RFM RO2116A

RO2112A
®
•
•
•
Ideal for European 433.92 MHz Superhet Receiver LOs
Very Low Series Resistance
Quartz Stability
•
•
Surface-Mount, Ceramic Case with 21 mm2 Footprint
Complies with Directive 2002/95/EC (RoHS)
433.42 MHz
SAW
Resonator
The RO2112A is a true one-port, surface-acoustic-wave (SAW) resonator in a surface-mount, ceramic case.
It provides reliable, fundamental-mode, quartz frequency stabilization of local oscillators operating at approximately 433.42 MHz. This SAW is designed for 433.92 MHz superhet receivers with 500 kHz IF (Philips
UAA3201T). Applications include remote-control and wireless security receivers operating in Europe under
ETSI I-ETS 300 220 and in Germany under FTZ 17 TR 2100.
Absolute Maximum Ratings
Rating
CW RF Power Dissipation
Value
(See Typical Test Circuit)
DC Voltage Between Terminals
dBm
±30
VDC
-40 to +85
°C
260
°C
(Observe ESD Precautions)
Case Temperature
Units
+0
Soldering Temperature (10 seconds / 5 cycles max.)
SM-2 Case
Electrical Characteristics
Characteristic
Center Frequency (+25 °C)
Absolute Frequency
Sym
fC
Tolerance from 433.42 MHz
∆fC
2, 3, 4, 5
IL
2, 5, 6
Unloaded Q
QU
50 Ω Loaded Q
QL
Turnover Temperature
TO
Insertion Loss
Quality Factor
Temperature Stability
Turnover Frequency
Frequency Aging
Notes
FTC
Absolute Value during the First Year
|fA|
Test Fixture Shunt Inductance
1.0
Maximum
433.495
Units
MHz
±75
kHz
1.5
dB
40
°C
1,500
10
25
fC
6, 7, 8
0.032
5
Motional Resistance
RM
Motional Inductance
LM
Motional Capacitance
CM
Transducer Static Capacitance
CO
5, 6, 9
LTEST
2, 7
ppm/°C2
ppm/yr
≤10
1
DC Insulation Resistance between Any Two Terminals
RF Equivalent RLC Model
Typical
14,000
5, 6, 7
fO
Frequency Temperature Coefficient
Minimum
433.345
1.0
MΩ
12
19
61.6197
5, 7, 9
2.18828
1.7
Lid Symbolization
2.0
Ω
µH
fF
2.3
70
pF
nH
102
CAUTION: Electrostatic Sensitive Device. Observe precautions for handling.
Notes:
1.
2.
3.
4.
5.
6.
7.
Frequency aging is the change in fC with time and is specified at +65°C or
less. Aging may exceed the specification for prolonged temperatures above
+65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
The center frequency, fC, is measured at the minimum insertion loss point,
ILMIN, with the resonator in the 50 Ω test system (VSWR ≤ 1.2:1). The shunt
inductance, LTEST, is tuned for parallel resonance with CO at fC. Typically,
fOSCILLATOR or fTRANSMITTER is approximately equal to the resonator fC.
One or more of the following United States patents apply: 4,454,488 and
4,616,197.
Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
Unless noted otherwise, case temperature TC = +25°C±2°C.
The design, manufacturing process, and specifications of this device are subject to change without notice.
Derived mathematically from one or more of the following directly measured
parameters: fC, IL, 3 dB bandwidth, fC versus TC, and CO.
8.
9.
10.
RF Monolithics, Inc.
Phone: (972) 233-2903
Fax: (972) 387-8148
RFM Europe
Phone: 44 1963 251383
Fax: 44 1963 251510
©1999 by RF Monolithics, Inc. The stylized RFM logo are registered trademarks of RF Monolithics, Inc.
Turnover temperature, TO, is the temperature of maximum (or turnover) frequency, fO. The nominal frequency at any case temperature, TC, may be calculated from: f = fO [1 - FTC (TO -TC)2]. Typically, oscillator TO is
approximately equal to the specified resonator TO.
This equivalent RLC model approximates resonator performance near the
resonant frequency and is provided for reference only. The capacitance CO is
the static (nonmotional) capacitance between the two terminals measured at
low frequency (10 MHz) with a capacitance meter. The measurement
includes parasitic capacitance with “NC” pads unconnected. Case parasitic
capacitance is approximately 0.05 pF. Transducer parallel capacitance can
be calculated as: CP ≈ CO - 0.05 pF.
Packaged in 500PC Tape carrier.
E-mail: [email protected]
http://www.rfm.com
RO2112A-070102
Page 1 of 2
433.42 MHz
SAW Resonator
Equivalent LC Model
Electrical Connections
The SAW resonator is bidirectional and may be installed with either orientation. The two terminals
are interchangeable and unnumbered. The callout
NC indicates no internal connection. The NC pads
assist with mechanical positioning and stability.
External grounding of the NC pads is recommended to help reduce parasitic capacitance in the circuit.
Terminal
0.05 pF*
Co = Cp + 0.05 pF
NC
NC
Cp
*Case Parasitics
Terminal
Rm
Lm
Cm
Temperature Characteristics
The curve shown on the right
accounts for resonator contri-
The test circuit inductor, LTEST, is tuned to resonate with the static capacitance, CO, at FC.
bution only and does not include LC component temperature contributions.
ELECTRICAL TEST
Network Analyzer
0
-50
-50
-100
-100
-150
-150
-200
-80 -60 -40 -20
Typical Circuit Board
Land Pattern
To 50 Ω
From 50 Ω
Network Analyzer
fC = f O , T C = T O
0
(f-fo ) / fo (ppm)
Typical Test Circuit
-200
0 +20 +40 +60 +80
∆T = T C - T O ( °C )
The circuit board land pattern shown below is one possible design. The optimum land pattern is dependent on the circuit board assembly process
which varies by manufacturer. The distance between adjacent land edges
should be at a maximum to minimize parasitic capacitance. Trace lengths
from terminal lands to other components should be short and wide to minimize parasitic series inductances.
(4 Places)
Typical Dimension:
0.010 to 0.047 inch
(0.25 to 1.20 mm)
Case Design
The case material is black alumina with contrasting symbolization. All pads
are nominally centered with respect to the base and consist of 40 to
70 microinches electroless gold on 60-350 micorinches electroless nickel.
Typical Application Circuits
Typical Low-Power Transmitter Application
+9VDC
Modulation
Input
200k Ω
47
C1
L1
(Antenna)
C2
ROXXXXA
Bottom View
Millimeters
RF Bypass
470
A
Typical Local Oscillator Application
Output
+VDC
C1
ROXXXXA
Bottom View
Inches
Dimensions
+VDC
L1
C2
RF Bypass
RF Monolithics, Inc.
Phone: (972) 233-2903
Fax: (972) 387-8148
RFM Europe
Phone: 44 1963 251383
Fax: 44 1963 251510
©1999 by RF Monolithics, Inc. The stylized RFM logo are registered trademarks of RF Monolithics, Inc.
Min
Max
Min
Max
5.74
5.99
0.226
0.236
B
3.73
3.99
0.147
0.157
C
1.91
2.16
0.075
0.085
D
0.94
1.10
0.037
0.043
E
0.83
1.20
0.033
0.047
F
1.16
1.53
0.046
0.060
G
0.94
1.10
0.037
0.043
H
0.43
0.59
0.017
0.023
K
0.43
0.59
0.017
0.023
M
5.08
5.33
0.200
0.210
N
0.38
0.64
0.015
0.025
P
3.05
3.30
0.120
0.130
E-mail: [email protected]
http://www.rfm.com
RO2112A-070102
Page 2 of 2