OPEN] buttons on right side [SAVE] : The sequence file names can assign be saved. The file name is *.ak4. [OPEN] : The sequence file names assign that are saved in *.ak4 are loaded. 6-3. Note (1) This function doesn't support the pause function of sequence function. (2) All files need to be in same folder used by [SAVE] and [OPEN] function on right side. (3) When the sequence is changed in [Function3], the file should be loaded again in order to reflect the change. <KM093004> 10 2009/02 [AKD4390-SA] 7. [Function5 Dialog] The register setting that is created by [SAVE] function on main window can be assigned to buttons and executed. When [F5] button is clicked, the following window as shown in Figure opens. Figure 6. [F5] window 7-1. [OPEN] buttons on left side and [WRITE] button (1) Click [OPEN] button and select the register setting file (*.akr). (2) Click [WRITE] button, then the register setting is executed. 7-2. [SAVE] and [OPEN] buttons on right side [SAVE] : The register setting file names assign can be saved. The file name is *.ak5. [OPEN] : The register setting file names assign that are saved in *.ak5 are loaded. 7-3. Note (1) All files need to be in same folder used by [SAVE] and [OPEN] function on right side. (2) When the register setting is changed by [Save] Button in main window, the file should be loaded again in order to reflect the change. <KM093004> 11 2009/02 [AKD4390-SA] Measurement Results [Measurement condition] • Measurement unit • MCLK • BICK • fs • Bit • Power Supply • Interface • Temperature • Operational Amplifiers : Audio Precision System two Cascade (AP2) : 512fs (44.1kHz), 256fs (96kHz), 128fs (192kHz) : 64fs : 44.1kHz, 96kHz, 192kHz : 24bit : AVDD= DVDD=5V : Internal DIR : Room : LME49710NA fs=44.1kHz Parameter Input signal Measurement filter S/(N+D) DR 1kHz, 0dB 1kHz, -60dB 20kLPF S/N “0” data 20kLPF, A-weighted 20kLPF 20kLPF, A-weighted Parameter Input signal Measurement filter S/(N+D) DR 1kHz, 0dB 1kHz, -60dB 80kLPF S/N “0” data 80kLPF, A-weighted 80kLPF 80kLPF, A-weighted Parameter Input signal Measurement filter S/(N+D) DR 1kHz, 0dB 1kHz, -60dB 80kLPF S/N “0” data Results Lch 104.0 116.1 118.3 116.2 118.5 Rch 103.9 116.1 118.2 116.2 118.5 fs=96kHz Results Lch Rch 103.0 113.0 118.2 113.1 118.3 102.9 113.0 118.2 113.2 118.5 fs=192kHz <KM093004> 80kLPF, A-weighted 80kLPF 80kLPF, A-weighted 12 Results Lch 102.6 112.9 118.2 113.2 118.3 Rch 102.7 112.9 118.2 113.1 118.5 2009/02 [AKD4390-SA] Plots (fs=44.1kHz) AKM AK4390 FFT fs=44.1kHz,0dBFS input 03/05/08 20:00:17 +0 -10 -20 -30 -40 -50 -60 -70 d B r -80 A -100 -90 -110 -120 -130 -140 -150 -160 -170 -180 20 50 100 200 500 1k 2k 5k 10k 20k Hz Figure 1 FFT (fin=1kHz, Input Level=0dBFS) AKM AK4390 FFT fs=44.1kHz,-60dBFS input 03/05/08 20:09:03 +0 -10 -20 -30 -40 -50 -60 -70 d B r -80 A -100 -90 -110 -120 -130 -140 -150 -160 -170 -180 20 50 100 200 500 1k 2k 5k 10k 20k Hz Figure 2 <KM093004> FFT (fin=1kHz, Input Level=-60dBFS) 13 2009/02 [AKD4390-SA] (fs=44.1kHz) AKM AK4390 FFT fs=44.1kHz,No signal input 03/05/08 20:09:46 +0 -10 -20 -30 -40 -50 -60 -70 d B r -80 A -100 -90 -110 -120 -130 -140 -150 -160 -170 -180 20 50 100 200 500 1k 2k 5k 10k 20k Hz Figure 3 FFT (Noise Floor) AKM AK4390 FFT Out of band noise fs=44.1kHz,No signal input 03/05/08 20:11:26 +0 -10 -20 -30 -40 -50 -60 -70 d B r -80 A -100 -90 -110 -120 -130 -140 -150 -160 -170 -180 20 50 100 200 500 1k 2k 5k 10k 20k 50k 100k Hz Figure 4 FFT (Out of band noise) <KM093004> 14 2009/02 [AKD4390-SA] (fs=44.1kHz) AKM AK4390 THD+N vs. Input Level fs=44.1kHz,fin=1kHz 03/05/08 20:15:06 -80 -85 -90 -95 -100 d B r A -105 -110 -115 -120 -125 -130 -135 -140 -140 -130 -120 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 +0 dBFS Figure 5 THD+N vs. Input level (fin=1kHz) AKM AK4390 THD+N vs. Input Frequency fs=44.1kHz,0dBFS Input 03/05/08 20:19:13 -80 -85 -90 -95 -100 d B r A -105 -110 -115 -120 -125 -130 -135 -140 20 50 100 200 500 1k 2k 5k 10k 20k Hz Figure 6 THD+N vs. Input Frequency (Input level=0dBFS) <KM093004> 15 2009/02 [AKD4390-SA] (fs=44.1kHz) AKM AK4390 Linearity fs=44.1kHz,fin=1kHz 03/05/08 20:29:50 +0 -10 -20 -30 -40 -50 -60 d B r -70 -80 A -90 -100 -110 -120 -130 -140 -150 -150 -140 -130 -120 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 +0 dBFS Figure 7 Linearity (fin=1kHz) AKM AK4390 Frequency Response fs=44.1kHz,0dBFS Input 08/05/08 15:09:13 +1 +0.8 +0.6 +0.4 +0.2 +0 -0.2 d B r A -0.4 -0.6 -0.8 -1 -1.2 -1.4 -1.6 -1.8 -2 2k 4k 6k 8k 10k 12k 14k 16k 18k 20k Hz Figure 8 Frequency Response (Input level=0dBFS) <KM093004> 16 2009/02 [AKD4390-SA] (fs=44.1kHz) AKM AK4390 Crosstalk fs=44.1kHz,0dBFS Input 03/05/08 20:37:56 +0 -10 -20 -30 -40 -50 -60 d B -70 -80 -90 -100 -110 -120 -130 -140 -150 20 50 100 200 500 1k 2k 5k 10k 20k Hz Figure 9 Crosstalk (Input level=0dBFS) <KM093004> 17 2009/02 [AKD4390-SA] (fs=96kHz) AKM AK4390 FFT fs=96kHz,0dBFS Input 03/05/08 20:41:54 +0 -10 -20 -30 -40 -50 -60 -70 d B r -80 A -100 -90 -110 -120 -130 -140 -150 -160 -170 -180 20 50 100 200 500 1k 2k 5k 10k 20k 40k Hz Figure 10 FFT (fin=1kHz, Input Level=0dBFS) AKM AK4390 FFT fs=96kHz,-60dBFS Input 03/05/08 20:42:53 +0 -10 -20 -30 -40 -50 -60 -70 d B r -80 A -100 -90 -110 -120 -130 -140 -150 -160 -170 -180 20 50 100 200 500 1k 2k 5k 10k 20k 40k Hz Figure 11 FFT (fin=1kHz, Input Level=-60dBFS) <KM093004> 18 2009/02 [AKD4390-SA] (fs=96kHz) AKM AK4390 FFT fs=96kHz,No signal input 03/05/08 20:43:29 +0 -10 -20 -30 -40 -50 -60 -70 d B r -80 A -100 -90 -110 -120 -130 -140 -150 -160 -170 -180 20 50 100 200 500 1k 2k 5k 10k 20k 40k Hz Figure 12 FFT (Noise Floor) AKM AK4390 THD+N vs. Input level fs=96kHz,fin=1kHz 03/05/08 20:46:00 -80 -85 -90 -95 -100 d B r A -105 -110 -115 -120 -125 -130 -135 -140 -140 -130 -120 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 +0 dBFS Figure 13 THD+N vs. Input level (fin=1kHz) <KM093004> 19 2009/02 [AKD4390-SA] (fs=96kHz) AKM AK4390 THD+N vs. Input Frequency fs=96kHz,0dBFS Input 03/05/08 20:48:30 -80 -85 -90 -95 -100 d B r A -105 -110 -115 -120 -125 -130 -135 -140 20 50 100 200 500 1k 2k 5k 10k 20k 40k Hz Figure 14 THD+N vs. Input Frequency (Input level=0dBFS) AKM AK4390 Linearity fs=96kHz,fin=1kHz 03/05/08 20:54:14 +0 -10 -20 -30 -40 -50 -60 d B r -70 -80 A -90 -100 -110 -120 -130 -140 -150 -150 -140 -130 -120 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 +0 dBFS Figure 15 Linearity (fin=1kHz) <KM093004> 20 2009/02 [AKD4390-SA] (fs=96kHz) AKM AK4390 Frequency Response fs=96kHz,0dBFS Input 08/05/08 15:11:25 +1 +0.8 +0.6 +0.4 +0.2 +0 -0.2 d B r A -0.4 -0.6 -0.8 -1 -1.2 -1.4 -1.6 -1.8 -2 2.5k 5k 7.5k 10k 12.5k 15k 17.5k 20k 22.5k 25k 27.5k 30k 32.5k 35k 37.5k 40k Hz Figure 16 Frequency Response (Input level=0dBFS) AKM AK4390 Crosstalk fs=96kHz,0dBFS Input 03/05/08 21:00:20 +0 -10 -20 -30 -40 -50 -60 d B -70 -80 -90 -100 -110 -120 -130 -140 -150 20 50 100 200 500 1k 2k 5k 10k 20k 40k Hz Figure 17 Crosstalk (Input level=0dBFS) <KM093004> 21 2009/02 [AKD4390-SA] (fs=192kHz) AKM AK4390 FFT fs=192kHz,0dBFS Input 03/05/08 21:03:43 +0 -10 -20 -30 -40 -50 -60 -70 d B r -80 A -100 -90 -110 -120 -130 -140 -150 -160 -170 -180 20 50 100 200 500 1k 2k 5k 10k 20k 50k 80k Hz Figure 18 FFT (fin=1kHz, Input Level=0dBFS) AKM AK4390 FFT fs=192kHz,-60dBFS 03/05/08 21:15:25 +0 -10 -20 -30 -40 -50 -60 -70 d B r A -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 20 50 100 200 500 1k 2k 5k 10k 20k 50k 80k Hz Figure 19 FFT (fin=1kHz, Input Level=-60dBFS) <KM093004> 22 2009/02 [AKD4390-SA] (fs=192kHz) AKM AK4390 FFT fs=192kHz,No Signal Input 03/05/08 21:12:43 +0 -10 -20 -30 -40 -50 -60 -70 d B r -80 A -100 -90 -110 -120 -130 -140 -150 -160 -170 -180 20 50 100 200 500 1k 2k 5k 10k 20k 50k 80k Hz Figure 20 FFT (Noise Floor) AKM AK4390 THD+N vs. Input Level fs=192kHz,fin=1kHz 03/05/08 21:25:24 -80 -85 -90 -95 -100 d B r A -105 -110 -115 -120 -125 -130 -135 -140 -140 -130 -120 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 +0 dBFS Figure 21 THD+N vs. Input level (fin=1kHz) <KM093004> 23 2009/02 [AKD4390-SA] (fs=192kHz) AKM AK4390 THD+N vs. Input Frequency fs=192kHz,0dBFS Input 03/05/08 21:28:13 -80 -85 -90 -95 -100 d B r A -105 -110 -115 -120 -125 -130 -135 -140 20 50 100 200 500 1k 2k 5k 10k 20k 50k 80k Hz Figure 22 THD+N vs. Input Frequency (Input level=0dBFS) AKM AK4390 Linearity fs=192kHz,fin=1kHz 03/06/08 12:02:35 +0 -10 -20 -30 -40 -50 d B r -60 -70 A -80 -90 -100 -110 -120 -130 -130 -120 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 +0 dBFS Figure 23 Linearity (fin=1kHz) <KM093004> 24 2009/02 [AKD4390-SA] (fs=192kHz) AKM AK4390 Frequency Response fs=192kHz,0dBFS Input 08/05/08 15:13:37 +1 +0.8 +0.6 +0.4 +0.2 +0 -0.2 d B r A -0.4 -0.6 -0.8 -1 -1.2 -1.4 -1.6 -1.8 -2 -2.2 5k 10k 15k 20k 25k 30k 35k 40k 45k 50k 55k 60k 65k 70k 75k 80k Hz Figure 24 Frequency Response (Input level=0dBFS) AKM AK4390 Crosstalk fs=192kHz,0dBFS Input 03/05/08 21:52:41 +0 -10 -20 -30 -40 -50 -60 d B -70 -80 -90 -100 -110 -120 -130 -140 -150 20 50 100 200 500 1k 2k 5k 10k 20k 50k 80k Hz Figure 25 Crosstalk (Input level=0dBFS) <KM093004> 25 2009/02 [AKD4390-SA] Revision History Date (YY/MM/DD) 08/07/18 Manual Revision KM093002 Board Revision 2 08/08/05 09/02/27 KM093003 KM093004 2 2 Reason Page Contents First edition Change 8,16,24 Change 1 Modification 12 Figure 8, 16 and 24 were changed. Block Diagram was changed. Update of measurement results. IMPORTANT NOTICE • These products and their specifications are subject to change without notice. Before considering any use or application, consult the Asahi Kasei EMD Corporation (EMD) sales office or authorized distributor concerning their current status. • EMD assumes no liability for infringement of any patent, intellectual property, or other right in the application or use of any information contained herein. • Any export of these products, or devices or systems containing them, may require an export license or other official approval under the law and regulations of the country of export pertaining to customs and tariffs, currency exchange, or strategic materials. • EMD products are neither intended nor authorized for use as critical components in any safety, life support, or other hazard related device or system, and EMD assumes no responsibility relating to any such use, except with the express written consent of the Representative Director of EMD. As used here: a. A hazard related device or system is one designed or intended for life support or maintenance of safety or for applications in medicine, aerospace, nuclear energy, or other fields, in which its failure to function or perform may reasonably be expected to result in loss of life or in significant injury or damage to person or property. b. A critical component is one whose failure to function or perform may reasonably be expected to result, whether directly or indirectly, in the loss of the safety or effectiveness of the device or system containing it, and which must therefore meet very high standards of performance and reliability. • It is the responsibility of the buyer or distributor of an EMD product who distributes, disposes of, or otherwise places the product with a third party to notify that party in advance of the above content and conditions, and the buyer or distributor agrees to assume any and all responsibility and liability for and hold EMD harmless from any and all claims arising from the use of said product in the absence of such notification. <KM093004> 26 2009/02 5 4 3 VCC_R VCC_R 2 1 VCC_R C47 10u D + D PORT1 C49 0.1u C48 0.1u MCLK BICK LRCK SDTO 1 2 3 4 5 10 9 8 7 6 18 17 B U C 20 19 VOUT 22 21 TVDD TXP1 TX0 23 24 TXN1 25 TVSS 26 XTI1 27 XTO1 28 XTO2 XTI2 29 30 OVDD EBICK VCC_R OVSS 32 31 EXT C50 0.1u R50 R51 R52 R53 (open) (open) (open) (open) VREFHL R54 33 EMCK LRCK 16 34 ELRCK SDTO 15 R49 100 5.1 VREFHL R55 100 R100 R56 MCKO2 11 39 OCKS1/CCLK/SCL MCKO1 10 40 OCKS0/CSN/CAD0 DVSS 9 41 DVDD DAUX 8 C57 C66 10u 42 DVSS VIN 7 43 BVSS DVDD 6 XSEL/RX7 5 + 0.1u 19 20 VSS2(VSSL) AOUTLN AVDD 21 22 23 24 MCLK 25 26 28 27 DVDD VCC_R C68 0.1u PDN AK4115 C67 0.1u VSS3(AVSS) + VSS4(DVSS) VCC_R BICK/DCLK 10k 10u C61 R60 (short) (short) + C64 0.1u 0.1u 0.1u SDATA/DSDL R62 10k R59 10u C62 10u C63 30 38 LRCK/DSDR R61 C60 C59 + 4 C58 10p 17 CM1/CDTI/SDA R58 C65 10u C 16 12 VREFLL OVDD VREFHL CM0/CDTO/CAD1 1M 18 OVSS 37 (short) R57 AOUTLP AOUTLN VDDL INT1 13 5.1 OCKS1 OCKS0 3 (short) 100 36 L C 14 + SW1 DSS102 BICK 29 H INT0 AOUTLP 2 1 35 R101 VREFHL R63 1M U8 R65 AK4390 VREFHR VREFLR 15 14 VDDR VSS1(VSSR) 13 12 AOUTRN 10 11 AOUTRP ACKS/DZFR 9 PSN 8 R67 100 (short) R68 C70 0.1u C72 R69 (short) (short) R71 R102 1M (short) U7 MVDD OUT C77 0.1u C81 10u R74 R73 + VCC_R 3 4 R76 (open) VCC_R SW2 R75 10k (open) C83 0.1u NJM78M05 C200 100u GND T4 + C78 4.7u + B VREFHR AOUTRP AOUTRN C76 0.1u R72 10k C71 10u 0.1u 10u 1 IPS0/RX4 64 RX3 AVDD 63 AVSS 62 61 RX2 AVDD 60 59 RX1 58 RXP0 AVSS 57 56 55 54 53 P/SN AVDD VCOM 52 51 50 R AVSS 49 RXN0 DIF0/RX5 ACKS FILT VREFHR + 48 (short) R64 1M C69 R70 B DIF2 2 DIF1/DZFL TEST 7 XTL1 DIF0/CAD1 47 R66 6 3 5 DIF1/RX6 DEM1/CDT1 XTL0 DEM0/CCLK 46 4 4 3 PDN DFS0/CAD0 PSEL 2 45 1 IPS1/IIC + VCC_R SMUTE/CSN 5.1 44 IN C79 0.1u C80 0.1u + C82 470u 2 1 open P/S R77 R78 (open) 1M U9 + C85 0.1u C84 10u 8 16 R79 12 4Y 9 3Y 7 2Y G A/B 15 1 4B 4A 3B 3A 2B 2A 1B 1A 13 14 10 11 6 5 3 2 1 (short) GND VCC 4 K L1 R83 D1 HSU119 A 47u PORT3 10k 1Y 74LVC157 U10 2 1 TORX141 C87 0.1u + C86 10u R87 L (open) H SW3 C88 J7 C89 0.1u COAX BNC-R-PC R88 0 0.1u 2 ATE1D-2M3 AK4115,AK4390-PDN R89 75 1A 2A 3A 4A 5A 6A VCC GND 1Y 2Y 3Y 4Y 5Y 6Y 2 4 6 8 10 12 T5 74HC14 OUT C93 0.1u C90 0.1u uPC3533 GND GND OUT 1 3 5 9 11 13 14 7 1 3 3 VCC 470 R81 470 R82 CDTI CCLK 470 R84 10k 2 A PORT2 R80 CSN 1 3 5 7 9 2 4 6 8 10 uP-I/F A R85 10k R86 10k VCC_R MVDD IN C91 0.1u C92 47u + Title Size A2 Date: 5 4 3 2 AKD4390-SA Document Number Rev 2 Main Sheet Friday, July 18, 2008 1 1 of 3 5 4 3 2 1 C1 6.8n 2 C5 6.8n - LME49710NA R6 620 C6 open R8 680 R12 1200 C7 open R10 short D 2 6 3 R9 620 C10 100p C8 short U2 LME49710NA R15 560 R11 100 R14 open 7 C9 100p C4 1n R7 short + 7 C3 100p R5 10k 6 4 C2 100u D R4 560 U1 + 4 + 3 + R3 220 - R2 220 AOUTLP C12 1n J1 LOUT C11 open C13 6.8n + 7 R19 220 C R20 10k C16 6.8n + 2 - C15 100p U3 6 R21 LME49710NA 4 C14 100u 3 R22 5.1 C 5.1 C21 100p R24 1200 C17 0.1u + C18 C19 10u 0.1u + R23 680 T-45 C20 10u J3 -15V C22 100p C23 470u + R29 220 6.8n R30 C29 220 7 10k R25 AOUTRN C30 100u 3 + 2 - 10u C25 0.1u C26 + 10u C27 R26 R27 5.1 U4 5.1 T-45 6 J4 LME49710NA +15V 4 C31 100p + 0.1u C24 C28 6.8n + R18 220 AOUTLN B B R33 560 C36 open C37 open R38 short 2 6 + 7 R44 220 AOUTRP R46 10k C42 100p 3 + 2 - R45 560 LME49710NA C43 1n R39 100 R41 open J6 ROUT C40 open 6 LME49710NA 4 C41 100u R37 620 U6 7 3 R43 220 C39 short U5 + C38 6.8n R36 short 4 R35 620 C34 100p + R34 1200 - C33 100p C32 470u C35 1n + R31 680 MVDD C44 6.8n A A C45 100p R48 1200 R47 680 C46 100p Title Size A3 Date: 5 4 3 2 AKD4390-SA Document Number Rev 2 External LPF Friday, July 18, 2008 Sheet 1 2 of 3 5 4 3 MVDD 2 Q1 BCP 56 1 VREFHL D D R90 R91 270 200 R103 1 R92 C107 100p D2 C96 0.1u + 3.83k C94 100u C95 0.1u DIODE ZENER1 U11 R93 510 C108 1 NC NC 8 2 -IN V+ 7 3 +IN OUT 6 4 V- NC 5 100p + C + AD817A/AD C97 100u C99 470u C112 Q2 SB1188 CSC C106 100p C + D3 C98 100u R94 3.6k C100 100u R95 3.6k 200p DIODE ZENER1 200p + + 470u C101 DIODE ZENER1 D4 C109 100p C102 100u B + C113 U12 1 NC 8 -IN V+ 7 +IN OUT 6 NC 5 NC 2 C111 3 100p 4 V- B Q3 SB1188 CSC AD817A/AD R96 510 D5 DIODE ZENER1 C110 R104 1 R97 R98 270 200 100p C103 0.1u R99 3.83k + C104 0.1u C105 100u A A VREFHR Q4 BCP 56 MVDD Title Size A3 Date: 5 4 3 2 AKD4390-SA Document Number Rev 2 Puwer Supply Unit Friday, July 18, 2008 Sheet 1 3 of 3