TI SN74LV367APWTE4

SCLS398G − APRIL 1998 − REVISED APRIL 2005
D 2-V to 5.5-V VCC Operation
D Max tpd of 7 ns at 5 V
D Typical VOLP (Output Ground Bounce)
D
D
D
1OE
1A1
1Y1
1A2
1Y2
1A3
1Y3
GND
<0.8 V at VCC = 3.3 V, TA = 25°C
Typical VOHV (Output VOH Undershoot)
>2.3 V at VCC = 3.3 V, TA = 25°C
Support Mixed-Mode Voltage Operation on
All Ports
Latch-Up Performance Exceeds 100 mA Per
JESD 78, Class II
ESD Protection Exceeds JESD 22
− 2000-V Human-Body Model (A114-A)
− 200-V Machine Model (A115-A)
− 1000-V Charged-Device Model (C101)
1
16
2
15
3
14
4
13
5
12
6
11
7
10
8
9
VCC
2OE
2A2
2Y2
2A1
2Y1
1A4
1Y4
SN54LV367A . . . FK PACKAGE
(TOP VIEW)
1A1
1OE
NC
VCC
2OE
D
SN54LV367A . . . J OR W PACKAGE
SN74LV367A . . . D, DB, DGV, NS, OR PW PACKAGE
(TOP VIEW)
description/ordering information
1Y1
1A2
NC
1Y2
1A3
4
3 2 1 20 19
18
5
17
6
16
7
15
8
14
9 10 11 12 13
2A2
2Y2
NC
2A1
2Y1
1Y3
GND
NC
1Y4
1A4
The ’LV367A devices are hex buffers and line
drivers designed for 2-V to 5.5-V VCC operation.
These devices are designed specifically to
improve both the performance and density of
3-state memory address drivers, clock drivers,
and bus-oriented receivers and transmitters.
The ’LV367A devices are organized as dual 4-line
and 2-line buffers/drivers with active-low
output-enable (1OE and 2OE) inputs. When OE is
low, the device passes noninverted data from the
A inputs to the Y outputs. When OE is high, the
outputs are in the high-impedance state.
NC − No internal connection
To ensure the high-impedance state during power up or power down, OE should be tied to VCC through a pullup
resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
ORDERING INFORMATION
SN74LV367AD
Reel of 2500
SN74LV367ADR
SOP − NS
Reel of 2000
SN74LV367ANSR
74LV367A
SSOP − DB
Reel of 2000
SN74LV367ADBR
LV36A
Reel of 2000
SN74LV367APWR
Reel of 250
SN74LV367APWT
TVSOP − DGV
Reel of 2000
SN74LV367ADGVR
LV367A
CDIP − J
Tube of 25
SNJ54LV367AJ
SNJ54LV367AJ
CFP − W
Tube of 150
SNJ54LV367AW
SNJ54LV367AW
LCCC − FK
Tube of 55
SNJ54LV367AFK
TSSOP − PW
−55°C
−55
C to 125
125°C
C
TOP-SIDE
MARKING
Tube of 40
SOIC − D
−40°C
−40
C to 85
85°C
C
ORDERABLE
PART NUMBER
PACKAGE†
TA
LV367A
LV367A
SNJ54LV367AFK
† Package drawings, standard packing quantities, thermal data, symbolization, and PCB design
guidelines are available at www.ti.com/sc/package.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright  2005, Texas Instruments Incorporated
!"#$% !%&% '
%()#&% !"))$% & ( *"+,!&% &$- )"! !%()# *$!(!&% *$) $ $)# ( $.& %)"#$% &%&) /&))&%0)"!% *)!$%1 $ % %$!$&),0 %!,"$ $%1 ( &,,
*&)&#$$)POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
SCLS398G − APRIL 1998 − REVISED APRIL 2005
FUNCTION TABLE
(each buffer/driver)
INPUTS
OE
A
OUTPUT
Y
L
H
H
L
L
L
H
X
Z
logic diagram (positive logic)
1OE
1A1
1
2
2OE
3
1Y1
2A1
15
12
To Three Other Channels
11
2Y1
To One Other Channel
Pin numbers shown are for the D, DB, DGV, J, NS, PW, and W packages.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage range, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 7 V
Input voltage range, VI (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 7 V
Voltage range applied to any output in the high-impedance or
power-off state, VO (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 7 V
Output voltage range applied in the high or low state, VO (see Notes 1 and 2) . . . . . . −0.5 V to VCC + 0.5 V
Input clamp current, IIK (VI < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −20 mA
Output clamp current, IOK (VO < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −50 mA
Continuous output current, IO (VO = 0 to VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±35 mA
Continuous current through VCC or GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±70 mA
Package thermal impedance, θJA (see Note 3): D package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73°C/W
DB package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82°C/W
DGV package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120°C/W
NS package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64°C/W
PW package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108°C/W
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.
2. This value is limited to 5.5 V maximum.
3. The package thermal impedance is calculated in accordance with JESD 51-7.
2
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SCLS398G − APRIL 1998 − REVISED APRIL 2005
recommended operating conditions (see Note 4)
SN54LV367A
VCC
VIH
Supply voltage
High-level input voltage
VIL
Low-level input voltage
VI
Input voltage
VO
Output voltage
IOH
IOL
∆t/∆v
High-level output current
Low-level output current
Input transition rise or fall rate
VCC = 2 V
VCC = 2.3 V to 2.7 V
VCC = 3 V to 3.6 V
VCC = 4.5 V to 5.5 V
SN74LV367A
MIN
MAX
2
5.5
1.5
MIN
MAX
2
5.5
VCC × 0.7
VCC × 0.7
VCC × 0.7
VCC × 0.7
0.5
0
High or low state
0
3-state
0
VCC × 0.3
5.5
VCC
5.5
V
0.5
VCC × 0.3
VCC × 0.3
VCC = 3 V to 3.6 V
VCC = 4.5 V to 5.5 V
V
1.5
VCC × 0.7
VCC × 0.7
VCC = 2 V
VCC = 2.3 V to 2.7 V
UNIT
VCC × 0.3
VCC × 0.3
0
0
0
VCC × 0.3
5.5
V
V
VCC
5.5
V
µA
VCC = 2 V
VCC = 2.3 V to 2.7 V
−50
−50
−2
−2
VCC = 3 V to 3.6 V
VCC = 4.5 V to 5.5 V
−8
−8
−16
−16
VCC = 2 V
VCC = 2.3 V to 2.7 V
50
50
2
2
VCC = 3 V to 3.6 V
VCC = 4.5 V to 5.5 V
8
8
16
16
VCC = 2.3 V to 2.7 V
VCC = 3 V to 3.6 V
200
200
100
100
VCC = 4.5 V to 5.5 V
20
20
mA
µA
mA
ns/V
TA
Operating free-air temperature
−55
125
−40
85
°C
NOTE 4: All unused inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report,
Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
' %()#&% !%!$)% *)"! % $ ()#&2$ )
$1% *&$ ( $2$,*#$%- '&)&!$)! && &% $)
*$!(!&% &)$ $1% 1&,- $.& %)"#$% )$$)2$ $ )1 !&%1$ ) !%%"$ $$ *)"! /" %!$-
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
3
SCLS398G − APRIL 1998 − REVISED APRIL 2005
electrical characteristics over recommended operating free-air temperature range (unless
otherwise noted)
SN54LV367A
PARAMETER
VOH
VOL
TEST CONDITIONS
IOH = −50 µA
IOH = −2 mA
VCC
MIN
2 V to 5.5 V
IOL = 50 µA
IOL = 2 mA
IOL = 8 mA
IOL = 16 mA
MAX
MIN
VCC−0.1
2
VCC−0.1
2
3V
2.48
2.48
4.5 V
3.8
2.3 V
IOH = −8 mA
IOH = −16 mA
SN74LV367A
TYP
TYP
MAX
UNIT
V
3.8
2 V to 5.5 V
0.1
0.1
2.3 V
0.4
0.4
3V
0.44
0.44
4.5 V
0.55
0.55
0 to 5.5 V
±1
±1
µA
5.5 V
±5
±5
µA
20
20
µA
5
µA
V
II
IOZ
VI = 5.5 V or GND
VO = VCC or GND
ICC
Ioff
VI = VCC or GND, IO = 0
VI or VO = 0 to 5.5 V
5.5 V
Ci
VI = VCC or GND
VI = VCC or GND
3.3 V
3
3
pF
3.3 V
5.2
5.2
pF
Co
0
5
switching characteristics over recommended operating
VCC = 2.5 V ± 0.2 V (unless otherwise noted) (see Figure 1)
PARAMETER
FROM
(INPUT)
TO
(OUTPUT)
tpd
ten
A
Y
OE
Y
tdis
OE
Y
tpd
ten
A
OE
tdis
OE
LOAD
CAPACITANCE
free-air
TA = 25°C
MIN
TYP
MAX
temperature
SN54LV367A
range,
SN74LV367A
MIN
MAX
MIN
MAX
6.4*
12.7*
1*
16*
1
16
6.9*
14.9*
1*
20*
1
20
6.4*
14.9*
1*
20*
1
20
Y
8.6
17.5
1
21
1
21
Y
9.4
19.7
1
25
1
25
10.1
19.7
1
25
1
25
CL = 15 pF
CL = 50 pF
Y
tsk(o)
2
UNIT
ns
ns
2
* On products compliant to MIL-PRF-38535, this parameter is not production tested.
switching characteristics over recommended operating
VCC = 3.3 V ± 0.3 V (unless otherwise noted) (see Figure 1)
PARAMETER
FROM
(INPUT)
TO
(OUTPUT)
LOAD
CAPACITANCE
TA = 25°C
MIN
TYP
MAX
temperature
SN54LV367A
MIN
MAX
MIN
MAX
A
Y
4.7*
8.3*
1*
10*
1
10
OE
Y
5.1*
10.5*
1*
12.5*
1
12.5
tdis
OE
Y
4.9*
10.5*
1*
12.5*
1
12.5
tpd
ten
A
Y
6.2
11.8
1
13.5
1
13.5
OE
Y
6.8
14
1
16
1
16
tdis
OE
7.3
13.6
1
15.5
1
15.5
Y
CL = 15 pF
CL = 50 pF
tsk(o)
1.5
' %()#&% !%!$)% *)"! % $ ()#&2$ )
$1% *&$ ( $2$,*#$%- '&)&!$)! && &% $)
*$!(!&% &)$ $1% 1&,- $.& %)"#$% )$$)2$ $ )1 !&%1$ ) !%%"$ $$ *)"! /" %!$-
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
range,
SN74LV367A
tpd
ten
* On products compliant to MIL-PRF-38535, this parameter is not production tested.
4
free-air
1.5
UNIT
ns
ns
SCLS398G − APRIL 1998 − REVISED APRIL 2005
switching characteristics over recommended operating
VCC = 5 V ± 0.5 V (unless otherwise noted) (see Figure 1)
PARAMETER
FROM
(INPUT)
TO
(OUTPUT)
tpd
ten
A
Y
OE
Y
tdis
OE
tpd
A
ten
OE
Y
tdis
OE
LOAD
CAPACITANCE
MIN
free-air
TA = 25°C
TYP
MAX
temperature
SN54LV367A
MIN
range,
SN74LV367A
MAX
MIN
MAX
3.6*
5.9*
1*
7*
1
7
3.8*
7.2*
1*
8.5*
1
8.5
Y
2.6*
7.2*
1*
8.5*
0
8.5
Y
4.5
7.9
1
9
1
9
4.9
9.2
1
10.5
1
10.5
4.5
9.2
1
10.5
0
10.5
CL = 15 pF
CL = 50 pF
Y
tsk(o)
1
UNIT
ns
ns
1
* On products compliant to MIL-PRF-38535, this parameter is not production tested.
noise characteristics, VCC = 3.3 V, CL = 50 pF, TA = 25°C (see Note 5)
SN74LV367A
PARAMETER
MIN
TYP
MAX
UNIT
VOL(P)
VOL(V)
Quiet output, maximum dynamic VOL
0.5
0.8
V
Quiet output, minimum dynamic VOL
−0.2
−0.8
V
VOH(V)
VIH(D)
Quiet output, minimum dynamic VOH
3
High-level dynamic input voltage
V
2.31
V
VIL(D)
Low-level dynamic input voltage
NOTE 5: Characteristics are for surface-mount packages only.
0.99
V
VCC
3.3 V
TYP
UNIT
5V
17.4
operating characteristics, TA = 25°C
PARAMETER
Cpd
Power dissipation capacitance
TEST CONDITIONS
CL = 50 pF,
f = 10 MHz
14.9
pF
' %()#&% !%!$)% *)"! % $ ()#&2$ )
$1% *&$ ( $2$,*#$%- '&)&!$)! && &% $)
*$!(!&% &)$ $1% 1&,- $.& %)"#$% )$$)2$ $ )1 !&%1$ ) !%%"$ $$ *)"! /" %!$-
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5
SCLS398G − APRIL 1998 − REVISED APRIL 2005
PARAMETER MEASUREMENT INFORMATION
From Output
Under Test
RL = 1 kΩ
From Output
Under Test
Test
Point
S1
VCC
Open
TEST
GND
CL
(see Note A)
CL
(see Note A)
S1
tPLH/tPHL
tPLZ/tPZL
tPHZ/tPZH
Open Drain
Open
VCC
GND
VCC
LOAD CIRCUIT FOR
3-STATE AND OPEN-DRAIN OUTPUTS
LOAD CIRCUIT FOR
TOTEM-POLE OUTPUTS
VCC
50% VCC
Timing Input
tw
tsu
VCC
50% VCC
Input
50% VCC
0V
th
VCC
50% VCC
Data Input
50% VCC
0V
0V
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
VOLTAGE WAVEFORMS
PULSE DURATION
VCC
50% VCC
Input
50% VCC
tPLH
In-Phase
Output
tPHL
50% VCC
tPHL
Out-of-Phase
Output
0V
VOH
50% VCC
VOL
Output
Waveform 1
S1 at VCC
(see Note B)
VOH
50% VCC
VOL
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
INVERTING AND NONINVERTING OUTPUTS
50% VCC
50% VCC
0V
tPLZ
tPZL
≈VCC
50% VCC
Output
Waveform 2
S1 at GND
(see Note B)
VOL + 0.3 V
VOL
tPHZ
tPZH
tPLH
50% VCC
VCC
Output
Control
50% VCC
VOH − 0.3 V
VOH
≈0 V
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
LOW- AND HIGH-LEVEL ENABLING
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 1 MHz, ZO = 50 Ω, tr ≤ 3 ns, tf ≤ 3 ns.
D. The outputs are measured one at a time, with one input transition per measurement.
E. tPLZ and tPHZ are the same as tdis.
F. tPZL and tPZH are the same as ten.
G. tPHL and tPLH are the same as tpd.
H. All parameters and waveforms are not applicable to all devices.
Figure 1. Load Circuit and Voltage Waveforms
6
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
PACKAGE OPTION ADDENDUM
www.ti.com
18-Sep-2008
PACKAGING INFORMATION
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
SN74LV367AD
ACTIVE
SOIC
D
16
SN74LV367ADBR
ACTIVE
SSOP
DB
SN74LV367ADBRE4
ACTIVE
SSOP
SN74LV367ADBRG4
ACTIVE
SN74LV367ADE4
40
Lead/Ball Finish
MSL Peak Temp (3)
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
DB
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SSOP
DB
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
ACTIVE
SOIC
D
16
40
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV367ADG4
ACTIVE
SOIC
D
16
40
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV367ADGVR
ACTIVE
TVSOP
DGV
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV367ADGVRE4
ACTIVE
TVSOP
DGV
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV367ADGVRG4
ACTIVE
TVSOP
DGV
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV367ADR
ACTIVE
SOIC
D
16
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV367ADRE4
ACTIVE
SOIC
D
16
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV367ADRG4
ACTIVE
SOIC
D
16
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV367ANSR
ACTIVE
SO
NS
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV367ANSRE4
ACTIVE
SO
NS
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV367ANSRG4
ACTIVE
SO
NS
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV367APWR
ACTIVE
TSSOP
PW
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV367APWRE4
ACTIVE
TSSOP
PW
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV367APWRG4
ACTIVE
TSSOP
PW
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV367APWT
ACTIVE
TSSOP
PW
16
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV367APWTE4
ACTIVE
TSSOP
PW
16
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV367APWTG4
ACTIVE
TSSOP
PW
16
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LV367AQPWRQ1
OBSOLETE
TSSOP
PW
16
TBD
Call TI
(1)
Call TI
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
Addendum-Page 1
PACKAGE OPTION ADDENDUM
www.ti.com
18-Sep-2008
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS
compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
Addendum-Page 2
PACKAGE MATERIALS INFORMATION
www.ti.com
14-Jul-2012
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
Package Package Pins
Type Drawing
SPQ
Reel
Reel
A0
Diameter Width (mm)
(mm) W1 (mm)
B0
(mm)
K0
(mm)
P1
(mm)
W
Pin1
(mm) Quadrant
6.6
2.5
12.0
16.0
Q1
SN74LV367ADBR
SSOP
DB
16
2000
330.0
16.4
8.2
SN74LV367ADGVR
TVSOP
DGV
16
2000
330.0
12.4
6.8
4.0
1.6
8.0
12.0
Q1
SN74LV367ADR
SOIC
D
16
2500
330.0
16.4
6.5
10.3
2.1
8.0
16.0
Q1
SN74LV367ANSR
SO
NS
16
2000
330.0
16.4
8.2
10.5
2.5
12.0
16.0
Q1
SN74LV367APWR
TSSOP
PW
16
2000
330.0
12.4
6.9
5.6
1.6
8.0
12.0
Q1
SN74LV367APWT
TSSOP
PW
16
250
330.0
12.4
6.9
5.6
1.6
8.0
12.0
Q1
Pack Materials-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
14-Jul-2012
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
SN74LV367ADBR
SSOP
DB
16
2000
367.0
367.0
38.0
SN74LV367ADGVR
TVSOP
DGV
16
2000
367.0
367.0
35.0
SN74LV367ADR
SOIC
D
16
2500
333.2
345.9
28.6
SN74LV367ANSR
SO
NS
16
2000
367.0
367.0
38.0
SN74LV367APWR
TSSOP
PW
16
2000
367.0
367.0
35.0
SN74LV367APWT
TSSOP
PW
16
250
367.0
367.0
35.0
Pack Materials-Page 2
MECHANICAL DATA
MPDS006C – FEBRUARY 1996 – REVISED AUGUST 2000
DGV (R-PDSO-G**)
PLASTIC SMALL-OUTLINE
24 PINS SHOWN
0,40
0,23
0,13
24
13
0,07 M
0,16 NOM
4,50
4,30
6,60
6,20
Gage Plane
0,25
0°–8°
1
0,75
0,50
12
A
Seating Plane
0,15
0,05
1,20 MAX
PINS **
0,08
14
16
20
24
38
48
56
A MAX
3,70
3,70
5,10
5,10
7,90
9,80
11,40
A MIN
3,50
3,50
4,90
4,90
7,70
9,60
11,20
DIM
4073251/E 08/00
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
Falls within JEDEC: 24/48 Pins – MO-153
14/16/20/56 Pins – MO-194
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MSSO002E – JANUARY 1995 – REVISED DECEMBER 2001
DB (R-PDSO-G**)
PLASTIC SMALL-OUTLINE
28 PINS SHOWN
0,38
0,22
0,65
28
0,15 M
15
0,25
0,09
8,20
7,40
5,60
5,00
Gage Plane
1
14
0,25
A
0°–ā8°
0,95
0,55
Seating Plane
2,00 MAX
0,10
0,05 MIN
PINS **
14
16
20
24
28
30
38
A MAX
6,50
6,50
7,50
8,50
10,50
10,50
12,90
A MIN
5,90
5,90
6,90
7,90
9,90
9,90
12,30
DIM
4040065 /E 12/01
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0,15.
Falls within JEDEC MO-150
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which
have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such
components to meet such requirements.
Products
Applications
Audio
www.ti.com/audio
Automotive and Transportation
www.ti.com/automotive
Amplifiers
amplifier.ti.com
Communications and Telecom
www.ti.com/communications
Data Converters
dataconverter.ti.com
Computers and Peripherals
www.ti.com/computers
DLP® Products
www.dlp.com
Consumer Electronics
www.ti.com/consumer-apps
DSP
dsp.ti.com
Energy and Lighting
www.ti.com/energy
Clocks and Timers
www.ti.com/clocks
Industrial
www.ti.com/industrial
Interface
interface.ti.com
Medical
www.ti.com/medical
Logic
logic.ti.com
Security
www.ti.com/security
Power Mgmt
power.ti.com
Space, Avionics and Defense
www.ti.com/space-avionics-defense
Microcontrollers
microcontroller.ti.com
Video and Imaging
www.ti.com/video
RFID
www.ti-rfid.com
OMAP Applications Processors
www.ti.com/omap
TI E2E Community
e2e.ti.com
Wireless Connectivity
www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated