TI XOMAPL138ZWT

OMAP-L138 Low-Power Applications Processor
www.ti.com
SPRS586 – JUNE 2009
1 OMAP-L138 Low-Power Applications Processor
•
•
•
•
•
•
•
Dual Core SoC
– 300-MHz ARM926EJ-S™ RISC MPU
– 300-MHz C674x VLIW DSP
ARM926EJ-S Core
– 32-Bit and 16-Bit (Thumb®) Instructions
– DSP Instruction Extensions
– Single Cycle MAC
– ARM® Jazelle® Technology
– EmbeddedICE-RT™ for Real-Time Debug
ARM9 Memory Architecture
C674x Instruction Set Features
– Superset of the C67x+™ and C64x+™ ISAs
– 2400/1800 C674x MIPS/MFLOPS
– Byte-Addressable (8-/16-/32-/64-Bit Data)
– 8-Bit Overflow Protection
– Bit-Field Extract, Set, Clear
– Normalization, Saturation, Bit-Counting
– Compact 16-Bit Instructions
C674x Two Level Cache Memory Architecture
– 32K-Byte L1P Program RAM/Cache
– 32K-Byte L1D Data RAM/Cache
– 256K-Byte L2 Unified Mapped RAM/Cache
– Flexible RAM/Cache Partition (L1 and L2)
– 1024K-Byte Boot ROM
Enhanced Direct-Memory-Access Controller 3
(EDMA3):
– 2 Channel Controllers
– 3 Transfer Controllers
– 64 Independent DMA Channels
– 16 Quick DMA Channels
– Programmable Transfer Burst Size
TMS320C674x Floating-Point VLIW DSP Core
– Load-Store Architecture With Non-Aligned
Support
– 64 General-Purpose Registers (32 Bit)
– Six ALU (32-/40-Bit) Functional Units
• Supports 32-Bit Integer, SP (IEEE Single
Precision/32-Bit) and DP (IEEE Double
Precision/64-Bit) Floating Point
• Supports up to Four SP Additions Per
Clock, Four DP Additions Every 2
Clocks
• Supports up to Two Floating Point (SP
or DP) Reciprocal Approximation
•
•
•
•
•
•
•
(RCPxP) and Square-Root Reciprocal
Approximation (RSQRxP) Operations
Per Cycle
– Two Multiply Functional Units
• Mixed-Precision IEEE Floating Point
Multiply Supported up to:
– 2 SP x SP -> SP Per Clock
– 2 SP x SP -> DP Every Two Clocks
– 2 SP x DP -> DP Every Three Clocks
– 2 DP x DP -> DP Every Four Clocks
• Fixed Point Multiply Supports Two 32 x
32-Bit Multiplies, Four 16 x 16-Bit
Multiplies, or Eight 8 x 8-Bit Multiplies
per Clock Cycle, and Complex Multiples
– Instruction Packing Reduces Code Size
– All Instructions Conditional
– Hardware Support for Modulo Loop
Operation
– Protected Mode Operation
– Exceptions Support for Error Detection and
Program Redirection
Software Support
– TI DSP/BIOS™
– Chip Support Library and DSP Library
128K-Byte RAM Shared Memory
1.8V or 3.3V LVCMOS IOs (except for USB and
DDR2 interfaces)
Two External Memory Interfaces:
– EMIFA
• NOR (8-/16-Bit-Wide Data)
• NAND (8-/16-Bit-Wide Data)
• 16-Bit SDRAM With 128 MB Address
Space
– DDR2/Mobile DDR Memory Controller
• 16-Bit DDR2 SDRAM With 512 MB
Address Space or
• 16-Bit mDDR SDRAM With 256 MB
Address Space
Three Configurable 16550 type UART Modules:
– With Modem Control Signals
– 16-byte FIFO
– 16x or 13x Oversampling Option
LCD Controller
Two Serial Peripheral Interfaces (SPI) Each
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas
Instruments semiconductor products and disclaimers thereto appears at the end of this document.
TMS320C6000, C6000 are trademarks of Texas Instruments.
ARM926EJ-S is a trademark of ARM Limited.
PRODUCT PREVIEW information concerns products in the
formative or design phase of development. Characteristic data and
other specifications are design goals. Texas Instruments reserves
the right to change or discontinue these products without notice.
Copyright © 2009, Texas Instruments Incorporated
PRODUCT PREVIEW
1.1 Features
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
•
•
•
•
•
PRODUCT PREVIEW
•
•
•
•
•
2
With Multiple Chip-Selects
Two Multimedia Card (MMC)/Secure Digital
(SD) Card Interface with Secure Data I/O
(SDIO) Interfaces
Two Master/Slave Inter-Integrated Circuit (I2C
Bus™)
One Host-Port Interface (HPI) With 16-Bit-Wide
Muxed Address/Data Bus For High Bandwidth
USB 1.1 OHCI (Host) With Integrated PHY
(USB1)
USB 2.0 OTG Port With Integrated PHY (USB0)
– USB 2.0 High-/Full-Speed Client
– USB 2.0 High-/Full-/Low-Speed Host
– End Point 0 (Control)
– End Points 1,2,3,4 (Control, Bulk, Interrupt
or ISOC) Rx and Tx
One Multichannel Audio Serial Port:
– Transmit/Receive Clocks up to 50 MHz
– Two Clock Zones and 16 Serial Data Pins
– Supports TDM, I2S, and Similar Formats
– DIT-Capable
– FIFO buffers for Transmit and Receive
Two Multichannel Buffered Serial Ports:
– Transmit/Receive Clocks up to 50 MHz
– Two Clock Zones and 16 Serial Data Pins
– Supports TDM, I2S, and Similar Formats
– AC97 Audio Codec Interface
– Telecom Interfaces (ST-Bus, H100)
– 128-channel TDM
– FIFO buffers for Transmit and Receive
10/100 Mb/s Ethernet MAC (EMAC):
– IEEE 802.3 Compliant
– MII Media Independent Interface
– RMII Reduced Media Independent Interface
– Management Data I/O (MDIO) Module
Video Port Interface (VPIF):
– Two 8-bit SD (BT.656), Single 16-bit or
Single Raw (8-/10-/12-bit) Video Capture
Channels
– Two 8-bit SD (BT.656), Single 16-bit Video
Display Channels
Universal Parallel Port (uPP):
OMAP-L138 Low-Power Applications Processor
www.ti.com
•
•
•
•
•
•
•
•
•
– High-Speed Parallel Interface to FPGAs and
Data Converters
– Data Width on Each of Two Channels is 8to 16-bit Inclusive
– Single Data Rate or Dual Data Rate
Transfers
– Supports Multiple Interfaces with START,
ENABLE and WAIT Controls
Serial ATA (SATA) Controller:
– Supports SATA I (1.5 Gbps) and SATA II
(3.0 Gbps)
– Supports all SATA Power Management
Features
– Hardware-Assisted Native Command
Queueing (NCQ) for up to 32 Entries
– Supports Port Multiplier and
Command-Based Switching
Real-Time Clock With 32 KHz Oscillator and
Separate Power Rail
Three 64-Bit General-Purpose Timers
(Configurable as Two 32-Bit Timers)
One 64-Bit General-Purpose Timer (Watch
Dog)
Two Enhanced Pulse Width Modulators
(eHRPWM):
– Dedicated 16-Bit Time-Base Counter With
Period And Frequency Control
– 6 Single Edge, 6 Dual Edge Symmetric or 3
Dual Edge Asymmetric Outputs
– Dead-Band Generation
– PWM Chopping by High-Frequency Carrier
– Trip Zone Input
Three 32-Bit Enhanced Capture Modules
(eCAP):
– Configurable as 3 Capture Inputs or 3
Auxiliary Pulse Width Modulator (APWM)
outputs
– Single Shot Capture of up to Four Event
Time-Stamps
361-Ball Pb-Free Plastic Ball Grid Array
(PBGA) [ZCE Suffix], 0.65-mm Ball Pitch
361-Ball Pb-Free Plastic Ball Grid Array
(PBGA) [ZWT Suffix], 0.80-mm Ball Pitch
Commercial or Extended Temperature
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
SPRS586 – JUNE 2009
1.2 Trademarks
DSP/BIOS, TMS320C6000, C6000, TMS320, TMS320C62x, and TMS320C67x are trademarks of Texas
Instruments.
PRODUCT PREVIEW
All trademarks are the property of their respective owners.
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
3
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
www.ti.com
1.3 Description
The device is a Low-power applications processor based on an ARM926EJ-S™ and a C674x DSP core. It
provides significantly lower power than other members of the TMS320C6000™ platform of DSPs.
The device enables OEMs and ODMs to quickly bring to market devices featuring robust operating
systems support, rich user interfaces, and high processing performance life through the maximum
flexibility of a fully integrated mixed processor solution.
The dual-core architecture of the device provides benefits of both DSP and Reduced Instruction Set
Computer (RISC) technologies, incorporating a high-performance TMS320C674x DSP core and an
ARM926EJ-S core.
PRODUCT PREVIEW
The ARM926EJ-S is a 32-bit RISC processor core that performs 32-bit or 16-bit instructions and
processes 32-bit, 16-bit, or 8-bit data. The core uses pipelining so that all parts of the processor and
memory system can operate continuously.
The ARM core has a coprocessor 15 (CP15), protection module, and Data and program Memory
Management Units (MMUs) with table look-aside buffers. It has separate 16K-byte instruction and
16K-byte data caches. Both are four-way associative with virtual index virtual tag (VIVT). The ARM core
also has a 8KB RAM (Vector Table) and 64KB ROM.
The device DSP core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a
32KB direct mapped cache and the Level 1 data cache (L1D) is a 32KB 2-way set-associative cache. The
Level 2 program cache (L2P) consists of a 256KB memory space that is shared between program and
data space. L2 also has a 1024KB Boot ROM. L2 memory can be configured as mapped memory, cache,
or combinations of the two. Although the DSP L2 is accessible by ARM and other hosts in the system, an
additional 128KB RAM shared memory is available for use by other hosts without affecting DSP
performance.
The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC) with a Management Data Input/Output
(MDIO) module; one USB2.0 OTG interface; one USB1.1 OHCI interface; two inter-integrated circuit (I2C)
Bus interfaces; one multichannel audio serial port (McASP) with 16 serializers and FIFO buffers; two
multichannel buffered serial ports (McBSP) with FIFO buffers; two SPI interfaces with multiple chip
selects; four 64-bit general-purpose timers each configurable (one configurable as watchdog); a
configurable 16-bit host port interface (HPI) ; up to 9 banks of 16 pins of general-purpose input/output
(GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; three
UART interfaces (each with RTS and CTS); two enhanced high-resolution pulse width modulator
(eHRPWM) peripherals; 3 32-bit enhanced capture (eCAP) module peripherals which can be configured
as 3 capture inputs or 3 auxiliary pulse width modulator (APWM) outputs; and 2 external memory
interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or
peripherals, and a higher speed DDR2/Mobile DDR controller.
The Ethernet Media Access Controller (EMAC) provides an efficient interface between the device and a
network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps
in either half- or full-duplex mode. Additionally an Management Data Input/Output (MDIO) interface is
available for PHY configuration. The EMAC supports both MII and RMII interfaces.
The SATA controller provides a high-speed interface to mass data storage devices. The SATA controller
supports both SATA I (1.5 Gbps) and SATA II (3.0 Gbps).
The Universal Parallel Port (uPP) provides a high-speed interface to many types of data converters,
FPGAs or other parallel devices. The UPP supports programmable data widths between 8- to 16-bits on
each of two channels. Single-date rate and double-data rate transfers are supported as well as START,
ENABLE and WAIT signals to provide control for a variety of data converters.
A Video Port Interface (VPIF) is included providing a flexible video input/output port.
4
OMAP-L138 Low-Power Applications Processor
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
SPRS586 – JUNE 2009
The rich peripheral set provides the ability to control external peripheral devices and communicate with
external processors. For details on each of the peripherals, see the related sections later in this document
and the associated peripheral reference guides.
PRODUCT PREVIEW
The device has a complete set of development tools for the ARM and DSP. These include C compilers, a
DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface
for visibility into source code execution.
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
5
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
www.ti.com
1.4 Functional Block Diagram
JTAG Interface
ARM Subsystem
DSP Subsystem
ARM926EJ-S CPU
With MMU
C674x™
DSP CPU
System Control
PLL/Clock
Generator
w/OSC
Input
Clock(s)
4KB ETB
GeneralPurpose
Timer (x3)
Power/Sleep
Controller
RTC/
32-kHz
OSC
AET
16KB
16KB
I-Cache D-Cache
Pin
Multiplexing
32KB
L1 Pgm
32KB
L1 RAM
8KB RAM
(Vector Table)
256KB L2 RAM
64KB ROM
1024KB L2 ROM
Switched Central Resource (SCR)
PRODUCT PREVIEW
Peripherals
DMA
Audio Ports
EDMA3
(x2)
McASP
w/FIFO
Serial Interfaces
McBSP
(x2)
I2C
(x2)
SPI
(x2)
(1)
eCAP
(x3)
Video
LCD
Ctlr
VPIF
Connectivity
Control Timers
ePWM
(x2)
UART
(x3)
Display
USB2.0
OTG Ctlr
PHY
USB1.1
OHCI Ctlr
PHY
EMAC
10/100 MDIO
(MII/RMII)
Parallel Port Internal Memory
128KB
RAM
uPP
External Memory Interfaces
HPI
MMC/SD
(8b)
(x2)
SATA
EMIFA(8b/16B)
NAND/Flash
16b SDRAM
DDR2/MDDR
Controller
Note: Not all peripherals are available at the same time due to multiplexing.
Figure 1-1. Functional Block Diagram
6
OMAP-L138 Low-Power Applications Processor
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
SPRS586 – JUNE 2009
Contents
2
3
1
6.7
Interrupts ............................................ 72
1.1
Features .............................................. 1
6.8
Power and Sleep Controller (PSC) .................. 83
1.2
Trademarks ........................................... 3
6.9
EDMA
1.3
Description ............................................ 4
6.10
External Memory Interface A (EMIFA) .............. 94
1.4
Functional Block Diagram ............................ 6
6.11
DDR2/mDDR Controller............................ 103
Revision History ......................................... 8
Device Overview ......................................... 9
6.12
MMC / SD / SDIO (MMCSD0, MMCSD1)
6.13
Serial ATA Controller (SATA) ...................... 119
OMAP-L138 Low-Power Applications Processor
5
..............................
.........
..........
88
116
Documentation Support
9
6.14
Multichannel Audio Serial Port (McASP)
3.2
Device Characteristics ................................ 9
6.15
Multichannel Buffered Serial Port (McBSP)........ 130
3.3
Device Compatibility................................. 11
6.16
Serial Peripheral Interface Ports (SPI0, SPI1) ..... 140
6.17
6.18
Inter-Integrated Circuit Serial Ports (I2C) ..........
Universal Asynchronous Receiver/Transmitter
(UART) .............................................
Universal Serial Bus OTG Controller (USB0)
[USB2.0 OTG] .....................................
Universal Serial Bus Host Controller (USB1)
[USB1.1 OHCI] .....................................
....................................
3.5
DSP Subsystem .....................................
3.6
Memory Map Summary .............................
3.7
Pin Assignments ....................................
3.8
Pin Multiplexing Control .............................
3.9
Terminal Functions ..................................
Device Configuration ..................................
4.1
Boot Modes .........................................
4.2
SYSCFG Module ....................................
Device Operating Conditions ........................
ARM Subsystem
11
14
20
6.19
23
26
6.20
27
121
166
170
172
179
55
6.21
Ethernet Media Access Controller (EMAC) ........ 180
55
6.22
Management Data Input/Output (MDIO) ........... 188
55
6.23
LCD Controller (LCDC) ............................ 190
58
6.24
Host-Port Interface (UHPI) ......................... 205
Absolute Maximum Ratings Over Operating
Junction Temperature Range
(Unless Otherwise Noted) ................................. 58
6.25
Universal Parallel Port (uPP)
Recommended Operating Conditions ............... 59
Electrical Characteristics Over Recommended
Ranges of Supply Voltage and Operating Junction
Temperature (Unless Otherwise Noted) ............ 61
6.27
6.28
6.29
Timers .............................................. 232
Peripheral Information and Electrical
Specifications ........................................... 62
6.30
Real Time Clock (RTC) ............................ 234
6.31
General-Purpose Input/Output (GPIO)............. 237
6.32
Emulation Logic .................................... 241
5.1
5.2
5.3
6
...............................................
3.1
3.4
4
.
6.1
6.2
Parameter Information .............................. 62
Recommended Clock and Control Signal Transition
Behavior ............................................. 63
6.3
Power Supplies ...................................... 63
6.4
Reset ................................................ 64
6.5
Crystal Oscillator or External Clock Input ........... 67
6.6
Clock PLLs .......................................... 68
Submit Documentation Feedback
6.26
7
......................
Video Port Interface (VPIF) ........................
Enhanced Capture (eCAP) Peripheral .............
213
218
224
Enhanced High-Resolution Pulse-Width Modulator
(eHRPWM) ......................................... 227
Mechanical Packaging and Orderable
Information ............................................. 248
7.1
Device Support..................................... 248
7.2
Thermal Data for ZCE Package
7.3
Thermal Data for ZWT Package ................... 251
...................
Contents
250
7
PRODUCT PREVIEW
1
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
www.ti.com
2 Revision History
NOTE: This is a placeholder for the Revision History Table for future revisions of the document.
PRODUCT PREVIEW
8
Revision History
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
SPRS586 – JUNE 2009
3 Device Overview
3.1 Documentation Support
3.1.1
Related Documentation From Texas Instruments
DSP Reference Guides
SPRUG82
TMS320C674x DSP Cache User's Guide. Explains the fundamentals of memory caches
and describes how the two-level cache-based internal memory architecture in the
TMS320C674x digital signal processor (DSP) can be efficiently used in DSP applications.
Shows how to maintain coherence with external memory, how to use DMA to reduce
memory latencies, and how to optimize your code to improve cache efficiency. The internal
memory architecture in the C674x DSP is organized in a two-level hierarchy consisting of a
dedicated program cache (L1P) and a dedicated data cache (L1D) on the first level.
Accesses by the CPU to the these first level caches can complete without CPU pipeline
stalls. If the data requested by the CPU is not contained in cache, it is fetched from the next
lower memory level, L2 or external memory.
SPRUFE8
TMS320C674x DSP CPU and Instruction Set Reference Guide. Describes the CPU
architecture, pipeline, instruction set, and interrupts for the TMS320C674x digital signal
processors (DSPs). The C674x DSP is an enhancement of the C64x+ and C67x+ DSPs with
added functionality and an expanded instruction set.
SPRUFK5
TMS320C674x DSP Megamodule Reference Guide. Describes the TMS320C674x digital
signal processor (DSP) megamodule. Included is a discussion on the internal direct memory
access (IDMA) controller, the interrupt controller, the power-down controller, memory
protection, bandwidth management, and the memory and cache.
SPRUFK9
TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide. Provides
an overview and briefly describes the peripherals available on the device.
3.2 Device Characteristics
Table 3-1 provides an overview of the device. The table shows significant features of the device, including
the capacity of on-chip RAM, peripherals, and the package type with pin count.
Submit Documentation Feedback
Device Overview
9
PRODUCT PREVIEW
The following documents are available on the Internet at www.ti.com. Tip: Enter the literature number in
the search box provided at www.ti.com.
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
www.ti.com
Table 3-1. Characteristics of OMAP-L138
HARDWARE FEATURES
OMAP-L138
DDR2/mDDR Controller
DDR2 or Mobile DDR, 16-bit bus width, up to 150 MHz
EMIFA
Asynchronous (8/16-bit bus width) RAM, Flash, 16-bit
SDRAM, NOR, NAND
Flash Card Interface
Peripherals
MMC and SD cards supported.
EDMA3
64 independent channels, 16 QDMA channels, 2 channel
controllers, 3 transfer controllers
Timers
4 64-Bit General Purpose (configurable as 2 separate 32-bit
timers, 1 configurable as Watch Dog)
UART
3 (each with RTS and CTS flow control)
SPI
2 (Each with one hardware chip select)
I2C
PRODUCT PREVIEW
Multichannel Audio Serial Port [McASP]
Not all peripherals pins
are available at the
Multichannel Buffered Serial Port [McBSP]
same time (for more
10/100 Ethernet MAC with Management Data I/O
detail, see the Device
Configurations section).
eHRPWM
eCAP
2 (both Master/Slave)
1 (each with transmit/receive, FIFO buffer, 16 serializers)
2 (each with transmit/receive, FIFO buffer, 16)
1 (MII or RMII Interface)
4 Single Edge, 4 Dual Edge Symmetric, or 2 Dual Edge
Asymmetric Outputs
3 32-bit capture inputs or 3 32-bit auxiliary PWM outputs
USB 2.0 (USB0)
High-Speed OTG Controller with on-chip OTG PHY
USB 1.1 (USB1)
Full-Speed OHCI (as host) with on-chip PHY
General-Purpose Input/Output Port
9 banks of 16-bit
LCD Controller
1
SATA Controller
1 (Support both SATA I and SATAII)
Universal Parallel Port (uPP)
1
Video Port Interface (VPIF)
1 (video in and video out)
Size (Bytes)
On-Chip Memory
488KB RAM, 1088KB Boot ROM
DSP
32KB L1 Program (L1P)/Cache (up to 32KB)
32KB L1 Data (L1D)/Cache (up to 32KB)
256KB Unified Mapped RAM/Cache (L2)
1024KB ROM (L2)
DSP Memories can be made accessible to ARM, EDMA3,
and other peripherals.
Organization
ARM
16KB
16KB
8KB
64KB
RAM
(Vector
I-Cache
D-Cache
Table)
ROM
ADDITIONAL SHARED MEMORY
128KB RAM
C674x CPU ID + CPU
Rev ID
Control Status Register (CSR.[31:16])
0x1400
C674x Megamodule
Revision
Revision ID Register (MM_REVID[15:0])
0x0000
JTAG BSDL_ID
DEVIDR0 Register
CPU Frequency
MHz
Cycle Time
ns
Voltage
Packages
10
Device Overview
Core (V)
I/O (V)
0x0B7D_102F
674x DSP 300 MHz
ARM926 300 MHz
674x DSP 3.33 ns
ARM926 3.33 ns
1.2 V
1.8V or 3.3 V
13 mm x 13 mm, 361-Ball 0.65 mm pitch, PBGA (ZCE)
16 mm x 16 mm, 361-Ball 0.80 mm pitch, PBGA (ZWT)
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
SPRS586 – JUNE 2009
Table 3-1. Characteristics of OMAP-L138 (continued)
Product Status (1)
(1)
HARDWARE FEATURES
OMAP-L138
Product Preview (PP),
Advance Information (AI),
or Production Data (PD)
PP
PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other
specifications are design goals.
3.3 Device Compatibility
The ARM926EJ-S RISC CPU is compatible with other ARM9 CPUs from ARM Holdings plc.
The C674x DSP core is code-compatible with the C6000™ DSP platform and supports features of both
the C64x+ and C67x+ DSP families.
PRODUCT PREVIEW
3.4 ARM Subsystem
The ARM Subsystem includes the following features:
• ARM926EJ-S RISC processor
• ARMv5TEJ (32/16-bit) instruction set
• Little endian
• System Control Co-Processor 15 (CP15)
• MMU
• 16KB Instruction cache
• 16KB Data cache
• Write Buffer
• Embedded Trace Module and Embedded Trace Buffer (ETM/ETB)
• ARM Interrupt controller
3.4.1
ARM926EJ-S RISC CPU
The ARM Subsystem integrates the ARM926EJ-S processor. The ARM926EJ-S processor is a member of
ARM9 family of general-purpose microprocessors. This processor is targeted at multi-tasking applications
where full memory management, high performance, low die size, and low power are all important. The
ARM926EJ-S processor supports the 32-bit ARM and 16 bit THUMB instruction sets, enabling the user to
trade off between high performance and high code density. Specifically, the ARM926EJ-S processor
supports the ARMv5TEJ instruction set, which includes features for efficient execution of Java byte codes,
providing Java performance similar to Just in Time (JIT) Java interpreter, but without associated code
overhead.
The ARM926EJ-S processor supports the ARM debug architecture and includes logic to assist in both
hardware and software debug. The ARM926EJ-S processor has a Harvard architecture and provides a
complete high performance subsystem, including:
• ARM926EJ -S integer core
• CP15 system control coprocessor
• Memory Management Unit (MMU)
• Separate instruction and data caches
• Write buffer
• Separate instruction and data (internal RAM) interfaces
• Separate instruction and data AHB bus interfaces
• Embedded Trace Module and Embedded Trace Buffer (ETM/ETB)
For more complete details on the ARM9, refer to the ARM926EJ-S Technical Reference Manual, available
at http://www.arm.com
Submit Documentation Feedback
Device Overview
11
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
3.4.2
www.ti.com
CP15
The ARM926EJ-S system control coprocessor (CP15) is used to configure and control instruction and
data caches, Memory Management Unit (MMU), and other ARM subsystem functions. The CP15 registers
are programmed using the MRC and MCR ARM instructions, when the ARM in a privileged mode such as
supervisor or system mode.
3.4.3
MMU
PRODUCT PREVIEW
A single set of two level page tables stored in main memory is used to control the address translation,
permission checks and memory region attributes for both data and instruction accesses. The MMU uses a
single unified Translation Lookaside Buffer (TLB) to cache the information held in the page tables. The
MMU features are:
• Standard ARM architecture v4 and v5 MMU mapping sizes, domains and access protection scheme.
• Mapping sizes are:
– 1MB (sections)
– 64KB (large pages)
– 4KB (small pages)
– 1KB (tiny pages)
• Access permissions for large pages and small pages can be specified separately for each quarter of
the page (subpage permissions)
• Hardware page table walks
• Invalidate entire TLB, using CP15 register 8
• Invalidate TLB entry, selected by MVA, using CP15 register 8
• Lockdown of TLB entries, using CP15 register 10
3.4.4
Caches and Write Buffer
The size of the Instruction cache is 16KB, Data cache is 16KB. Additionally, the caches have the following
features:
• Virtual index, virtual tag, and addressed using the Modified Virtual Address (MVA)
• Four-way set associative, with a cache line length of eight words per line (32-bytes per line) and with
two dirty bits in the Dcache
• Dcache supports write-through and write-back (or copy back) cache operation, selected by memory
region using the C and B bits in the MMU translation tables
• Critical-word first cache refilling
• Cache lockdown registers enable control over which cache ways are used for allocation on a line fill,
providing a mechanism for both lockdown, and controlling cache corruption
• Dcache stores the Physical Address TAG (PA TAG) corresponding to each Dcache entry in the TAG
RAM for use during the cache line write-backs, in addition to the Virtual Address TAG stored in the
TAG RAM. This means that the MMU is not involved in Dcache write-back operations, removing the
possibility of TLB misses related to the write-back address.
• Cache maintenance operations provide efficient invalidation of, the entire Dcache or Icache, regions of
the Dcache or Icache, and regions of virtual memory.
The write buffer is used for all writes to a noncachable bufferable region, write-through region and write
misses to a write-back region. A separate buffer is incorporated in the Dcache for holding write-back for
cache line evictions or cleaning of dirty cache lines. The main write buffer has 16-word data buffer and a
four-address buffer. The Dcache write-back has eight data word entries and a single address entry.
12
Device Overview
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
3.4.5
SPRS586 – JUNE 2009
Advanced High-Performance Bus (AHB)
The ARM Subsystem uses the AHB port of the ARM926EJ-S to connect the ARM to the Config bus and
the external memories. Arbiters are employed to arbitrate access to the separate D-AHB and I-AHB by the
Config Bus and the external memories bus.
3.4.6
Embedded Trace Macrocell (ETM) and Embedded Trace Buffer (ETB)
The OMAP-L138 trace port is not pinned out and is instead only connected to the Embedded Trace Buffer.
The ETB has a 4KB buffer memory. ETB enabled debug tools are required to read/interpret the captured
trace data.
3.4.7
ARM Memory Mapping
By default the ARM has access to most on and off chip memory areas, including the DSP Internal
memories, EMIFA, DDR2, and the additional 128K byte on chip shared SRAM. Likewise almost all of the
on chip peripherals are accessible to the ARM by default.
See Table 3-3 for a detailed top level OMAP-L138 memory map that includes the ARM memory space.
Submit Documentation Feedback
Device Overview
13
PRODUCT PREVIEW
To support real-time trace, the ARM926EJ-S processor provides an interface to enable connection of an
Embedded Trace Macrocell (ETM). The ARM926ES-J Subsystem in the OMAP-L138 also includes the
Embedded Trace Buffer (ETB). The ETM consists of two parts:
• Trace Port provides real-time trace capability for the ARM9.
• Triggering facilities provide trigger resources, which include address and data comparators, counter,
and sequencers.
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
www.ti.com
3.5 DSP Subsystem
The DSP Subsystem includes the following features:
• C674x DSP CPU
• 32KB L1 Program (L1P)/Cache (up to 32KB)
• 32KB L1 Data (L1D)/Cache (up to 32KB)
• 256KB Unified Mapped RAM/Cache (L2)
• 1MB Mask-programmable ROM
• Little endian
PRODUCT PREVIEW
32K Bytes
L1P RAM/
Cache
256K Bytes
L2 RAM
256
256
256
Cache Control
Memory Protect
1M Byte
L2 ROM
256
Cache Control
Memory Protect
L1P
Bandwidth Mgmt
L2
Bandwidth Mgmt
256
256
256
Instruction Fetch
256
Power Down
Interrupt
Controller
C674x
Fixed/Floating Point CPU
IDMA
Register
File A
Register
File B
64
64
256
CFG
Bandwidth Mgmt
Memory Protect
Cache Control
8 x 32
EMC
L1D
MDMA
64
32K Bytes
L1D RAM/
Cache
32
Configuration
Peripherals
Bus
SDMA
64
64
64
High
Performance
Switch Fabric
Figure 3-1. C674x Megamodule Block Diagram
14
Device Overview
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
3.5.1
SPRS586 – JUNE 2009
C674x DSP CPU Description
The C674x Central Processing Unit (CPU) consists of eight functional units, two register files, and two
data paths as shown in Figure 3-2. The two general-purpose register files (A and B) each contain
32 32-bit registers for a total of 64 registers. The general-purpose registers can be used for data or can be
data address pointers. The data types supported include packed 8-bit data, packed 16-bit data, 32-bit
data, 40-bit data, and 64-bit data. Values larger than 32 bits, such as 40-bit-long or 64-bit-long values are
stored in register pairs, with the 32 LSBs of data placed in an even register and the remaining 8 or
32 MSBs in the next upper register (which is always an odd-numbered register).
The C674x CPU combines the performance of the C64x+ core with the floating-point capabilities of the
C67x+ core.
Each C674x .M unit can perform one of the following each clock cycle: one 32 x 32 bit multiply, one 16 x
32 bit multiply, two 16 x 16 bit multiplies, two 16 x 32 bit multiplies, two 16 x 16 bit multiplies with
add/subtract capabilities, four 8 x 8 bit multiplies, four 8 x 8 bit multiplies with add operations, and four
16 x 16 multiplies with add/subtract capabilities (including a complex multiply). There is also support for
Galois field multiplication for 8-bit and 32-bit data. Many communications algorithms such as FFTs and
modems require complex multiplication. The complex multiply (CMPY) instruction takes for 16-bit inputs
and produces a 32-bit real and a 32-bit imaginary output. There are also complex multiplies with rounding
capability that produces one 32-bit packed output that contain 16-bit real and 16-bit imaginary values. The
32 x 32 bit multiply instructions provide the extended precision necessary for high-precision algorithms on
a variety of signed and unsigned 32-bit data types.
The .L or (Arithmetic Logic Unit) now incorporates the ability to do parallel add/subtract operations on a
pair of common inputs. Versions of this instruction exist to work on 32-bit data or on pairs of 16-bit data
performing dual 16-bit add and subtracts in parallel. There are also saturated forms of these instructions.
The C674x core enhances the .S unit in several ways. On the previous cores, dual 16-bit MIN2 and MAX2
comparisons were only available on the .L units. On the C674x core they are also available on the .S unit
which increases the performance of algorithms that do searching and sorting. Finally, to increase data
packing and unpacking throughput, the .S unit allows sustained high performance for the quad 8-bit/16-bit
and dual 16-bit instructions. Unpack instructions prepare 8-bit data for parallel 16-bit operations. Pack
instructions return parallel results to output precision including saturation support.
Other new features include:
• SPLOOP - A small instruction buffer in the CPU that aids in creation of software pipelining loops where
multiple iterations of a loop are executed in parallel. The SPLOOP buffer reduces the code size
associated with software pipelining. Furthermore, loops in the SPLOOP buffer are fully interruptible.
• Compact Instructions - The native instruction size for the C6000 devices is 32 bits. Many common
instructions such as MPY, AND, OR, ADD, and SUB can be expressed as 16 bits if the C674x
compiler can restrict the code to use certain registers in the register file. This compression is
performed by the code generation tools.
• Instruction Set Enhancement - As noted above, there are new instructions such as 32-bit
multiplications, complex multiplications, packing, sorting, bit manipulation, and 32-bit Galois field
multiplication.
• Exceptions Handling - Intended to aid the programmer in isolating bugs. The C674x CPU is able to
detect and respond to exceptions, both from internally detected sources (such as illegal op-codes) and
from system events (such as a watchdog time expiration).
• Privilege - Defines user and supervisor modes of operation, allowing the operating system to give a
basic level of protection to sensitive resources. Local memory is divided into multiple pages, each with
read, write, and execute permissions.
Submit Documentation Feedback
Device Overview
15
PRODUCT PREVIEW
The eight functional units (.M1, .L1, .D1, .S1, .M2, .L2, .D2, and .S2) are each capable of executing one
instruction every clock cycle. The .M functional units perform all multiply operations. The .S and .L units
perform a general set of arithmetic, logical, and branch functions. The .D units primarily load data from
memory to the register file and store results from the register file into memory.
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
•
www.ti.com
Time-Stamp Counter - Primarily targeted for Real-Time Operating System (RTOS) robustness, a
free-running time-stamp counter is implemented in the CPU which is not sensitive to system stalls.
For more details on the C674x CPU and its enhancements over the C64x architecture, see the following
documents:
• TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRUFE8)
• TMS320C64x Technical Overview (literature number SPRU395)
PRODUCT PREVIEW
16
Device Overview
Submit Documentation Feedback
ÁÁ
ÁÁ
ÁÁ Á
ÁÁ Á
ÁÁ Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
OMAP-L138 Low-Power Applications Processor
www.ti.com
SPRS586 – JUNE 2009
src1
Odd
register
file A
(A1, A3,
A5...A31)
src2
.L1
odd dst
Even
register
file A
(A0, A2,
A4...A30)
(D)
even dst
long src
ST1b
ST1a
32 MSB
32 LSB
long src
Data path A
.S1
8
8
even dst
odd dst
src1
(D)
src2
LD1a
src2
32 MSB
32 LSB
DA1
DA2
LD2a
LD2b
Á
Á
Á
Á
Á
Á
32
32
(A)
(B)
PRODUCT PREVIEW
LD1b
.M1
dst2
dst1
src1
(C)
dst
.D1
src1
src2
2x
1x
Odd
register
file B
(B1, B3,
B5...B31)
src2
.D2
32 LSB
32 MSB
src1
dst
src2
.M2
Even
register
file B
(B0, B2,
B4...B30)
(C)
src1
dst2
32
(B)
dst1
32
(A)
src2
src1
.S2 odd dst
even dst
long src
Data path B
ST2a
ST2b
32 MSB
32 LSB
long src
even dst
.L2
(D)
8
8
(D)
odd dst
src2
src1
Control Register
A.
B.
C.
D.
On .M unit, dst2 is 32 MSB.
On .M unit, dst1 is 32 LSB.
On C64x CPU .M unit, src2 is 32 bits; on C64x+ CPU .M unit, src2 is 64 bits.
On .L and .S units, odd dst connects to odd register files and even dst connects to even register files.
Figure 3-2. TMS320C674x CPU (DSP Core) Data Paths
Submit Documentation Feedback
Device Overview
17
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
3.5.2
www.ti.com
DSP Memory Mapping
The DSP memory map is shown in Section 3.6.
By default the DSP also has access to most on and off chip memory areas, with the exception of the ARM
RAM, ROM, and AINTC interrupt controller.
Additionally, the DSP megamodule includes the capability to limit access to its internal memories through
its SDMA port; without needing an external MPU unit.
3.5.2.1 ARM Internal Memories
The DSP does not have access to the ARM internal memory.
3.5.2.2 External Memories
PRODUCT PREVIEW
The DSP has access to the following External memories:
• Asynchronous EMIF / SDRAM / NAND / NOR Flash (EMIFA)
• SDRAM (DDR2)
3.5.2.3 DSP Internal Memories
The DSP has access to the following DSP memories:
• L2 RAM
• L1P RAM
• L1D RAM
3.5.2.4 C674x CPU
The C674x core uses a two-level cache-based architecture. The Level 1 Program cache (L1P) is 32 KB
direct mapped cache and the Level 1 Data cache (L1D) is 32 KB 2-way set associated cache. The Level 2
memory/cache (L2) consists of a 256 KB memory space that is shared between program and data space.
L2 memory can be configured as mapped memory, cache, or a combination of both.
Table 3-2 shows a memory map of the C674x CPU cache registers for the device.
Table 3-2. C674x Cache Registers
Byte Address
Register Name
0x0184 0000
L2CFG
0x0184 0020
L1PCFG
0x0184 0024
L1PCC
0x0184 0040
L1DCFG
0x0184 0044
L1DCC
Register Description
L2 Cache configuration register
L1P Size Cache configuration register
L1P Freeze Mode Cache configuration register
L1D Size Cache configuration register
L1D Freeze Mode Cache configuration register
0x0184 0048 - 0x0184 0FFC
-
0x0184 1000
EDMAWEIGHT
Reserved
0x0184 1004 - 0x0184 1FFC
-
0x0184 2000
L2ALLOC0
L2 allocation register 0
0x0184 2004
L2ALLOC1
L2 allocation register 1
0x0184 2008
L2ALLOC2
L2 allocation register 2
0x0184 200C
L2ALLOC3
L2 allocation register 3
L2 EDMA access control register
Reserved
0x0184 2010 - 0x0184 3FFF
-
0x0184 4000
L2WBAR
L2 writeback base address register
0x0184 4004
L2WWC
L2 writeback word count register
0x0184 4010
L2WIBAR
L2 writeback invalidate base address register
0x0184 4014
L2WIWC
L2 writeback invalidate word count register
0x0184 4018
L2IBAR
L2 invalidate base address register
0x0184 401C
L2IWC
L2 invalidate word count register
18
Device Overview
Reserved
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
SPRS586 – JUNE 2009
Table 3-2. C674x Cache Registers (continued)
Byte Address
Register Name
0x0184 4020
L1PIBAR
L1P invalidate base address register
0x0184 4024
L1PIWC
L1P invalidate word count register
0x0184 4030
L1DWIBAR
L1D writeback invalidate base address register
0x0184 4034
L1DWIWC
L1D writeback invalidate word count register
0x0184 4038
-
0x0184 4040
L1DWBAR
L1D Block Writeback
0x0184 4044
L1DWWC
L1D Block Writeback
0x0184 4048
L1DIBAR
L1D invalidate base address register
0x0184 404C
L1DIWC
L1D invalidate word count register
-
0x0184 5000
L2WB
0x0184 5004
L2WBINV
0x0184 5008
L2INV
0x0184 500C - 0x0184 5027
-
0x0184 5028
L1PINV
Reserved
Reserved
L2 writeback all register
PRODUCT PREVIEW
0x0184 4050 - 0x0184 4FFF
Register Description
L2 writeback invalidate all register
L2 Global Invalidate without writeback
Reserved
L1P Global Invalidate
0x0184 502C - 0x0184 5039
-
0x0184 5040
L1DWB
Reserved
0x0184 5044
L1DWBINV
0x0184 5048
L1DINV
L1D Global Invalidate without writeback
0x0184 8000 – 0x0184 80FF
MAR0 - MAR63
Reserved 0x0000 0000 – 0x3FFF FFFF
0x0184 8100 – 0x0184 817F
MAR64 – MAR95
Memory Attribute Registers for EMIFA SDRAM Data (CS0) 0x4000 0000 –
0x5FFF FFFF
0x0184 8180 – 0x0184 8187
MAR96 - MAR97
Memory Attribute Registers for EMIFA Async Data (CS2) 0x6000 0000 –
0x61FF FFFF
0x0184 8188 – 0x0184 818F
MAR98 – MAR99
Memory Attribute Registers for EMIFA Async Data (CS3) 0x6200 0000 –
0x63FF FFFF
0x0184 8190 – 0x0184 8197
MAR100 – MAR101
Memory Attribute Registers for EMIFA Async Data (CS4) 0x6400 0000 –
0x65FF FFFF
0x0184 8198 – 0x0184 819F
MAR102 – MAR103
Memory Attribute Registers for EMIFA Async Data (CS5) 0x6600 0000 –
0x67FF FFFF
0x0184 81A0 – 0x0184 81FF
MAR104 – MAR127
Reserved 0x6800 0000 – 0x7FFF FFFF
0x0184 8200
MAR128
0x0184 8204 – 0x0184 82FF
MAR129 – MAR191
Reserved 0x8200 0000 – 0xBFFF FFFF
0x0184 8300 – 0x0184 837F
MAR192 – MAR223
Memory Attribute Registers for DDR2 Data (CS2) 0xC000 0000 – 0xDFFF
FFFF
0x0184 8380 – 0x0184 83FF
MAR224 – MAR255
Reserved 0xE000 0000 – 0xFFFF FFFF
L1D Global Writeback
L1D Global Writeback with Invalidate
Memory Attribute Register for Shared RAM 0x8000 0000 – 0x8001 FFFF
Reserved 0x8002 0000 – 0x81FF FFFF
See the following table for a detailed top level device memory map that includes the DSP memory space.
Submit Documentation Feedback
Device Overview
19
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
www.ti.com
3.6 Memory Map Summary
Table 3-3. OMAP-L138 Top Level Memory Map
Start Address
End Address
Size
ARM Mem
Map
DSP Mem Map
0x0000 0000
0x006F FFFF
0x0070 0000
0x007F FFFF
1024K
DSP L2 ROM
0x0080 0000
0x0083 FFFF
256K
DSP L2 RAM
0x0084 0000
0x00DF FFFF
32K
DSP L1P RAM
32K
DSP L1D RAM
EDMA Mem Map
PRODUCT PREVIEW
0x00E0 0000
0x00E0 7FFF
0x00E0 8000
0x00EF FFFF
0x00F0 0000
0x00F0 7FFF
0x00F0 8000
0x017F FFFF
0x0180 0000
0x0180 FFFF
64K
DSP Interrupt
Controller
0x0181 0000
0x0181 0FFF
4K
DSP Powerdown
Controller
0x0181 1000
0x0181 1FFF
4K
DSP Security ID
0x0181 2000
0x0181 2FFF
4K
DSP Revision ID
0x0181 3000
0x0181 FFFF
52K
-
0x0182 0000
0x0182 FFFF
64K
DSP EMC
0x0183 0000
0x0183 FFFF
64K
DSP Internal
Reserved
0x0184 0000
0x0184 FFFF
64K
DSP Memory
System
0x0185 0000
0x01BB FFFF
0x01BC 0000
0x01BC 0FFF
4K
ARM ETB
memory
0x01BC 1000
0x01BC 17FF
2K
ARM ETB reg
0x01BC 1800
0x01BC 18FF
256
ARM Ice
Crusher
0x01BC 1900
0x01BF FFFF
0x01C0 0000
0x01C0 7FFF
32K
EDMA3 CC
0x01C0 8000
0x01C0 83FF
1K
EDMA3 TC0
0x01C0 8400
0x01C0 87FF
1K
EDMA3 TC1
0x01C0 8800
0x01C0 FFFF
0x01C1 0000
0x01C1 0FFF
4K
PSC 0
0x01C1 1000
0x01C1 1FFF
4K
PLL Controller 0
0x01C1 2000
0x01C1 3FFF
0x01C1 4000
0x01C1 4FFF
4K
SYSCFG0
0x01C1 5000
0x01C1 FFFF
0x01C2 0000
0x01C2 0FFF
4K
Timer0
0x01C2 1000
0x01C2 1FFF
4K
Timer1
0x01C2 2000
0x01C2 2FFF
4K
I2C 0
0x01C2 3000
0x01C2 3FFF
4K
RTC
0x01C2 4000
0x01C3 FFFF
0x01C4 0000
0x01C4 0FFF
4K
MMC/SD 0
0x01C4 1000
0x01C4 1FFF
4K
SPI 0
0x01C4 2000
0x01C4 2FFF
4K
UART 0
0x01C4 3000
0x01CF FFFF
0x01D0 0000
0x01D0 0FFF
4K
McASP 0 Control
20
Device Overview
Master
Peripheral
Mem Map
LCDC
Mem
Map
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
SPRS586 – JUNE 2009
Table 3-3. OMAP-L138 Top Level Memory Map (continued)
End Address
Size
ARM Mem
Map
DSP Mem Map
EDMA Mem Map
0x01D0 1000
0x01D0 1FFF
4K
McASP 0 AFIFO Ctrl
0x01D0 2000
0x01D0 2FFF
4K
McASP 0 Data
0x01D0 3000
0x01D0 BFFF
0x01D0 C000
0x01D0 CFFF
4K
UART 1
0x01D0 D000
0x01D0 DFFF
4K
UART 2
0x01D0 E000
0x01D0 FFFF
0x01D1 0000
0x01D1 07FF
2K
McBSP0
0x01D1 0800
0x01D1 0FFF
2K
McBSP0 FIFO Ctrl
0x01D1 1000
0x01D1 17FF
2K
McBSP1
0x01D1 1800
0x01D1 1FFF
2K
McBSP1 FIFO Ctrl
0x01D1 2000
0x01DF FFFF
0x01E0 0000
0x01E0 FFFF
64K
USB0
0x01E1 0000
0x01E1 0FFF
4K
UHPI
0x01E1 1000
0x01E1 2FFF
0x01E1 3000
0x01E1 3FFF
4K
LCD Controller
0x01E1 4000
0x01E1 5FFF
0x01E1 6000
0x01E1 6FFF
4K
UPP
0x01E1 7000
0x01E1 7FFF
4K
VPIF
0x01E1 8000
0x01E1 9FFF
8K
SATA
0x01E1 A000
0x01E1 AFFF
4K
PLL Controller 1
4K
MMCSD1
0x01E1 B000
0x01E1 BFFF
0x01E1 C000
0x01E1 FFFF
0x01E2 0000
0x01E2 1FFF
8K
EMAC Control Module RAM
0x01E2 2000
0x01E2 2FFF
4K
EMAC Control Module Registers
0x01E2 3000
0x01E2 3FFF
4K
EMAC Control Registers
0x01E2 4000
0x01E2 4FFF
4K
EMAC MDIO port
0x01E2 5000
0x01E2 5FFF
4K
USB1
0x01E2 6000
0x01E2 6FFF
4K
GPIO
0x01E2 7000
0x01E2 7FFF
4K
PSC 1
0x01E2 8000
0x01E2 8FFF
4K
I2C 1
4K
SYSCFG1
0x01E2 9000
0x01E2 BFFF
0x01E2 C000
0x01E2 CFFF
0x01E2 D000
0x01E2 FFFF
0x01E3 0000
0x01E3 7FFF
32K
EDMA3 CC1
0x01E3 8000
0x01E3 83FF
1K
EDMA3 TC2
0x01E3 8400
0x01EF FFFF
0x01F0 0000
0x01F0 0FFF
4K
eHRPWM 0
0x01F0 1000
0x01F0 1FFF
4K
HRPWM 0
0x01F0 2000
0x01F0 2FFF
4K
eHRPWM 1
0x01F0 3000
0x01F0 3FFF
4K
HRPWM 1
0x01F0 4000
0x01F0 5FFF
0x01F0 6000
0x01F0 6FFF
4K
ECAP 0
0x01F0 7000
0x01F0 7FFF
4K
ECAP 1
0x01F0 8000
0x01F0 8FFF
4K
ECAP 2
4K
Timer2
0x01F0 9000
0x01F0 BFFF
0x01F0 C000
0x01F0 CFFF
Submit Documentation Feedback
Master
Peripheral
Mem Map
LCDC
Mem
Map
PRODUCT PREVIEW
Start Address
Device Overview
21
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
www.ti.com
Table 3-3. OMAP-L138 Top Level Memory Map (continued)
End Address
Size
0x01F0 D000
0x01F0 DFFF
4K
Timer3
0x01F0 E000
0x01F0 EFFF
4K
SPI1
0x01F0 F000
0x01F0 FFFF
0x01F1 0000
0x01F1 0FFF
4K
McBSP0 FIFO Data
0x01F1 1000
0x01F1 1FFF
4K
McBSP1 FIFO Data
0x01F1 2000
0x116F FFFF
0x1170 0000
0x117F FFFF
1024K
DSP L2 ROM
0x1180 0000
0x1183 FFFF
256K
DSP L2 RAM
0x1184 0000
0x11DF FFFF
0x11E0 0000
0x11E0 7FFF
32K
DSP L1P RAM
0x11E0 8000
0x11EF FFFF
32K
DSP L1D RAM
PRODUCT PREVIEW
Start Address
ARM Mem
Map
EDMA Mem Map
0x11F0 0000
0x11F0 7FFF
0x11F0 8000
0x3FFF FFFF
0x4000 0000
0x5FFF FFFF
512M
EMIFA SDRAM data (CS0)
0x6000 0000
0x61FF FFFF
32M
EMIFA async data (CS2)
0x6200 0000
0x63FF FFFF
32M
EMIFA async data (CS3)
0x6400 0000
0x65FF FFFF
32M
EMIFA async data (CS4)
0x6600 0000
0x67FF FFFF
32M
EMIFA async data (CS5)
0x6800 0000
0x6800 7FFF
32K
EMIFA Control Regs
0x6800 8000
0x7FFF FFFF
128K
Shared RAM
0x8000 0000
0x8001 FFFF
0x8002 0000
0xAFFF FFFF
0xB000 0000
0xB000 7FFF
0xB000 8000
0xBFFF FFFF
0xC000 0000
0xDFFF FFFF
0xE000 0000
0xFFFC FFFF
0xFFFD 0000
0xFFFD FFFF
32K
DDR2 Control Regs
512M
DDR2 Data
64K
ARM local
ROM
0xFFFE 0000
0xFFFE DFFF
0xFFFE E000
0xFFFE FFFF
8K
ARM Interrupt
Controller
0xFFFF 0000
0xFFFF 1FFF
8K
ARM local
RAM
0xFFFF 2000
0xFFFF FFFF
22
DSP Mem Map
Device Overview
Master
Peripheral
Mem Map
LCDC
Mem
Map
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
SPRS586 – JUNE 2009
3.7 Pin Assignments
Extensive use of pin multiplexing is used to accommodate the largest number of peripheral functions in
the smallest possible package. Pin multiplexing is controlled using a combination of hardware
configuration at device reset and software programmable register settings.
3.7.1
Pin Map (Bottom View)
1
2
3
4
5
6
7
8
9
10
W
VP_DOUT[0]/
LCD_D[0]/
UPP_XD[8]/
GP7[8]
VP_DOUT[1]/
LCD_D[1]/
UPP_XD[9]/
GP7[9]
VP_DOUT[2]/
LCD_D[2]/
UPP_XD[10]/
GP7[10]
DDR_A[10]
DDR_A[6]
DDR_A[2]
DDR_CLKN
DDR_CLKP
DDR_RAS
DDR_D[15]
W
V
VP_DOUT[3]/
LCD_D[3]/
UPP_XD[11]/
GP7[11]
VP_DOUT[4]/
LCD_D[4]/
UPP_XD[12]/
GP7[12]
VP_DOUT[5]/
LCD_D[5]/
UPP_XD[13]/
GP7[13]
DDR_A[12]
DDR_A[5]
DDR_A[3]
DDR_CKE
DDR_BA[0]
DDR_CS
DDR_D[13]
V
U
VP_DOUT[6]/
LCD_D[6]/
UPP_XD[14]/
GP7[14]
VP_DOUT[7]/
LCD_D[7]/
UPP_XD[15]/
GP7[15]
VP_DOUT[8]/
LCD_D[8]/
UPP_XD[0]/
GP7[0]/
BOOT[0]
DDR_A[8]
DDR_A[4]
DDR_A[7]
DDR_A[0]
DDR_BA[2]
DDR_CAS
DDR_D[12]
U
T
VP_DOUT[9]/
LCD_D[9]/
UPP_XD[1]/
GP7[1]/
BOOT[1]
VP_DOUT[10]/
LCD_D[10]/
UPP_XD[2]/
GP7[2]/
BOOT[2]
VP_DOUT[11]/
LCD_D[11]/
UPP_XD[3]/
GP7[3]/
BOOT[3]
DDR_A[11]
DDR_A[13]
DDR_A[9]
DDR_A[1]
DDR_WE
DDR_BA[1]
DDR_D[10]
T
R
VP_DOUT[12]/
LCD_D[12]/
UPP_XD[4]/
GP7[4]/
BOOT[4]
VP_DOUT[13]/
LCD_D[13]/
UPP_XD[5]/
GP7[5]/
BOOT[5]
VP_DOUT[14]/
LCD_D[14]/
UPP_XD[6]/
GP7[6]/
BOOT[6]
DVDD3313_C
LCD_AC_ENB_CS/
GP6[0]
DDR_VREF
DDR_DVDD18
DDR_DVDD18
DDR_DVDD18
DDR_DQM[1]
R
P
SATA_VDD
SATA_VDD
SATA_VDDR
VP_DOUT[15]/
LCD_D[15]/
UPP_XD[7]/
GP7[7]/
BOOT[7]
DVDD3318_C
DVDD3318_C
DDR_DVDD18
DDR_DVDD18
DDR_DVDD18
DDR_DVDD18
P
N
SATA_REFCLKN
SATA_REFCLKP
SATA_REG
SATA_VDD
VSS
DDR_DVDD18
RVDD
CVDD
DDR_DVDD18
DDR_DVDD18
N
M
SATA_VSS
SATA_VDD
VSS
VSS
VSS
VSS
CVDD
CVDD
VSS
M
L
SATA_RXP
SATA_RXN
SATA_VSS
DVDD3318_C
VSS
DVDD18
VSS
VSS
VSS
VSS
L
K
SATA_VSS
SATA_VSS
VP_CLKOUT2/
MMCSD1_DAT2/
GP6[3]
VP_CLKOUT3/
GP6[1]
DVDD18
CVDD
VSS
VSS
VSS
VSS
K
1
2
3
4
5
6
7
8
9
10
NC
PRODUCT PREVIEW
The following graphics show the bottom view of the ZCE and ZWT packages pin assignments in four
quadrants (A, B, C, and D). The pin assignments for both packages are identical.
Figure 3-3. Pin Map (Quad A)
Submit Documentation Feedback
Device Overview
23
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
www.ti.com
PRODUCT PREVIEW
11
12
13
14
15
16
17
18
19
W
DDR_D[7]
DDR_D[6]
DDR_DQM[0]
VP_CLKIN0/
UHPI_HCS/
GP6[7]/
UPP_2xTXCLK
UHPI_HCNTL1/
UPP_CHA_START/
GP6[10]
VP_DIN[4]/
UHPI_HD[12]/
UPP_CHA_D[12]/
RMII_RXD[1]
VP_DIN[2]/
UHPI_HD[10]/
UPP_CHA_D[10]/
RMII_RXER
VP_DIN[1]/
UHPI_HD[9]/
UPP_CHA_D[9]/
RMII_MHZ_50_CLK
VP_DIN[0]/
UHPI_HD[8]/
UPP_CHA_D[8]/
RMII_CRS_DV
W
V
DDR_DQS[1]
DDR_D[5]
DDR_D[4]
DDR_D[2]
VP_CLKIN1/
UHPI_HDS1/
GP6[6]
VP_DIN[6]/
UHPI_HD[14]/
UPP_CHA_D[14]/
RMII_TXD[0]
VP_DIN[3]/
UHPI_HD[11]/
UPP_CHA_D[11]/
RMII_RXD[0]
VP_DIN[15]_
VSYNC/
UHPI_HD[7]/
UPP_CHA_D[7]
VP_DIN[14]_
HSYNC/
UHPI_HD[6]/
UPP_CHA_D[6]
V
U
DDR_D[14]
DDR_ZP
DDR_D[3]
DDR_D[1]
DDR_D[0]
UHPI_HHWIL/
UPP_CHA_ENABLE/
GP6[9]
UHPI_HCNTL0/
UPP_CHA_CLK/
GP6[11]
VP_DIN[7]/
UHPI_HD[15]/
UPP_CHA_D[15]/
RMII_TXD[1]
VP_DIN[13]_
FIELD/
UHPI_HD[5]/
UPP_CHA_D[5]
U
T
DDR_D[9]
DDR_D[11]
DDR_D[8]
DDR_DQS[0]
UHPI_HRW/
UPP_CHA_WAIT/
GP6[8]
VP_DIN[12]/
UHPI_HD[4]/
UPP_CHA_D[4]
RESETOUT/
UHPI_HAS/
GP6[15]
CLKOUT/
UHPI_HDS2/
GP6[14]
RSV2
T
R
DDR_DQGATE0
DDR_DQGATE1
DVDD18
VP_DIN[5]/
UHPI_HD[13]/
UPP_CHA_D[13]/
RMII_TXEN
VP_DIN[9]/
UHPI_HD[1]/
UPP_CHA_D[1]
UHPI_HINT/
GP6[12]
UHPI_HRDY/
GP6[13]
VP_DIN[11]/
UHPI_HD[3]/
UPP_CHA_D[3]
VP_DIN[10]/
UHPI_HD[2]/
UPP_CHA_D[2]
R
P
VSS
DVSS3318_C
DVDD18
USB1_VDD18
USB1_VDD33
USB0_ID
VP_DIN[8]/
UHPI_HD[0]/
UPP_CHA_D[0]/
GP6[5]
USB1_DM
USB1_DP
P
N
VSS
VSS
DVDD3318_C
USB0_VDDA18
PLL1_VDDA12
NC
USB0_VDDA12
USB0_VDDA33
USB0_VBUS
N
M
VSS
USB_CVDD
DVDD3318_C
NC
PLL1_VSSA12
TDI
PLL0_VSSA12
USB0_DM
USB0_DP
M
L
VSS
CVDD
DVDD3318_C
PLL0_VDDA12
TMS
TRST
OSCVSS
OSCIN
L
K
VSS
CVDD
DVDD3318_C
RESET
DVDD3318_B
EMU1
RTCK/
GP8[0]
USB0_DRVVBUS
OSCOUT
K
11
12
13
14
15
16
17
18
19
RTC_CVDD
Figure 3-4. Pin Map (Quad B)
24
Device Overview
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
11
12
13
14
15
16
17
18
19
J
VSS
CVDD
DVDD18
DVDD3318_B
TCK
EMU0
NMI
TDO
RTC_XI
J
H
CVDD
CVDD
CVDD
RVDD
VSS
SPI1_ENA/
GP2[12]
SPI1_SOMI/
GP2[11]
RTC_VSS
RTC_XO
H
G
DVDD18
DVDD18
CVDD
DVDD3318_A
DVDD3318_A
SPI1_SCS[7]/
I2C0_SCL/
TM64P2_OUT12/
GP1[15]
SPI1_SIMO/
GP2[10]
SPI1_SCS[6]/
I2C0_SDA/
TM64P3_OUT12/
GP1[4]
SPI1_CLK/
GP2[13]
G
F
DVDD3318_B
DVDD3318_B
DVDD3318_B
DVDD18
DVDD3318_A
SPI1_SCS[4]/
UART2_TXD/
I2C1_SDA/
GP1[2]
SPI1_SCS[5]/
UART2_RXD/
I2C1_SCL/
GP1[3]
SPI1_SCS[1]/
EPWM1A/
GP2[15]/
TM64P2_IN12
SPI1_SCS[2]/
UART1_TXD/
SATA_CP_POD/
GP1[0]
F
E
EMA_A[18]/
MMCSD0_DAT[3]/
GP4[2]
EMA_A[16]/
MMCSD0_DAT[5]/
GP4[0]
EMA_A[6]/
GP5[6]
DVDD3318_B
CVDD
SPI0_SCS[1]/
TM64P0_OUT12/
GP1[7]/
MDIO_CLK/
TM64P0_IN12
SPI0_SCS[3]/
UART0_CTS/
GP8[2]/
MII_RXD[1]/
SATA_MP_SWITCH
SPI1_SCS[3]/
UART1_RXD/
SATA_LED/
GP1[1]
SPI1_SCS[0]/
EPWM1B/
GP2[14]/
TM64P3_IN12
E
D
EMA_A[13]/
GP5[13]
EMA_A[9]/
GP5[9]
EMA_A[12]/
GP5[12]
EMA_A[3]/
GP5[3]
EMA_A[1]/
GP5[1]
SPI0_SCS[2]/
UART0_RTS/
GP8[1]/
MII_RXD[0]/
SATA_CP_DET
SPI0_SCS[0]/
TM64P1_OUT12/
GP1[6]/
MDIO_D/
TM64P1_IN12
SPI0_SCS[4]/
UART0_TXD/
GP8[3]/
MII_RXD[2]
SPI0_CLK/
EPWM0A/
GP1[8]/
MII_RXCLK/
D
C
EMA_A[15]/
MMCSD0_DAT[6]/
GP5[15]
EMA_A[10]/
GP5[10]
EMA_A[5]/
GP5[5]
EMA_A[0]/
GP5[0]
EMA_BA[0]/
GP2[8]
SPI0_SOMI/
EPWMSYNCI/
GP8[6]/
MII_RXER
SPI0_ENA/
EPWM0B/
MII_RXDV
SPI0_SIMO/
EPWMSYNCO/
GP8[5]/
MII_CRS
SPI0_SCS[5]/
UART0_RXD/
GP8[4]/
MII_RXD[3]
C
B
EMA_A[17]/
MMCSD0_DAT[4]/
GP4[1]
EMA_A[11]/
GP5[11]
EMA_A7/
GP5[7]
EMA_A[2]/
GP5[2]
EMA_OE/
GP3[10]
EMA_CS[5]/
GP3[12]
EMA_CS[2]/
GP3[15]
EMA_WAIT[0]/
GP3[8]
EMA_WAIT[1]/
GP2[1]
B
A
EMA_A[20]/
MMCSD0_DAT[1]/
GP4[4]
EMA_A[14]/
MMCSD0_DAT[7]/
GP5[14]
EMA_A[8]/
GP5[8]
EMA_A[4]/
GP5[4]
EMA_BA[1]/
GP2[9]
EMA_RAS/
GP2[5]
EMA_CS[3]/
GP3[14]
EMA_CS[0]/
GP2[0]
VSS
A
11
12
13
14
15
16
17
18
19
PRODUCT PREVIEW
www.ti.com
Figure 3-5. Pin Map (Quad C)
Submit Documentation Feedback
Device Overview
25
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
www.ti.com
PRODUCT PREVIEW
1
2
3
4
5
6
7
8
9
10
J
SATA_TXP
SATA_TXN
VP_CLKIN3/
MMCSD1_DAT[1]/
GP6[2]
MMCSD1_CMD/
UPP_CHB_ENABLE/
GP8[13]
DVDD3318_C
CVDD
VSS
VSS
VSS
VSS
J
H
SATA_VSS
SATA_VSS
VP_CLKIN2/
MMCSD1_DAT[3]/
GP6[4]
MMCSD1_DAT[5]/
LCD_HSYNC/
GP8[9]
DVDD3318_A
CVDD
CVDD
VSS
VSS
CVDD
H
G
MMCSD1_DAT[0]/
UPP_CHB_CLK/
GP8[15]
MMCSD1_CLK/
UPP_CHB_START/
GP8[14]
UPP_CHB_WAIT/
GP8[12]/
MMCSD1_DAT[4]/
LCD_VSYNC/
GP8[8]
DVDD3318_A
DVDD18
CVDD
CVDD
DVDD3318_B
DVDD18
G
F
MMCSD1_DAT[7]/
LCD_PCLK/
GP8[11]
MMCSD1_DAT[6]/
LCD_MCLK/
GP8[10]
AXR0/
ECAP0_APWM0/
GP8[7]/
MII_TXD[0]/
CLKS0
RSVD/
RTC_ALARM/
UART2_CTS/
GP0[8]/
DEEPSLEEP
DVDD3318_A
DVDD3318_B
DVDD3318_B
DVDD3318_B
EMA_CS[4]/
GP3[13]
DVDD3318_B
F
E
AXR1/
DX0/
GP1[19]/
MII_TXD[1]
AXR2/
DR0/
GP2[10]/
MII_TXD[2]
AXR3/
FSX0/
GP1[11]/
MII_TXD[3]
AXR8/
CLKS1/
ECAP1_APWM1/
GP0[0]
RVDD
EMA_D[15]/
GP3[7]
EMA_D[5]/
GP4[13]
EMA_D[3]/
GP4[11]
EMA_A[23]/
MMCSD0_CLK/
GP4[7]
EMA_D[8]/
GP3[0]
E
D
AXR4/
FSR0/
GP1[12]/
MII_COL
AXR7/
EPWM1TZ[0]/
GP1[15]
AXR5/
CLKX0/
GP1[13]/
MII_TXCLK
AXR10/
DR1/
GP0[2]
AMUTE/
UART2_RTS/
GP0[9]
EMA_D[11]/
GP3[3]
EMA_D[7]/
GP4[15]
EMA_SDCKE/
GP2[6]
EMA_D[9]/
GP3[1]
C
AXR6/
CLKR0/
GP1[14]/
MII_TXEN
AFSR/
GP0[13]
AXR9/
DX1/
GP0[1]
AXR12/
FSR1/
GP0[4]
AXR11/
FSX1/
GP0[3]
EMA_D[6]/
GP4[14]
EMA_D[14]/
GP3[6]
EMA_WEN_DQM[0]/
GP2[3]
EMA_D[0]/
GP4[8]
EMA_A[19]/
MMCSD0_DAT[2]/
GP4[3]
C
B
ACLKX/
GP0[14]
AFX/
GP0[12]
AXR13/
CLKX1/
GP0[5]
AXR14/
CLKR1/
GP0[6]
EMA_D[4]/
GP4[12]
EMA_D[13]/
GP3[5]
EMA_CLK/
GP2[7]
EMA_D[2]/
GP4[10]
EMA_WE/
GP3[11]
EMA_A[21]/
MMCSD0_DAT[0]/
GP4[5]
B
A
ACLKR/
GP0[15]
AHCLKR/
UART1_RTS/
GP0[11]
AHCLKX/
USB_REFCLKIN/
UART1_CTS/
GP0[10]
AXR15/
EPWM0TZ[0]/
ECAP2_APWM2/
GP0[7]
EMA_WEB_DQM[1]/
GP2[2]
EMA_D[12]/
GP3[4]
EMA_D[10]/
GP3[2]
EMA_D[1]/
GP4[9]
EMA_CAS/
GP2[4]
EMA_A[22]/
MMCSD0_CMD/
GP4[6]
A
1
2
3
4
5
6
7
8
9
10
EMA_A_RW/
GP3[9]
D
Figure 3-6. Pin Map (Quad D)
3.8 Pin Multiplexing Control
Device level pin multiplexing is controlled by registers PINMUX0 - PINMUX19 in the SYSCFG module.
For the device family, pin multiplexing can be controlled on a pin-by-pin basis. Each pin that is multiplexed
with several different functions has a corresponding 4-bit field in one of the PINMUX registers.
Pin multiplexing selects which of several peripheral pin functions controls the pin's IO buffer output data
and output enable values only. The default pin multiplexing control for almost every pin is to select 'none'
of the peripheral functions in which case the pin's IO buffer is held tri-stated.
Note that the input from each pin is always routed to all of the peripherals that share the pin; the PINMUX
registers have no effect on input from a pin.
26
Device Overview
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
SPRS586 – JUNE 2009
3.9 Terminal Functions
Table 3-4 to Table 3-28 identify the external signal names, the associated pin/ball numbers along with the
mechanical package designator, the pin type (I, O, IO, OZ, or PWR), whether the pin/ball has any internal
pullup/pulldown resistors, whether the pin/ball is configurable as an IO in GPIO mode, and a functional pin
description.
3.9.1
Device Reset, NMI and JTAG
Table 3-4. Reset, NMI and JTAG Terminal Functions
SIGNAL
NAME
NO.
TYPE (1)
PULL (2)
POWER
GROUP (3)
DESCRIPTION
K14
I
IPU
B
Device reset input
NMI
J17
I
IPU
B
Non-Maskable Interrupt
T17
(4)
IPD
C
Reset output
RESETOUT / UHPI_HAS/ GP6[15]
O
JTAG
TMS
L16
I
IPU
B
JTAG test mode select
TDI
TDO
M16
I
IPU
B
JTAG test data input
J18
O
IPU
B
JTAG test data output
TCK
J15
I
IPU
B
JTAG test clock
TRST
L17
I
IPD
B
JTAG test reset
EMU[0]
J16
I/O
IPU
B
Emulation pin
EMU[1]
K16
I/O
IPU
B
Emulation pin
RTCK/ GP8[0]
K17
I/O
IPD
B
JTAG Test Clock Return Clock Output
(1)
(2)
(3)
(4)
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for
that particular peripheral.
IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
Open drain mode for RESETOUT function.
Submit Documentation Feedback
Device Overview
27
PRODUCT PREVIEW
RESET
RESET
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
3.9.2
www.ti.com
High-Frequency Oscillator and PLL
Table 3-5. High-Frequency Oscillator and PLL Terminal Functions
SIGNAL
NAME
NO.
TYPE (1)
PULL (2)
POWER
GROUP (3)
IPU
C
DESCRIPTION
CLKOUT / UHPI_HDS2 / GP6[14]
T18
O
PLL Observation Clock
OSCIN
L19
I
—
—
Oscillator input
OSCOUT
K19
O
—
—
Oscillator output
OSCVSS
L18
GND
—
—
Oscillator ground (for filter only)
PLL0_VDDA
L15
PWR
—
—
PLL analog VDD (1.2-V filtered supply)
PLL0_VSSA
M17
GND
—
—
PLL analog VSS (for filter)
PLL1_VDDA
N15
PWR
—
—
PLL analog VDD (1.2-V filtered supply)
PLL1_VSSA
M15
GND
—
—
PLL analog VSS (for filter)
1.2-V OSCILLATOR
1.2-V PLL0
PRODUCT PREVIEW
1.2-V PLL1
(1)
(2)
(3)
28
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for
that particular peripheral.
IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module.
This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
Device Overview
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
3.9.3
SPRS586 – JUNE 2009
Real-Time Clock and 32-kHz Oscillator
Table 3-6. Real-Time Clock (RTC) and 1.2-V, 32-kHz Oscillator Terminal Functions
NAME
NO.
TYPE (1)
PULL (2)
POWER
GROUP (3)
—
—
RTC 32-kHz oscillator input
RTC_XI
J19
I
RTC_XO
DESCRIPTION
H19
O
—
—
RTC 32-kHz oscillator output
RTC_ALARM / UART2_CTS / GP0[8] /DEEPSLEEP
F4
O
CP[0]
A
RTC Alarm
RTC_CVDD
L14
PWR
—
—
RTC module core power
(isolated from chip CVDD)
RTC_Vss
H18
GND
—
—
Oscillator ground (for filter)
(1)
(2)
(3)
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for
that particular peripheral.
IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are weakly pulled down. If the application requires a
pull-up, an external pull-up can be used.
This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
3.9.4
DEEPSLEEP Power Control
Table 3-7. DEEPSLEEP Power Control Terminal Functions
SIGNAL
NAME
RTC_ALARM / UART2_CTS / GP0[8] /DEEPSLEEP
(1)
(2)
(3)
NO.
F4
TYPE (1)
PULL (2)
POWER
GROUP (3)
I
CP[0]
A
DESCRIPTION
DEEPSLEEP power control output
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for
that particular peripheral.
IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are weakly pulled down. If the application requires a
pull-up, an external pull-up can be used.
This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
3.9.5
External Memory Interface A (EMIFA)
Submit Documentation Feedback
Device Overview
29
PRODUCT PREVIEW
SIGNAL
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
www.ti.com
Table 3-8. External Memory Interface A (EMIFA) Terminal Functions
SIGNAL
NAME
NO.
TYPE (1)
PULL (2)
POWER
GROUP (3)
PRODUCT PREVIEW
EMA_D[15] / GP3[7]
E6
I/O
CP[17]
B
EMA_D[14] / GP3[6]
C7
I/O
CP[17]
B
EMA_D[13] / GP3[5]
B6
I/O
CP[17]
B
EMA_D[12] / GP3[4]
A6
I/O
CP[17]
B
EMA_D[11] / GP3[3]
D6
I/O
CP[17]
B
EMA_D[10] / GP3[2]
A7
I/O
CP[17]
B
EMA_D[9] / GP3[1]
D9
I/O
CP[17]
B
EMA_D[8] / GP3[0]
E10
I/O
CP[17]
B
EMA_D[7] / GP4[15]
D7
I/O
CP[17]
B
EMA_D[6] / GP4[14]
C6
I/O
CP[17]
B
EMA_D[5] / GP4[13]
E7
I/O
CP[17]
B
EMA_D[4] / GP4[12]
B5
I/O
CP[17]
B
EMA_D[3] / GP4[11]
E8
I/O
CP[17]
B
EMA_D[2] / GP4[10]
B8
I/O
CP[17]
B
EMA_D[1] / GP4[9]
A8
I/O
CP[17]
B
EMA_D[0] / GP4[8]
C9
I/O
CP[17]
B
(1)
(2)
(3)
30
DESCRIPTION
EMIFA data bus
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are weakly pulled down. If the application requires a
pull-up, an external pull-up can be used.
This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
Device Overview
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
SPRS586 – JUNE 2009
Table 3-8. External Memory Interface A (EMIFA) Terminal Functions (continued)
SIGNAL
NAME
NO.
TYPE (1)
PULL (2)
POWER
GROUP (3)
DESCRIPTION
E9
O
CP[18]
B
EMA_A[22] / MMCSD0_CMD/GP4[6]
A10
O
CP[18]
B
EMA_A[21] / MMCSD0_DAT[0] /GP4[5]
B10
O
CP[18]
B
EMA_A[20] / MMCSD0_DAT[1] /GP4[4]
A11
O
CP[18]
B
EMA_A[19] / MMCSD0_DAT[2] /GP4[3]
C10
O
CP[18]
B
EMA_A[18] / MMCSD0_DAT[3] /GP4[2]
E11
O
CP[18]
B
EMA_A[17] / MMCSD0_DAT[4] /GP4[1]
B11
O
CP[18]
B
EMA_A[16] / MMCSD0_DAT[5] /GP4[0]
E12
O
CP[18]
B
EMA_A[15] / MMCSD0_DAT[6] /GP5[15]
C11
O
CP[19]
B
EMA_A[14] / MMCSD0_DAT[7] /GP5[14]
A12
O
CP[19]
B
EMA_A[13] / GP5[13]
D11
O
CP[19]
B
EMA_A[12] / GP5[12]
D13
O
CP[19]
B
EMA_A[11] / GP5[11]
B12
O
CP[19]
B
EMA_A[10] / GP5[10]
C12
O
CP[19]
B
EMA_A[9] / GP5[9]
D12
O
CP[19]
B
EMA_A[8] / GP5[8]
A13
O
CP[19]
B
EMA_A[7] / GP5[7]
B13
O
CP[20]
B
EMA_A[6] / GP5[6]
E13
O
CP[20]
B
EMA_A[5] / GP5[5]
C13
O
CP[20]
B
EMA_A[4] / GP5[4]
A14
O
CP[20]
B
EMA_A[3] / GP5[3]
D14
O
CP[20]
B
EMA_A[2] / GP5[2]
B14
O
CP[20]
B
EMA_A[1] / GP5[1]
D15
O
CP[20]
B
EMA_A[0] / GP5[0]
C14
O
CP[20]
B
EMA_BA[0] / GP2[8]
C15
O
CP[16]
B
EMA_BA[1] / GP2[9]
A15
O
CP[16]
B
EMA_CLK / GP2[7]
B7
O
CP[16]
B
EMIFA clock
EMA_SDCKE / GP2[6]
D8
O
CP[16]
B
EMIFA SDRAM clock enable
EMA_RAS / GP2[5]
A16
O
CP[16]
B
EMIFA SDRAM row address strobe
EMA_CAS / GP2[4]
A9
O
CP[16]
B
EMIFA SDRAM column address strobe
EMA_CS[0] / GP2[0]
A18
O
CP[16]
B
EMA_CS[2] / GP3[15]
B17
O
CP[16]
B
EMA_CS[3] / GP3[14]
A17
O
CP[16]
B
EMA_CS[4] / GP3[13]
F9
O
CP[16]
B
EMA_CS[5] / GP3[12]
B16
O
CP[16]
B
EMA_A_RW / GP3[9]
D10
O
CP[16]
B
EMIFA Async Read/Write control
EMA_WE / GP3[11]
B9
O
CP[16]
B
EMIFA SDRAM write enable
EMA_WEN_DQM[1] / GP2[2]
A5
O
CP[16]
B
EMIFA write enable/data mask for
EMA_D[15:8]
EMA_WEN_DQM[0] / GP2[3]
C8
O
CP[16]
B
EMIFA write enable/data mask for EMA_D[7:0]
EMA_OE / GP3[10]
B15
O
CP[16]
B
EMIFA output enable
EMA_WAIT[0] / GP3[8]
B18
I
CP[16]
B
EMA_WAIT[1] / GP2[1]
B19
I
CP[16]
B
Submit Documentation Feedback
PRODUCT PREVIEW
EMA_A[23] / MMCSD0_CLK /GP4[7]
EMIFA address bus
EMIFA bank address
EMIFA Async Chip Select
EMIFA wait input/interrupt
Device Overview
31
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
3.9.6
www.ti.com
DDR2 Controller (DDR2)
Table 3-9. DDR2 Controller (DDR2) Terminal Functions
SIGNAL
NAME
NO.
TYPE (1)
PULL (2)
DESCRIPTION
PRODUCT PREVIEW
DDR_D[15]
W10
I/O
IPD
DDR_D[14]
U11
I/O
IPD
DDR_D[13]
V10
I/O
IPD
DDR_D[12]
U10
I/O
IPD
DDR_D[11]
T12
I/O
IPD
DDR_D[10]
T10
I/O
IPD
DDR_D[9]
T11
I/O
IPD
DDR_D[8]
T13
I/O
IPD
DDR_D[7]
W11
I/O
IPD
DDR_D[6]
W12
I/O
IPD
DDR_D[5]
V12
I/O
IPD
DDR_D[4]
V13
I/O
IPD
DDR_D[3]
U13
I/O
IPD
DDR_D[2]
V14
I/O
IPD
DDR_D[1]
U14
I/O
IPD
DDR_D[0]
U15
I/O
IPD
DDR_A[13]
T5
O
IPD
DDR_A[12]
V4
O
IPD
DDR_A[11]
T4
O
IPD
DDR_A[10]
W4
O
IPD
DDR_A[9]
T6
O
IPD
DDR_A[8]
U4
O
IPD
DDR_A[7]
U6
O
IPD
DDR_A[6]
W5
O
IPD
DDR_A[5]
V5
O
IPD
DDR_A[4]
U5
O
IPD
DDR_A[3]
V6
O
IPD
DDR_A[2]
W6
O
IPD
DDR_A[1]
T7
O
IPD
DDR_A[0]
U7
O
IPD
DDR_CLKP
W8
O
IPD
DDR2 clock (positive)
DDR_CLKN
W7
O
IPD
DDR2 clock (negative)
DDR_CKE
V7
O
IPD
DDR2 clock enable
DDR_WE
T8
O
IPD
DDR2 write enable
DDR_RAS
W9
O
IPD
DDR2 row address strobe
DDR_CAS
U9
O
IPD
DDR2 column address strobe
DDR_CS
V9
O
IPD
DDR2 chip select
DDR_DQM[0]
W13
O
IPD
DDR_DQM[1]
R10
O
IPD
(1)
(2)
32
DDR2 SDRAM data bus
DDR2 row/column address
DDR2 data mask outputs
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module.
Device Overview
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
SPRS586 – JUNE 2009
Table 3-9. DDR2 Controller (DDR2) Terminal Functions (continued)
NAME
NO.
TYPE (1)
PULL (2)
DESCRIPTION
DDR_DQS[0]
T14
I/O
IPD
DDR_DQS[1]
V11
I/O
IPD
DDR_BA[2]
U8
O
IPD
DDR_BA[1]
T9
O
IPD
DDR_BA[0]
V8
O
IPD
DDR_DQGATE0
R11
O
IPD
DDR2 loopback signal for external DQS gating.
Route to DDR and back to DDR_DQGATE1 with
same constraints as used for DDR clock and data.
DDR_DQGATE1
R12
I
IPD
DDR2 loopback signal for external DQS gating.
Route to DDR and back to DDR_DQGATE0 with
same constraints as used for DDR clock and data.
DDR_ZP
U12
O
—
DDR2 reference output for drive strength calibration
of N and P channel outputs. Tie to ground via 50
ohm resistor @ 0.5% tolerance.
DDR_VREF
R6
I
—
DDR voltage input for the DDR2/mDDR I/O buffers.
Note even in the case of mDDR an external resistor
divider connected to this pin is necessary.
N6, N9, N10,
P7, P8, P9,
P10, R7, R8,
R9
PWR
—
DDR PHY 1.8V power supply pins
DDR_DVDD18
Submit Documentation Feedback
DDR2 data strobe inputs/outputs
DDR2 SDRAM bank address
Device Overview
33
PRODUCT PREVIEW
SIGNAL
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
3.9.7
www.ti.com
Serial Peripheral Interface Modules (SPI)
Table 3-10. Serial Peripheral Interface (SPI) Terminal Functions
SIGNAL
NAME
NO.
TYPE (1)
PULL (2)
POWER
GROUP (3)
DESCRIPTION
SPI0
PRODUCT PREVIEW
SPI0_CLK / EPWM0A / GP1[8] / MII_RXCLK
D19
O
CP[7]
A
SPI0 clock
SPI0_ENA / EPWM0B / MII_RXDV
C17
O
CP[7]
A
SPI0 enable
SPI0_SCS[0] / TM64P1_OUT12 / GP1[6] / MDIO_D / TM64P1_IN12
D17
O
CP[10]
A
SPI0_SCS[1] / TM64P0_OUT12 / GP1[7] / MDIO_CLK /
TM64P0_IN12
E16
O
CP[10]
A
SPI0_SCS[2] / UART0_RTS / GP8[1] / MII_RXD[0] /SATA_CP_DET
D16
O
CP[9]
A
SPI0_SCS[3] / UART0_CTS / GP8[2] / MII_RXD[1] /
SATA_MP_SWITCH
E17
O
CP[9]
A
SPI0_SCS[4] / UART0_TXD / GP8[3] / MII_RXD[2]
D18
O
CP[8]
A
SPI0_SCS[5] / UART0_RXD / GP8[4] / MII_RXD[3]
C19
O
CP[8]
A
SPI0_SIMO / EPWMSYNCO / GP8[5] / MII_CRS
C18
I/O/Z
CP[7]
A
SPI0 data
slave-in-master-out
SPI0_SOMI / EPWMSYNCI / GP8[6] / MII_RXER
C16
I/O/Z
CP[7]
A
SPI0 data
slave-out-master-in
SPI0 chip selects
SPI1
SPI1_CLK / GP2[13]
G19
O
CP[15]
A
SPI1 clock
SPI1_ENA / GP2[12]
H16
O
CP[15]
A
SPI1 enable
SPI1_SCS[0] / EPWM1B / GP2[14] / TM64P3_IN12
E19
O
CP[14]
A
SPI1_SCS[1] / EPWM1A / GP2[15] / TM64P2_IN12
F18
O
CP[14]
A
SPI1_SCS[2] / UART1_TXD /SATA_CP_POD /GP1[0]
F19
O
CP[13]
A
SPI1_SCS[3] / UART1_RXD /SATA_LED /GP1[1]
E18
O
CP[13]
A
SPI1_SCS[4] / UART2_TXD /I2C1_SDA /GP1[2]
F16
O
CP[12]
A
SPI1_SCS[5] / UART2_RXD /I2C1_SCL /GP1[3]
F17
O
CP[12]
A
SPI1_SCS[6] / I2C0_SDA / TM64P3_OUT12 / GP1[4]
G18
O
CP[11]
A
SPI1_SCS[7] / I2C0_SCL / TM64P2_OUT12 / GP1[5]
G16
O
CP[11]
A
SPI1_SIMO / GP2[10]
G17
I/O/Z
CP[15]
A
SPI1 data
slave-in-master-out
SPI1_SOMI / GP2[11]
H17
I/O/Z
CP[15]
A
SPI1 data
slave-out-master-in
(1)
(2)
(3)
34
SPI1 chip selects
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are weakly pulled down. If the application requires a
pull-up, an external pull-up can be used.
This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
Device Overview
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
3.9.8
SPRS586 – JUNE 2009
Enhanced Capture/Auxiliary PWM Modules (eCAP0)
The eCAP Module pins function as either input captures or auxiliary PWM 32-bit outputs, depending upon
how the eCAP module is programmed.
Table 3-11. Enhanced Capture Module (eCAP) Terminal Functions
SIGNAL
NAME
NO.
TYPE (1)
PULL (2)
POWER
GROUP (3)
CP[6]
A
enhanced capture 0 input or
auxiliary PWM 0 output
CP[3]
A
enhanced capture 1 input or
auxiliary PWM 1 output
CP[1]
A
enhanced capture 2 input or
auxiliary PWM 2 output
DESCRIPTION
eCAP0
AXR0 / ECAP0_APWM0 / GP8[7] / MII_TXD[0] / CLKS0
F3
I/O
AXR8 / CLKS1 / ECAP1_APWM1 / GP0[0]
E4
I/O
eCAP2
AXR15 / EPWM0TZ[0] / ECAP2_APWM2 / GP0[7]
(1)
(2)
(3)
A4
I/O
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are weakly pulled down. If the application requires a
pull-up, an external pull-up can be used.
This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
Submit Documentation Feedback
Device Overview
35
PRODUCT PREVIEW
eCAP1
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
3.9.9
www.ti.com
Enhanced Pulse Width Modulators (eHRPWM)
Table 3-12. Enhanced Pulse Width Modulator (eHRPWM) Terminal Functions
SIGNAL
NAME
NO.
TYPE (1)
PULL (2)
POWER
GROUP (3)
DESCRIPTION
eHRPWM0
SPI0_CLK / EPWM0A / GP1[8] / MII_RXCLK
D19
I/O
CP[7]
A
eHRPWM0 A output
(with high-resolution)
SPI0_ENA / EPWM0B / MII_RXDV
C17
I/O
CP[7]
A
eHRPWM0 B output
A4
I/O
CP[1]
A
eHRPWM0 trip zone input
SPI0_SOMI /EPWMSYNCI / GP8[6] / MII_RXER
C16
I/O
CP[7]
A
eHRPWM0 sync input
SPI0_SIMO /EPWMSYNCO / GP8[5] / MII_CRS
C18
I/O
CP[7]
A
eHRPWM0 sync output
AXR15 / EPWM0TZ[0] / ECAP2_APWM2 / GP0[7]
PRODUCT PREVIEW
eHRPWM1
SPI1_SCS[1] / EPWM1A / GP2[15] / TM64P2_IN12
F18
I/O
CP[14]
A
eHRPWM1 A output
(with high-resolution)
SPI1_SCS[0] / EPWM1B / GP2[14] / TM64P3_IN12
E19
I/O
CP[14]
A
eHRPWM1 B output
AXR7 / EPWM1TZ[0] / GP1[15]
D2
I/O
CP[4]
A
eHRPWM1 trip zone input
(1)
(2)
(3)
36
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are weakly pulled down. If the application requires a
pull-up, an external pull-up can be used.
This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
Device Overview
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
3.9.10
SPRS586 – JUNE 2009
Boot
Table 3-13. Boot Mode Selection Terminal Functions (1)
NAME
NO.
TYPE (2)
PULL (3)
POWER
GROUP (4)
VP_DOUT[15/]/ LCD_D[15]/ UPP_XD[7] /GP7[7] / BOOT[7]
P4
I
CP[29]
C
VP_DOUT[14] /LCD_D[14] /UPP_XD[6] /GP7[6] / BOOT[6]
R3
I
CP[29]
C
VP_DOUT[13] /LCD_D[13] /UPP_XD[5] /GP7[5] / BOOT[5]
R2
I
CP[29]
C
VP_DOUT[12] /LCD_D[12] /UPP_XD[4] / GP7[4] / BOOT[4]
R1
I
CP[29]
C
VP_DOUT[11] /LCD_D[11] /UPP_XD[3] /GP7[3] / BOOT[3]
T3
I
CP[29]
C
VP_DOUT[10] /LCD_D[10] /UPP_XD[2] /GP7[2] / BOOT[2]
T2
I
CP[29]
C
VP_DOUT[9] /LCD_D[9] /UPP_XD[1] /GP7[1] / BOOT[1]
T1
I
CP[29]
C
VP_DOUT[8] /LCD_D[8] /UPP_XD[0] /GP7[0] / BOOT[0]
U3
I
CP[29]
C
(1)
(2)
(3)
(4)
DESCRIPTION
Boot Mode Selection Pins
Boot decoding is defined in the bootloader application report.
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are weakly pulled down. If the application requires a
pull-up, an external pull-up can be used.
This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
Submit Documentation Feedback
Device Overview
37
PRODUCT PREVIEW
SIGNAL
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
www.ti.com
3.9.11 Universal Asynchronous Receiver/Transmitters (UART0, UART1, UART2)
Table 3-14. Universal Asynchronous Receiver/Transmitter (UART) Terminal Functions
SIGNAL
NAME
NO.
TYPE (1)
PULL (2)
POWER
GROUP (3)
DESCRIPTION
UART0
SPI0_SCS[5] /UART0_RXD / GP8[4] / MII_RXD[3]
C19
I
CP[8]
A
UART0 receive data
SPI0_SCS[4] /UART0_TXD / GP8[3] / MII_RXD[2]
D18
O
CP[8]
A
UART0 transmit data
SPI0_SCS[2] /UART0_RTS / GP8[1] / MII_RXD[0] /
SATA_CP_DET
D16
O
CP[9]
A
UART0 ready-to-send output
SPI0_SCS[3] /UART0_CTS / GP8[2] / MII_RXD[1] /
SATA_MP_SWITCH
E17
I
CP[9]
A
UART0 clear-to-send input
UART1
PRODUCT PREVIEW
SPI1_SCS[3] / UART1_RXD / SATA_LED / GP1[1]
E18
I
CP[13]
A
UART1 receive data
SPI1_SCS[2] / UART1_TXD / SATA_CP_POD / GP1[0]
F19
O
CP[13]
A
UART1 transmit data
AHCLKR / UART1_RTS /GP0[11]
A2
O
CP[0]
A
UART1 ready-to-send output
AHCLKX / USB_REFCLKIN / UART1_CTS / GP0[10]
A3
I
CP[0]
A
UART1 clear-to-send input
SPI1_SCS[5] / UART2_RXD / I2C1_SCL /GP1[3]
F17
I
CP[12]
A
UART2 receive data
SPI1_SCS[4] / UART2_TXD / I2C1_SDA /GP1[2]
F16
O
CP[12]
A
UART2 transmit data
AMUTE / UART2_RTS / GP0[9]
D5
O
CP[0]
A
UART2 ready-to-send output
RSVD /RTC_ALARM / UART2_CTS / GP0[8] /DEEPSLEEP
F4
I
CP[0]
A
UART2 clear-to-send input
UART2
(1)
(2)
(3)
38
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module.The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are weakly pulled down. If the application requires a
pull-up, an external pull-up can be used.
This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
Device Overview
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
SPRS586 – JUNE 2009
3.9.12 Inter-Integrated Circuit Modules(I2C0, I2C1)
Table 3-15. Inter-Integrated Circuit (I2C) Terminal Functions
SIGNAL
NAME
NO.
TYPE (1)
PULL (2)
POWER
GROUP (3)
DESCRIPTION
I2C0
SPI1_SCS[6] / I2C0_SDA / TM64P3_OUT12 / GP1[4]
G18
I/O
CP[11]
A
I2C0 serial data
SPI1_SCS[7] / I2C0_SCL / TM64P2_OUT12 / GP1[5]
G16
I/O
CP[11]
A
I2C0 serial clock
SPI1_SCS[4] / UART2_TXD / I2C1_SDA / GP1[2]
F16
I/O
CP[12]
A
I2C1 serial data
SPI1_SCS[5] / UART2_RXD / I2C1_SCL / GP1[3]
F17
I/O
CP[12]
A
I2C1 serial clock
(1)
(2)
(3)
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module.The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are weakly pulled down. If the application requires a
pull-up, an external pull-up can be used.
This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
Submit Documentation Feedback
Device Overview
39
PRODUCT PREVIEW
I2C1
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
www.ti.com
3.9.13 Timers
Table 3-16. Timers Terminal Functions
SIGNAL
NAME
NO.
TYPE (1)
PULL (2)
POWER
GROUP (3)
DESCRIPTION
TIMER0
SPI0_SCS[1] /TM64P0_OUT12 / GP1[7] /MDIO_CLK /TM64P0_IN12
E16
I
CP[10]
A
Timer0 lower input.
SPI0_SCS[1] /TM64P0_OUT12 / GP1[7] / MDIO_CLK / TM64P0_IN12
E16
O
CP[10]
A
Timer0 lower
output
TIMER1 (Watchdog)
PRODUCT PREVIEW
SPI0_SCS[0] /TM64P1_OUT12 / GP1[6] / MDIO_D /TM64P1_IN12
D17
I
CP[10]
A
Timer1 lower input.
SPI0_SCS[0] /TM64P1_OUT12 / GP1[6] / MDIO_D /TM64P1_IN12
D17
O
CP[10]
A
Timer1 lower
output
SPI1_SCS[1] / EPWM1A / GP2[15] / TM64P2_IN12
F18
I
CP[14]
A
Timer2 lower input.
SPI1_SCS[7] / I2C0_SCL / TM64P2_OUT12 / GP1[5]
G16
O
CP[11]
A
Timer2 lower
output
SPI1_SCS[0] / EPWM1B / GP2[14] / TM64P3_IN12
E19
I
CP[14]
A
Timer3 lower input.
SPI1_SCS[6] / I2C0_SDA / TM64P3_OUT12 / GP1[4]
G18
O
CP[11]
A
Timer3 lower
output
TIMER2
TIMER3
(1)
(2)
(3)
40
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are weakly pulled down. If the application requires a
pull-up, an external pull-up can be used.
This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
Device Overview
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
SPRS586 – JUNE 2009
3.9.14 Multichannel Audio Serial Ports (McASP)
Table 3-17. Multichannel Audio Serial Ports Terminal Functions
SIGNAL
NAME
NO.
TYPE (1)
PULL (2)
POWER
GROUP (3)
DESCRIPTION
AXR15 / EPWM0TZ[0] / ECAP2_APWM2 / GP0[7]
A4
I/O
CP[1]
A
AXR14 / CLKR1 / GP0[6]
B4
I/O
CP[2]
A
AXR13 / CLKX1 / GP0[5]
B3
I/O
CP[2]
A
AXR12 / FSR1 / GP0[4]
C4
I/O
CP[2]
A
AXR11 / FSX1 / GP0[3]
C5
I/O
CP[2]
A
AXR10 / DR1 / GP0[2]
D4
I/O
CP[2]
A
AXR9 / DX1 / GP0[1]
C3
I/O
CP[2]
A
AXR8 / CLKS1 / ECAP1_APWM1 / GP0[0]
E4
I/O
CP[3]
A
AXR7 / EPWM1TZ[0] / GP1[15]
D2
I/O
CP[4]
A
AXR6 / CLKR0 / GP1[14] / MII_TXEN
C1
I/O
CP[5]
A
AXR5 / CLKX0 / GP1[13] / MII_TXCLK
D3
I/O
CP[5]
A
AXR4 / FSR0 / GP1[12] / MII_COL
D1
I/O
CP[5]
A
AXR3 / FSX0 / GP1[11] / MII_TXD[3]
E3
I/O
CP[5]
A
AXR2 / DR0 / GP1[10] / MII_TXD[2]
E2
I/O
CP[5]
A
AXR1 / DX0 / GP1[9] / MII_TXD[1]
E1
I/O
CP[5]
A
AXR0 / ECAP0_APWM0 / GP8[7] / MII_TXD[0] / CLKS0
F3
I/O
CP[6]
A
AHCLKX / USB_REFCLKIN / UART1_CTS / GP0[10]
A3
I/O
CP[0]
A
McASP0 transmit master clock
ACLKX / GP0[14]
B1
I/O
CP[0]
A
McASP0 transmit bit clock
AFSX / GP0[12]
B2
I/O
CP[0]
A
McASP0 transmit frame sync
AHCLKR / UART1_RTS /GP0[11]
A2
I/O
CP[0]
A
McASP0 receive master clock
ACLKR / GP0[15]
A1
I/O
CP[0]
A
McASP0 receive bit clock
AFSR / GP0[13]
C2
I/O
CP[0]
A
McASP0 receive frame sync
AMUTE / UART2_RTS / GP0[9]
D5
I/O
CP[0]
A
McASP0 mute output
(1)
(2)
(3)
PRODUCT PREVIEW
McASP0
McASP0 serial data
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are weakly pulled down. If the application requires a
pull-up, an external pull-up can be used.
This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
Submit Documentation Feedback
Device Overview
41
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
www.ti.com
3.9.15 Multichannel Buffered Serial Ports (McBSP)
Table 3-18. Multichannel Buffered Serial Ports (McBSPs) Terminal Functions
SIGNAL
NAME
NO.
TYPE (1)
PULL (2)
POWER
GROUP (3)
DESCRIPTION
McBSP0
AXR0 / ECAP0_APWM0 / GP8[7] / MII_TXD[0]
/ CLKS0
F3
I
CP[6]
A
McBSP0 sample rate generator clock input
AXR6 / CLKR0 / GP1[14] / MII_TXEN
C1
I/O
CP[5]
A
McBSP0 receive clock
AXR4 / FSR0 / GP1[12] / MII_COL
D1
I/O
CP[5]
A
McBSP0 receive frame sync
PRODUCT PREVIEW
AXR2 / DR0 / GP1[10] / MII_TXD[2]
E2
I
CP[5]
A
McBSP0 receive data
AXR5 / CLKX0 / GP1[13] / MII_TXCLK
D3
I/O
CP[5]
A
McBSP0 transmit clock
AXR3 / FSX0 / GP1[11] / MII_TXD[3]
E3
I/O
CP[5]
A
McBSP0 transmit frame sync
AXR1 / DX0 / GP1[9] / MII_TXD[1]
E1
O
CP[5]
A
McBSP0 transmit data
McBSP1
AXR8 / CLKS1 / ECAP1_APWM1 / GP0[0]
E4
I
CP[3]
A
McBSP1 sample rate generator clock input
AXR14 / CLKR1 / GP0[6]
B4
I/O
CP[2]
A
McBSP1 receive clock
AXR12 / FSR1 / GP0[4]
C4
I/O
CP[2]
A
McBSP1 receive frame sync
AXR10 / DR1 / GP0[2]
D4
I
CP[2]
A
McBSP1 receive data
AXR13 / CLKX1 / GP0[5]
B3
I/O
CP[2]
A
McBSP1 transmit clock
AXR11 / FSX1 / GP0[3]
C5
I/O
CP[2]
A
McBSP1 transmit frame sync
AXR9 / DX1 / GP0[1]
C3
O
CP[2]
A
McBSP1 transmit data
(1)
(2)
(3)
42
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are weakly pulled down. If the application requires a
pull-up, an external pull-up can be used.
This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
Device Overview
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
SPRS586 – JUNE 2009
3.9.16 Universal Serial Bus Modules (USB0, USB1)
Table 3-19. Universal Serial Bus (USB) Terminal Functions
SIGNAL
NAME
NO.
TYPE (1)
PULL (2)
POWER
GROUP (3)
DESCRIPTION
USB0_DM
M18
A
—
—
USB0 PHY data minus
USB0_DP
M19
A
—
—
USB0 PHY data plus
USB0_VDDA33
N18
PWR
—
—
USB0 PHY 3.3-V supply
USB0_ID
P16
A
—
—
USB0 PHY identification
(mini-A or mini-B plug)
USB0_VBUS
N19
A
—
—
USB0 bus voltage
USB0_DRVVBUS
K18
0
—
B
USB0 controller VBUS control output.
AHCLKX / USB_REFCLKIN / UART1_CTS /
GP0[10]
A3
I
CP[0]
A
USB_REFCLKIN. Optional clock input
USB0_VDDA18
N14
PWR
—
—
USB0 PHY 1.8-V supply input
USB0_VDDA12
N17
PWR
—
—
USB0 PHY 1.2-V LDO output for bypass cap
USB_CVDD
M12
PWR
—
—
USB0 and USB1 core logic 1.2-V supply
input
USB1 1.1 OHCI (USB1)
USB1_DM
P18
A
—
—
USB1 PHY data minus
USB1_DP
P19
A
—
—
USB1 PHY data plus
AHCLKX / USB_REFCLKIN / UART1_CTS /
GP0[10]
A3
I
CP[0]
A
USB_REFCLKIN. Optional clock input
USB1_VDDA33
P15
PWR
—
—
USB1 PHY 3.3-V supply
USB1_VDDA18
P14
PWR
—
—
USB1 PHY 1.8-V supply
USB_CVDD
M12
PWR
—
—
USB0 and USB1 core logic 1.2-V supply
input
(1)
(2)
(3)
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are weakly pulled down. If the application requires a
pull-up, an external pull-up can be used.
This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
Submit Documentation Feedback
Device Overview
43
PRODUCT PREVIEW
USB0 2.0 OTG (USB0)
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
www.ti.com
3.9.17 Ethernet Media Access Controller (EMAC)
Table 3-20. Ethernet Media Access Controller (EMAC) Terminal Functions
SIGNAL
NAME
NO.
TYPE (1)
PULL (2)
POWER
GROUP (3)
DESCRIPTION
MII
PRODUCT PREVIEW
AXR6 / CLKR0 / GP1[14] / MII_TXEN
C1
O
CP[5]
A
EMAC MII Transmit enable output
AXR5 / CLKX0 / GP1[13] / MII_TXCLK
D3
I
CP[5]
A
EMAC MII Transmit clock input
AXR4 / FSR0 / GP1[12] / MII_COL
D1
I
CP[5]
A
EMAC MII Collision detect input
AXR3 / FSX0 / GP1[11] / MII_TXD[3]
E3
O
CP[5]
A
AXR2 / DR0 / GP1[10] / MII_TXD[2]
E2
O
CP[5]
A
AXR1 / DX0 / GP1[9] / MII_TXD[1]
E1
O
CP[5]
A
AXR0 / ECAP0_APWM0 / GP8[7] / MII_TXD[0] /
CLKS0
F3
O
CP[6]
A
SPI0_SOMI / EPWMSYNCI / GP8[6] / MII_RXER
C16
I
CP[7]
A
EMAC MII receive error input
SPI0_SIMO /EPWMSYNCO / GP8[5] / MII_CRS
C18
I
CP[7]
A
EMAC MII carrier sense input
SPI0_CLK / EPWM0A / GP1[8] / MII_RXCLK
D19
I
CP[7]
A
EMAC MII receive clock input
SPI0_ENA / EPWM0B / MII_RXDV
C17
I
CP[7]
A
EMAC MII receive data valid input
SPI0_SCS[5] /UART0_RXD / GP8[4] / MII_RXD[3]
C19
I
CP[8]
A
SPI0_SCS[4] /UART0_TXD / GP8[3] / MII_RXD[2]
D18
I
CP[8]
A
SPI0_SCS[3] /UART0_CTS / GP8[2] / MII_RXD[1] /
SATA_MP_SWITCH
E17
I
CP[9]
A
SPI0_SCS[2] /UART0_RTS / GP8[1] / MII_RXD[0] /
SATA_CP_DET
D16
I
CP[9]
A
EMAC MII transmit data
EMAC MII receive data
RMII
VP_DIN[1] / UHPI_HD[9] / UPP_CH1_D[9] /
RMII_MHZ_50_CLK
W18
I/O
CP[26]
C
EMAC 50-MHz clock input or output
VP_DIN[2] / UHPI_HD[10] / UPP_CH1_D[10] /
RMII_RXER
W17
I
CP[26]
C
EMAC RMII receiver error
VP_DIN[3] / UHPI_HD[11] / UPP_CH1_D[11] /
RMII_RXD[0]
V17
I
CP[26]
C
VP_DIN[4] / UHPI_HD[12] / UPP_CH1_D[12] /
RMII_RXD[1]
W16
I
CP[26]
C
VP_DIN[0] / UHPI_HD[8] / UPP_CH1_D[8] /
RMII_CRS_DV
W19
I
CP[26]
C
EMAC RMII carrier sense data valid
VP_DIN[5] / UHPI_HD[13] / UPP_CH1_D[13] /
RMII_TXEN
R14
O
CP[26]
C
EMAC RMII transmit enable
VP_DIN[6] / UHPI_HD[14] / UPP_CH1_D[14] /
RMII_TXD[0]
V16
O
CP[26]
C
VP_DIN[7] / UHPI_HD[15] / UPP_CH1_D[15] /
RMII_TXD[1]
U18
O
CP[26]
C
CP[10]
A
EMAC RMII receive data
EMAC RMII transmit data
MDIO
SPI0_SCS[0] /TM64P1_OUT12 / GP1[6] / MDIO_D /
TM64P1_IN12
(1)
(2)
(3)
44
D17
I/O
MDIO serial data
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are weakly pulled down. If the application requires a
pull-up, an external pull-up can be used.
This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
Device Overview
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
SPRS586 – JUNE 2009
Table 3-20. Ethernet Media Access Controller (EMAC) Terminal Functions (continued)
SIGNAL
NO.
SPI0_SCS[1] /TM64P0_OUT12 / GP1[7] / MDIO_CLK
/ TM64P0_IN12
E16
TYPE (1)
PULL (2)
POWER
GROUP (3)
O
CP[10]
A
DESCRIPTION
MDIO clock
PRODUCT PREVIEW
NAME
Submit Documentation Feedback
Device Overview
45
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
www.ti.com
3.9.18 Multimedia Card/Secure Digital (MMC/SD)
Table 3-21. Multimedia Card/Secure Digital (MMC/SD) Terminal Functions
SIGNAL
NAME
NO.
TYPE (1)
PULL (2)
POWER
GROUP (3)
DESCRIPTION
MMCSD0
PRODUCT PREVIEW
EMA_A[23] / MMCSD0_CLK / GP4[7]
E9
O
CP[18]
B
MMCSD0 Clock
EMA_A[22] / MMCSD0_CMD / GP4[6]
A10
I/O
CP[18]
B
MMCSD0 Command
EMA_A[21] / MMCSD0_DAT[0] / GP4[5]
B10
I/O
CP[18]
B
EMA_A[20] / MMCSD0_DAT[1] / GP4[4]
A11
I/O
CP[18]
B
EMA_A[19] / MMCSD0_DAT[2] / GP4[3]
C10
I/O
CP[18]
B
EMA_A[18] / MMCSD0_DAT[3] / GP4[2]
E11
I/O
CP[18]
B
EMA_A[17] / MMCSD0_DAT[4] / GP4[1]
B11
I/O
CP[18]
B
EMA_A[16] / MMCSD0_DAT[5] / GP4[0]
E12
I/O
CP[18]
B
EMA_A[15] / MMCSD0_DAT[6] / GP5[15]
C11
I/O
CP[19]
B
EMA_A[14] / MMCSD0_DAT[7] / GP5[14]
A12
I/O
CP[19]
B
MMC/SD0 data
MMCSD1
MMCSD1_CLK / UPP_CH0_START / GP8[14]
G2
O
CP[30]
C
MMCSD1 Clock
MMCSD1_CMD / UPP_CH0_ENABLE / GP8[13]
J4
I/O
CP[30]
C
MMCSD1 Command
MMCSD1_DAT[7] / LCD_PCLK /GP8[11]
F1
I/O
CP[31]
C
MMCSD1_DAT[5] / LCD_HSYNC /GP8[9]
H4
I/O
CP[31]
C
MMCSD1_DAT[4] / LCD_VSYNC /GP8[8]
G4
I/O
CP[31]
C
MMCSD1_DAT[6] / LCD_MCLK /GP8[10]
F2
I/O
CP[31]
C
VP_CLKIN2 / MMCSD1_DAT[3] / GP6[4]
H3
I/O
CP[30]
C
VP_CLKIN3 / MMCSD1_DAT[1] / GP6[2]
J3
I/O
CP[30]
C
VP_CLKOUT2 / MMCSD1_DAT[2] / GP6[3]
K3
I/O
CP[30]
C
MMCSD1_DAT[0] / UPP_CH0_CLK / GP8[15]
G1
I/O
CP[30]
C
(1)
(2)
(3)
46
MMC/SD1 data
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are weakly pulled down. If the application requires a
pull-up, an external pull-up can be used.
This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
Device Overview
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
3.9.19
SPRS586 – JUNE 2009
Liquid Crystal Display Controller(LCD)
Table 3-22. Liquid Crystal Display Controller (LCD) Terminal Functions
NAME
NO.
TYPE (1)
PULL (2)
POWER
GROUP (3)
DESCRIPTION
VP_DOUT[15] / LCD_D[15] / UPP_XD[7] / GP7[7] / BOOT[7]
P4
I/O
CP[29]
C
VP_DOUT[14] / LCD_D[14] / UPP_XD[6] / GP7[6] / BOOT[6]
R3
I/O
CP[29]
C
VP_DOUT[13] / LCD_D[13] / UPP_XD[5] / GP7[5] / BOOT[5]
R2
I/O
CP[29]
C
VP_DOUT[12] / LCD_D[12] / UPP_XD[4] / GP7[4] / BOOT[4]
R1
I/O
CP[29]
C
VP_DOUT[11] / LCD_D[11] / UPP_XD[3] / GP7[3] / BOOT[3]
T3
I/O
CP[29]
C
VP_DOUT[10] / LCD_D[10] / UPP_XD[2] / GP7[2] / BOOT[2]
T2
I/O
CP[29]
C
VP_DOUT[9] / LCD_D[9] / UPP_XD[1] / GP7[1] / BOOT[1]
T1
I/O
CP[29]
C
VP_DOUT[8] / LCD_D[8] / UPP_XD[0] / GP7[0] / BOOT[0]
U3
I/O
CP[29]
C
VP_DOUT[7] / LCD_D[7] / UPP_XD[15] / GP7[15]
U2
I/O
CP[28]
C
VP_DOUT[6] / LCD_D[6] / UPP_XD[14] / GP7[14]
U1
I/O
CP[28]
C
VP_DOUT[5] / LCD_D[5] / UPP_XD[13] / GP7[13]
V3
I/O
CP[28]
C
VP_DOUT[4] / LCD_D[4] / UPP_XD[12] / GP7[12]
V2
I/O
CP[28]
C
VP_DOUT[3] / LCD_D[3] / UPP_XD[11] / GP7[11]
V1
I/O
CP[28]
C
VP_DOUT[2] / LCD_D[2] / UPP_XD[10] / GP7[10]
W3
I/O
CP[28]
C
VP_DOUT[1] / LCD_D[1] / UPP_XD[9] / GP7[9]
W2
I/O
CP[28]
C
VP_DOUT[0] / LCD_D[0] / UPP_XD[8] / GP7[8]
W1
I/O
CP[28]
C
MMCSD1_DAT[7] / LCD_PCLK / GP8[11]
F1
O
CP[31]
C
LCD pixel clock
MMCSD1_DAT[5] / LCD_HSYNC / GP8[9]
H4
O
CP[31]
C
LCD horizontal sync
MMCSD1_DAT[4] / LCD_VSYNC / GP8[8]
G4
O
CP[31]
C
LCD vertical sync
LCD_AC_ENB_CS / GP6[0]
R5
O
CP[31]
C
LCD AC bias enable chip
select
MMCSD1_DAT[6] / LCD_MCLK / GP8[10]
F2
O
CP[31]
C
LCD memory clock
(1)
(2)
(3)
PRODUCT PREVIEW
SIGNAL
LCD data bus
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are weakly pulled down. If the application requires a
pull-up, an external pull-up can be used.
This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
Submit Documentation Feedback
Device Overview
47
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
3.9.20
www.ti.com
Serial ATA Controller (SATA)
Table 3-23. Serial ATA Controller (SATA) Terminal Functions
SIGNAL
NAME
NO.
TYPE (1)
PULL (2)
POWER
GROUP (3)
I
—
—
SATA receive data (positive)
DESCRIPTION
PRODUCT PREVIEW
SATA_RXP
L1
SATA_RXN
L2
I
—
—
SATA receive data (negative)
SATA_TXP
J1
O
—
—
SATA transmit data (positive)
SATA_TXN
J2
O
—
—
SATA transmit data (negative)
SATA_REFCLKP
N2
I
—
—
SATA PHY reference clock (positive)
SATA_REFCLKN
N1
I
—
—
SATA PHY reference clock (negative)
SPI0_SCS[3] / UART0_CTS / GP8[2] /
MII_RXD[1] / SATA_MP_SWITCH
E17
I
CP[9]
A
SATA mechanical presence switch input
SPI0_SCS[2] / UART0_RTS / GP8[1] /
MII_RXD[0] / SATA_CP_DET
D16
I
CP[9]
A
SATA cold presence detect input
SPI1_SCS[2] / UART1_TXD /
SATA_CP_POD / GP1[0]
F19
O
CP[13]
A
SATA cold presence power-on output
SPI1_SCS[3] / UART1_RXD / SATA_LED /
GP1[1]
E18
O
CP[13]
A
SATA LED control output
SATA_REG
N3
A
—
—
SATA PHY PLL regulator output. Requires an
external 0.1uF filter capacitor.
SATA_VDDR
P3
PWR
—
—
SATA PHY 1.8V internal regulator supply
SATA_VDD
M2,
P1,
P2,
N4
PWR
—
—
SATA PHY 1.2V logic supply
SATA_VSS
H1,
H2,
K1,
K2,
L3,
M1
GND
—
—
SATA PHY ground reference
(1)
(2)
(3)
48
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are weakly pulled down. If the application requires a
pull-up, an external pull-up can be used.
This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
Device Overview
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
3.9.21
SPRS586 – JUNE 2009
Universal Host-Port Interface (UHPI)
Table 3-24. Universal Host-Port Interface (UHPI) Terminal Functions
TYPE (1)
PULL (2)
POWER
GROUP (3)
U18
I/O
CP[26]
C
VP_DIN[6] / UHPI_HD[14] / UPP_CH1_D[14] / RMII_TXD[0]
V16
I/O
CP[26]
C
VP_DIN[5] / UHPI_HD[13] / UPP_CH1_D[13] / RMII_TXEN
R14
I/O
CP[26]
C
VP_DIN[4] / UHPI_HD[12] / UPP_CH1_D[12] / RMII_RXD[1]
W16
I/O
CP[26]
C
VP_DIN[3] / UHPI_HD[11] / UPP_CH1_D[11] / RMII_RXD[0]
V17
I/O
CP[26]
C
VP_DIN[2] / UHPI_HD[10] / UPP_CH1_D[10] / RMII_RXER
W17
I/O
CP[26]
C
VP_DIN[1] / UHPI_HD[9] / UPP_CH1_D[9] / RMII_MHZ_50_CLK
W18
I/O
CP[26]
C
VP_DIN[0] / UHPI_HD[8] / UPP_CH1_D[8] / RMII_CRS_DV
W19
I/O
CP[26]
C
VP_DIN[15]_VSYNC / UHPI_HD[7] / UPP_CH1_D[7]
V18
I/O
CP[27]
C
VP_DIN[14]_HSYNC / UHPI_HD[6] / UPP_CH1_D[6]
V19
I/O
CP[27]
C
VP_DIN[13]_FIELD / UHPI_HD[5] / UPP_CH1_D[5]
U19
I/O
CP[27]
C
VP_DIN[12] / UHPI_HD[4] / UPP_CH1_D[4]
T16
I/O
CP[27]
C
VP_DIN[11] / UHPI_HD[3] / UPP_CH1_D[3]
R18
I/O
CP[27]
C
VP_DIN[10] / UHPI_HD[2] / UPP_CH1_D[2]
R19
I/O
CP[27]
C
VP_DIN[9] / UHPI_HD[1] / UPP_CH1_D[1]
R15
I/O
CP[27]
C
VP_DIN[8] / UHPI_HD[0] / UPP_CH1_D[0] / GP6[5]
P17
I/O
CP[27]
C
UHPI_HCNTL0 / UPP_CH1_CLK / GP6[11]
U17
I
CP[24]
C
UHPI_HCNTL1 / UPP_CH1_START / GP6[10]
W15
I
CP[24]
C
UHPI_HHWIL / UPP_CH1_ENABLE / GP6[9]
U16
I
CP[24]
C
UHPI half-word
identification control
UHPI_HRW / UPP_CH1_WAIT / GP6[8]
T15
I
CP[24]
C
UHPI read/write
VP_CLKIN0 / UHPI_HCS / GP6[7] / UPP_2xTXCLK
W14
I
CP[25]
C
UHPI chip select
VP_CLKIN1 / UHPI_HDS1 / GP6[6]
V15
I
CP[25]
C
CLKOUT / UHPI_HDS2 / GP6[14]
T18
I
CP[22]
C
UHPI_HINT / GP6[12]
R16
I
CP[23]
C
UHPI host interrupt
UHPI_HRDY / GP6[13]
R17
O
CP[23]
C
UHPI ready
RESETOUT / UHPI_HAS / GP6[15]
T17
I
CP[21]
C
UHPI address strobe
NAME
VP_DIN[7] / UHPI_HD[15] / UPP_CH1_D[15] / RMII_TXD[1]
(1)
(2)
(3)
NO.
DESCRIPTION
PRODUCT PREVIEW
SIGNAL
UHPI data bus
UHPI access control
UHPI data strobe
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are weakly pulled down. If the application requires a
pull-up, an external pull-up can be used.
This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
Submit Documentation Feedback
Device Overview
49
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
3.9.22
www.ti.com
Universal Parallel Port (uPP)
Table 3-25. Universal Parallel Port (uPP) Terminal Functions
SIGNAL
TYPE (1)
PULL (2)
POWER
GROUP (3)
W14
I
CP[25]
C
uPP 2x transmit clock
input
MMCSD1_DAT[0] / UPP_CH0_CLK / GP8[15]
G1
I/O
CP[30]
C
uPP channel 0 clock
MMCSD1_CLK / UPP_CH0_START / GP8[14]
G2
I/O
CP[30]
C
uPP channel 0 start
MMCSD1_CMD / UPP_CH0_ENABLE / GP8[13]
J4
I/O
CP[30]
C
uPP channel 0 enable
UPP_CH0_WAIT / GP8[12]
G3
I/O
CP[30]
C
uPP channel 0 wait
UHPI_CNTL0 / UPP_CH1_CLK / GP6[11]
U17
I/O
CP[24]
C
uPP channel 1 clock
UHPI_HCNTL1 / UPP_CH1_START / GP6[10]
W15
I/O
CP[24]
C
uPP channel 1 start
UHPI_HHWIL / UPP_CH1_ENABLE / GP6[9]
U16
I/O
CP[24]
C
uPP channel 1 enable
UHPI_HRW / UPP_CH1_WAIT / GP6[8]
T15
I/O
CP[24]
C
uPP channel 1 wait
NAME
VP_CLKIN0 / UHPI_HCS1 / GP6[7] / UPP_2xTXCLK
PRODUCT PREVIEW
(1)
(2)
(3)
50
NO.
DESCRIPTION
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are weakly pulled down. If the application requires a
pull-up, an external pull-up can be used.
This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
Device Overview
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
SPRS586 – JUNE 2009
Table 3-25. Universal Parallel Port (uPP) Terminal Functions (continued)
NAME
NO.
TYPE (1)
PULL (2)
POWER
GROUP (3)
VP_DOUT[7] / LCD_D[7] /UPP_XD[15] / GP7[15]
U2
I/O
CP[28]
C
VP_DOUT[6] / LCD_D[6] /UPP_XD[14] / GP7[14]
U1
I/O
CP[28]
C
VP_DOUT[5] / LCD_D[5] /UPP_XD[13] / GP7[13]
V3
I/O
CP[28]
C
VP_DOUT[4] / LCD_D[4] /UPP_XD[12] / GP7[12]
V2
I/O
CP[28]
C
VP_DOUT[3] / LCD_D[3] /UPP_XD[11] / GP7[11]
V1
I/O
CP[28]
C
VP_DOUT[2] / LCD_D[2] /UPP_XD[10] / GP7[10]
W3
I/O
CP[28]
C
VP_DOUT[1] / LCD_D[1] /UPP_XD[9] / GP7[9]
W2
I/O
CP[28]
C
VP_DOUT[0] / LCD_D[0] /UPP_XD[8] / GP7[8]
W1
I/O
CP[28]
C
VP_DOUT[15] / LCD_D[15] /UPP_XD[7] / GP7[7] / BOOT[7]
P4
I/O
CP[29]
C
VP_DOUT[14] / LCD_D[14] /UPP_XD[6] / GP7[6] / BOOT[6]
R3
I/O
CP[29]
C
VP_DOUT[13] / LCD_D[13] /UPP_XD[5] / GP7[5] / BOOT[5]
R2
I/O
CP[29]
C
VP_DOUT[12] / LCD_D[12] /UPP_XD[4] / GP7[4] / BOOT[4]
R1
I/O
CP[29]
C
VP_DOUT[11] / LCD_D[11] /UPP_XD[3] / GP7[3] / BOOT[3]
T3
I/O
CP[29]
C
VP_DOUT[10] / LCD_D[10] /UPP_XD[2] / GP7[2] / BOOT[2]
T2
I/O
CP[29]
C
VP_DOUT[9] / LCD_D[9] /UPP_XD[1] / GP7[1] / BOOT[1]
T1
I/O
CP[29]
C
VP_DOUT[8] / LCD_D[8] /UPP_XD[0] / GP7[0] / BOOT[0]
U3
I/O
CP[29]
C
VP_DIN[7] / UHPI_HD[15] / UPP_D[15] / RMII_TXD[1]
U18
I/O
CP[26]
C
VP_DIN[6] / UHPI_HD[14] / UPP_D[14] / RMII_TXD[0]
V16
I/O
CP[26]
C
VP_DIN[5] / UHPI_HD[13] / UPP_D[13] / RMII_TXEN
R14
I/O
CP[26]
C
VP_DIN[4] / UHPI_HD[12] / UPP_D[12] / RMII_RXD[1]
W16
I/O
CP[26]
C
VP_DIN[3] / UHPI_HD[11] / UPP_D[11] / RMII_RXD[0]
V17
I/O
CP[26]
C
VP_DIN[2] / UHPI_HD[10] / UPP_D[10] / RMII_RXER
W17
I/O
CP[26]
C
VP_DIN[1] / UHPI_HD[9] / UPP_D[9] / RMII_MHZ_50_CLK
W18
I/O
CP[26]
C
VP_DIN[0] / UHPI_HD[8] / UPP_D[8] / RMII_CRS_DV
W19
I/O
CP[26]
C
VP_DIN[15]_VSYNC / UHPI_HD[7] / UPP_D[7]
V18
I/O
CP[27]
C
VP_DIN[14]_HSYNC / UHPI_HD[6] / UPP_D[6]
V19
I/O
CP[27]
C
VP_DIN[13]_FIELD / UHPI_HD[5] / UPP_D[5]
U19
I/O
CP[27]
C
VP_DIN[12] / UHPI_HD[4] / UPP_D[4]
T16
I/O
CP[27]
C
VP_DIN[11] / UHPI_HD[3] / UPP_D[3]
R18
I/O
CP[27]
C
VP_DIN[10] / UHPI_HD[2] / UPP_D[2]
R19
I/O
CP[27]
C
VP_DIN[9] / UHPI_HD[1] / UPP_D[1]
R15
I/O
CP[27]
C
VP_DIN[8] / UHPI_HD[0] / UPP_D[0] / GP6[5]
P17
I/O
CP[27]
C
Submit Documentation Feedback
DESCRIPTION
PRODUCT PREVIEW
SIGNAL
uPP data bus
Device Overview
51
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
3.9.23
www.ti.com
Video Port Interface (VPIF)
Table 3-26. Video Port Interface (VPIF) Terminal Functions
SIGNAL
NAME
NO.
TYPE (1)
PULL (2)
POWER
GROUP (3)
DESCRIPTION
VIDEO INPUT
PRODUCT PREVIEW
VP_CLKIN0 / UHPI_HCS1 / GP6[7] / UPP_2xTXCLK
W14
I
CP[25]
C
VPIF capture channel 0
input clock
VP_CLKIN1 / UHPI_HDS1 / GP6[6]
V15
I
CP[25]
C
VPIF capture channel 1
input clock
VP_DIN[15]_VSYNC / UHPI_HD[7] / UPP_CH1_D[7]
V18
I
CP[27]
C
VP_DIN[14]_HSYNC / UHPI_HD[6] / UPP_CH1_D[6]
V19
I
CP[27]
C
VP_DIN[13]_FIELD / UHPI_HD[5] / UPP_CH1_D[5]
U19
I
CP[27]
C
VP_DIN[12] / UHPI_HD[4] / UPP_CH1_D[4]
T16
I
CP[27]
C
VP_DIN[11] / UHPI_HD[3] / UPP_CH1_D[3]
R18
I
CP[27]
C
VP_DIN[10] / UHPI_HD[2] / UPP_CH1_D[2]
R19
I
CP[27]
C
VP_DIN[9] / UHPI_HD[1] / UPP_CH1_D[1]
R15
I
CP[27]
C
VP_DIN[8] / UHPI_HD[0] / UPP_CH1_D[0] / GP6[5]
P17
I
CP[27]
C
VP_DIN[7] / UHPI_HD[15] / UPP_CH1_D[15] / RMII_TXD[1]
U18
I
CP[26]
C
VP_DIN[6] / UHPI_HD[14] / UPP_CH1_D[14] / RMII_TXD[0]
V16
I
CP[26]
C
VP_DIN[5] / UHPI_HD[13] / UPP_CH1_D[13] / RMII_TXEN
R14
I
CP[26]
C
VP_DIN[4] / UHPI_HD[12] / UPP_CH1_D[12] / RMII_RXD[1]
W16
I
CP[26]
C
VP_DIN[3] / UHPI_HD[11] / UPP_CH1_D[11] / RMII_RXD[0]
V17
I
CP[26]
C
VP_DIN[2] / UHPI_HD[10] / UPP_CH1_D[10] / RMII_RXER
W17
I
CP[26]
C
VP_DIN[1] / UHPI_HD[9] / UPP_CH1_D[9] / RMII_MHZ_50_CLK
W18
I
CP[26]
C
VP_DIN[0] / UHPI_HD[8] / UPP_CH1_D[8] / RMII_CRS_DV
W19
I
CP[26]
C
VPIF capture data bus
VIDEO OUTPUT
VP_CLKIN2 / MMCSD1_DAT[3] / GP6[4]
H3
I
CP[30]
C
VPIF display channel 2
input clock
VP_CLKOUT2 / MMCSD1_D2 / GP6[3]
K3
O
CP[30]
C
VPIF display channel 2
output clock
VP_CLKIN3 / MMCSD1_DAT[1] / GP6[2]
J3
I
CP[30]
C
VPIF display channel 3
input clock
VP_CLKOUT3 / GP6[1]
K4
O
CP[30]
C
VPIF display channel 3
output clock
(1)
(2)
(3)
52
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are weakly pulled down. If the application requires a
pull-up, an external pull-up can be used.
This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
Device Overview
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
SPRS586 – JUNE 2009
Table 3-26. Video Port Interface (VPIF) Terminal Functions (continued)
NAME
NO.
TYPE (1)
PULL (2)
POWER
GROUP (3)
VP_DOUT[15] / LCD_D[15] /UPP_XD[7] / GP7[7] / BOOT[7]
P4
O
CP[29]
C
VP_DOUT[14] / LCD_D[14] / UPP_XD[6] / GP7[6] / BOOT[6]
R3
O
CP[29]
C
VP_DOUT[13] / LCD_D[13] /UPP_XD[5] / GP7[5] / BOOT[5]
R2
O
CP[29]
C
VP_DOUT[12] / LCD_D[12] /UPP_XD[4] / GP7[4] / BOOT[4]
R1
O
CP[29]
C
VP_DOUT[11] / LCD_D[11] /UPP_XD[3] / GP7[3] / BOOT[3]
T3
O
CP[29]
C
VP_DOUT[10] / LCD_D[10] /UPP_XD[2] / GP7[2] / BOOT[2]
T2
O
CP[29]
C
VP_DOUT[9] / LCD_D[9] /UPP_XD[1] / GP7[1] / BOOT[1]
T1
O
CP[29]
C
VP_DOUT[8] / LCD_D[8] /UPP_XD[0] / GP7[0] / BOOT[0]
U3
O
CP[29]
C
VP_DOUT[7] / LCD_D[7] /UPP_XD[15] / GP7[15]
U2
O
CP[28]
C
VP_DOUT[6] / LCD_D[6] /UPP_XD[14] / GP7[14]
U1
O
CP[28]
C
VP_DOUT[5] / LCD_D[5] /UPP_XD[13] / GP7[13]
V3
O
CP[28]
C
VP_DOUT[4] / LCD_D[4] /UPP_XD[12] / GP7[12]
V2
O
CP[28]
C
VP_DOUT[3] / LCD_D[3] /UPP_XD[11] / GP7[11]
V1
O
CP[28]
C
VP_DOUT[2] / LCD_D[2] /UPP_XD[10] / GP7[10]
W3
O
CP[28]
C
VP_DOUT[1] / LCD_D[1] /UPP_XD[9] / GP7[9]
W2
O
CP[28]
C
VP_DOUT[0] /LCD_D[0] /UPP_XD[8] / GP7[8]
W1
O
CP[28]
C
DESCRIPTION
VPIF display data bus
PRODUCT PREVIEW
SIGNAL
3.9.24 Reserved and No Connect
Table 3-27. Reserved and No Connect Terminal Functions
SIGNAL
NAME
NO.
RSV2
NC
(1)
TYPE (1)
T19
PWR
M3, M14, N16
—
DESCRIPTION
Reserved. For proper device operation, this pin must be tied directly to CVDD.
No connect (Leave unconnected, do not connect to power or ground.)
PWR = Supply voltage.
Submit Documentation Feedback
Device Overview
53
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
www.ti.com
3.9.25 Supply and Ground
Table 3-28. Supply and Ground Terminal Functions
SIGNAL
NAME
NO.
TYPE (1)
DESCRIPTION
PRODUCT PREVIEW
CVDD (Core supply)
E15, G7, G8,
G13, H6, H7,
H10, H11,
H12, H13, J6,
J12, K6, K12,
L12, M8, M9,
N8
PWR
1.2-V core supply voltage pins
RVDD (Internal RAM supply)
E5, H14, N7
PWR
1.2V internal ram supply voltage pins
DVDD18 (I/O supply)
F14, G6, G10,
G11, G12,
J13, K5, L6,
N6, N9, N10,
P7, P8, P9,
P10, P13, R7,
R8, R9, R13
PWR
1.8V I/O supply voltage pins
DVDD3318_A (I/O supply)
F5, F15, G5,
G14, G15, H5
PWR
1.8V or 3.3-V dual-voltage LVCMOS I/O supply voltage pins, Group A
DVDD3318_B (I/O supply)
E14, F6, F7,
F8, F10, F11,
F12, F13, G9,
J14, K15
PWR
1.8V or 3.3-V dual-voltage LVCMOS I/O supply voltage pins, Group B
DVDD3318_C (I/O supply)
J5, K13, L4,
L13, M13,
N13, P5, P6,
P12, R4
PWR
1.8V or 3.3-V dual-voltage LVCMOS I/O supply voltage pins, Group C
VSS (Ground)
A19, H8, H9,
H15, J7, J8,
J9, J10, J11,
K7, K8, K9,
K10, K11, L5,
L7, L8, L9,
L10, L11, M4,
M5, M6, M7,
M10, M11, N5,
N11, N12, P11
GND
Ground pins.
(1)
54
PWR = Supply voltage, GND - Ground.
Device Overview
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
SPRS586 – JUNE 2009
4 Device Configuration
4.1 Boot Modes
This device supports a variety of boot modes through an internal ARM ROM bootloader. This device does
not support dedicated hardware boot modes; therefore, all boot modes utilize the internal DSP ROM. The
input states of the BOOT pins are sampled and latched into the BOOTCFG register, which is part of the
system configuration (SYSCFG) module, when device reset is deasserted. Boot mode selection is
determined by the values of the BOOT pins.
SeeUsing the D800K002 ARM Bootloader Application Report (SPRAB41) for more details on the ROM
Boot Loader.
PRODUCT PREVIEW
The following boot modes are supported:
• NAND Flash boot
– 8-bit NAND
• NOR Flash boot
– NOR Direct boot (8-bit or 16-bit)
– NOR Legacy boot (8-bit or 16-bit)
– NOR AIS boot (8-bit or 16-bit)
• HPI Boot
• I2C0/I2C1 Boot
– EEPROM (Master Mode)
– External Host (Slave Mode)
• SPI0/SPI1 Boot
– Serial Flash (Master Mode)
– SERIAL EEPROM (Master Mode)
– External Host (Slave Mode)
• UART0/UART1/UART2 Boot
– External Host
4.2 SYSCFG Module
The following system level features of the chip are controlled by the SYSCFG peripheral:
• Readable Device, Die, and Chip Revision ID
• Control of Pin Multiplexing
• Priority of bus accesses different bus masters in the system
• Capture at power on reset the chip BOOT pin values and make them available to software
• Control of the DeepSleep power management function
• Enable and selection of the programmable pin pullups and pulldowns
• Special case settings for peripherals:
– Locking of PLL controller settings
– Default burst sizes for EDMA3 transfer controllers
– Selection of the source for the eCAP module input capture (including on chip sources)
– McASP AMUTEIN selection and clearing of AMUTE status for the McASP
– Control of the reference clock source and other side-band signals for both of the integrated USB
PHYs
– Clock source selection for EMIFA
– DDR2 Controller PHY settings
– SATA PHY power management controls
• Selects the source of emulation suspend signal (from either ARM or DSP) of peripherals supporting
Submit Documentation Feedback
Device Configuration
55
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
•
www.ti.com
this function.
Control of on-chip inter-processor interrupts for signaling between ARM and DSP
Since the SYSCFG peripheral controls global operation of the device, its registers are protected against
erroneous accesses by several mechanisms:
• A special key sequence must be written to KICK0, KICK1 registers before any other registers are
writeable.
• Additionally, many registers are accessible only by a host (ARM or DSP) when it is operating in its
privileged mode. (ex. from the kernel, but not from user space code).
Table 4-1. System Configuration (SYSCFG) Module Register Access
Register Address
Register Name
Register Description
Register Access
PRODUCT PREVIEW
0x01C1 4000
REVID
Revision Identification Register
—
0x01C14008
DIEIDR0
Device Identification Register 0
—
0x01C1400C
DIEIDR1
Device Identification Register 1
—
0x01C14010
DIEIDR2
Device Identification Register 2
—
0x01C14014
DIEIDR3
Device Identification Register 3
0x01C1 4020
BOOTCFG
Boot Configuration Register
Privileged mode
0x01C1 4038
KICK0R
Kick 0 Register
Privileged mode
0x01C1 403C
KICK1R
Kick 1 Register
Privileged mode
0x01C1 4040
HOST0CFG
Host 0 Configuration Register
—
0x01C1 4044
HOST1CFG
Host 1 Configuration Register
—
0x01C1 40E0
IRAWSTAT
Interrupt Raw Status/Set Register
Privileged mode
0x01C1 40E4
IENSTAT
Interrupt Enable Status/Clear Register
Privileged mode
0x01C1 40E8
IENSET
Interrupt Enable Register
Privileged mode
0x01C1 40EC
IENCLR
Interrupt Enable Clear Register
Privileged mode
0x01C1 40F0
EOI
End of Interrupt Register
Privileged mode
0x01C1 40F4
FLTADDRR
Fault Address Register
Privileged mode
0x01C1 40F8
FLTSTAT
Fault Status Register
0x01C1 4110
MSTPRI0
Master Priority 0 Registers
Privileged mode
0x01C1 4114
MSTPRI1
Master Priority 1 Registers
Privileged mode
0x01C1 4118
MSTPRI2
Master Priority 2 Registers
Privileged mode
0x01C1 4120
PINMUX0
Pin Multiplexing Control 0 Register
Privileged mode
0x01C1 4124
PINMUX1
Pin Multiplexing Control 1 Register
Privileged mode
0x01C1 4128
PINMUX2
Pin Multiplexing Control 2 Register
Privileged mode
0x01C1 412C
PINMUX3
Pin Multiplexing Control 3 Register
Privileged mode
0x01C1 4130
PINMUX4
Pin Multiplexing Control 4 Register
Privileged mode
0x01C1 4134
PINMUX5
Pin Multiplexing Control 5 Register
Privileged mode
0x01C1 4138
PINMUX6
Pin Multiplexing Control 6 Register
Privileged mode
0x01C1 413C
PINMUX7
Pin Multiplexing Control 7 Register
Privileged mode
0x01C1 4140
PINMUX8
Pin Multiplexing Control 8 Register
Privileged mode
0x01C1 4144
PINMUX9
Pin Multiplexing Control 9 Register
Privileged mode
0x01C1 4148
PINMUX10
Pin Multiplexing Control 10 Register
Privileged mode
0x01C1 414C
PINMUX11
Pin Multiplexing Control 11 Register
Privileged mode
0x01C1 4150
PINMUX12
Pin Multiplexing Control 12 Register
Privileged mode
0x01C1 4154
PINMUX13
Pin Multiplexing Control 13 Register
Privileged mode
0x01C1 4158
PINMUX14
Pin Multiplexing Control 14 Register
Privileged mode
0x01C1 415C
PINMUX15
Pin Multiplexing Control 15 Register
Privileged mode
0x01C1 4160
PINMUX16
Pin Multiplexing Control 16 Register
Privileged mode
0x01C1 4164
PINMUX17
Pin Multiplexing Control 17 Register
Privileged mode
56
Device Configuration
—
—
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
SPRS586 – JUNE 2009
Table 4-1. System Configuration (SYSCFG) Module Register Access (continued)
Register Name
Register Description
Register Access
PINMUX18
Pin Multiplexing Control 18 Register
Privileged mode
0x01C1 416C
PINMUX19
Pin Multiplexing Control 19 Register
Privileged mode
0x01C1 4170
SUSPSRC
Suspend Source Register
Privileged mode
0x01C1 4174
CHIPSIG
Chip Signal Register
—
0x01C1 4178
CHIPSIG_CLR
Chip Signal Clear Register
—
0x01C1 417C
CFGCHIP0
Chip Configuration 0 Register
Privileged mode
0x01C1 4180
CFGCHIP1
Chip Configuration 1 Register
Privileged mode
0x01C1 4184
CFGCHIP2
Chip Configuration 2 Register
Privileged mode
0x01C1 4188
CFGCHIP3
Chip Configuration 3 Register
Privileged mode
0x01C1 418C
CFGCHIP4
Chip Configuration 4 Register
Privileged mode
0x01E2 C000
VTPIO_CTL
VTPIO COntrol Register
Privileged mode
0x01E2 C004
DDR_SLEW
DDR Slew Register
Privileged mode
0x01E2 C008
DeepSleep
DeepSleep Register
Privileged mode
0x01E2 C00C
PUPD_ENA
Pullup / Pulldown Enable Register
Privileged mode
0x01E2 C010
PUPD_SEL
Pullup / Pulldown Selection Register
Privileged mode
0x01E2 C014
RXACTIVE
RXACTIVE Control Register
Privileged mode
0x01E2 C018
PWRDN
PWRDN Control Register
Privileged mode
Submit Documentation Feedback
Device Configuration
PRODUCT PREVIEW
Register Address
0x01C1 4168
57
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
www.ti.com
5 Device Operating Conditions
5.1 Absolute Maximum Ratings Over Operating Junction Temperature Range
(Unless Otherwise Noted) (1)
Core Logic, Variable and Fixed
(CVDD, RVDD, RTC_CVDD, PLL0_VDDA , PLL1_VDDA ,
SATA_VDD, USB_CVDD (2), ) (3)
Supply voltage ranges
-0.5 V to 1.4 V
I/O, 1.8V
(USB0_VDDA18, USB1_VDDA18, SATA_VDDR, DDR_DVDD18)
(3)
I/O, 3.3V
(DVDD3318_A, DVDD3318_B, DVDD3318_C, USB0_VDDA33,
USB1_VDDA33) (3)
-0.5 V to 3.8V
PRODUCT PREVIEW
Oscillator inputs (OSCIN, RTC_XI), 1.2V
-0.3 V to CVDD + 0.3V
Dual-voltage LVCMOS inputs, 3.3V or 1.8V (Steady State)
-0.3V to DVDD + 0.3V
Dual-voltage LVCMOS inputs, 3.3V or 1.8V (Transient)
DVDD + 20%
up to 20% of Signal
Period
Input voltage (VI) ranges
Output voltage (VO) ranges
Clamp Current
-0.5 V to 2 V
USB 5V Tolerant IOs:
(USB0_DM, USB0_DP, USB0_ID, USB1_DM, USB1_DP)
5.25V (4)
USB0 VBUS Pin
5.50V (4)
Dual-voltage LVCMOS outputs, 3.3V or 1.8V
(Steady State)
-0.5 V to DVDD + 0.3V
Dual-voltage LVCMOS outputs, 3.3V or 1.8V
(Transient)
DVDD + 20%
up to 20% of Signal
Period
Input or Output Voltages 0.3V above or below their respective power
rails. Limit clamp current that flows through the I/O's internal diode
protection cells.
±20mA
Operating Junction Temperature ranges,
TJ
Commercial (default)
0°C to 90°C
Extended (A version)
-40°C to 105°C
Storage temperature range, Tstg
(default)
-55°C to 150°C
(1)
(2)
(3)
(4)
58
Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
This pin is an internal LDO output and connected via 0.22 F capacitor to VSS
All voltage values are with respect to VSS, USB0_VSSA33, USB0_VSSA, PLL0_VSSA, OSCVSS, RTC_VSS
Up to a maximum of 24 hours.
Device Operating Conditions
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
SPRS586 – JUNE 2009
5.2 Recommended Operating Conditions
Supply
Voltage
Supply
Ground
DESCRIPTION
CONDITION
MIN
NOM
MAX
UNIT
Core Logic Supply Voltage (variable)
1.2V operating point
1.14
1.2 or 1.26
1.32
V
1.1V operating point
1.05
1.1
1.16
V
1.0V operating point
0.95
1.0
1.05
V
RVDD
Internal RAM Supply Voltage
1.14
1.2 or 1.26
1.32
V
RTC_CVDD
RTC Core Logic Supply Voltage
1.14
1.2 or 1.26
1.32
V
PLL0_VDDA
PLL0 Supply Voltage
1.14
1.2 or 1.26
1.32
V
PLL1_VDDA
PLL1 Supply Voltage
1.14
1.2 or 1.26
1.32
V
SATA_VDD
SATA Core Logic Supply Voltage
1.14
1.2 or 1.26
1.32
V
USB_CVDD (1)
USB0, USB1 Core Logic Supply Voltage
1.14
1.2 or 1.26
1.32
V
USB0_VDDA18
USB0 PHY Supply Voltage
1.71
1.8
1.89
V
USB0_VDDA33
USB0 PHY Supply Voltage
3.15
3.3
3.45
V
USB1_VDDA18
USB1 IO Supply Voltage
1.71
1.8
1.89
V
USB1_VDDA33
USB1 IO Supply Voltage
3.15
3.3
3.45
V
SATA_VDDR
SATA PHY Internal Regulator Supply Voltage
1.71
1.8
1.89
V
DDR_DVDD18
DDR2 PHY Supply Voltage
1.71
1.8
1.89
V
0.49*
DDR_DVDD18
0.5*
DDR_DVDD1
8
0.51*
DDR_DVDD18
V
DDR_VREF
DDR2/mDDR reference voltage
DDR_ZP
DDR2/mDDR impedance control,
connected via 200Ω resistor to Vss
DVDD3318_A
Power Group A Dual-voltage IO
Supply Voltage
1.8V operating point
1.71
1.8
1.89
V
3.3V operating point
3.15
3.3
3.45
V
DVDD3318_B
Power Group B Dual-voltage IO
Supply Voltage
1.8V operating point
1.71
1.8
1.89
V
3.3V operating point
3.15
3.3
3.45
V
DVDD3318_C
Power Group C Dual-voltage IO
Supply Voltage
1.8V operating point
1.71
1.8
1.89
V
3.3V operating point
3.15
3.3
3.45
V
VSS
Core Logic Digital Ground
V
PLL0_VSSA
PLL0 Ground
V
PLL1_VSSA
PLL1 Ground
SATA_VSS
SATA PHY Ground
OSCVSS (2)
Oscillator Ground
V
RTC_VSS (2)
RTC Oscillator Ground
V
USB0_VSSA
USB0 PHY Ground
V
USB0_VSSA33
USB0 PHY Ground
VIH
High-level input voltage, Dual-voltage I/O, 3.3V (3)
Vss
Voltage
Input High
V
0
(1)
(2)
(3)
tt
V
V
V
High-level input voltage, RTC_XI
0.8*RTC_CVDD
V
High-level input voltage, OSCIN
0.8*CVDD
V
TBD
V
(3)
Low-level input voltage, Dual-voltage I/O, 3.3V (3)
0.8
V
0.35*DVDD
V
Low-level input voltage, RTC_XI
0.2*RTC_CVDD
V
Low-level input voltage, OSCIN
0.2*CVDD
V
TBD
V
5
ns
(3)
Low-level input voltage, SATA_REFCLKP and
SATA_REFCLKN
Transition
Time
0
0.65*DVDD
High-level input voltage, Dual-voltage I/O, 1.8V
Voltage
Input Low
0
V
High-level input voltage, SATA_REFCLKP and
SATA_REFCLKN
VIL
V
2
High-level input voltage, Dual-voltage I/O, 1.8V
PRODUCT PREVIEW
NAME
CVDD
10%-90%, All Inputs (except SATA, USB0 and DDR2)
This pin is an internal LDO output and connected via 0.22 F capacitor to VSS
When an external crystal is used oscillator (OSC_VSS, RTC_VSS) ground must be kept separate from other grounds and connected
directly to the crystal load capacitor ground. These pins are shorted to VSS on the device itself and should not be connected to VSS on
the circuit board. If a crystal is not used and the clock input is driven directly, then the oscillator VSS may be connected to board ground.
These IO specifications apply to the dual-voltage IOs only and do not apply to DDR2/mDDR or SATA interfaces. DDR2/mDDR IOs are
1.8V IOs and adhere to the JESD79-2A standard.
Submit Documentation Feedback
Device Operating Conditions
59
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
www.ti.com
Recommended Operating Conditions (continued)
NAME
DESCRIPTION
Commercial temperature grade
(default)
Operating
Frequency
FSYSCLK1,6
Extended temperature grade (A
suffix)
CONDITION
MIN
NOM
MAX
CVDD = 1.2V
operating point
0
300
CVDD = 1.1V
operating point
0
200
CVDD = 1.0V
operating point
0
100
CVDD = 1.2V
operating point
0
300
CVDD = 1.1V
operating point
0
200
CVDD = 1.0V
operating point
0
100
UNIT
MHz
MHz
PRODUCT PREVIEW
60
Device Operating Conditions
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
SPRS586 – JUNE 2009
PARAMETER
VOH
TEST CONDITIONS
MAX
UNIT
2.8
USB0_VDDA33
V
High speed:
USB_DM and USB_DP
360
440
mV
Low/full speed:
USB1_DM and USB1_DP
2.8
USB1_VDDA33
V
Low/full speed:
USB0_DM and USB0_DP
High-level output voltage
(dual-voltage LVCMOS IOs at 3.3V) (1)
High-level output voltage
(dual-voltage LVCMOS IOs at 1.8V) (1)
VOL
MIN
TYP
DVDD = 3.15V, IOH = -4 mA
2.4
V
DVDD = 3.15V, IOH = -100 µA
2.95
V
DVDD-0.45
V
DVDD = 1.65V, IOH = -2 mA
Low/full speed:
USB_DM and USB_DP
0.0
0.3
V
High speed:
USB_DM and USB_DP
-10
10
mV
DVDD = 3.15V, IOL = 4mA
0.4
V
DVDD = 3.15V, IOL = -100 µA
0.2
V
DVDD = 1.65V, IOL = 2mA
0.45
V
±9
µA
Low-level output voltage
(dual-voltage LVCMOS I/Os at 3.3V)
Low-level output voltage
(dual-voltage LVCMOS I/Os at 1.8V)
VI = VSS to DVDD without opposing
internal resistor
II
(2)
(1)
Input current
(dual-voltage LVCMOS I/Os)
VI = VSS to DVDD with opposing
internal pullup resistor (3)
70
310
µA
VI = VSS to DVDD with opposing
internal pulldown resistor (3)
-75
-270
µA
All peripherals
-6
mA
All peripherals
6
mA
(1)
IOH
High-level output current
(dual-voltage LVCMOS I/Os)
(1)
IOL
Low-level output current
(dual-voltage LVCMOS I/Os)
Input capacitance (dual-voltage LVCMOS)
Capacit
Output capacitance (dual-voltage
ance
LVCMOS)
(1)
(2)
(3)
3
pF
3
pF
These IO specifications apply to the dual-voltage IOs only and do not apply to DDR2/mDDR or SATA interfaces. DDR2/mDDR IOs are
1.8V IOs and adhere to the JESD79-2A standard.
II applies to input-only pins and bi-directional pins. For input-only pins, II indicates the input leakage current. For bi-directional pins, II
indicates the input leakage current and off-state (Hi-Z) output leakage current.
Applies only to pins with an internal pullup (IPU) or pulldown (IPD) resistor.
Submit Documentation Feedback
Device Operating Conditions
61
PRODUCT PREVIEW
5.3 Electrical Characteristics Over Recommended Ranges of Supply Voltage and Operating
Junction Temperature (Unless Otherwise Noted)
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
www.ti.com
6 Peripheral Information and Electrical Specifications
6.1 Parameter Information
6.1.1
Parameter Information Device-Specific Information
Tester Pin Electronics
42 Ω
3.5 nH
Transmission Line
Z0 = 50 Ω
(see note)
PRODUCT PREVIEW
4.0 pF
A.
1.85 pF
Data Sheet Timing Reference Point
Output
Under
Test
Device Pin
(see note)
The data sheet provides timing at the device pin. For output timing analysis, the tester pin electronics and its
transmission line effects must be taken into account. A transmission line with a delay of 2 ns or longer can be used to
produce the desired transmission line effect. The transmission line is intended as a load only. It is not necessary to
add or subtract the transmission line delay (2 ns or longer) from the data sheet timings.
Input requirements in this data sheet are tested with an input slew rate of < 4 Volts per nanosecond (4 V/ns) at the
device pin.
Figure 6-1. Test Load Circuit for AC Timing Measurements
The load capacitance value stated is only for characterization and measurement of AC timing signals. This
load capacitance value does not indicate the maximum load the device is capable of driving.
6.1.1.1
Signal Transition Levels
All input and output timing parameters are referenced to Vref for both "0" and "1" logic levels. For 3.3 V I/O,
Vref = 1.65 V. For 1.8 V I/O, Vref = 0.9 V.
Vref
Figure 6-2. Input and Output Voltage Reference Levels for AC Timing Measurements
All rise and fall transition timing parameters are referenced to VIL MAX and VIH MIN for input clocks,
VOLMAX and VOH MIN for output clocks
Figure 6-3. Rise and Fall Transition Time Voltage Reference Levels
62
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
SPRS586 – JUNE 2009
6.2 Recommended Clock and Control Signal Transition Behavior
All clocks and control signals must transition between VIH and VIL (or between VIL and VIH) in a monotonic
manner.
6.3 Power Supplies
Power-on Sequence
The device should be powered-on in the following order:
• 1) RTC (RTC_CVDD) may be powered from an external device (such as a battery) prior to all other
supplies being applied. If the RTC is not used, RTC_CVDD should be connected to CVDD.
• 2a) All variable 1.2V - 1.0V core logic supplies (CVDD)
• 2b) All static 1.2V logic supplies (RVDD, VDDA_12_PLL0, VDDA_12_PLL1, USB_CVDD,
SATA_VDD). If voltage scaling is not used on the device, groups 2a) and 2b) can be controlled from
the same power supply and powered up together.
• 3) All static 1.8V IO supplies (DVDD18, DDR_DVDD18, USB0_VDDA18, USB1_VDDA18 and
SATA_VDDR) and any of the LVCMOS IO supply groups used at 1.8V nominal (DVDD3318_A,
DVDD3318_B, or DVDD3318_C).
• 4) All analog 3.3V PHY supplies (USB0_VDDA33 and USB1_VDDA33; these are not required if both
USB0 and USB1 are not used) and any of the LVCMOS IO supply groups used at 3.3V nominal
(DVDD3318_A, DVDD3318_B, or DVDD3318_C).
There is no specific required voltage ramp rate for any of the supplies as long as the LVCMOS supplies
operated at 3.3V (DVDD3318_A, DVDD3318_B, or DVDD3318_C) never exceed the STATIC 1.8V
supplies by more than 2 volts.
6.3.2
Power-off Sequence
The power supplies can be powered-off in any order as long as LVCMOS supplies operated at 3.3V
(DVDD3318_A, DVDD3318_B, or DVDD3318_C) never exceed static 1.8V supplies by more than 2 volts.
There is no specific required voltage ramp down rate for any of the supplies (except as required to meet
the above mentioned voltage condition).
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
63
PRODUCT PREVIEW
6.3.1
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
www.ti.com
6.4 Reset
6.4.1
Power-On Reset (POR)
A power-on reset (POR) is required to place the device in a known good state after power-up. Power-On
Reset is initiated by bringing RESET and TRST low at the same time. POR sets all of the device internal
logic to its default state. All pins are tri-stated with the exception of RESETOUT which remains active
through the reset sequence. RESETOUT is an output for use by other controllers in the system that
indicates the device is currently in reset.
RTCK is maintained active through a POR.
PRODUCT PREVIEW
A summary of the effects of Power-On Reset is given below:
• All internal logic (including emulation logic and the PLL logic) is reset to its default state
• Internal memory is not maintained through a POR
• RESETOUT goes active
• All device pins go to a high-impedance state
• The RTC peripheral is not reset during a POR. A software sequence is required to reset the RTC
A watchdog reset triggers a POR.
6.4.2
Warm Reset
A warm reset provides a limited reset to the device. Warm Reset is initiated by bringing only RESET low
(TRST is maintained high through a warm reset). Warm reset sets certain portions of the device to their
default state while leaving others unaltered. All pins are tri-stated with the exception of RESETOUT which
remains active through the reset sequence. RESETOUT is an output for use by other controllers in the
system that indicates the device is currently in reset.
RTCK is maintained active through a POR.
A summary of the effects of Warm Reset is given below:
• All internal logic (except for the emulation logic and the PLL logic) is reset to its default state
• Internal memory is maintained through a warm reset
• RESETOUT goes active
• All device pins go to a high-impedance state
• The RTC peripheral is not reset during a warm reset. A software sequence is required to reset the
RTC
64
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
6.4.3
SPRS586 – JUNE 2009
Reset Electrical Data Timings
Table 6-1 assumes testing over the recommended operating conditions.
NO.
(2)
)
1.2V
PARAMETER
MIN
1.1V
MAX
MIN
1.0V
MAX
MIN
UNIT
MAX
1
tw(RSTL)
Pulse width, RESET/TRST low
100
100
100
ns
2
tsu(BPV-RSTH)
Setup time, boot pins valid before RESET/TRST high
20
20
20
ns
3
th(RSTH-BPV)
Hold time, boot pins valid after RESET/TRST high
20
20
20
ns
4
5
(1)
(2)
(3)
td(RSTH-RESETOUTH) RESET high to RESETOUT high; Warm reset
td(RSTL-RESETOUTL)
14
16
20
RESET high to RESETOUT high; Power-on Reset
14
16
20
Delay time, RESET/TRST low to RESETOUT low
14
16
20
cycles (3)
ns
PRODUCT PREVIEW
Table 6-1. Reset Timing Requirements ( (1),
RESETOUT is multiplexed with other pin functions. See the Terminal Functions table, Table 3-4 for details.
For power-on reset (POR), the reset timings in this table refer to RESET and TRST together. For warm reset, the reset timings in this
table refer to RESET only (TRST is held high).
OSCIN cycles.
Power
Supplies
Ramping
Power Supplies Stable
Clock Source Stable
OSCIN
1
RESET
TRST
4
RESETOUT
3
2
Boot Pins
Config
Figure 6-4. Power-On Reset (RESET and TRST active) Timing
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
65
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
www.ti.com
Power Supplies Stable
OSCIN
TRST
1
RESET
5
4
RESETOUT
PRODUCT PREVIEW
3
2
Boot Pins
Driven or Hi-Z
Config
Figure 6-5. Warm Reset (RESET active, TRST high) Timing
66
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
SPRS586 – JUNE 2009
6.5 Crystal Oscillator or External Clock Input
The device includes two choices to provide an external clock input, which is fed to the on-chip PLLs to
generate high-frequency system clocks. These options are illustrated in Figure 6-6 and Figure 6-7. For
input clock frequencies between 12 and 20 MHz, a crystal with 80 ohm max ESR is recommended. For
input clock frequencies between 20 and 30 MHz, a crystal with 60 ohm max ESR is recommended.
Typical C1, C2 values are 10-20 pF.
Figure 6-6 illustrates the option that uses on-chip 1.2V oscillator with external crystal circuit. Figure 6-7
illustrates the option that uses an external 1.2V clock input.
C2
Clock Input
to PLL
OSCIN
PRODUCT PREVIEW
X1
OSCOUT
C1
OSCVSS
Figure 6-6. On-Chip Oscillator
Table 6-2. Oscillator Timing Requirements
PARAMETER
fosc
Oscillator frequency range (OSCIN/OSCOUT)
Submit Documentation Feedback
MIN
MAX
UNIT
12
30
MHz
Peripheral Information and Electrical Specifications
67
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
www.ti.com
OSCIN
NC
Clock
Input
to PLL
OSCOUT
OSCVSS
PRODUCT PREVIEW
Figure 6-7. External 1.2V Clock Source
Table 6-3. OSCIN Timing Requirements for an Externally Driven Clock
PARAMETER
fCLKIN
OSCIN frequency range
tc(CLKIN)
Cycle time, external clock driven on OSCIN
MIN
MAX
UNIT
12
50
MHz
20
ns
tw(CLKINH) Pulse width high, external clock on OSCIN
0.4 tc(CLKIN)
ns
tw(CLKINL)
Pulse width low, external clock on OSCIN
0.4 tc(CLKIN)
ns
tt(CLKIN)
Transition time, OSCIN
5
ns
6.6 Clock PLLs
The device has two PLL controllers that provide clocks to different parts of the system. PLL0 provides
clocks (though various dividers) to most of the components of the device. PLL1 provides clocks to the
mDDR/DDR2 Controller and provides an alternate clock source for the ASYNC3 clock domain. This allows
the peripherals on the ASYNC3 clock domain to be immune to frequency scaling operation on PLL0.
The PLL controller provides the following:
• Glitch-Free Transitions (on changing clock settings)
• Domain Clocks Alignment
• Clock Gating
• PLL power down
The various clock outputs given by the controller are as follows:
• Domain Clocks: SYSCLK [1:n]
• Auxiliary Clock from reference clock source: AUXCLK
Various dividers that can be used are as follows:
• Post-PLL Divider: POSTDIV
• SYSCLK Divider: D1, , Dn
Various other controls supported are as follows:
• PLL Multiplier Control: PLLM
• Software programmable PLL Bypass: PLLEN
6.6.1
PLL Device-Specific Information
The device DSP generates the high-frequency internal clocks it requires through an on-chip PLL.
68
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
SPRS586 – JUNE 2009
The PLL requires some external filtering components to reduce power supply noise as shown in
Figure 6-8.
1.14V - 1.32V
50R
PLLn_VDDA
0.1
µF
VSS
50R
0.01
µF
PLLn_VSSA
Ferrite Bead: Murata BLM31PG500SN1L or Equivalent
The input to the PLL is either from the on-chip oscillator or from an external clock on the OSCIN pin. PLL0
outputs seven clocks that have programmable divider options. PLL1 outputs three clocks that have
programmable divider options. Figure 6-9 illustrates the high-level view of the PLL Topology.
The PLLs are disabled by default after a device reset. They must be configured by software according to
the allowable operating conditions listed in Table 6-4 before enabling the device to run from the PLL by
setting PLLEN = 1.
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
69
PRODUCT PREVIEW
Figure 6-8. PLL External Filtering Components
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
www.ti.com
PLL Controller 0
PLLCTL[EXTCLKSRC]
PLL1_SYSCLK3
1
PLLCTL[PLLEN]
PLLCTL[CLKMODE]
CLKIN
1
OSCIN
0
0
PREDIV
POSTDIV
PLL
0
PLLDIV1 (/1)
SYSCLK1
1
PLLDIV2 (/2)
SYSCLK2
PLLDIV4 (/4)
SYSCLK4
PLLDIV5 (/3)
SYSCLK5
PLLDIV6 (/1)
SYSCLK6
PLLDIV7 (/6)
SYSCLK7
PLLDIV3 (/3)
SYSCLK3
PLLM
PRODUCT PREVIEW
EMIFA
Internal
Clock
Source
0
DIV4.5
1
CFGCHIP3[EMA_CLKSRC]
AUXCLK
OBSCLK
(OBSCLK Pin)
DIV4.5
OSCDIV
PLL Controller 1
PLLCTL[PLLEN]
PLL
POSTDIV
PLLM
0
PLLDIV2 (/2)
SYSCLK2
1
PLLDIV3 (/3)
SYSCLK3
PLLDIV1 (/1)
SYSCLK1
DDR2/mDDR
Internal
Clock
Source
Figure 6-9. PLL Topology
70
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
SPRS586 – JUNE 2009
NO.
1
PARAMETER
PLLRST: Assertion time during initialization
2
Lock time: The time that the application has to
wait for the PLL to acquire lock before setting
PLLEN, after changing PREDIV, PLLM, or
OSCIN
3
PREDIV: Pre-divider value
4
PLLREF: PLL input frequency
5
PLLM: PLL multiplier values
6
PLLOUT: PLL output frequency
7
(1)
POSTDIV: Post-divider value
Default
Value
MIN
MAX
UNIT
N/A
125
N/A
ns
N/A
2000 N
Max PLL Lock Time =
m
where N = Pre-Divider Ratio
M = PLL Multiplier
OSCIN
cycles
N/A
/1
/1
/32
ns
12
50
MHz
x20
x4
x32
N/A
400
600 (1)
MHz
/32
ns
/1
/2
(1)
PLL post divider / 2 must be used. The /4.5 clock path can be used to generate an EMIF clock from the undivided (i.e. 600 MHz) PLL
output clock.
6.6.2
Device Clock Generation
PLL0 is controlled by PLL Controller 0 and PLL1 is controlled by PLL Controller 1. PLLC0 and PLLC1
manage the clock ratios, alignment, and gating for the system clocks to the chip. The PLLCs are
responsible for controlling all modes of the PLL through software, in terms of pre-division of the clock
inputs (PLLC0 only), multiply factors within the PLLs, and post-division for each of the chip-level clocks
from the PLLs outputs. PLLC0 also controls reset propagation through the chip, clock alignment, and test
points.
PLLC0 provides clocks for the majority of the system but PLLC1 provides clocks to the mDDR/DDR2
Controller and the ASYNC3 clock domain to provide frequency scaling immunity to a defined set or
peripherals. The ASYNC3 clock domain can either derive its clock from PLL1_SYSCLK2 (for frequency
scaling immunity from PLL0) or from PLL0_SYSCLK2 (for synchronous timing with PLL0) depending on
the application requirements. In addition, some peripherals have specific clock options independent of the
ASYNC clock domain.
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
71
PRODUCT PREVIEW
Table 6-4. Allowed PLL Operating Conditions (PLL0 and PLL1)
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
www.ti.com
6.7 Interrupts
The device has a large number of interrupts to service the needs of its many peripherals and subsystems.
Both the ARM and C674x CPUs are capable of servicing these interrupts equally. The interrupts can be
selectively enabled or disabled in either of the controllers. Also, the ARM and DSP can communicate with
each other through interrupts controlled by registers in the SYSCFG module.
6.7.1
ARM CPU Interrupts
The ARM9 CPU core supports 2 direct interrupts: FIQ and IRQ. The ARM Interrupt Controller (AINTC)
extends the number of interrupts to 100, and provides features like programmable masking, priority,
hardware nesting support, and interrupt vector generation.
6.7.1.1 ARM Interrupt Controller (AINTC) Interrupt Signal Hierarchy
PRODUCT PREVIEW
The ARM Interrupt controller organizes interrupts into the following hierarchy:
• Peripheral Interrupt Requests
– Individual Interrupt Sources from Peripherals
• 101 System Interrupts
– One or more Peripheral Interrupt Requests are combined (fixed configuration) to generate a
System Interrupt.
– After prioritization, the AINTC will provide an interrupt vector based unique to each System Interrupt
• 32 Interrupt Channels
– Each System Interrupt is mapped to one of the 32 Interrupt Channels
– Channel Number determines the first level of prioritization, Channel 0 is highest priority and 31
lowest.
– If more than one system interrupt is mapped to a channel, priority within the channel is determined
by system interrupt number (0 highest priority)
• Host Interrupts (FIQ and IRQ)
– Interrupt Channels 0 and 1 generate the ARM FIQ interrupt
– Interrupt Channels 2 through 31 Generate the ARM IRQ interrupt
• Debug Interrupts
– Two Debug Interrupts are supported and can be used to trigger events in the debug subsystem
– Sources can be selected from any of the System Interrupts or Host Interrupts
6.7.1.2 AINTC Hardware Vector Generation
The AINTC also generates an interrupt vector in hardware for both IRQ and FIQ host interrupts. This may
be used to accelerate interrupt dispatch. A unique vector is generated for each of the 100 system
interrupts. The vector is computed in hardware as:
VECTOR = BASE + (SYSTEM INTERRUPT NUMBER × SIZE)
Where BASE and SIZE are programmable. The computed vector is a 32-bit address which may
dispatched to using a single instruction of type LDR PC, [PC, #-<offset_12>] at the FIQ and IRQ vector
locations (0xFFFF0018 and 0xFFFF001C respectively).
6.7.1.3 AINTC Hardware Interrupt Nesting Support
Interrupt nesting occurs when an interrupt service routine re-enables interrupts, to allow the CPU to
interrupt the ISR if a higher priority event occurs. The AINTC provides hardware support to facilitate
interrupt nesting. It supports both global and per host interrupt (FIQ and IRQ in this case) automatic
nesting. If enabled, the AINTC will automatically update an internal nesting register that temporarily masks
interrupts at and below the priority of the current interrupt channel. Then if the ISR re-enables interrupts;
only higher priority channels will be able to interrupt it. The nesting level is restored by the ISR by writing
to the nesting level register on completion. Support for nesting can be enabled/disabled by software, with
the option of automatic nesting on a global or per host interrupt basis; or manual nesting.
72
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
SPRS586 – JUNE 2009
6.7.1.4 AINTC System Interrupt Assignments
System Interrupt assignments are listed in Table 6-5
System Interrupt
Interrupt Name
Source
0
COMMTX
ARM
1
COMMRX
ARM
2
NINT
ARM
3
-
Reserved
4
-
Reserved
5
-
Reserved
6
-
Reserved
7
-
Reserved
8
-
Reserved
9
-
Reserved
10
-
Reserved
11
EDMA3_0_CC0_INT0
EDMA3_0 Channel Controller 0 Shadow Region 0 Transfer
Completion Interrupt
12
EDMA3_0_CC0_ERRINT
EDMA3_0 Channel Controller 0 Error Interrupt
13
EDMA3_0_TC0_ERRINT
EDMA3_0 Transfer Controller 0 Error Interrupt
14
EMIFA_INT
EMIFA
15
IIC0_INT
I2C0
16
MMCSD0_INT0
MMCSD0 MMC/SD Interrupt
17
MMCSD0_INT1
MMCSD0 SDIO Interrupt
18
PSC0_ALLINT
PSC0
19
RTC_IRQS[1:0]
RTC
20
SPI0_INT
SPI0
21
T64P0_TINT12
Timer64P0 Interrupt 12
22
T64P0_TINT34
Timer64P0 Interrupt 34
23
T64P1_TINT12
Timer64P1 Interrupt 12
24
T64P1_TINT34
Timer64P1 Interrupt 34
25
UART0_INT
UART0
26
-
Reserved
27
PROTERR
SYSCFG Protection Shared Interrupt
28
SYSCFG_CHIPINT0
SYSCFG CHIPSIG Register
29
SYSCFG_CHIPINT1
SYSCFG CHIPSIG Register
30
SYSCFG_CHIPINT2
SYSCFG CHIPSIG Register
31
SYSCFG_CHIPINT3
SYSCFG CHIPSIG Register
32
EDMA3_0_TC1_ERRINT
EDMA3_0 Transfer Controller 1 Error Interrupt
33
EMAC_C0RXTHRESH
EMAC - Core 0 Receive Threshold Interrupt
34
EMAC_C0RX
EMAC - Core 0 Receive Interrupt
35
EMAC_C0TX
EMAC - Core 0 Transmit Interrupt
36
EMAC_C0MISC
EMAC - Core 0 Miscellaneous Interrupt
37
EMAC_C1RXTHRESH
EMAC - Core 1 Receive Threshold Interrupt
38
EMAC_C1RX
EMAC - Core 1 Receive Interrupt
39
EMAC_C1TX
EMAC - Core 1 Transmit Interrupt
40
EMAC_C1MISC
EMAC - Core 1 Miscellaneous Interrupt
41
DDR2_MEMERR
DDR2 Controller
42
GPIO_B0INT
GPIO Bank 0 Interrupt
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
PRODUCT PREVIEW
Table 6-5. AINTC System Interrupt Assignments
73
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
www.ti.com
Table 6-5. AINTC System Interrupt Assignments (continued)
System Interrupt
PRODUCT PREVIEW
74
Interrupt Name
Source
43
GPIO_B1INT
GPIO Bank 1 Interrupt
44
GPIO_B2INT
GPIO Bank 2 Interrupt
45
GPIO_B3INT
GPIO Bank 3 Interrupt
46
GPIO_B4INT
GPIO Bank 4 Interrupt
47
GPIO_B5INT
GPIO Bank 5 Interrupt
48
GPIO_B6INT
GPIO Bank 6 Interrupt
49
GPIO_B7INT
GPIO Bank 7 Interrupt
50
GPIO_B8INT
GPIO Bank 8 Interrupt
51
IIC1_INT
I2C1
52
LCDC_INT
LCD Controller
53
UART_INT1
UART1
54
MCASP_INT
McASP0 Combined RX / TX Interrupts
55
PSC1_ALLINT
PSC1
56
SPI1_INT
SPI1
57
UHPI_ARMINT
UHPI ARM Interrupt
58
USB0_INT
USB0 Interrupt
59
USB1_HCINT
USB1 OHCI Host Controller Interrupt
60
USB1_RWAKEUP
USB1 Remote Wakeup Interrupt
61
UART2_INT
UART2
62
-
Reserved
63
EHRPWM0
HiResTimer / PWM0 Interrupt
64
EHRPWM0TZ
HiResTimer / PWM0 Trip Zone Interrupt
65
EHRPWM1
HiResTimer / PWM1 Interrupt
66
EHRPWM1TZ
HiResTimer / PWM1 Trip Zone Interrupt
67
SATA_INT
SATA Controller
68
T64P2_ALL
Timer64P2 - Combined TINT12 and TINT34
69
ECAP0
ECAP0
70
ECAP1
ECAP1
71
ECAP2
ECAP2
72
MMCSD1_INT0
MMCSD1 MMC/SD Interrupt
73
MMCSD1_INT1
MMCSD1 SDIO Interrupt
74
T64P0_CMPINT0
Timer64P0 - Compare 0
75
T64P0_CMPINT1
Timer64P0 - Compare 1
76
T64P0_CMPINT2
Timer64P0 - Compare 2
77
T64P0_CMPINT3
Timer64P0 - Compare 3
78
T64P0_CMPINT4
Timer64P0 - Compare 4
79
T64P0_CMPINT5
Timer64P0 - Compare 5
80
T64P0_CMPINT6
Timer64P0 - Compare 6
81
T64P0_CMPINT7
Timer64P0 - Compare 7
82
T64P1_CMPINT0
Timer64P1 - Compare 0
83
T64P1_CMPINT1
Timer64P1 - Compare 1
84
T64P1_CMPINT2
Timer64P1 - Compare 2
85
T64P1_CMPINT3
Timer64P1 - Compare 3
86
T64P1_CMPINT4
Timer64P1 - Compare 4
87
T64P1_CMPINT5
Timer64P1 - Compare 5
88
T64P1_CMPINT6
Timer64P1 - Compare 6
89
T64P1_CMPINT7
Timer64P1 - Compare 7
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
SPRS586 – JUNE 2009
System Interrupt
Interrupt Name
Source
90
ARMCLKSTOPREQ
PSC0
91
uPP_ALLINT
uPP Combined Interrupt
• Channel I End-of-Line Interrupt
• Channel I End-of-Window Interrupt
• Channel I DMA Access Interrupt
• Channel I Overflow-Underrun Interrupt
• Channel I DMA Programming Error Interrupt
• Channel Q End-of-Line Interrupt
• Channel Q End-of-Window Interrupt
• Channel Q DMA Access Interrupt
• Channel Q Overflow-Underrun Interrupt
• Channel Q DMA Programming Error Interrupt
92
VPIF_ALLINT
VPIF Combined Interrupt
• Channel 0 Frame Interrupt
• Channel 1 Frame Interrupt
• Channel 2 Frame Interrupt
• Channel 3 Frame Interrupt
• Error Interrupt
93
EDMA3_1_CC0_INT0
EDMA3_1 Channel Controller 0 Shadow Region 0 Transfer
Completion Interrupt
94
EDMA3_1_CC0_ERRINT
EDMA3_1Channel Controller 0 Error Interrupt
95
EDMA3_1_TC0_ERRINT
EDMA3_1 Transfer Controller 0 Error Interrupt
96
T64P3_ALL
Timer64P 3 - Combined TINT12 and TINT34
97
MCBSP0_RINT
McBSP0 Receive Interrupt
98
MCBSP0_XINT
McBSP0 Transmit Interrupt
99
MCBSP1_RINT
McBSP1 Receive Interrupt
100
MCBSP1_XINT
McBSP1 Transmit Interrupt
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
PRODUCT PREVIEW
Table 6-5. AINTC System Interrupt Assignments (continued)
75
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
www.ti.com
6.7.1.5 AINTC Memory Map
Table 6-6. AINTC Memory Map
BYTE ADDRESS
ACRONYM
DESCRIPTION
PRODUCT PREVIEW
0xFFFE E000
REV
Revision Register
0xFFFE E004
CR
Control Register
0xFFFE E008 - 0xFFFE E00F
-
Reserved
0xFFFE E010
GER
Global Enable Register
0xFFFE E014 - 0xFFFE E01B
-
Reserved
0xFFFE E01C
GNLR
Global Nesting Level Register
0xFFFE E020
SISR
System Interrupt Status Indexed Set Register
0xFFFE E024
SICR
System Interrupt Status Indexed Clear Register
0xFFFE E028
EISR
System Interrupt Enable Indexed Set Register
0xFFFE E02C
EICR
System Interrupt Enable Indexed Clear Register
0xFFFE E030
-
Reserved
0xFFFE E034
HIEISR
Host Interrupt Enable Indexed Set Register
0xFFFE E038
HIDISR
Host Interrupt Enable Indexed Clear Register
0xFFFE E03C - 0xFFFE E04F
-
Reserved
0xFFFE E050
VBR
Vector Base Register
0xFFFE E054
VSR
Vector Size Register
0xFFFE E058
VNR
Vector Null Register
0xFFFE E05C - 0xFFFE E07F
-
Reserved
0xFFFE E080
GPIR
Global Prioritized Index Register
0xFFFE E084
GPVR
Global Prioritized Vector Register
0xFFFE E088 - 0xFFFE E1FF
-
Reserved
0xFFFE E200
SRSR[0]
System Interrupt Status Raw / Set Registers
0xFFFE E204
SRSR[1]
0xFFFE E208
SRSR[2]
0xFFFE E20C
SRSR[3]
0xFFFE E210- 0xFFFE E27F
-
Reserved
0xFFFE E280
SECR[0]
System Interrupt Status Enabled / Clear Registers
0xFFFE E284
SECR[1]
0xFFFE E288
SECR[2]
0xFFFE E28C
SECR[3]
0xFFFE E290 - 0xFFFE E2FF
-
Reserved
0xFFFE E300
ESR[0]
System Interrupt Enable Set Registers
0xFFFE E304
ESR[1]
0xFFFE E308
ESR[2]
0xFFFE E30C
ESR[3]
0xFFFE E310 - 0xFFFE E37F
-
Reserved
0xFFFE E380
ECR[0]
System Interrupt Enable Clear Registers
0xFFFE E384
ECR[1]
0xFFFE E388
ECR[2]
0xFFFE E38C
ECR[3]
0xFFFE E390 - 0xFFFE E3FF
-
76
Peripheral Information and Electrical Specifications
Reserved
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
SPRS586 – JUNE 2009
Table 6-6. AINTC Memory Map (continued)
BYTE ADDRESS
ACRONYM
DESCRIPTION
CMR[0]
0xFFFE E404
CMR[1]
0xFFFE E408
CMR[2]
0xFFFE E40C
CMR[3]
0xFFFE E410
CMR[4]
0xFFFE E414
CMR[5]
0xFFFE E418
CMR[6]
0xFFFE E41C
CMR[7]
0xFFFE E420
CMR[8]
0xFFFE E424
CMR[9]
0xFFFE E428
CMR[10]
0xFFFE E42C
CMR[11]
0xFFFE E430
CMR[12]
0xFFFE E434
CMR[13]
0xFFFE E438
CMR[14]
0xFFFE E43C
CMR[15]
0xFFFE E440
CMR[16]
0xFFFE E444
CMR[17]
0xFFFE E448
CMR[18]
0xFFFE E44C
CMR[19]
0xFFFE E450
CMR[20]
0xFFFE E454
CMR[21]
0xFFFE E458
CMR[22]
0xFFFE E45C
CMR[23]
0xFFFE E460
CMR[24]
0xFFFE E464
CMR[25]
0xFFFE E468 - 0xFFFE E8FF
-
Reserved
0xFFFE E900
HIPIR[0]
Host Interrupt Prioritized Index Registers
0xFFFE E904
HIPIR[1]
0xFFFE E908 - 0xFFFE EEFF
-
Reserved
0xFFFE EF00
DSR[0]
Debug Select Registers
0xFFFE EF04
DSR[1]
0xFFFE EF08 - 0xFFFE F0FF
-
Reserved
0xFFFE F100
HINLR[0]
Host Interrupt Nesting Level Registers
0xFFFE F104
HINLR[1]
0xFFFE F108 - 0xFFFE F4FF
-
Reserved
0xFFFE F500
HIER[0]
Host Interrupt Enable Register
0xFFFE F504 - 0xFFFE F5FF
-
Reserved
0xFFFE F600
HIPVR[0] -
Host Interrupt Prioritized Vector Registers
0xFFFE F604
HIPVR[1]
0xFFFE F608 - 0xFFFE FFFF
-
Submit Documentation Feedback
Channel Map Registers
PRODUCT PREVIEW
0xFFFE E400 - 0xFFFE E45B
Reserved
Peripheral Information and Electrical Specifications
77
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
6.7.2
www.ti.com
DSP Interrupts
The C674x DSP interrupt controller combines device events into 12 prioritized interrupts. The source for
each of the 12 CPU interrupts is user programmable and is listed in Table 6-7. Also, the interrupt
controller controls the generation of the CPU exceptions, NMI, and emulation interrupts. Table 6-8
summarizes the C674x interrupt controller registers and memory locations.
PRODUCT PREVIEW
78
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
SPRS586 – JUNE 2009
Table 6-7. OMAP-L138 DSP Interrupts
EVT#
Interrupt Name
0
EVT0
Source
C674x Int Ctl 0
1
EVT1
C674x Int Ctl 1
2
EVT2
C674x Int Ctl 2
3
EVT3
C674x Int Ctl 3
4
T64P0_TINT12
5
SYSCFG_CHIPINT2
Timer64P0 - TINT12
6
-
7
EHRPWM0
8
EDMA3_0_CC0_INT1
9
EMU_DTDMA
C674x-ECM
10
EHRPWM0TZ
HiResTimer/PWM0 Trip Zone Interrupt
11
EMU_RTDXRX
C674x-RTDX
12
EMU_RTDXTX
C674x-RTDX
13
IDMAINT0
C674x-EMC
14
IDMAINT1
C674x-EMC
15
MMCSD0_INT0
MMCSD0 MMC/SD Interrupt
16
MMCSD0_INT1
MMCSD0 SDIO Interrupt
SYSCFG CHIPSIG Register
Reserved
HiResTimer/PWM0 Interrupt
17
-
18
EHRPWM1
HiResTimer/PWM1 Interrupt
19
USB0_INT
USB0 Interrupt
20
USB1_HCINT
21
USB1_RWAKEUP
22
-
23
EHRPWM1TZ
Reserved
USB1 OHCI Host Controller Interrupt
USB1 Remote Wakeup Interrupt
Reserved
HiResTimer/PWM1 Trip Zone Interrupt
24
SATA_INT
25
T64P2_TINTALL
26
EMAC_C0RXTHRESH
27
EMAC_C0RX
EMAC - Core 0 Receive Interrupt
28
EMAC_C0TX
EMAC - Core 0 Transmit Interrupt
29
EMAC_C0MISC
30
EMAC_C1RXTHRESH
31
EMAC_C1RX
EMAC - Core 1 Receive Interrupt
32
EMAC_C1TX
EMAC - Core 1 Transmit Interrupt
33
EMAC_C1MISC
34
UHPI_DSPINT
35
-
36
IIC0_INT
I2C0
37
SP0_INT
SPI0
38
UART0_INT
39
-
40
T64P1_TINT12
Timer64P1 Interrupt 12
41
GPIO_B1INT
GPIO Bank 1 Interrupt
42
IIC1_INT
I2C1
43
SPI1_INT
SPI1
44
-
45
ECAP0
Submit Documentation Feedback
PRODUCT PREVIEW
EDMA3_0 Channel Controller 0 Shadow Region 1 Transfer
Completion Interrupt
SATA Controller
Timer64P2 Combined TINT12 and TINT 34 Interrupt
EMAC - Core 0 Receive Threshold Interrupt
EMAC - Core 0 Miscellaneous Interrupt
EMAC - Core 1 Receive Threshold Interrupt
EMAC - Core 1 Miscellaneous Interrupt
UHPI DSP Interrupt
Reserved
UART0
Reserved
Reserved
ECAP0
Peripheral Information and Electrical Specifications
79
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
www.ti.com
Table 6-7. OMAP-L138 DSP Interrupts (continued)
PRODUCT PREVIEW
80
EVT#
Interrupt Name
Source
46
UART_INT1
UART1
47
ECAP1
ECAP1
48
T64P1_TINT34
Timer64P1 Interrupt 34
49
GPIO_B2INT
GPIO Bank 2 Interrupt
50
-
51
ECAP2
52
GPIO_B3INT
53
MMCSD1_INT1
54
GPIO_B4INT
Reserved
ECAP2
GPIO Bank 3 Interrupt
MMCSD1 SDIO Interrupt
GPIO Bank 4 Interrupt
55
EMIFA_INT
56
EDMA3_0_CC0_ERRINT
EDMA3_0 Channel Controller 0 Error Interrupt
57
EDMA3_0_TC0_ERRINT
EDMA3_0 Transfer Controller 0 Error Interrupt
58
EDMA3_0_TC1_ERRINT
EDMA3_0 Transfer Controller 1 Error Interrupt
59
GPIO_B5INT
60
DDR2_MEMERR
61
MCASP0_INT
McASP0 Combined RX/TX Interrupts
62
GPIO_B6INT
GPIO Bank 6 Interrupt
63
RTC_IRQS
64
T64P0_TINT34
Timer64P0 Interrupt 34
65
GPIO_B0INT
GPIO Bank 0 Interrupt
66
-
67
SYSCFG_CHIPINT3
SYSCFG_CHIPSIG Register
68
MMCSD1_INT0
MMCSD1 MMC/SD Interrupt
69
UART2_INT
70
PSC0_ALLINT
PSC0
71
PSC1_ALLINT
PSC1
72
GPIO_B7INT
73
LCDC_INT
LDC Controller
74
PROTERR
SYSCFG Protection Shared Interrupt
75
GPIO_B8INT
76
-
Reserved
77
-
Reserved
78
T64P2_CMPINT0
Timer64P2 - Compare Interrupt 0
79
T64P2_CMPINT1
Timer64P2 - Compare Interrupt 1
80
T64P2_CMPINT2
Timer64P2 - Compare Interrupt 2
81
T64P2_CMPINT3
Timer64P2 - Compare Interrupt 3
82
T64P2_CMPINT4
Timer64P2 - Compare Interrupt 4
83
T64P2_CMPINT5
Timer64P2 - Compare Interrupt 5
84
T64P2_CMPINT6
Timer64P2 - Compare Interrupt 6
85
T64P2_CMPINT7
Timer64P2 - Compare Interrupt 7
86
T64P3_TINTALL
Timer64P3 Combined TINT12 and TINT 34 Interrupt
87
MCBSP0_RINT
McBSP0 Receive Interrupt
88
MCBSP0_XINT
McBSP0 Transmit Interrupt
89
MCBSP1_RINT
McBSP1 Receive Interrupt
90
MCBSP1_XINT
McBSP1 Transmit Interrupt
91
EDMA3_1_CC0_INT1
Peripheral Information and Electrical Specifications
EMIFA
GPIO Bank 5 Interrupt
DDR2 Memory Error Interrupt
RTC Combined
Reserved
UART2
GPIO Bank 7 Interrupt
GPIO Bank 8 Interrupt
EDMA3_1 Channel Controller 0 Shadow Region 1 Transfer
Completion Interrupt
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
SPRS586 – JUNE 2009
Table 6-7. OMAP-L138 DSP Interrupts (continued)
Interrupt Name
92
EDMA3_1_CC0_ERRINT
Source
EDMA3_1 Channel Controller 0 Error Interrupt
93
EDMA3_1_TC0_ERRINT
EDMA3_1 Transfer Controller 0 Error Interrupt
94
UPP_INT
uPP Combined Interrupt
95
VPIF_INT
VPIF Combined Interrupt
96
INTERR
C674x-Int Ctl
97
EMC_IDMAERR
C674x-EMC
98
-
Reserved
99
-
Reserved
100
-
Reserved
101
-
Reserved
102
-
Reserved
103
-
Reserved
104
-
Reserved
105
-
Reserved
106
-
Reserved
107
-
Reserved
108
-
Reserved
109
-
Reserved
110
-
Reserved
111
-
Reserved
112
-
Reserved
113
PMC_ED
114
-
Reserved
115
-
Reserved
116
UMC_ED1
C674x-UMC
117
UMC_ED2
C674x-UMC
118
PDC_INT
C674x-PDC
119
SYS_CMPA
C674x-SYS
120
PMC_CMPA
C674x-PMC
121
PMC_CMPA
C674x-PMC
122
DMC_CMPA
C674x-DMC
123
DMC_CMPA
C674x-DMC
124
UMC_CMPA
C674x-UMC
125
UMC_CMPA
C674x-UMC
126
EMC_CMPA
C674x-EMC
127
EMC_BUSERR
C674x-EMC
Submit Documentation Feedback
PRODUCT PREVIEW
EVT#
C674x-PMC
Peripheral Information and Electrical Specifications
81
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
www.ti.com
Table 6-8. C674x DSP Interrupt Controller Registers
PRODUCT PREVIEW
BYTE ADDRESS
REGISTER NAME
DESCRIPTION
0x0180 0000
EVTFLAG0
Event flag register 0
0x0180 0004
EVTFLAG1
Event flag register 1
0x0180 0008
EVTFLAG2
Event flag register 2
0x0180 000C
EVTFLAG3
Event flag register 3
0x0180 0020
EVTSET0
Event set register 0
0x0180 0024
EVTSET1
Event set register 1
0x0180 0028
EVTSET2
Event set register 2
0x0180 002C
EVTSET3
Event set register 3
0x0180 0040
EVTCLR0
Event clear register 0
0x0180 0044
EVTCLR1
Event clear register 1
0x0180 0048
EVTCLR2
Event clear register 2
0x0180 004C
EVTCLR3
Event clear register 3
0x0180 0080
EVTMASK0
Event mask register 0
0x0180 0084
EVTMASK1
Event mask register 1
0x0180 0088
EVTMASK2
Event mask register 2
0x0180 008C
EVTMASK3
Event mask register 3
0x0180 00A0
MEVTFLAG0
Masked event flag register 0
0x0180 00A4
MEVTFLAG1
Masked event flag register 1
0x0180 00A8
MEVTFLAG2
Masked event flag register 2
0x0180 00AC
MEVTFLAG3
Masked event flag register 3
0x0180 00C0
EXPMASK0
Exception mask register 0
0x0180 00C4
EXPMASK1
Exception mask register 1
0x0180 00C8
EXPMASK2
Exception mask register 2
0x0180 00CC
EXPMASK3
Exception mask register 3
0x0180 00E0
MEXPFLAG0
Masked exception flag register 0
0x0180 00E4
MEXPFLAG1
Masked exception flag register 1
0x0180 00E8
MEXPFLAG2
Masked exception flag register 2
0x0180 00EC
MEXPFLAG3
Masked exception flag register 3
0x0180 0104
INTMUX1
Interrupt mux register 1
0x0180 0108
INTMUX2
Interrupt mux register 2
0x0180 010C
INTMUX3
Interrupt mux register 3
0x0180 0140 - 0x0180 0144
-
Reserved
0x0180 0180
INTXSTAT
Interrupt exception status
0x0180 0184
INTXCLR
Interrupt exception clear
0x0180 0188
INTDMASK
Dropped interrupt mask register
0x0180 01C0
EVTASRT
Event assert register
82
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
SPRS586 – JUNE 2009
6.8 Power and Sleep Controller (PSC)
The Power and Sleep Controllers (PSC) are responsible for managing transitions of system power on/off,
clock on/off, resets (device level and module level). It is used primarily to provide granular power control
for on chip modules (peripherals and CPU). A PSC module consists of a Global PSC (GPSC) and a set of
Local PSCs (LPSCs). The GPSC contains memory mapped registers, PSC interrupts, a state machine for
each peripheral/module it controls. An LPSC is associated with every module that is controlled by the PSC
and provides clock and reset control.
PRODUCT PREVIEW
The PSC includes the following features:
• Provides a software interface to:
– Control module clock enable/disable
– Control module reset
– Control CPU local reset
• Supports IcePick emulation features: power, clock and reset
PSC0 controls 16 local PSCs.
PSC1 controls 32 local PSCs.
Table 6-9. Power and Sleep Controller (PSC) Registers
PSC0 BYTE
ADDRESS
PSC1 BYTE
ADDRESS
0x01C1 0000
0x01E2 7000
REVID
Peripheral Revision and Class Information Register
0x01C1 0018
0x01E2 7018
INTEVAL
Interrupt Evaluation Register
0x01C1 0040
0x01E2 7040
MERRPR0
Module Error Pending Register 0 (module 0-15) (PSC0)
0x01C1 0050
0x01E2 7050
MERRCR0
0x01C1 0060
0x01E2 7060
PERRPR
Power Error Pending Register
0x01C1 0068
0x01E2 7068
PERRCR
Power Error Clear Register
0x01C1 0120
0x01E2 7120
PTCMD
Power Domain Transition Command Register
0x01C1 0128
0x01E2 7128
PTSTAT
Power Domain Transition Status Register
0x01C1 0200
0x01E2 7200
PDSTAT0
Power Domain 0 Status Register
0x01C1 0204
0x01E2 7204
PDSTAT1
Power Domain 1 Status Register
0x01C1 0300
0x01E2 7300
PDCTL0
Power Domain 0 Control Register
0x01C1 0304
0x01E2 7304
PDCTL1
Power Domain 1 Control Register
0x01C1 0400
0x01E2 7400
PDCFG0
Power Domain 0 Configuration Register
0x01C1 0404
0x01E2 7404
PDCFG1
Power Domain 1 Configuration Register
0x01C1 0800
0x01E2 7800
MDSTAT0
Module 0 Status Register
0x01C1 0804
0x01E2 7804
MDSTAT1
Module 1 Status Register
0x01C1 0808
0x01E2 7808
MDSTAT2
Module 2 Status Register
0x01C1 080C
0x01E2 780C
MDSTAT3
Module 3 Status Register
0x01C1 0810
0x01E2 7810
MDSTAT4
Module 4 Status Register
0x01C1 0814
0x01E2 7814
MDSTAT5
Module 5 Status Register
ACRONYM
REGISTER DESCRIPTION
Module Error Pending Register 0 (module 0-31) (PSC1)
Module Error Clear Register 0 (module 0-15) (PSC0)
Module Error Clear Register 0 (module 0-31) (PSC1)
0x01C1 0818
0x01E2 7818
MDSTAT6
Module 6 Status Register
0x01C1 081C
0x01E2 781C
MDSTAT7
Module 7 Status Register
0x01C1 0820
0x01E2 7820
MDSTAT8
Module 8 Status Register
0x01C1 0824
0x01E2 7824
MDSTAT9
Module 9 Status Register
0x01C1 0828
0x01E2 7828
MDSTAT10
Module 10 Status Register
0x01C1 082C
0x01E2 782C
MDSTAT11
Module 11 Status Register
0x01C1 0830
0x01E2 7830
MDSTAT12
Module 12 Status Register
0x01C1 0834
0x01E2 7834
MDSTAT13
Module 13 Status Register
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
83
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
www.ti.com
Table 6-9. Power and Sleep Controller (PSC) Registers (continued)
PRODUCT PREVIEW
84
PSC0 BYTE
ADDRESS
PSC1 BYTE
ADDRESS
0x01C1 0838
0x01E2 7838
MDSTAT14
Module 14 Status Register
0x01C1 083C
0x01E2 783C
MDSTAT15
Module 15 Status Register
-
0x01E2 7840
MDSTAT16
Module 16 Status Register
-
0x01E2 7844
MDSTAT17
Module 17 Status Register
-
0x01E2 7848
MDSTAT18
Module 18 Status Register
-
0x01E2 784C
MDSTAT19
Module 19 Status Register
-
0x01E2 7850
MDSTAT20
Module 20 Status Register
-
0x01E2 7854
MDSTAT21
Module 21 Status Register
-
0x01E2 7858
MDSTAT22
Module 22 Status Register
-
0x01E2 785C
MDSTAT23
Module 23 Status Register
-
0x01E2 7860
MDSTAT24
Module 24 Status Register
-
0x01E2 7864
MDSTAT25
Module 25 Status Register
-
0x01E2 7868
MDSTAT26
Module 26 Status Register
-
0x01E2 786C
MDSTAT27
Module 27 Status Register
-
0x01E2 7870
MDSTAT28
Module 28 Status Register
-
0x01E2 7874
MDSTAT29
Module 29 Status Register
-
0x01E2 7878
MDSTAT30
Module 30 Status Register
-
0x01E2 787C
MDSTAT31
Module 31 Status Register
0x01C1 0A00
0x01E2 7A00
MDCTL0
Module 0 Control Register
0x01C1 0A04
0x01E2 7A04
MDCTL1
Module 1 Control Register
0x01C1 0A08
0x01E2 7A08
MDCTL2
Module 2 Control Register
0x01C1 0A0C
0x01E2 7A0C
MDCTL3
Module 3 Control Register
0x01C1 0A10
0x01E2 7A10
MDCTL4
Module 4 Control Register
0x01C1 0A14
0x01E2 7A14
MDCTL5
Module 5 Control Register
ACRONYM
REGISTER DESCRIPTION
0x01C1 0A18
0x01E2 7A18
MDCTL6
Module 6 Control Register
0x01C1 0A1C
0x01E2 7A1C
MDCTL7
Module 7 Control Register
0x01C1 0A20
0x01E2 7A20
MDCTL8
Module 8 Control Register
0x01C1 0A24
0x01E2 7A24
MDCTL9
Module 9 Control Register
0x01C1 0A28
0x01E2 7A28
MDCTL10
Module 10 Control Register
0x01C1 0A2C
0x01E2 7A2C
MDCTL11
Module 11 Control Register
0x01C1 0A30
0x01E2 7A30
MDCTL12
Module 12 Control Register
0x01C1 0A34
0x01E2 7A34
MDCTL13
Module 13 Control Register
0x01C1 0A38
0x01E2 7A38
MDCTL14
Module 14 Control Register
0x01C1 0A3C
0x01E2 7A3C
MDCTL15
Module 15 Control Register
-
0x01E2 7A40
MDCTL16
Module 16 Control Register
-
0x01E2 7A44
MDCTL17
Module 17 Control Register
-
0x01E2 7A48
MDCTL18
Module 18 Control Register
-
0x01E2 7A4C
MDCTL19
Module 19 Control Register
-
0x01E2 7A50
MDCTL20
Module 20 Control Register
-
0x01E2 7A54
MDCTL21
Module 21 Control Register
-
0x01E2 7A58
MDCTL22
Module 22 Control Register
-
0x01E2 7A5C
MDCTL23
Module 23 Control Register
-
0x01E2 7A60
MDCTL24
Module 24 Control Register
-
0x01E2 7A64
MDCTL25
Module 25 Control Register
-
0x01E2 7A68
MDCTL26
Module 26 Control Register
-
0x01E2 7A6C
MDCTL27
Module 27 Control Register
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
SPRS586 – JUNE 2009
Table 6-9. Power and Sleep Controller (PSC) Registers (continued)
PSC0 BYTE
ADDRESS
PSC1 BYTE
ADDRESS
-
0x01E2 7A70
MDCTL28
Module 28 Control Register
-
0x01E2 7A74
MDCTL29
Module 29 Control Register
-
0x01E2 7A78
MDCTL30
Module 30 Control Register
-
0x01E2 7A7C
MDCTL31
Module 31 Control Register
6.8.1
ACRONYM
REGISTER DESCRIPTION
Power Domain and Module Topology
Each PSC module controls clock states for several of the on chip modules, controllers and interconnect
components. Table 6-10 and Table 6-11 lists the set of peripherals/modules that are controlled by the
PSC, the power domain they are associated with, the LPSC assignment and the default (power-on reset)
module states. See the device-specific data manual for the peripherals available on a given device. The
module states and terminology are defined in Section 6.8.1.2.
Table 6-10. PSC0 Default Module Configuration
LPSC
Number
Module Name
Power Domain
Default Module State
Auto Sleep/Wake Only
0
EDMA3 Channel Controller 0
AlwaysON (PD0)
SwRstDisable
—
1
EDMA3 Transfer Controller 0
AlwaysON (PD0)
SwRstDisable
—
2
EDMA3 Transfer Controller 1
AlwaysON (PD0)
SwRstDisable
—
3
EMIFA (Br7)
AlwaysON (PD0)
SwRstDisable
—
4
SPI 0
AlwaysON (PD0)
SwRstDisable
—
5
MMC/SD 0
AlwaysON (PD0)
SwRstDisable
—
6
ARM Interrupt Controller
AlwaysON (PD0)
SwRstDisable
—
7
ARM RAM/ROM
AlwaysON (PD0)
Enable
Yes
8
—
—
—
—
9
UART 0
AlwaysON (PD0)
SwRstDisable
—
10
SCR0 (Br 0, Br 1, Br 2, Br 8)
AlwaysON (PD0)
Enable
Yes
11
SCR1 (Br 4)
AlwaysON (PD0)
Enable
Yes
12
SCR2 (Br 3, Br 5, Br 6)
AlwaysON (PD0)
Enable
Yes
13
—
—
—
—
14
ARM
AlwaysON (PD0)
SwRstDisable
—
15
DSP
PD_DSP (PD1)
Enable
—
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
85
PRODUCT PREVIEW
The device includes two PSC modules.
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
www.ti.com
Table 6-11. PSC1 Default Module Configuration
PRODUCT PREVIEW
LPSC
Number
Module Name
Power Domain
Default Module State
Auto Sleep/Wake Only
0
EDMA3 Channel Controller 1
AlwaysON (PD0)
SwRstDisable
—
1
USB0 (USB2.0)
AlwaysON (PD0)
SwRstDisable
—
2
USB1 (USB1.1)
AlwaysON (PD0)
SwRstDisable
—
3
GPIO
AlwaysON (PD0)
SwRstDisable
—
4
UHPI
AlwaysON (PD0)
SwRstDisable
—
5
EMAC
AlwaysON (PD0)
SwRstDisable
—
6
DDR2 (and SCR_F3)
AlwaysON (PD0)
SwRstDisable
—
7
McASP0 ( + McASP0 FIFO)
AlwaysON (PD0)
SwRstDisable
—
8
SATA
AlwaysON (PD0)
SwRstDisable
—
9
VPIF
AlwaysON (PD0)
SwRstDisable
—
10
SPI 1
AlwaysON (PD0)
SwRstDisable
—
11
I2C 1
AlwaysON (PD0)
SwRstDisable
—
12
UART 1
AlwaysON (PD0)
SwRstDisable
—
13
UART 2
AlwaysON (PD0)
SwRstDisable
—
14
McBSP0 ( + McBSP0 FIFO)
AlwaysON (PD0)
SwRstDisable
—
15
McBSP1 ( + McBSP1 FIFO)
AlwaysON (PD0)
SwRstDisable
—
16
LCDC
AlwaysON (PD0)
SwRstDisable
—
17
eHRPWM0/1
AlwaysON (PD0)
SwRstDisable
—
18
MMCSD1
AlwaysON (PD0)
SwRstDisable
—
19
uPP
AlwaysON (PD0)
SwRstDisable
—
20
ECAP0/1/2
AlwaysON (PD0)
SwRstDisable
—
21
EDMA3 Transfer Controller 2
AlwaysON (PD0)
SwRstDisable
—
22
—
—
—
—
23
—
—
—
—
24
SCR_F0 (and bridge F0)
AlwaysON (PD0)
Enable
Yes
25
SCR_F1 (and bridge F1)
AlwaysON (PD0)
Enable
Yes
26
SCR_F2 (and bridge F2)
AlwaysON (PD0)
Enable
Yes
27
SCR_F6 (and bridge F3)
AlwaysON (PD0)
Enable
Yes
28
SCR_F7 (and bridge F4)
AlwaysON (PD0)
Enable
Yes
29
SCR_F8 (and bridge F5)
AlwaysON (PD0)
Enable
Yes
30
Bridge F7 (DDR Controller path)
AlwaysON (PD0)
Enable
Yes
31
Shared RAM (including SCR_F4
and bridge F6)
PD_SHRAM
Enable
—
86
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
SPRS586 – JUNE 2009
6.8.1.1 Power Domain States
A power domain can only be in one of the two states: ON or OFF, defined as follows:
• ON: power to the domain is on
• OFF: power to the domain is off
For both PSC0 and PSC1, the Always ON domain, or PD0 power domain, is always in the ON state when
the chip is powered-on. This domain is not programmable to OFF state.
• On PSC0 PD1/PD_DSP Domain: Controls the sleep state for DSP L1 and L2 Memories
• On PSC1 PD1/PD_SHRAM Domain: Controls the sleep state for the 128K Shared RAM
The PSC defines several possible states for a module. This states are essentially a combination of the
module reset asserted or de-asserted and module clock on/enabled or off/disabled. The module states are
defined in Table 6-12.
Table 6-12. Module States
Module State
Module Reset
Module
Clock
Module State Definition
Enable
De-asserted
On
A module in the enable state has its module reset de-asserted and it has its clock on.
This is the normal operational state for a given module
Disable
De-asserted
Off
A module in the disabled state has its module reset de-asserted and it has its module
clock off. This state is typically used for disabling a module clock to save power. The
device is designed in full static CMOS, so when you stop a module clock, it retains the
module’s state. When the clock is restarted, the module resumes operating from the
stopping point.
SyncReset
Asserted
On
A module state in the SyncReset state has its module reset asserted and it has its
clock on. Generally, software is not expected to initiate this state
SwRstDisable
Asserted
Off
A module in the SwResetDisable state has its module reset asserted and it has its
clock disabled. After initial power-on, several modules come up in the SwRstDisable
state. Generally, software is not expected to initiate this state
Auto Sleep
De-asserted
Off
A module in the Auto Sleep state also has its module reset de-asserted and its module
clock disabled, similar to the Disable state. However this is a special state, once a
module is configured in this state by software, it can “automatically” transition to
“Enable” state whenever there is an internal read/write request made to it, and after
servicing the request it will “automatically” transition into the sleep state (with module
reset re de-asserted and module clock disabled), without any software intervention.
The transition from sleep to enabled and back to sleep state has some cycle latency
associated with it. It is not envisioned to use this mode when peripherals are fully
operational and moving data.
Auto Wake
De-asserted
Off
A module in the Auto Wake state also has its module reset de-asserted and its module
clock disabled, similar to the Disable state. However this is a special state, once a
module is configured in this state by software, it will “automatically” transition to
“Enable” state whenever there is an internal read/write request made to it, and will
remain in the “Enabled” state from then on (with module reset re de-asserted and
module clock on), without any software intervention. The transition from sleep to
enabled state has some cycle latency associated with it. It is not envisioned to use this
mode when peripherals are fully operational and moving data.
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
87
PRODUCT PREVIEW
6.8.1.2 Module States
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
www.ti.com
6.9 EDMA
The EDMA controller handles all data transfers between memories and the device slave peripherals on
the device. These data transfers include cache servicing, non-cacheable memory accesses,
user-programmed data transfers, and host accesses.
6.9.1
EDMA3 Channel Synchronization Events
Each EDMA channel controller supports up to 32 channels which service peripherals and memory.
Table 6-13lists the source of the EDMA synchronization events associated with each of the programmable
EDMA channels.
Table 6-13. EDMA Synchronization Events
EDMA0 Channel Controller 0
PRODUCT PREVIEW
Event
Event Name / Source
Event
Event Name / Source
0
McASP0 Receive
16
MMCSD0 Receive
1
McASP0 Transmit
17
MMCSD0 Transmit
2
McBSP0 Receive
18
SPI1 Receive
3
McBSP0 Transmit
19
SPI1 Transmit
4
McBSP1 Receive
20
Reserved
5
McBSP1 Transmit
21
Reserved
6
GPIO Bank 0 Interrupt
22
GPIO Bank 2 Interrupt
7
GPIO Bank 1 Interrupt
23
GPIO Bank 3 Interrupt
8
UART0 Receive
24
I2C0 Receive
9
UART0 Transmit
25
I2C0 Transmit
10
Timer64P0 Event Out 12
26
I2C1 Receive
11
Timer64P0 Event Out 34
27
I2C1 Transmit
12
UART1 Receive
28
GPIO Bank 4 Interrupt
13
UART1 Transmit
29
GPIO Bank 5 Interrupt
14
SPI0 Receive
30
UART2 Receive
15
SPI0 Transmit
31
UART2 Transmit
Event
Event Name / Source
Event
Event Name / Source
0
Timer64P2 Compare Event 0
16
GPIO Bank 6 Interrupt
1
Timer64P2 Compare Event 1
17
GPIO Bank 7 Interrupt
2
Timer64P2 Compare Event 2
18
GPIO Bank 8 Interrupt
3
Timer64P2 Compare Event 3
19
Reserved
4
Timer64P2 Compare Event 4
20
Reserved
5
Timer64P2 Compare Event 5
21
Reserved
6
Timer64P2 Compare Event 6
22
Reserved
7
Timer64P2 Compare Event 7
23
Reserved
8
Timer64P3 Compare Event 0
24
Timer64P2 Event Out 12
9
Timer64P3 Compare Event 1
25
Timer64P2 Event Out 34
10
Timer64P3 Compare Event 2
26
Timer64P3 Event Out 12
11
Timer64P3 Compare Event 3
27
Timer64P3 Event Out 34
12
Timer64P3 Compare Event 4
28
MMCSD0 Receive
13
Timer64P3 Compare Event 5
29
MMCSD0 Transmit
14
Timer64P3 Compare Event 6
30
Reserved
15
Timer64P3 Compare Event 7
31
Reserved
EDMA1 Channel Controller 1
88
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
6.9.2
SPRS586 – JUNE 2009
EDMA Peripheral Register Descriptions
Table 6-14 is the list of EDMA3 Channel Controller Registers and Table 6-15 is the list of EDMA3 Transfer
Controller registers.
Table 6-14. EDMA3 Channel Controller (EDMA3CC) Registers
EDMA0 Channel Controller
0
BYTE ADDRESS
EDMA1 Channel Controller
0
BYTE ADDRESS
ACRONYM
REGISTER DESCRIPTION
0x01C0 0000
0x01E3 0000
PID
0x01C0 0004
0x01E3 0004
CCCFG
0x01C0 0200
0x01E3 0200
QCHMAP0
QDMA Channel 0 Mapping Register
0x01C0 0204
0x01E3 0204
QCHMAP1
QDMA Channel 1 Mapping Register
Peripheral Identification Register
EDMA3CC Configuration Register
0x01C0 0208
0x01E3 0208
QCHMAP2
QDMA Channel 2 Mapping Register
0x01C0 020C
0x01E3 020C
QCHMAP3
QDMA Channel 3 Mapping Register
0x01C0 0210
0x01E3 0210
QCHMAP4
QDMA Channel 4 Mapping Register
0x01C0 0214
0x01E3 0214
QCHMAP5
QDMA Channel 5 Mapping Register
0x01C0 0218
0x01E3 0218
QCHMAP6
QDMA Channel 6 Mapping Register
0x01C0 021C
0x01E3 021C
QCHMAP7
QDMA Channel 7 Mapping Register
0x01C0 0240
0x01E3 0240
DMAQNUM0
DMA Channel Queue Number Register 0
0x01C0 0244
0x01E3 0244
DMAQNUM1
DMA Channel Queue Number Register 1
0x01C0 0248
0x01E3 0248
DMAQNUM2
DMA Channel Queue Number Register 2
0x01C0 024C
0x01E3 024C
DMAQNUM3
DMA Channel Queue Number Register 3
0x01C0 0260
0x01E3 0260
QDMAQNUM QDMA Channel Queue Number Register
0x01C0 0284
0x01E3 0284
0x01C0 0300
0x01E3 0300
EMR
0x01C0 0308
0x01E3 0308
EMCR
Event Missed Clear Register
0x01C0 0310
0x01E3 0310
QEMR
QDMA Event Missed Register
0x01C0 0314
0x01E3 0314
QEMCR
QDMA Event Missed Clear Register
0x01C0 0318
0x01E3 0318
CCERR
EDMA3CC Error Register
0x01C0 031C
0x01E3 031C
CCERRCLR
0x01C0 0320
0x01E3 0320
EEVAL
Error Evaluate Register
0x01C0 0340
0x01E3 0340
DRAE0
DMA Region Access Enable Register for Region 0
0x01C0 0348
0x01E3 0348
DRAE1
DMA Region Access Enable Register for Region 1
0x01C0 0350
0x01E3 0350
DRAE2
DMA Region Access Enable Register for Region 2
0x01C0 0358
0x01E3 0358
DRAE3
DMA Region Access Enable Register for Region 3
0x01C0 0380
0x01E3 0380
QRAE0
QDMA Region Access Enable Register for Region 0
0x01C0 0384
0x01E3 0384
QRAE1
QDMA Region Access Enable Register for Region 1
0x01C0 0388
0x01E3 0388
QRAE2
QDMA Region Access Enable Register for Region 2
0x01C0 038C
0x01E3 038C
QRAE3
QDMA Region Access Enable Register for Region 3
0x01C0 0400 - 0x01C0 043C
0x01E3 0400 - 0x01E3 043C
Q0E0-Q0E15 Event Queue Entry Registers Q0E0-Q0E15
0x01C0 0440 - 0x01C0 047C
0x01E3 0440 - 0x01E3 047C
Q1E0-Q1E15 Event Queue Entry Registers Q1E0-Q1E15
0x01C0 0600
0x01E3 0600
0x01C0 0604
0x01C0 0620
0x01C0 0640
QUEPRI
PRODUCT PREVIEW
Global Registers
Queue Priority Register (1)
Event Missed Register
EDMA3CC Error Clear Register
QSTAT0
Queue 0 Status Register
0x01E3 0604
QSTAT1
Queue 1 Status Register
0x01E3 0620
QWMTHRA
0x01E3 0640
CCSTAT
Queue Watermark Threshold A Register
EDMA3CC Status Register
Global Channel Registers
(1)
On previous architectures, the EDMA3TC priority was controlled by the queue priority register (QUEPRI) in the EDMA3CC
memory-map. However for this device, the priority control for the transfer controllers is controlled by the chip-level registers in the
System Configuration Module. You should use the chip-level registers and not QUEPRI to configure the TC priority.
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
89
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
www.ti.com
Table 6-14. EDMA3 Channel Controller (EDMA3CC) Registers (continued)
EDMA1 Channel Controller
0
BYTE ADDRESS
0x01C0 1000
0x01E3 1000
ER
0x01C0 1008
0x01E3 1008
ECR
Event Clear Register
0x01C0 1010
0x01E3 1010
ESR
Event Set Register
0x01C0 1018
0x01E3 1018
CER
Chained Event Register
0x01C0 1020
0x01E3 1020
EER
Event Enable Register
0x01C0 1028
0x01E3 1028
EECR
Event Enable Clear Register
0x01C0 1030
0x01E3 1030
EESR
Event Enable Set Register
0x01C0 1038
0x01E3 1038
SER
Secondary Event Register
0x01C0 1040
0x01E3 1040
SECR
0x01C0 1050
0x01E3 1050
IER
0x01C0 1058
0x01E3 1058
IECR
Interrupt Enable Clear Register
0x01C0 1060
0x01E3 1060
IESR
Interrupt Enable Set Register
0x01C0 1068
0x01E3 1068
IPR
Interrupt Pending Register
0x01C0 1070
0x01E3 1070
ICR
Interrupt Clear Register
0x01C0 1078
0x01E3 1078
IEVAL
0x01C0 1080
0x01E3 1080
QER
0x01C0 1084
0x01E3 1084
QEER
PRODUCT PREVIEW
EDMA0 Channel Controller
0
BYTE ADDRESS
ACRONYM
REGISTER DESCRIPTION
Event Register
Secondary Event Clear Register
Interrupt Enable Register
Interrupt Evaluate Register
QDMA Event Register
QDMA Event Enable Register
0x01C0 1088
0x01E3 1088
QEECR
QDMA Event Enable Clear Register
0x01C0 108C
0x01E3 108C
QEESR
QDMA Event Enable Set Register
0x01C0 1090
0x01E3 1090
QSER
QDMA Secondary Event Register
0x01C0 1094
0x01E3 1094
QSECR
QDMA Secondary Event Clear Register
Shadow Region 0 Channel Registers
0x01C0 2000
0x01E3 2000
ER
0x01C0 2008
0x01E3 2008
ECR
Event Register
Event Clear Register
0x01C0 2010
0x01E3 2010
ESR
Event Set Register
0x01C0 2018
0x01E3 2018
CER
Chained Event Register
0x01C0 2020
0x01E3 2020
EER
Event Enable Register
0x01C0 2028
0x01E3 2028
EECR
Event Enable Clear Register
0x01C0 2030
0x01E3 2030
EESR
Event Enable Set Register
0x01C0 2038
0x01E3 2038
SER
Secondary Event Register
0x01C0 2040
0x01E3 2040
SECR
0x01C0 2050
0x01E3 2050
IER
0x01C0 2058
0x01E3 2058
IECR
Interrupt Enable Clear Register
0x01C0 2060
0x01E3 2060
IESR
Interrupt Enable Set Register
0x01C0 2068
0x01E3 2068
IPR
Interrupt Pending Register
0x01C0 2070
0x01E3 2070
ICR
Interrupt Clear Register
0x01C0 2078
0x01E3 2078
IEVAL
0x01C0 2080
0x01E3 2080
QER
0x01C0 2084
0x01E3 2084
QEER
0x01C0 2088
0x01E3 2088
QEECR
QDMA Event Enable Clear Register
0x01C0 208C
0x01E3 208C
QEESR
QDMA Event Enable Set Register
0x01C0 2090
0x01E3 2090
QSER
QDMA Secondary Event Register
0x01C0 2094
0x01E3 2094
QSECR
Secondary Event Clear Register
Interrupt Enable Register
Interrupt Evaluate Register
QDMA Event Register
QDMA Event Enable Register
QDMA Secondary Event Clear Register
Shadow Region 1 Channel Registers
90
0x01C0 2200
0x01E3 2200
ER
0x01C0 2208
0x01E3 2208
ECR
Peripheral Information and Electrical Specifications
Event Register
Event Clear Register
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
SPRS586 – JUNE 2009
Table 6-14. EDMA3 Channel Controller (EDMA3CC) Registers (continued)
EDMA0 Channel Controller
0
BYTE ADDRESS
EDMA1 Channel Controller
0
BYTE ADDRESS
REGISTER DESCRIPTION
0x01C0 2210
0x01E3 2210
ESR
Event Set Register
0x01C0 2218
0x01E3 2218
CER
Chained Event Register
0x01C0 2220
0x01E3 2220
EER
Event Enable Register
0x01C0 2228
0x01E3 2228
EECR
Event Enable Clear Register
0x01C0 2230
0x01E3 2230
EESR
Event Enable Set Register
0x01C0 2238
0x01E3 2238
SER
Secondary Event Register
0x01C0 2240
0x01E3 2240
SECR
0x01C0 2250
0x01E3 2250
IER
0x01C0 2258
0x01E3 2258
IECR
Interrupt Enable Clear Register
0x01C0 2260
0x01E3 2260
IESR
Interrupt Enable Set Register
0x01C0 2268
0x01E3 2268
IPR
Interrupt Pending Register
0x01C0 2270
0x01E3 2270
ICR
Interrupt Clear Register
0x01C0 2278
0x01E3 2278
IEVAL
0x01C0 2280
0x01E3 2280
QER
0x01C0 2284
0x01E3 2284
QEER
0x01C0 2288
0x01E3 2288
QEECR
QDMA Event Enable Clear Register
0x01C0 228C
0x01E3 228C
QEESR
QDMA Event Enable Set Register
0x01C0 2290
0x01E3 2290
QSER
QDMA Secondary Event Register
0x01C0 2294
0x01E3 2294
QSECR
0x01C0 4000 - 0x01C0 4FFF
0x01E3 4000 - 0x01E3 4FFF
—
Secondary Event Clear Register
Interrupt Enable Register
PRODUCT PREVIEW
ACRONYM
Interrupt Evaluate Register
QDMA Event Register
QDMA Event Enable Register
QDMA Secondary Event Clear Register
Parameter RAM (PaRAM)
Table 6-15. EDMA3 Transfer Controller (EDMA3TC) Registers
EDMA0
Transfer
Controller 0
BYTE ADDRESS
EDMA0
Transfer
Controller 1
BYTE ADDRESS
EDMA1
Transfer
Controller 0
BYTE ADDRESS
ACRONYM
REGISTER DESCRIPTION
0x01C0 8000
0x01C0 8400
0x01E3 8000
PID
Peripheral Identification Register
0x01C0 8004
0x01C0 8404
0x01E3 8004
TCCFG
EDMA3TC Configuration Register
0x01C0 8100
0x01C0 8500
0x01E3 8100
TCSTAT
EDMA3TC Channel Status Register
0x01C0 8120
0x01C0 8520
0x01E3 8120
ERRSTAT
Error Status Register
0x01C0 8124
0x01C0 8524
0x01E3 8124
ERREN
Error Enable Register
0x01C0 8128
0x01C0 8528
0x01E3 8128
ERRCLR
Error Clear Register
0x01C0 812C
0x01C0 852C
0x01E3 812C
ERRDET
Error Details Register
0x01C0 8130
0x01C0 8530
0x01E3 8130
ERRCMD
Error Interrupt Command Register
0x01C0 8140
0x01C0 8540
0x01E3 8140
RDRATE
Read Command Rate Register
0x01C0 8240
0x01C0 8640
0x01E3 8240
SAOPT
Source Active Options Register
0x01C0 8244
0x01C0 8644
0x01E3 8244
SASRC
Source Active Source Address Register
0x01C0 8248
0x01C0 8648
0x01E3 8248
SACNT
Source Active Count Register
0x01C0 824C
0x01C0 864C
0x01E3 824C
SADST
Source Active Destination Address Register
0x01C0 8250
0x01C0 8650
0x01E3 8250
SABIDX
Source Active B-Index Register
0x01C0 8254
0x01C0 8654
0x01E3 8254
SAMPPRXY
Source Active Memory Protection Proxy Register
Source Active Count Reload Register
0x01C0 8258
0x01C0 8658
0x01E3 8258
SACNTRLD
0x01C0 825C
0x01C0 865C
0x01E3 825C
SASRCBREF
Source Active Source Address B-Reference Register
0x01C0 8260
0x01C0 8660
0x01E3 8260
SADSTBREF
Source Active Destination Address B-Reference Register
0x01C0 8280
0x01C0 8680
0x01E3 8280
DFCNTRLD
0x01C0 8284
0x01C0 8684
0x01E3 8284
DFSRCBREF
Submit Documentation Feedback
Destination FIFO Set Count Reload Register
Destination FIFO Set Source Address B-Reference
Register
Peripheral Information and Electrical Specifications
91
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
www.ti.com
Table 6-15. EDMA3 Transfer Controller (EDMA3TC) Registers (continued)
EDMA0
Transfer
Controller 1
BYTE ADDRESS
EDMA1
Transfer
Controller 0
BYTE ADDRESS
ACRONYM
0x01C0 8288
0x01C0 8688
0x01E3 8288
DFDSTBREF
0x01C0 8300
0x01C0 8700
0x01E3 8300
DFOPT0
Destination FIFO Options Register 0
0x01C0 8304
0x01C0 8704
0x01E3 8304
DFSRC0
Destination FIFO Source Address Register 0
0x01C0 8308
0x01C0 8708
0x01E3 8308
DFCNT0
Destination FIFO Count Register 0
0x01C0 830C
0x01C0 870C
0x01E3 830C
DFDST0
Destination FIFO Destination Address Register 0
0x01C0 8310
0x01C0 8710
0x01E3 8310
DFBIDX0
Destination FIFO B-Index Register 0
0x01C0 8314
0x01C0 8714
0x01E3 8314
DFMPPRXY0
0x01C0 8340
0x01C0 8740
0x01E3 8340
DFOPT1
Destination FIFO Options Register 1
0x01C0 8344
0x01C0 8744
0x01E3 8344
DFSRC1
Destination FIFO Source Address Register 1
PRODUCT PREVIEW
EDMA0
Transfer
Controller 0
BYTE ADDRESS
REGISTER DESCRIPTION
Destination FIFO Set Destination Address B-Reference
Register
Destination FIFO Memory Protection Proxy Register 0
0x01C0 8348
0x01C0 8748
0x01E3 8348
DFCNT1
Destination FIFO Count Register 1
0x01C0 834C
0x01C0 874C
0x01E3 834C
DFDST1
Destination FIFO Destination Address Register 1
0x01C0 8350
0x01C0 8750
0x01E3 8350
DFBIDX1
Destination FIFO B-Index Register 1
0x01C0 8354
0x01C0 8754
0x01E3 8354
DFMPPRXY1
0x01C0 8380
0x01C0 8780
0x01E3 8380
DFOPT2
Destination FIFO Options Register 2
0x01C0 8384
0x01C0 8784
0x01E3 8384
DFSRC2
Destination FIFO Source Address Register 2
Destination FIFO Memory Protection Proxy Register 1
0x01C0 8388
0x01C0 8788
0x01E3 8388
DFCNT2
Destination FIFO Count Register 2
0x01C0 838C
0x01C0 878C
0x01E3 838C
DFDST2
Destination FIFO Destination Address Register 2
0x01C0 8390
0x01C0 8790
0x01E3 8390
DFBIDX2
Destination FIFO B-Index Register 2
0x01C0 8394
0x01C0 8794
0x01E3 8394
DFMPPRXY2
0x01C0 83C0
0x01C0 87C0
0x01E3 83C0
DFOPT3
Destination FIFO Options Register 3
0x01C0 83C4
0x01C0 87C4
0x01E3 83C4
DFSRC3
Destination FIFO Source Address Register 3
0x01C0 83C8
0x01C0 87C8
0x01E3 83C8
DFCNT3
Destination FIFO Count Register 3
0x01C0 83CC
0x01C0 87CC
0x01E3 83CC
DFDST3
Destination FIFO Destination Address Register 3
0x01C0 83D0
0x01C0 87D0
0x01E3 83D0
DFBIDX3
Destination FIFO B-Index Register 3
0x01C0 83D4
0x01C0 87D4
0x01E3 83D4
DFMPPRXY3
Destination FIFO Memory Protection Proxy Register 2
Destination FIFO Memory Protection Proxy Register 3
Table 6-16 shows an abbreviation of the set of registers which make up the parameter set for each of 128
EDMA events. Each of the parameter register sets consist of 8 32-bit word entries. Table 6-17 shows the
parameter set entry registers with relative memory address locations within each of the parameter sets.
Table 6-16. EDMA Parameter Set RAM
92
EDMA0
Channel Controller 0
BYTE ADDRESS RANGE
EDMA1
Channel Controller 0
BYTE ADDRESS RANGE
0x01C0 4000 - 0x01C0 401F
0x01E3 4000 - 0x01E3 401F
Parameters Set 0 (8 32-bit words)
DESCRIPTION
0x01C0 4020 - 0x01C0 403F
0x01E3 4020 - 0x01E3 403F
Parameters Set 1 (8 32-bit words)
0x01C0 4040 - 0x01CC0 405F
0x01E3 4040 - 0x01CE3 405F
Parameters Set 2 (8 32-bit words)
0x01C0 4060 - 0x01C0 407F
0x01E3 4060 - 0x01E3 407F
Parameters Set 3 (8 32-bit words)
0x01C0 4080 - 0x01C0 409F
0x01E3 4080 - 0x01E3 409F
Parameters Set 4 (8 32-bit words)
0x01C0 40A0 - 0x01C0 40BF
0x01E3 40A0 - 0x01E3 40BF
Parameters Set 5 (8 32-bit words)
...
...
0x01C0 4FC0 - 0x01C0 4FDF
0x01E3 4FC0 - 0x01E3 4FDF
Parameters Set 126 (8 32-bit words)
0x01C0 4FE0 - 0x01C0 4FFF
0x01E3 4FE0 - 0x01E3 4FFF
Parameters Set 127 (8 32-bit words)
Peripheral Information and Electrical Specifications
...
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
SPRS586 – JUNE 2009
Table 6-17. Parameter Set Entries
OFFSET BYTE ADDRESS
WITHIN THE PARAMETER SET
ACRONYM
PARAMETER ENTRY
0x0000
OPT
Option
0x0004
SRC
Source Address
0x0008
A_B_CNT
0x000C
DST
0x0010
SRC_DST_BIDX
Source B Index, Destination B Index
0x0014
LINK_BCNTRLD
Link Address, B Count Reload
0x0018
SRC_DST_CIDX
Source C Index, Destination C Index
0x001C
CCNT
A Count, B Count
Destination Address
PRODUCT PREVIEW
C Count
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
93
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
www.ti.com
6.10 External Memory Interface A (EMIFA)
EMIFA is one of two external memory interfaces supported on the device. It is primarily intended to
support asynchronous memory types, such as NAND and NOR flash and Asynchronous SRAM. However
on this device, EMIFA also provides a secondary interface to SDRAM.
6.10.1 EMIFA Asynchronous Memory Support
EMIFA supports asynchronous:
• SRAM memories
• NAND Flash memories
• NOR Flash memories
The EMIFA data bus width is up to 16-bits.The device supports up to 24 address lines and two external
wait/interrupt inputs. Up to four asynchronous chip selects are supported by EMIFA (EMA_CS[5:2]).
PRODUCT PREVIEW
Each chip select has the following individually programmable attributes:
• Data Bus Width
• Read cycle timings: setup, hold, strobe
• Write cycle timings: setup, hold, strobe
• Bus turn around time
• Extended Wait Option With Programmable Timeout
• Select Strobe Option
• NAND flash controller supports 1-bit and 4-bit ECC calculation on blocks of 512 bytes.
6.10.2 EMIFA Synchronous DRAM Memory Support
The device supports 16-bit SDRAM in addition to the asynchronous memories listed in Section 6.10.1. It
has a single SDRAM chip select (EMA_CS[0]). SDRAM configurations that are supported are:
• One, Two, and Four Bank SDRAM devices
• Devices with Eight, Nine, Ten, and Eleven Column Address
• CAS Latency of two or three clock cycles
• Sixteen Bit Data Bus Width
Additionally, the SDRAM interface of EMIFA supports placing the SDRAM in Self Refresh and Powerdown
Modes. Self Refresh mode allows the SDRAM to be put into a low power state while still retaining memory
contents; since the SDRAM will continue to refresh itself even without clocks from the device. Powerdown
mode achieves even lower power, except the device must periodically wake the SDRAM up and issue
refreshes if data retention is required.
Finally, note that the EMIFA does not support Mobile SDRAM devices.
Table 6-18 shows the supported SDRAM configurations for EMIFA.
94
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
SPRS586 – JUNE 2009
SDRAM
Memory
Data Bus
Width (bits)
16
8
(1)
Number of
Memories
EMIFA Data
Bus Size
(bits)
Rows
Columns
Banks
Total
Memory
(Mbits)
Total
Memory
(Mbytes)
Memory
Density
(Mbits)
1
16
16
8
1
256
32
256
1
16
16
8
2
512
64
512
1
16
16
8
4
1024
128
1024
1
16
16
9
1
512
64
512
1
16
16
9
2
1024
128
1024
1
16
16
9
4
2048
256
2048
1
16
16
10
1
1024
128
1024
1
16
16
10
2
2048
256
2048
1
16
16
10
4
4096
512
4096
1
16
16
11
1
2048
256
2048
1
16
16
11
2
4096
512
4096
1
16
15
11
4
4096
512
4096
2
16
16
8
1
256
32
128
2
16
16
8
2
512
64
256
2
16
16
8
4
1024
128
512
2
16
16
9
1
512
64
256
2
16
16
9
2
1024
128
512
2
16
16
9
4
2048
256
1024
2
16
16
10
1
1024
128
512
2
16
16
10
2
2048
256
1024
2
16
16
10
4
4096
512
2048
2
16
16
11
1
2048
256
1024
2
16
16
11
2
4096
512
2048
2
16
15
11
4
4096
512
2048
PRODUCT PREVIEW
Table 6-18. EMIFA Supported SDRAM Configurations (1)
The shaded cells indicate configurations that are possible on the EMIFA interface but as of this writing SDRAM memories capable of
supporting these densities are not available in the market.
6.10.3 EMIFA SDRAM Loading Limitations
EMIFA supports SDRAM up to 100 MHz with up to two SDRAM or asynchronous memory loads.
Additional loads will limit the SDRAM operation to lower speeds and the maximum speed should be
confirmed by board simulation using IBIS models.
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
95
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
www.ti.com
6.10.5 External Memory Interface Register Descriptions
Table 6-19 is a list of the EMIF registers. For more information about these registers, see the C674x DSP
External Memory Interface (EMIF) User's Guide (literature number SPRUFL6).
Table 6-19. External Memory Interface (EMIFA) Registers
BYTE ADDRESS
PRODUCT PREVIEW
96
ACRONYM
REGISTER DESCRIPTION
0x6800 0000
MIDR
Module ID Register
0x6800 0004
AWCC
Asynchronous Wait Cycle Configuration Register
0x6800 0008
SDCR
SDRAM Configuration Register
0x6800 000C
SDRCR
SDRAM Refresh Control Register
0x6800 0010
CE2CFG
Asynchronous 1 Configuration Register
0x6800 0014
CE3CFG
Asynchronous 2 Configuration Register
0x6800 0018
CE4CFG
Asynchronous 3 Configuration Register
0x6800 001C
CE5CFG
Asynchronous 4 Configuration Register
0x6800 0020
SDTIMR
SDRAM Timing Register
0x6800 003C
SDSRETR
0x6800 0040
INTRAW
EMIFA Interrupt Raw Register
0x6800 0044
INTMSK
EMIFA Interrupt Mask Register
0x6800 0048
INTMSKSET
EMIFA Interrupt Mask Set Register
0x6800 004C
INTMSKCLR
EMIFA Interrupt Mask Clear Register
0x6800 0060
NANDFCR
NAND Flash Control Register
0x6800 0064
NANDFSR
NAND Flash Status Register
0x6800 0070
NANDF1ECC
NAND Flash 1 ECC Register (CS2 Space)
0x6800 0074
NANDF2ECC
NAND Flash 2 ECC Register (CS3 Space)
0x6800 0078
NANDF3ECC
NAND Flash 3 ECC Register (CS4 Space)
0x6800 007C
NANDF4ECC
NAND Flash 4 ECC Register (CS5 Space)
0x6800 00BC
NAND4BITECCLOAD
0x6800 00C0
NAND4BITECC1
NAND Flash 4-Bit ECC Register 1
0x6800 00C4
NAND4BITECC2
NAND Flash 4-Bit ECC Register 2
0x6800 00C8
NAND4BITECC3
NAND Flash 4-Bit ECC Register 3
0x6800 00CC
NAND4BITECC4
NAND Flash 4-Bit ECC Register 4
0x6800 00D0
NANDERRADD1
NAND Flash 4-Bit ECC Error Address Register 1
0x6800 00D4
NANDERRADD2
NAND Flash 4-Bit ECC Error Address Register 2
0x6800 00D8
NANDERRVAL1
NAND Flash 4-Bit ECC Error Value Register 1
0x6800 00DC
NANDERRVAL2
NAND Flash 4-Bit ECC Error Value Register 2
SDRAM Self Refresh Exit Timing Register
NAND Flash 4-Bit ECC Load Register
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
SPRS586 – JUNE 2009
6.10.6 EMIFA Electrical Data/Timing
Table 6-20 through Table 6-23 assume testing over recommended operating conditions.
Table 6-20. Timing Requirements for EMIFA SDRAM Interface
NO.
1.2V
PARAMETER
MIN
19
tsu(EMA_DV-EM_CLKH)
Input setup time, read data valid on EMA_D[31:0] before
EMA_CLK rising
20
th(CLKH-DIV)
Input hold time, read data valid on EMA_D[31:0] after
EMA_CLK rising
1.1V
MAX
MIN
MAX
1.0V
MIN
MAX
UNIT
2
3
3
ns
1.6
1.6
1.6
ns
NO.
1.2V
PARAMETER
MIN
1.1V
MAX
MIN
MAX
1.0V
MIN
MAX
UNIT
1
tc(CLK)
Cycle time, EMIF clock EMA_CLK
10
15
20
ns
2
tw(CLK)
Pulse width, EMIF clock EMA_CLK high or low
3
5
8
ns
3
td(CLKH-CSV)
Delay time, EMA_CLK rising to EMA_CS[0] valid
4
toh(CLKH-CSIV)
Output hold time, EMA_CLK rising to EMA_CS[0] invalid
5
td(CLKH-DQMV)
Delay time, EMA_CLK rising to EMA_WE_DQM[1:0] valid
6
toh(CLKH-DQMIV)
Output hold time, EMA_CLK rising to EMA_WE_DQM[1:0]
invalid
7
td(CLKH-AV)
Delay time, EMA_CLK rising to EMA_A[12:0] and
EMA_BA[1:0] valid
8
toh(CLKH-AIV)
Output hold time, EMA_CLK rising to EMA_A[12:0] and
EMA_BA[1:0] invalid
9
td(CLKH-DV)
Delay time, EMA_CLK rising to EMA_D[15:0] valid
10
toh(CLKH-DIV)
Output hold time, EMA_CLK rising to EMA_D[15:0] invalid
11
td(CLKH-RASV)
Delay time, EMA_CLK rising to EMA_RAS valid
12
toh(CLKH-RASIV)
Output hold time, EMA_CLK rising to EMA_RAS invalid
13
td(CLKH-CASV)
Delay time, EMA_CLK rising to EMA_CAS valid
14
toh(CLKH-CASIV)
Output hold time, EMA_CLK rising to EMA_CAS invalid
15
td(CLKH-WEV)
Delay time, EMA_CLK rising to EMA_WE valid
16
toh(CLKH-WEIV)
Output hold time, EMA_CLK rising to EMA_WE invalid
17
tdis(CLKH-DHZ)
Delay time, EMA_CLK rising to EMA_D[15:0] tri-stated
18
tena(CLKH-DLZ)
Output hold time, EMA_CLK rising to EMA_D[15:0] driving
Submit Documentation Feedback
7
1
9.5
1
7
1
9.5
1
7
1
9.5
7
1
1
1
1
1
1
7
1
1
1
7
ns
ns
13
1
9.5
1
ns
ns
13
9.5
ns
ns
13
9.5
ns
ns
13
9.5
7
1
1
1
7
ns
ns
13
9.5
ns
ns
13
1
1
1
13
1
ns
ns
13
1
Peripheral Information and Electrical Specifications
ns
ns
97
PRODUCT PREVIEW
Table 6-21. Switching Characteristics for EMIFA SDRAM Interface
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
www.ti.com
1
BASIC SDRAM
WRITE OPERATION
2
2
EMA_CLK
3
4
EMA_CS[0]
5
6
EMA_WE_DQM[1:0]
7
8
7
8
EMA_BA[1:0]
EMA_A[12:0]
PRODUCT PREVIEW
9
10
EMA_D[15:0]
11
12
EMA_RAS
13
EMA_CAS
15
16
EMA_WE
Figure 6-12. EMIFA Basic SDRAM Write Operation
BASIC SDRAM
READ OPERATION
1
2
2
EMA_CLK
3
4
EMA_CS[0]
5
6
EMA_WE_DQM[1:0]
7
8
7
8
EMA_BA[1:0]
EMA_A[12:0]
19
17
20
2 EM_CLK Delay
18
EMA_D[15:0]
11
12
EMA_RAS
13
14
EMA_CAS
EMA_WE
Figure 6-13. EMIFA Basic SDRAM Read Operation
98
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
SPRS586 – JUNE 2009
(1)
Table 6-22. Timing Requirements for EMIFA Asynchronous Memory Interface
NO.
1.2V
PARAMETER
MIN
1.1V
MAX
MIN
1.0V
MAX
MIN
MAX
UNIT
READS and WRITES
2
tw(EM_WAIT)
Pulse duration, EM_WAIT assertion and deassertion
2E
2E
2E
ns
READS
12
tsu(EMDV-EMOEH)
Setup time, EM_D[15:0] valid before EM_OE high
13
th(EMOEH-EMDIV)
Hold time, EM_D[15:0] valid after EM_OE high
tsu(EMOEL-EMWAIT)
Setup Time, EM_WAIT asserted before end of Strobe
Phase (2)
tsu(EMWEL-EMWAIT)
Setup Time, EM_WAIT asserted before end of Strobe
Phase (2)
14
3
TBD
TBD
ns
0.5
TBD
TBD
ns
4E+3
4E+3
4E+3
ns
4E+3
4E+3
4E+3
ns
28
(1)
(2)
E = EMA_CLK period or in ns. EMA_CLK is selected either as SYSCLK3 or the PLL output clock divided by 4.5. As an example, when
SYSCLK3 is selected and set to 100MHz, E=10ns.
Setup before end of STROBE phase (if no extended wait states are inserted) by which EM_WAIT must be asserted to add extended
wait states. Figure 6-16 and Figure 6-17 describe EMIF transactions that include extended wait states inserted during the STROBE
phase. However, cycles inserted as part of this extended wait period should not be counted; the 4E requirement is to the start of where
the HOLD phase would begin if there were no extended wait cycles.
Table 6-23. Switching Characteristics for EMIFA Asynchronous Memory Interface
NO
.
(1) (2) (3)
1.2V, 1.1V, 1.0V
PARAMETER
MIN
Nom
UNIT
MAX
READS and WRITES
1
td(TURNAROUND)
Turn around time
(TA)*E - 3
(TA)*E
(TA)*E + 3
ns
EMIF read cycle time (EW = 0)
(RS+RST+RH)*E
-3
(RS+RST+RH)*E
(RS+RST+RH)*E
+3
ns
EMIF read cycle time (EW = 1)
(RS+RST+RH+(E
WC*16))*E - 3
(RS+RST+RH+(EW (RS+RST+RH+(E
C*16))*E
WC*16))*E + 3
ns
READS
3
4
5
tc(EMRCYCLE)
tsu(EMCEL-EMOEL)
th(EMOEH-EMCEH)
Output setup time, EMA_CE[5:2] low to
EMA_OE low (SS = 0)
(RS)*E-3
(RS)*E
(RS)*E+3
ns
Output setup time, EMA_CE[5:2] low to
EMA_OE low (SS = 1)
-3
0
+3
ns
Output hold time, EMA_OE high to
EMA_CE[5:2] high (SS = 0)
(RH)*E - 3
(RH)*E
(RH)*E + 3
ns
Output hold time, EMA_OE high to
EMA_CE[5:2] high (SS = 1)
-3
0
+3
ns
6
tsu(EMBAV-EMOEL)
Output setup time, EMA_BA[1:0] valid to
EMA_OE low
(RS)*E-3
(RS)*E
(RS)*E+3
ns
7
th(EMOEH-EMBAIV)
Output hold time, EMA_OE high to
EMA_BA[1:0] invalid
(RH)*E-3
(RH)*E
(RH)*E+3
ns
8
tsu(EMBAV-EMOEL)
Output setup time, EMA_A[13:0] valid to
EMA_OE low
(RS)*E-3
(RS)*E
(RS)*E+3
ns
9
th(EMOEH-EMAIV)
Output hold time, EMA_OE high to
EMA_A[13:0] invalid
(RH)*E-3
(RH)*E
(RH)*E+3
ns
EMA_OE active low width (EW = 0)
(RST)*E-3
(RST)*E
(RST)*E+3
ns
10
tw(EMOEL)
EMA_OE active low width (EW = 1)
(RST+(EWC*16))
*E-3
(RST+(EWC*16))*E
(RST+(EWC*16))
*E+3
ns
(1)
(2)
(3)
TA = Turn around, RS = Read setup, RST = Read strobe, RH = Read hold, WS = Write setup, WST = Write strobe, WH = Write hold,
MEWC = Maximum external wait cycles. These parameters are programmed via the Asynchronous Bank and Asynchronous Wait Cycle
Configuration Registers. These support the following range of values: TA[4-1], RS[16-1], RST[64-1], RH[8-1], WS[16-1], WST[64-1],
WH[8-1], and MEW[1-256].
E = EMA_CLK period or in ns. EMA_CLK is selected either as SYSCLK3 or the PLL output clock divided by 4.5. As an example, when
SYSCLK3 is selected and set to 100MHz, E=10ns.
EWC = external wait cycles determined by EMA_WAIT input signal. EWC supports the following range of values EWC[256-1]. Note that
the maximum wait time before timeout is specified by bit field MEWC in the Asynchronous Wait Cycle Configuration Register.
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
99
PRODUCT PREVIEW
WRITES
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
www.ti.com
Table 6-23. Switching Characteristics for EMIFA Asynchronous Memory Interface (continued)
NO
.
11
1.2V, 1.1V, 1.0V
PARAMETER
td(EMWAITHEMOEH)
MIN
Delay time from EMA_WAIT deasserted to
EMA_OE high
Nom
UNIT
MAX
3E-3
4E
4E+3
ns
EMIF write cycle time (EW = 0)
(WS+WST+WH)*
E-3
(WS+WST+WH)*E
(WS+WST+WH)*
E+3
ns
EMIF write cycle time (EW = 1)
(WS+WST+WH+(
EWC*16))*E - 3
(WS+WST+WH+(E (WS+WST+WH+(
WC*16))*E
EWC*16))*E + 3
ns
WRITES
15
16
PRODUCT PREVIEW
17
18
tc(EMWCYCLE)
tsu(EMCEL-EMWEL)
th(EMWEH-EMCEH)
tsu(EMDQMVEMWEL)
19
th(EMWEHEMDQMIV)
Output setup time, EMA_CE[5:2] low to
EMA_WE low (SS = 0)
(WS)*E - 3
(WS)*E
(WS)*E + 3
ns
Output setup time, EMA_CE[5:2] low to
EMA_WE low (SS = 1)
-3
0
+3
ns
Output hold time, EMA_WE high to
EMA_CE[5:2] high (SS = 0)
(WH)*E-3
(WH)*E
(WH)*E+3
ns
Output hold time, EMA_WE high to
EMA_CE[5:2] high (SS = 1)
-3
0
+3
ns
Output setup time, EMA_BA[1:0] valid to
EMA_WE low
(WS)*E-3
(WS)*E
(WS)*E+3
ns
Output hold time, EMA_WE high to
EMA_BA[1:0] invalid
(WH)*E-3
(WH)*E
(WH)*E+3
ns
20
tsu(EMBAV-EMWEL)
Output setup time, EMA_BA[1:0] valid to
EMA_WE low
(WS)*E-3
(WS)*E
(WS)*E+3
ns
21
th(EMWEH-EMBAIV)
Output hold time, EMA_WE high to
EMA_BA[1:0] invalid
(WH)*E-3
(WH)*E
(WH)*E+3
ns
22
tsu(EMAV-EMWEL)
Output setup time, EMA_A[13:0] valid to
EMA_WE low
(WS)*E-3
(WS)*E
(WS)*E+3
ns
23
th(EMWEH-EMAIV)
Output hold time, EMA_WE high to
EMA_A[13:0] invalid
(WH)*E-3
(WH)*E
(WH)*E+3
ns
EMA_WE active low width (EW = 0)
(WST)*E-3
(WST)*E
(WST)*E+3
ns
24
tw(EMWEL)
EMA_WE active low width (EW = 1)
(WST+(EWC*16))
*E-3
(WST+(EWC*16))
(WST+(EWC*16))*E
*E+3
ns
25
td(EMWAITHEMWEH)
Delay time from EMA_WAIT deasserted to
EMA_WE high
3E-3
4E
4E+3
ns
26
tsu(EMDV-EMWEL)
Output setup time, EMA_D[15:0] valid to
EMA_WE low
(WS)*E-3
(WS)*E
(WS)*E+3
ns
27
th(EMWEH-EMDIV)
Output hold time, EMA_WE high to
EMA_D[15:0] invalid
(WH)*E-3
(WH)*E
(WH)*E+3
ns
100
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
SPRS586 – JUNE 2009
3
1
EMA_CE[5:2]
EMA_BA[1:0]
EMA_A[12:0]
4
8
5
9
6
29
7
30
PRODUCT PREVIEW
EMA_WE_DQM[1:0]
10
EMA_OE
13
12
EMA_D[15:0]
EMA_WE
Figure 6-14. Asynchronous Memory Read Timing for EMIFA
15
1
EMA_CE[5:2]
EMA_BA[1:0]
EMA_A[12:0]
EMA_WE_DQM[1:0]
16
17
18
19
20
22
24
21
23
EMA_WE
27
26
EMA_D[15:0]
EMA_OE
Figure 6-15. Asynchronous Memory Write Timing for EMIFA
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
101
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
EMA_CE[5:2]
www.ti.com
SETUP
STROBE
Extended Due to EMA_WAIT
STROBE HOLD
EMA_BA[1:0]
EMA_A[12:0]
EMA_D[15:0]
14
11
EMA_OE
2
PRODUCT PREVIEW
EMA_WAIT
Asserted
2
Deasserted
Figure 6-16. EMA_WAIT Read Timing Requirements
EMA_CE[5:2]
SETUP
STROBE
Extended Due to EMA_WAIT
STROBE HOLD
EMA_BA[1:0]
EMA_A[12:0]
EMA_D[15:0]
28
25
EMA_WE
2
EMA_WAIT
Asserted
2
Deasserted
Figure 6-17. EMA_WAIT Write Timing Requirements
102
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
SPRS586 – JUNE 2009
6.11 DDR2/mDDR Controller
The DDR2/mDDR Memory Controller is a dedicated interface to DDR2/mDDR SDRAM. It supports
JESD79D-2A standard compliant DDR2 SDRAM devices and compliant Mobile DDR SDRAM devices.
The DDR2/mDDR Memory Controller support the following features:
•
•
•
•
•
•
•
•
•
•
•
•
•
JESD79D-2A standard compliant DDR2 SDRAM
Mobile DDR SDRAM
512 MByte memory space for DDR2
256 MByte memory space for mDDR
CAS latencies:
– DDR2: 2, 3, 4 and 5
– mDDR: 2 and 3
Internal banks:
– DDR2: 1, 2, 4 and 8
– mDDR:1, 2 and 4
Burst length: 8
Burst type: sequential
1 chip select (CS) signal
Page sizes: 256, 512, 1024 and 2048
SDRAM autoinitialization
Self-refresh mode
Partial array self-refresh (for mDDR)
Power down mode
Prioritized refresh
Programmable refresh rate and backlog counter
Programmable timing parameters
Little endian
PRODUCT PREVIEW
•
•
•
•
•
6.11.1 DDR2/mDDR Memory Controller Electrical Data/Timing
Table 6-24. Switching Characteristics Over Recommended Operating Conditions for DDR2/mDDR
Memory Controller
No.
1
(1)
PARAMETER
tc(DDR_CLK)
Cycle time, DDR_CLKP / DDR_CLKN
1.2V
1.1V
1.0V
MIN
MAX
MIN
MAX
MIN
MAX
DDR2
125
150
125
150
— (1)
— (1)
mDDR
100
133
100
133
100
133
UNIT
MHz
DDR2 is not supported at this voltage operating point.
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
103
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
www.ti.com
6.11.2 DDR2/mDDR Controller Register Description(s)
Table 6-25. DDR2/mDDR Controller Registers
BYTE ADDRESS
ACRONYM
REGISTER DESCRIPTION
0xB000 0000
REVID
Revision ID Register
0xB000 0004
SDRSTAT
SDRAM Status Register
PRODUCT PREVIEW
0xB000 0008
SDCR
SDRAM Configuration Register
0xB000 000C
SDRCR
SDRAM Refresh Control Register
0xB000 0010
SDTIMR1
SDRAM Timing Register 1
0xB000 0014
SDTIMR2
SDRAM Timing Register 2
0xB000 001C
SDCR2
SDRAM Configuration Register 2
0xB000 0020
PBBPR
Peripheral Bus Burst Priority Register
0xB000 0040
PC1
Performance Counter 1 Registers
0xB000 0044
PC2
Performance Counter 2 Register
0xB000 0048
PCC
Performance Counter Configuration Register
0xB000 004C
PCMRS
Performance Counter Master Region Select Register
0xB000 0050
PCT
Performance Counter Time Register
0xB000 00C0
IRR
Interrupt Raw Register
0xB000 00C4
IMR
Interrupt Mask Register
0xB000 00C8
IMSR
Interrupt Mask Set Register
0xB000 00CC
IMCR
Interrupt Mask Clear Register
0xB000 00E4
DRPYC1R
DDR PHY Control Register 1
0x01E2 C000
VTPIO_CTL
VTP IO Control Register
6.11.3 DDR2/mDDR Interface
This section provides the timing specification for the DDR2/mDDR interface as a PCB design and
manufacturing specification. The design rules constrain PCB trace length, PCB trace skew, signal
integrity, cross-talk, and signal timing. These rules, when followed, result in a reliable DDR2/mDDR
memory system without the need for a complex timing closure process. For more information regarding
guidelines for using this DDR2/mDDR specification, Understanding TI's PCB Routing Rule-Based DDR2
Timing Specification (SPRAAV0).
6.11.3.1 DDR2/mDDR Interface Schematic
Figure 6-18 shows the DDR2/mDDR interface schematic for a single-memory DDR2/mDDR system. The
dual-memory system shown in Figure 6-19. Pin numbers for the device can be obtained from the pin
description section.
104
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
SPRS586 – JUNE 2009
DDR2/mDDR Memory Controller
DDR2/mDDR
DDR_D[0]
T
DQ0
DDR_D[7]
T
DQ7
DDR_DQM[0]
DDR_DQS[0]
T
T
LDM
LDQS
DDR_D[8]
T
LDQS
DQ8
DDR_D[15]
T
DQ15
DDR_DQM[1]
DDR_DQS[1]
T
UDM
UDQS
NC
T
UDQS
NC
50 Ω .5%
PRODUCT PREVIEW
ODT
DDR_BA[0]
T
BA0
DDR_BA[2]
T
BA2
DDR_A[0]
T
A0
DDR_A[13]
DDR_CS
DDR_CAS
DDR_RAS
DDR_WE
DDR_CKE
DDR_CLKP
DDR_CLKN
T
A13
T
CS
CAS
RAS
WE
CKE
CK
CK
T
T
T
T
T
T
DDR_ZP
DDR_DQGATE0
DDR_DQGATE1
T
(1)
DDR_DVDD18
T
0.1 μF
1 K Ω 1%
DDR_VREF
VREF
0.1 μF
T
(1)
0.1 μF
0.1 μF
VREF
0.1 μF
1 K Ω 1%
Terminator, if desired. See terminator comments.
See Figure 6-25 for DQGATE routing specifications.
Figure 6-18. DDR2/mDDR Single-Memory High Level Schematic
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
105
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
www.ti.com
DDR2/mDDR Memory Controller
ODT
T
DQ0 - DQ7
BA0-BA2
A0-A13
DDR_DQM[0]
DDR_DQS[0]
T
DM
DQS
DQS
NC
PRODUCT PREVIEW
CK
CK
CS
CAS
RAS
WE
CKE
VREF
DDR_BA[0:2]
DDR_A[0:13]
T
T
DDR_CLKP
DDR_CLKN
DDR_CS
DDR_CAS
DDR_RAS
DDR_WE
DDR_CKE
T
DDR_DQM1
DDR_DQS1
T
T
T
T
T
T
T
T
NC
50 Ω .5%
DDR_D[8:15]
T
DDR_ZP
CK
CK
CS
CAS
RAS
WE
CKE
DM
DQS
DQS
DQ0 - DQ7
DDR_DVDD18
ODT
(1)
DDR_DQGATE0
DDR_DQGATE1
BA0-BA2
A0-A13
Upper Byte
DDR2/mDDR
T
Lower Byte
DDR2/mDDR
DDR_D[0:7]
T
VREF
T
0.1 μF
1 K Ω 1%
DDR_VREF
VREF
0.1 μF
T
(1)
0.1 μF
0.1 μF
0.1 μF
1 K Ω 1%
Terminator, if desired. See terminator comments.
See Figure 6-25 for DQGATE routing specifications.
Figure 6-19. DDR2/mDDR Dual-Memory High Level Schematic
106
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
SPRS586 – JUNE 2009
6.11.3.2 Compatible JEDEC DDR2/mDDR Devices
Table 6-26 shows the parameters of the JEDEC DDR2/mDDR devices that are compatible with this
interface. Generally, the DDR2/mDDR interface is compatible with x16 DDR2/mDDR-400 speed grade
DDR2/mDDR devices.
The device also supports JEDEC DDR2/mDDR x8 devices in the dual chip configuration. In this case, one
chip supplies the upper byte and the second chip supplies the lower byte. Addresses and most control
signals are shared just like regular dual chip memory configurations.
Table 6-26. Compatible JEDEC DDR2/mDDR Devices
Parameter
Min
Max
Unit
Notes
1
JEDEC DDR2/mDDR Device Speed Grade
2
JEDEC DDR2/mDDR Device Bit Width
x8
x16
Bits
3
JEDEC DDR2/mDDR Device Count
1
2
Devices
(1)
DDR2/mDDR-400
See Note
(1)
Higher DDR2/mDDR speed grades are supported due to inherent JEDEC DDR2/mDDR backwards compatibility.
6.11.3.3 PCB Stackup
The minimum stackup required for routing the device is a six layer stack as shown in Table 6-27.
Additional layers may be added to the PCB stack up to accommodate other circuitry or to reduce the size
of the PCB footprint.Complete stack up specifications are provided in Table 6-28.
Table 6-27. OMAP-L138 Minimum PCB Stack Up
Layer
Type
Description
1
Signal
Top Routing Mostly Horizontal
2
Plane
Ground
3
Plane
Power
4
Signal
Internal Routing
5
Plane
Ground
6
Signal
Bottom Routing Mostly Vertical
Table 6-28. PCB Stack Up Specifications
No. Parameter
Min
Typ
Max
Unit
Notes
1
PCB Routing/Plane Layers
6
2
Signal Routing Layers
3
3
Full ground layers under DDR2/mDDR routing region
2
4
Number of ground plane cuts allowed within DDR routing region
5
Number of ground reference planes required for each DDR2/mDDR routing layer
6
Number of layers between DDR2/mDDR routing layer and reference ground plane
7
PCB Routing Feature Size
4
Mils
8
PCB Trace Width w
4
Mils
8
PCB BGA escape via pad size
18
Mils
9
PCB BGA escape via hole size
8
Mils
10
SoC Device BGA pad size
See Note
(1)
11
DDR2/mDDR Device BGA pad size
See Note
(2)
12
Single Ended Impedance, Zo
50
13
Impedance Control
Z-5
See Note
(3)
(1)
(2)
(3)
0
1
0
Z
75
Ω
Z+5
Ω
Please refer to the Flip Chip Ball Grid Array Package Reference Guide (SPRU811) for device BGA pad size.
Please refer to the DDR2/mDDR device manufacturer documentation for the DDR2/mDDR device BGA pad size.
Z is the nominal singled ended impedance selected for the PCB specified by item 12.
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
107
PRODUCT PREVIEW
No.
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
www.ti.com
6.11.3.4 Placement
Figure 6-19 shows the required placement for the OMAP-L138 device as well as the DDR2/mDDR
devices. The dimensions for Figure 6-20 are defined in Table 6-29. The placement does not restrict the
side of the PCB that the devices are mounted on. The ultimate purpose of the placement is to limit the
maximum trace lengths and allow for proper routing space. For single-memory DDR2/mDDR systems, the
second DDR2/mDDR device is omitted from the placement.
X
Y
OFFSET
PRODUCT PREVIEW
Y
DDR2/mDDR
Device
Y
OFFSET
DDR2/mDDR
Controller
A1
A1
Recommended DDR2/mDDR
Device Orientation
Figure 6-20. OMAP-L138 and DDR2/mDDR Device Placement
Table 6-29. Placement Specifications
No.
1
Parameter
Min
X
Max
Unit
1750
Mils See Notes
Notes
(1) (2)
,
2
Y
1280
Mils See Notes
(1) (2)
3
Y Offset
650
Mils See Notes
(1) (2) (3)
4
(1)
(2)
(3)
(4)
108
Clearance from non-DDR2/mDDR signal to DDR2/mDDR Keepout Region
4
w
See Note
,
.
,
(4)
See Figure 6-20 for dimension definitions.
Measurements from center of device to center of DDR2/mDDR device.
For single memory systems it is recommended that Y Offset be as small as possible.
Non-DDR2/mDDR signals allowed within DDR2/mDDR keepout region provided they are separated from DDR2/mDDR routing layers by
a ground plane.
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
SPRS586 – JUNE 2009
6.11.3.5 DDR2/mDDR Keep Out Region
The region of the PCB used for the DDR2/mDDR circuitry must be isolated from other signals. The
DDR2/mDDR keep out region is defined for this purpose and is shown in Figure 6-21. The size of this
region varies with the placement and DDR routing. Additional clearances required for the keep out region
are shown in Table 6-29.
PRODUCT PREVIEW
DDR2/mDDR
Device
DDR2/mDDR
Controller
A1
A1
Region should encompass all DDR2/mDDR circuitry and varies
depending on placement. Non-DDR2/mDDR signals should not be
routed on the DDR signal layers within the DDR2/mDDR keep out
region. Non-DDR2/mDDR signals may be routed in the region
provided they are routed on layers separated from DDR2/mDDR
signal layers by a ground layer. No breaks should be allowed in the
reference ground layers in this region. In addition, the 1.8 V power
plane should cover the entire keep out region.
Figure 6-21. DDR2/mDDR Keepout Region
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
109
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
www.ti.com
6.11.3.6 Bulk Bypass Capacitors
Bulk bypass capacitors are required for moderate speed bypassing of the DDR2/mDDR and other
circuitry. Table 6-30 contains the minimum numbers and capacitance required for the bulk bypass
capacitors. Note that this table only covers the bypass needs of the Soc and DDR2/mDDR interfaces.
Additional bulk bypass capacitance may be needed for other circuitry.
Table 6-30. Bulk Bypass Capacitors
No.
Parameter
Min
Max
Unit
PRODUCT PREVIEW
1
DDR_DVDD18 Supply Bulk Bypass Capacitor Count
3
2
DDR_DVDD18 Supply Bulk Bypass Total Capacitance
30
µF
3
DDR#1 Bulk Bypass Capacitor Count
1
Devices
4
DDR#1 Bulk Bypass Total Capacitance
22
µF
5
DDR#2 Bulk Bypass Capacitor Count
1
Devices
22
µF
6
(1)
(2)
DDR#2 Bulk Bypass Total Capacitance
Devices
Notes
See Note
(1)
See Note
(1)
See Notes
See Note
(1) (2)
,
(2)
These devices should be placed near the device they are bypassing, but preference should be given to the placement of the high-speed
(HS) bypass caps.
Only used on dual-memory systems
6.11.3.7 High-Speed Bypass Capacitors
High-speed (HS) bypass capacitors are critical for proper DDR2/mDDR interface operation. It is
particularly important to minimize the parasitic series inductance of the HS bypass cap, Soc/DDR2/mDDR
power, and Soc/DDR2/mDDR ground connections. Table 6-31 contains the specification for the HS
bypass capacitors as well as for the power connections on the PCB.
Table 6-31. High-Speed Bypass Capacitors
No.
Parameter
Min
Max
Unit
0402
10 Mils
1
HS Bypass Capacitor Package Size
2
Distance from HS bypass capacitor to device being bypassed
3
Number of connection vias for each HS bypass capacitor
2
4
Trace length from bypass capacitor contact to connection via
1
5
Number of connection vias for each DDR2/mDDR device power or
ground balls
6
Trace length from DDR2/mDDR device power ball to connection via
7
DDR_DVDD18 Supply HS Bypass Capacitor Count
10
8
DDR_DVDD18 Supply HS Bypass Capacitor Total Capacitance
0.6
µF
9
DDR#1 HS Bypass Capacitor Count
8
Devices
10
DDR#1 HS Bypass Capacitor Total Capacitance
11
DDR#2 HS Bypass Capacitor Count
12
(1)
(2)
(3)
(4)
110
DDR#2 HS Bypass Capacitor Total Capacitance
250
See Note
(1)
See Note
(2)
See Note
(3)
See Note
(3)
Mils
Vias
30
Notes
Mils
Vias
1
35
Mils
Devices
0.4
µF
8
Devices
0.4
µF
See Notes
See Note
(3) (4)
,
(4)
LxW, 10 mil units, i.e., a 0402 is a 40x20 mil surface mount capacitor
An additional HS bypass capacitor can share the connection vias only if it is mounted on the opposite side of the board.
These devices should be placed as close as possible to the device being bypassed.
Only used on dual-memory systems
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
SPRS586 – JUNE 2009
6.11.3.8 Net Classes
Table 6-32 lists the clock net classes for the DDR2/mDDR interface. Table 6-33 lists the signal net
classes, and associated clock net classes, for the signals in the DDR2/mDDR interface. These net classes
are used for the termination and routing rules that follow.
Table 6-32. Clock Net Class Definitions
Clock Net Class
Soc Pin Names
CK
DDR_CLKP / DDR_CLKN
DQS0
DDR_DQS[0]
DQS1
DDR_DQS[1]
Clock Net Class
ADDR_CTRL
Associated Clock Net
Class
Soc Pin Names
CK
DDR_BA[2:0], DDR_A[13:0], DDR_CS, DDR_CAS, DDR_RAS, DDR_WE,
DDR_CKE
D0
DQS0
DDR_D[7:0], DDR_DQM0
D1
DQS1
DDR_D[15:8], DDR_DQM1
CK, DQS0, DQS1
DDR_DQGATE0, DDR_DQGATE1
DQGATE
6.11.3.9 DDR2/mDDR Signal Termination
No terminations of any kind are required in order to meet signal integrity and overshoot requirements.
Serial terminators are permitted, if desired, to reduce EMI risk; however, serial terminations are the only
type permitted. Table 6-34 shows the specifications for the series terminators.
Table 6-34. DDR2/mDDR Signal Terminations
No.
Parameter
Min
1
CK Net Class
0
2
ADDR_CTRL Net Class
0
Typ
22
Max
Unit
10
Ω
See Note
Notes
Zo
Ω
See Notes
(1) (2) (3)
(1)
,
,
3
Data Byte Net Classes (DQS[0], DQS[1], D0, D1)
0
22
Zo
Ω
See Notes
(1) (2) (3) (4)
4
DQGATE Net Class (DQGATE)
0
10
Zo
Ω
See Notes
(1) (2) (3)
(1)
(2)
(3)
(4)
,
,
,
,
,
Only series termination is permitted, parallel or SST specifically disallowed.
Terminator values larger than typical only recommended to address EMI issues.
Termination value should be uniform across net class.
When no termination is used on data lines (0 Ω), the DDR2/mDDR devices must be programmed to operate in 60% strength mode.
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
111
PRODUCT PREVIEW
Table 6-33. Signal Net Class Definitions
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
www.ti.com
6.11.3.10 VREF Routing
VREF is used as a reference by the input buffers of the DDR2/mDDR memories as well as the
OMAP-L138. VREF is intended to be half the DDR2/mDDR power supply voltage and should be created
using a resistive divider as shown in Figure 6-18. Other methods of creating VREF are not recommended.
Figure 6-22 shows the layout guidelines for VREF.
VREF Bypass Capacitor
DDR2/mDDR Device
A1
VREF Nominal Minimum
Trace Width is 20 Mils
DDR2/mDDR
PRODUCT PREVIEW
A1
Neck down to minimum in BGA escape
regions is acceptable. Narrowing to
accomodate via congestion for short
distances is also acceptable. Best
performance is obtained if the width
of VREF is maximized.
Figure 6-22. VREF Routing and Topology
112
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
SPRS586 – JUNE 2009
6.11.3.11 DDR2/mDDR CK and ADDR_CTRL Routing
Figure 6-23 shows the topology of the routing for the CK and ADDR_CTRL net classes. The route is a
balanced T as it is intended that the length of segments B and C be equal. In addition, the length of A
should be maximized.
T
C
A
PRODUCT PREVIEW
B
DDR2/mDDR
Controller
A1
A1
Figure 6-23. CK and ADDR_CTRL Routing and Topology
Table 6-35. CK and ADDR_CTRL Routing Specification
No.
Parameter
Min
Typ
Max
Unit
25
Mils
25
Mils
(1)
See Note
(2)
See Note
(3)
4w
See Note
(2)
3w
See Note
(2)
See Note
(1)
CK A to B/A to C Skew Length Mismatch
2
CK B to C Skew Length Mismatch
3
Center to center CK to other DDR2/mDDR trace spacing
4
CK/ADDR_CTRL nominal trace length
5
6
7
Center to center ADDR_CTRL to other DDR2/mDDR trace spacing
8
Center to center ADDR_CTRL to other ADDR_CTRL trace spacing
9
ADDR_CTRL A to B/A to C Skew Length Mismatch
100
Mils
10
ADDR_CTRL B to C Skew Length Mismatch
100
Mils
(1)
(2)
(3)
Notes
See Note
1
4w
CACLM-50
CACLM
CACLM+50
Mils
ADDR_CTRL to CK Skew Length Mismatch
100
Mils
ADDR_CTRL to ADDR_CTRL Skew Length Mismatch
100
Mils
Series terminator, if used, should be located closest to Soc.
Center to center spacing is allowed to fall to minimum (w) for up to 500 mils of routed length to accommodate BGA escape and routing
congestion.
CACLM is the longest Manhattan distance of the CK and ADDR_CTRL net classes.
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
113
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
www.ti.com
Figure 6-24 shows the topology and routing for the DQS and DQ net class; the routes are point to point.
Skew matching across bytes is not needed nor recommended.
E0
A1
T
A1
DDR2/mDDR
Controller
T
E1
Figure 6-24. DQS and DQ Routing and Topology
PRODUCT PREVIEW
Table 6-36. DQS and DQ Routing Specification
No.
Parameter
1
DQS E Skew Length Mismatch
2
Center to center DQS to other DDR2/mDDR trace
spacing
3
DQS/D nominal trace length
Min
Typ
Max
Unit
25
Mils
4w
DQLM-50
Notes
See Note
DQLM
DQLM+50
Mils
(1)
See Notes
(2) (3)
,
4
D to DQS Skew Length Mismatch
100
Mils
See Note
(3)
5
D to D Skew Length Mismatch
100
Mils
See Note
(3)
6
Center to center D to other DDR2/mDDR trace
spacing
4w
See Notes
(1) (4)
7
Center to Center D to other D trace spacing
3w
See Notes
(5) (1)
8
DQ/DQS E Skew Length Mismatch
(1)
(2)
(3)
(4)
(5)
114
100
Mils
See Note
,
,
(3)
Center to center spacing is allowed to fall to minimum (w) for up to 500 mils of routed length to accommodate BGA escape and routing
congestion.
Series terminator, if used, should be located closest to DDR.
There is no need and it is not recommended to skew match across data bytes, i.e., from DQS0 and data byte 0 to DQS1 and data byte
1.
D's from other DQS domains are considered other DDR2/mDDR trace.
DQLM is the longest Manhattan distance of each of the DQS and D net class.
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
SPRS586 – JUNE 2009
Figure 6-25 shows the routing for the DQGATE net class. Table 6-37 contains the routing specification.
A1
T
DDR2/mDDR
Controller
F
T
Figure 6-25. DQGATE Routing
Table 6-37. DQGATE Routing Specification
No.
Parameter
1
DQGATE Length F
2
Center to center DQGATE to any other trace spacing
3
DQS/D nominal trace length
4
DQGATE Skew
(1)
(2)
Min
Typ
Max
Unit
CKB0B1
Notes
See Note
(1)
See Note
(2)
4w
DQLM-50
DQLM
DQLM+50
Mils
100
Mils
CKB0B1 is the sum of the length of the CK net plus the average length of the DQS0 and DQS1 nets.
Skew from CKB0B1
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
115
PRODUCT PREVIEW
A1
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
www.ti.com
6.12 MMC / SD / SDIO (MMCSD0, MMCSD1)
6.12.1 MMCSD Peripheral Description
The device includes an two MMCSD controllers which are compliant with MMC V3.31, Secure Digital Part
1 Physical Layer Specification V1.1 and Secure Digital Input Output (SDIO) V2.0 specifications.
PRODUCT PREVIEW
The MMC/SD Controller have following features:
• MultiMediaCard (MMC).
• Secure Digital (SD) Memory Card.
• MMC/SD protocol support.
• SDIO protocol support.
• Programmable clock frequency.
• 512 bit Read/Write FIFO to lower system overhead.
• Slave EDMA transfer capability.
The device MMC/SD Controller does not support SPI mode.
6.12.2
MMCSD Peripheral Register Description(s)
Table 6-38. Multimedia Card/Secure Digital (MMC/SD) Card Controller Registers
MMCSD0
BYTE ADDRESS
MMCSD1
BYTE ADDRESS
ACRONYM
0x01C4 0000
0x01E1 B000
MMCCTL
MMC Control Register
0x01C4 0004
0x01E1 B004
MMCCLK
MMC Memory Clock Control Register
0x01C4 0008
0x01E1 B008
MMCST0
MMC Status Register 0
0x01C4 000C
0x01E1 B00C
MMCST1
MMC Status Register 1
0x01C4 0010
0x01E1 B010
MMCIM
0x01C4 0014
0x01E1 B014
MMCTOR
MMC Response Time-Out Register
0x01C4 0018
0x01E1 B018
MMCTOD
MMC Data Read Time-Out Register
0x01C4 001C
0x01E1 B01C
MMCBLEN
MMC Block Length Register
0x01C4 0020
0x01E1 B020
MMCNBLK
MMC Number of Blocks Register
0x01C4 0024
0x01E1 B024
MMCNBLC
MMC Number of Blocks Counter Register
0x01C4 0028
0x01E1 B028
MMCDRR
MMC Data Receive Register
0x01C4 002C
0x01E1 B02C
MMCDXR
MMC Data Transmit Register
0x01C4 0030
0x01E1 B030
MMCCMD
MMC Command Register
0x01C4 0034
0x01E1 B034
MMCARGHL
MMC Argument Register
REGISTER DESCSRIPTION
MMC Interrupt Mask Register
0x01C4 0038
0x01E1 B038
MMCRSP01
MMC Response Register 0 and 1
0x01C4 003C
0x01E1 B03C
MMCRSP23
MMC Response Register 2 and 3
0x01C4 0040
0x01E1 B040
MMCRSP45
MMC Response Register 4 and 5
0x01C4 0044
0x01E1 B044
MMCRSP67
MMC Response Register 6 and 7
0x01C4 0048
0x01E1 B048
MMCDRSP
MMC Data Response Register
0x01C4 0050
0x01E1 B050
MMCCIDX
MMC Command Index Register
0x01C4 0064
0x01E1 B064
SDIOCTL
SDIO Control Register
0x01C4 0068
0x01E1 B068
SDIOST0
SDIO Status Register 0
0x01C4 006C
0x01E1 B06C
SDIOIEN
SDIO Interrupt Enable Register
0x01C4 0070
0x01E1 B070
SDIOIST
SDIO Interrupt Status Register
0x01C4 0074
0x01E1 B074
MMCFIFOCTL
116
Peripheral Information and Electrical Specifications
MMC FIFO Control Register
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
SPRS586 – JUNE 2009
6.12.3 MMC/SD Electrical Data/Timing
Table 6-39 through Table 6-40 assume testing over recommended operating conditions.
Table 6-39. Timing Requirements for MMC/SD
(see Figure 6-27 and Figure 6-29)
1.2V
PARAMETER
MIN
1.1V
MAX
MIN
1.0V
MAX
MIN
MAX
UNIT
1
tsu(CMDV-CLKH) Setup time, MMCSD_CMD valid before MMCSD_CLK high
4
4
6
ns
2
th(CLKH-CMDV)
Hold time, MMCSD_CMD valid after MMCSD_CLK high
2.5
2.5
2.5
ns
3
tsu(DATV-CLKH)
Setup time, MMCSD_DATx valid before MMCSD_CLK high
4.5
5
6
ns
4
th(CLKH-DATV)
Hold time, MMCSD_DATx valid after MMCSD_CLK high
2.5
2.5
2.5
ns
Table 6-40. Switching Characteristics for MMC/SD (see Figure 6-26 through Figure 6-29)
NO.
1.2V
PARAMETER
MIN
1.1V
MAX
MIN
1.0V
MAX
MIN
MAX
UNIT
7
f(CLK)
Operating frequency, MMCSD_CLK
0
52
0
50
0
25
MHz
8
f(CLK_ID)
Identification mode frequency, MMCSD_CLK
0
400
0
400
0
400
KHz
9
tW(CLKL)
Pulse width, MMCSD_CLK low
6.5
6.5
10
10
tW(CLKH)
Pulse width, MMCSD_CLK high
6.5
6.5
10
11
tr(CLK)
Rise time, MMCSD_CLK
12
tf(CLK)
Fall time, MMCSD_CLK
13
td(CLKL-CMD)
Delay time, MMCSD_CLK low to MMCSD_CMD transition
-4
2.5
-4
3
-4
14
td(CLKL-DAT)
Delay time, MMCSD_CLK low to MMCSD_DATx transition
-4
3.3
-4
3.5
-4
3
3
3
3
ns
ns
10
ns
10
ns
4
ns
4
ns
10
9
7
MMCSD_CLK
13
13
START
MMCSD_CMD
13
XMIT
Valid
Valid
13
Valid
END
Figure 6-26. MMC/SD Host Command Timing
9
7
10
MMCSD_CLK
1
2
START
MMCSD_CMD
XMIT
Valid
Valid
Valid
END
Figure 6-27. MMC/SD Card Response Timing
10
9
7
MMCSD_CLK
14
MMCSD_DATx
14
START
14
D0
D1
Dx
14
END
Figure 6-28. MMC/SD Host Write Timing
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
117
PRODUCT PREVIEW
NO.
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
www.ti.com
9
10
7
MMCSD_CLK
4
4
3
MMCSD_DATx
Start
3
D0
D1
Dx
End
Figure 6-29. MMC/SD Host Read and Card CRC Status Timing
PRODUCT PREVIEW
118
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
SPRS586 – JUNE 2009
6.13 Serial ATA Controller (SATA)
The Serial ATA Controller (SATA) provides a single HBA port operating in AHCI mode and is used to
interface to data storage devices at both 1.5 Gbits/second and 3.0 Gbits/second line speeds. AHCI
describes a system memory structure that contains a generic area for control and status, and a table of
entries describing a command list where each command list entry contains information necessary to
program an SATA device, and a pointer to a descriptor table for transferring data between system memory
and the device.
The SATA Controller supports the following features:
Serial ATA 1.5 Gbps (Gen 1i) and 3 Gbps (Gen 2i) line speeds
Support for the AHCI controller spec 1.1
Integrated SERDES PHY
Integrated Rx and Tx data buffers
Supports all SATA power management features
Internal DMA engine per port
Hardware-assisted native command queuing (NCQ) for up to 32 entries
32-bit addressing
Supports port multiplier with command-based switching
Activity LED support
Mechanical presence switch
Cold presence detect
PRODUCT PREVIEW
•
•
•
•
•
•
•
•
•
•
•
•
6.13.1 SATA Register Descriptions
Table 6-41 is a list of the SATA Controller registers.
Table 6-41. SATA Controller Registers
BYTE ADDRESS
ACRONYM
REGISTER DESCRIPTION
0x01E1 8000
CAP
HBA Capabilities Register
0x01E1 8004
GHC
Global HBA Control Register
0x01E1 8008
IS
Interrupt Status Register
0x01E1 800C
PI
Ports Implemented Register
0x01E1 8010
VS
AHCI Version Register
0x01E1 8014
CCC_CTL
0x01E1 8018
CCC_PORTS
0x01E1 80A0
BISTAFR
BIST Active FIS Register
0x01E1 80A4
BISTCR
BIST Control Register
0x01E1 80A8
BISTFCTR
Command Completion Coalescing Control Register
Command Completion Coalescing Ports Register
BIST FIS Count Register
0x01E1 80AC
BISTSR
0x01E1 80B0
BISTDECR
BIST Status Register
BIST DWORD Error Count Register
0x01E1 80E0
TIMER1MS
BIST DWORD Error Count Register
0x01E1 80E8
GPARAM1R
Global Parameter 1 Register
0x01E1 80EC
GPARAM2R
Global Parameter 2 Register
0x01E1 80F0
PPARAMR
0x01E1 80F4
TESTR
Port Parameter Register
Test Register
0x01E1 80F8
VERSIONR
0x01E1 80FC
IDR
0x01E1 8100
P0CLB
0x01E1 8108
P0FB
Port FIS Base Address Register
0x01E1 8110
P0IS
Port Interrupt Status Register
Submit Documentation Feedback
Version Register
ID Register
Port Command List Base Address Register
Peripheral Information and Electrical Specifications
119
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
www.ti.com
Table 6-41. SATA Controller Registers (continued)
BYTE ADDRESS
ACRONYM
0x01E1 8114
P0IE
REGISTER DESCRIPTION
0x01E1 8118
P0CMD
Port Command Register
0x01E1 8120
P0TFD
Port Task File Data Register
0x01E1 8124
P0SIG
Port Signature Register
0x01E1 8128
P0SSTS
Port Serial ATA Status Register
0x01E1 812C
P0SCTL
Port Serial ATA Control Register
0x01E1 8130
P0SERR
Port Serial ATA Error Register
0x01E1 8134
P0SACT
Port Serial ATA Active Register
0x01E1 8138
P0CI
Port Command Issue Register
Port Interrupt Enable Register
PRODUCT PREVIEW
0x01E1 813C
P0SNTF
0x01E1 8170
P0DMACR
Port Serial ATA Notification Register
Port DMA Control Register
0x01E1 8178
P0PHYCR
Port PHY Control Register
0x01E1 817C
P0PHYSR
Port PHY Status Register
6.13.2 SATA Design Considerations
The electrical behavior of the SATA interface conforms to the SATA specification and as such will not be
included in this datasheet. A future revision of this datasheet will include design and layout
recommendations to meet the SATA specification requirements.
120
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
SPRS586 – JUNE 2009
The McASP serial port is specifically designed for multichannel audio applications. Its key features are:
• Flexible clock and frame sync generation logic and on-chip dividers
• Up to sixteen transmit or receive data pins and serializers
• Large number of serial data format options, including:
– TDM Frames with 2 to 32 time slots per frame (periodic) or 1 slot per frame (burst)
– Time slots of 8,12,16, 20, 24, 28, and 32 bits
– First bit delay 0, 1, or 2 clocks
– MSB or LSB first bit order
– Left- or right-aligned data words within time slots
• DIT Mode with 384-bit Channel Status and 384-bit User Data registers
• Extensive error checking and mute generation logic
• All unused pins GPIO-capable
•
•
Transmit & Receive FIFO Buffers allow the McASP to operate at a higher sample rate by making it
more tolerant to DMA latency.
Dynamic Adjustment of Clock Dividers
– Clock Divider Value may be changed without resetting the McASP
Pins
Peripheral
Configuration
Bus
GIO
Control
DIT RAM
384 C
384 U
Optional
Tra n s m it
F o rm a tte r
McASP
DMA Bus
(Dedicated)
Receive
F o rm a tte r
Receive Logic
C lo ck /F ra m e G e n e ra to r
State Machine
Clock Check and
Error Detection
Function
AHCLKRx
Receive Master Clock
ACLKRx
Receive Bit Clock
AFSRx
R e c e iv e L e ft/R ig h t C lo ck o r F ra m e S y n c
AMUTEINx
The McASP DOES NOT have a
AMUTEx
dedicated AMUTEIN pin.
AFSXx
AHCLKXx
Tra n s m it L e ft/R ig h t C lo ck o r F ra m e S y n c
Tra n s m it B it C lo ck
Tra n s m it M a s te r C lo ck
Serializer 0
AXRx[0]
Tra n s m it/R e c e iv e S e ria l D a ta P in
Serializer 1
AXRx[1]
Tra n s m it/R e c e iv e S e ria l D a ta P in
Serializer y
AXRx[y]
Tra n s m it/R e c e iv e S e ria l D a ta P in
Tra n s m it L o g ic
C lo ck /F ra m e G e n e ra to r
State Machine
ACLKXx
McASP
Figure 6-30. McASP Block Diagram
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
121
PRODUCT PREVIEW
6.14 Multichannel Audio Serial Port (McASP)
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
www.ti.com
6.14.1 McASP Peripheral Registers Description(s)
Registers for the McASP are summarized in Table 6-42. The registers are accessed through the
peripheral configuration port. The receive buffer registers (RBUF) and transmit buffer registers (XBUF) can
also be accessed through the DMA port, as listed in Table 6-43
Registers for the McASP Audio FIFO (AFIFO) are summarized in Table 6-44. Note that the AFIFO Write
FIFO (WFIFO) and Read FIFO (RFIFO) have independent control and status registers. The AFIFO control
registers are accessed through the peripheral configuration port.
Table 6-42. McASP Registers Accessed Through Peripheral Configuration Port
PRODUCT PREVIEW
BYTE ADDRESS
ACRONYM
0x01D0 0000
REV
0x01D0 0010
PFUNC
Pin function register
0x01D0 0014
PDIR
Pin direction register
0x01D0 0018
PDOUT
0x01D0 001C
PDIN
Pin data output register
Read returns: Pin data input register
0x01D0 001C
PDSET
Writes affect: Pin data set register (alternate write address: PDOUT)
0x01D0 0020
PDCLR
Pin data clear register (alternate write address: PDOUT)
0x01D0 0044
GBLCTL
Global control register
0x01D0 0048
AMUTE
Audio mute control register
0x01D0 004C
DLBCTL
Digital loopback control register
0x01D0 0050
DITCTL
DIT mode control register
0x01D0 0060
RGBLCTL
0x01D0 0064
RMASK
0x01D0 0068
RFMT
Receiver global control register: Alias of GBLCTL, only receive bits are
affected - allows receiver to be reset independently from transmitter
Receive format unit bit mask register
Receive bit stream format register
0x01D0 006C
AFSRCTL
0x01D0 0070
ACLKRCTL
0x01D0 0074
AHCLKRCTL
0x01D0 0078
RTDM
0x01D0 007C
RINTCTL
0x01D0 0080
RSTAT
Receiver status register
0x01D0 0084
RSLOT
Current receive TDM time slot register
0x01D0 0088
RCLKCHK
Receive clock check control register
0x01D0 008C
REVTCTL
Receiver DMA event control register
XGBLCTL
Transmitter global control register. Alias of GBLCTL, only transmit bits are
affected - allows transmitter to be reset independently from receiver
0x01D0 00A0
122
REGISTER DESCRIPTION
Revision identification register
0x01D0 00A4
XMASK
0x01D0 00A8
XFMT
0x01D0 00AC
AFSXCTL
Receive frame sync control register
Receive clock control register
Receive high-frequency clock control register
Receive TDM time slot 0-31 register
Receiver interrupt control register
Transmit format unit bit mask register
Transmit bit stream format register
Transmit frame sync control register
0x01D0 00B0
ACLKXCTL
0x01D0 00B4
AHCLKXCTL
0x01D0 00B8
XTDM
Transmit TDM time slot 0-31 register
0x01D0 00BC
XINTCTL
Transmitter interrupt control register
0x01D0 00C0
XSTAT
Transmitter status register
0x01D0 00C4
XSLOT
Current transmit TDM time slot register
0x01D0 00C8
XCLKCHK
Transmit clock check control register
0x01D0 00CC
XEVTCTL
Transmitter DMA event control register
0x01D0 0100
DITCSRA0
Left (even TDM time slot) channel status register (DIT mode) 0
0x01D0 0104
DITCSRA1
Left (even TDM time slot) channel status register (DIT mode) 1
Peripheral Information and Electrical Specifications
Transmit clock control register
Transmit high-frequency clock control register
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
SPRS586 – JUNE 2009
Table 6-42. McASP Registers Accessed Through Peripheral Configuration Port (continued)
(1)
ACRONYM
0x01D0 0108
DITCSRA2
Left (even TDM time slot) channel status register (DIT mode) 2
REGISTER DESCRIPTION
0x01D0 010C
DITCSRA3
Left (even TDM time slot) channel status register (DIT mode) 3
0x01D0 0110
DITCSRA4
Left (even TDM time slot) channel status register (DIT mode) 4
0x01D0 0114
DITCSRA5
Left (even TDM time slot) channel status register (DIT mode) 5
0x01D0 0118
DITCSRB0
Right (odd TDM time slot) channel status register (DIT mode) 0
0x01D0 011C
DITCSRB1
Right (odd TDM time slot) channel status register (DIT mode) 1
0x01D0 0120
DITCSRB2
Right (odd TDM time slot) channel status register (DIT mode) 2
0x01D0 0124
DITCSRB3
Right (odd TDM time slot) channel status register (DIT mode) 3
0x01D0 0128
DITCSRB4
Right (odd TDM time slot) channel status register (DIT mode) 4
0x01D0 012C
DITCSRB5
Right (odd TDM time slot) channel status register (DIT mode) 5
0x01D0 0130
DITUDRA0
Left (even TDM time slot) channel user data register (DIT mode) 0
0x01D0 0134
DITUDRA1
Left (even TDM time slot) channel user data register (DIT mode) 1
0x01D0 0138
DITUDRA2
Left (even TDM time slot) channel user data register (DIT mode) 2
0x01D0 013C
DITUDRA3
Left (even TDM time slot) channel user data register (DIT mode) 3
0x01D0 0140
DITUDRA4
Left (even TDM time slot) channel user data register (DIT mode) 4
0x01D0 0144
DITUDRA5
Left (even TDM time slot) channel user data register (DIT mode) 5
0x01D0 0148
DITUDRB0
Right (odd TDM time slot) channel user data register (DIT mode) 0
0x01D0 014C
DITUDRB1
Right (odd TDM time slot) channel user data register (DIT mode) 1
0x01D0 0150
DITUDRB2
Right (odd TDM time slot) channel user data register (DIT mode) 2
0x01D0 0154
DITUDRB3
Right (odd TDM time slot) channel user data register (DIT mode) 3
0x01D0 0158
DITUDRB4
Right (odd TDM time slot) channel user data register (DIT mode) 4
0x01D0 015C
DITUDRB5
Right (odd TDM time slot) channel user data register (DIT mode) 5
0x01D0 0180
SRCTL0
Serializer control register 0
0x01D0 0184
SRCTL1
Serializer control register 1
0x01D0 0188
SRCTL2
Serializer control register 2
0x01D0 018C
SRCTL3
Serializer control register 3
0x01D0 0190
SRCTL4
Serializer control register 4
0x01D0 0194
SRCTL5
Serializer control register 5
0x01D0 0198
SRCTL6
Serializer control register 6
0x01D0 019C
SRCTL7
Serializer control register 7
0x01D0 01A0
SRCTL8
Serializer control register 8
0x01D0 01A4
SRCTL9
Serializer control register 9
0x01D0 01A8
SRCTL10
Serializer control register 10
0x01D0 01AC
SRCTL11
Serializer control register 11
0x01D0 01B0
SRCTL12
Serializer control register 12
0x01D0 01B4
SRCTL13
Serializer control register 13
0x01D0 01B8
SRCTL14
Serializer control register 14
0x01D0 01BC
SRCTL15
Serializer control register 15
0x01D0 0200
XBUF0 (1)
Transmit buffer register for serializer 0
0x01D0 0204
XBUF1
(1)
Transmit buffer register for serializer 1
0x01D0 0208
XBUF2 (1)
Transmit buffer register for serializer 2
0x01D0 020C
XBUF3 (1)
Transmit buffer register for serializer 3
0x01D0 0210
XBUF4
(1)
Transmit buffer register for serializer 4
0x01D0 0214
XBUF5 (1)
Transmit buffer register for serializer 5
0x01D0 0218
XBUF6 (1)
Transmit buffer register for serializer 6
0x01D0 021C
(1)
Transmit buffer register for serializer 7
XBUF7
PRODUCT PREVIEW
BYTE ADDRESS
Writes to XRBUF originate from peripheral configuration port only when XBUSEL = 1 in XFMT.
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
123
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
www.ti.com
Table 6-42. McASP Registers Accessed Through Peripheral Configuration Port (continued)
PRODUCT PREVIEW
(2)
BYTE ADDRESS
ACRONYM
0x01D0 0220
XBUF8 (1)
Transmit buffer register for serializer 8
REGISTER DESCRIPTION
0x01D0 0224
XBUF9 (1)
Transmit buffer register for serializer 9
0x01D0 0228
XBUF10
(1)
Transmit buffer register for serializer 10
0x01D0 022C
XBUF11 (1)
Transmit buffer register for serializer 11
0x01D0 0230
XBUF12 (1)
Transmit buffer register for serializer 12
0x01D0 0234
XBUF13
(1)
Transmit buffer register for serializer 13
0x01D0 0238
XBUF14 (1)
Transmit buffer register for serializer 14
0x01D0 023C
XBUF15 (1)
Transmit buffer register for serializer 15
0x01D0 0280
RBUF0 (2)
Receive buffer register for serializer 0
0x01D0 0284
RBUF1
(2)
Receive buffer register for serializer 1
0x01D0 0288
RBUF2 (2)
Receive buffer register for serializer 2
0x01D0 028C
RBUF3 (2)
Receive buffer register for serializer 3
0x01D0 0290
RBUF4
(2)
Receive buffer register for serializer 4
0x01D0 0294
RBUF5 (2)
Receive buffer register for serializer 5
0x01D0 0298
RBUF6 (2)
Receive buffer register for serializer 6
0x01D0 029C
RBUF7
(2)
Receive buffer register for serializer 7
0x01D0 02A0
RBUF8 (2)
Receive buffer register for serializer 8
0x01D0 02A4
RBUF9 (2)
Receive buffer register for serializer 9
0x01D0 02A8
RBUF10 (2)
Receive buffer register for serializer 10
0x01D0 02AC
RBUF11
(2)
Receive buffer register for serializer 11
0x01D0 02B0
RBUF12 (2)
Receive buffer register for serializer 12
0x01D0 02B4
RBUF13 (2)
Receive buffer register for serializer 13
0x01D0 02B8
RBUF14
(2)
Receive buffer register for serializer 14
0x01D0 02BC
RBUF15 (2)
Receive buffer register for serializer 15
Reads from XRBUF originate on peripheral configuration port only when RBUSEL = 1 in RFMT.
Table 6-43. McASP Registers Accessed Through DMA Port
ACCESS TYPE
BYTE ADDRESS
ACRONYM
Read Accesses
0x01D0 2000
RBUF
REGISTER DESCRIPTION
Receive buffer DMA port address. Cycles through receive
serializers, skipping over transmit serializers and inactive
serializers. Starts at the lowest serializer at the beginning of each
time slot. Reads from DMA port only if XBUSEL = 0 in XFMT.
Write Accesses
0x01D0 2000
XBUF
Transmit buffer DMA port address. Cycles through transmit
serializers, skipping over receive and inactive serializers. Starts at
the lowest serializer at the beginning of each time slot. Writes to
DMA port only if RBUSEL = 0 in RFMT.
Table 6-44. McASP AFIFO Registers Accessed Through Peripheral Configuration Port
124
BYTE ADDRESS
ACRONYM
REGISTER DESCRIPTION
0x01D0 1000
AFIFOREV
AFIFO revision identification register
0x01D0 1010
WFIFOCTL
Write FIFO control register
0x01D0 1014
WFIFOSTS
Write FIFO status register
0x01D0 1018
RFIFOCTL
Read FIFO control register
0x01D0 101C
RFIFOSTS
Read FIFO status register
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
SPRS586 – JUNE 2009
6.14.2 McASP Electrical Data/Timing
6.14.2.1 Multichannel Audio Serial Port 0 (McASP0) Timing
Table 6-45 and Table 6-47 assume testing over recommended operating conditions (see Figure 6-31 and
Figure 6-32).
Table 6-45. Timing Requirements for McASP0 (1.2V, 1.1V) (1) (2)
1.2V
PARAMETER
MIN
1.1V
MAX
MIN
MAX
UNIT
1
tc(AHCLKRX)
Cycle time, AHCLKR/X
20
22
ns
2
tw(AHCLKRX)
Pulse duration, AHCLKR/X high or low
10
11
ns
3
tc(ACLKRX)
Cycle time, ACLKR/X
AHCLKR/X ext
20 (3)
22 (3)
ns
4
tw(ACLKRX)
Pulse duration, ACLKR/W high or low
AHCLKR/X ext
10
11
ns
AHCLKR/X int
11.5
12
ns
4
5
ns
5
6
7
8
(1)
(2)
(3)
(4)
(5)
tsu(AFSRX-ACLKRX)
Setup time,
AFSR/X input to ACLKR/X
(4)
th(ACLKRX-AFSRX)
Hold time,
AFSR/X input after ACLKR/X (4)
tsu(AXR-ACLKRX)
Setup time,
AXR0[n] input to ACLKR/X (4) (5)
th(ACLKRX-AXR)
Hold time,
AXR0[n] input after ACLKR/X (4) (5)
AHCLKR/X ext input
AHCLKR/X ext output
4
5
ns
AHCLKR/X int
-1
-2
ns
AHCLKR/X ext input
0.4
1
ns
AHCLKR/X ext output
0.4
1
ns
AHCLKR/X int
11.5
12
ns
AHCLKR/X ext
4
5
ns
AHCLKR/X int
-1
-2
ns
AHCLKR/X ext input
0.4
1
ns
AHCLKR/X ext output
0.4
1
ns
ACLKX0 internal – McASP0 ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1
ACLKX0 external input – McASP0 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0
ACLKX0 external output – McASP0 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1
ACLKR0 internal – McASP0 ACLKRCTL.CLKRM = 1, PDIR.ACLKR =1
ACLKR0 external input – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0
ACLKR0 external output – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1
P = SYSCLK2 period
This timing is limited by the timing shown or 2P, whichever is greater.
McASP0 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR0
McASP0 ACLKXCTL.ASYNC=0: Receiver is clocked by transmitter's ACLKX0
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
125
PRODUCT PREVIEW
NO.
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
www.ti.com
Table 6-46. Timing Requirements for McASP0 (1.0V) (1) (2)
NO.
1.0V
PARAMETER
MIN
MAX
UNIT
1
tc(AHCLKRX)
Cycle time, AHCLKR/X
26.6
ns
2
tw(AHCLKRX)
Pulse duration, AHCLKR/X high or low
13.3
ns
3
tc(ACLKRX)
Cycle time, ACLKR/X
AHCLKR/X ext
26.6 (3)
ns
4
tw(ACLKRX)
Pulse duration, ACLKR/W high or low
AHCLKR/X ext
13.3
ns
AHCLKR/X int
16
ns
AHCLKR/X ext input
5.5
ns
AHCLKR/X ext output
5.5
ns
5
6
PRODUCT PREVIEW
7
8
(1)
(2)
(3)
(4)
(5)
126
tsu(AFSRX-ACLKRX)
th(ACLKRX-AFSRX)
tsu(AXR-ACLKRX)
th(ACLKRX-AXR)
Setup time,
AFSR/X input to ACLKR/X
(4)
Hold time,
AFSR/X input after ACLKR/X (4)
Setup time,
AXR0[n] input to ACLKR/X (4) (5)
Hold time,
AXR0[n] input after ACLKR/X (4) (5)
AHCLKR/X int
-2
ns
AHCLKR/X ext input
1
ns
AHCLKR/X ext output
1
ns
AHCLKR/X int
16
ns
AHCLKR/X ext
5.5
ns
AHCLKR/X int
-2
ns
AHCLKR/X ext input
1
ns
AHCLKR/X ext output
1
ns
ACLKX0 internal – McASP0 ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1
ACLKX0 external input – McASP0 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0
ACLKX0 external output – McASP0 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1
ACLKR0 internal – McASP0 ACLKRCTL.CLKRM = 1, PDIR.ACLKR =1
ACLKR0 external input – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0
ACLKR0 external output – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1
P = SYSCLK2 period
This timing is limited by the timing shown or 2P, whichever is greater.
McASP0 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR0
McASP0 ACLKXCTL.ASYNC=0: Receiver is clocked by transmitter's ACLKX0
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
SPRS586 – JUNE 2009
Table 6-47. Switching Characteristics for McASP0 (1.2V, 1.1V) (1)
9
tc(AHCLKRX)
Cycle time, AHCLKR/X
10
tw(AHCLKRX)
Pulse duration, AHCLKR/X high or low
11
tc(ACLKRX)
Cycle time, ACLKR/X
12
tw(ACLKRX)
13
td(ACLKRX-AFSRX)
14
td(ACLKX-AXRV)
15
(1)
(2)
(3)
(4)
(5)
(6)
1.2V
PARAMETER
tdis(ACLKX-AXRHZ)
MIN
ACLKR/X int
Pulse duration, ACLKR/X high or low
Delay time, ACLKR/X transmit edge to
AFSX/R output valid (6)
Delay time, ACLKX transmit edge to
AXR output valid
ACLKR/X int
1.1V
MAX
MIN
MAX
UNIT
20
22
ns
AH – 2.5 (2)
AH – 2.5 (2)
ns
20 (3) (4)
22 (3) (4)
ns
A – 2.5
(5)
A – 2.5
(5)
ns
ACLKR/X int
0
6
0
8
ns
ACLKR/X ext input
2
13.5
2
14.5
ns
ACLKR/X ext output
2
13.5
2
14.5
ns
ACLKR/X int
0
6
0
8
ns
ACLKR/X ext input
2
13.5
2
14.5
ns
ACLKR/X ext output
2
13.5
2
14.5
ns
0
6
0
8
ns
2
13.5
2
14.5
ns
Disable time, ACLKR/X transmit edge to ACLKR/X int
AXR high impedance following last data
ACLKR/X ext
bit
McASP0 ACLKX0 internal – ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1
ACLKX0 external input – McASP0 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0
ACLKX0 external output – McASP0ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1
ACLKR0 internal – McASP0 ACLKR0CTL.CLKRM = 1, PDIR.ACLKR =1
ACLKR0 external input – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0
ACLKR0 external output – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1
AH = (AHCLKR/X period)/2 in ns. For example, when AHCLKR/X period is 25 ns, use AH = 12.5 ns.
P = SYSCLK2 period
This timing is limited by the timing shown or 2P, whichever is greater.
A = (ACLKR/X period)/2 in ns. For example, when AHCLKR/X period is 25 ns, use AH = 12.5 ns.
McASP0 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR0
Table 6-48. Switching Characteristics for McASP0 (1.0V) (1)
NO.
9
tc(AHCLKRX)
Cycle time, AHCLKR/X
10
tw(AHCLKRX)
Pulse duration, AHCLKR/X high or low
11
tc(ACLKRX)
Cycle time, ACLKR/X
12
1.0V
PARAMETER
tw(ACLKRX)
Pulse duration, ACLKR/X high or low
MIN
14
15
(1)
(2)
(3)
(4)
(5)
(6)
td(ACLKRX-AFSRX)
td(ACLKX-AXRV)
26.6
ns
ns
ACLKR/X int
26.6 (3) (4)
ns
ACLKR/X int
(5)
tdis(ACLKX-AXRHZ)
Disable time, ACLKR/X transmit edge to AXR high
impedance following last data bit
A – 2.5
ns
0
10
ns
2
19
ns
ACLKR/X ext output
2
19
ns
ACLKR/X int
0
10
ns
ACLKR/X ext input
2
19
ns
ACLKR/X ext output
2
19
ns
ACLKR/X int
0
10
ns
ACLKR/X ext
2
19
ns
Delay time, ACLKR/X transmit edge to AFSX/R output valid (6) ACLKR/X ext input
Delay time, ACLKX transmit edge to AXR output valid
UNIT
AH – 2.5 (2)
ACLKR/X int
13
MAX
McASP0 ACLKX0 internal – ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1
ACLKX0 external input – McASP0 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0
ACLKX0 external output – McASP0ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1
ACLKR0 internal – McASP0 ACLKR0CTL.CLKRM = 1, PDIR.ACLKR =1
ACLKR0 external input – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0
ACLKR0 external output – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1
AH = (AHCLKR/X period)/2 in ns. For example, when AHCLKR/X period is 25 ns, use AH = 12.5 ns.
P = SYSCLK2 period
This timing is limited by the timing shown or 2P, whichever is greater.
A = (ACLKR/X period)/2 in ns. For example, when AHCLKR/X period is 25 ns, use AH = 12.5 ns.
McASP0 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR0
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
127
PRODUCT PREVIEW
NO.
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
www.ti.com
2
1
2
AHCLKR/X (Falling Edge Polarity)
AHCLKR/X (Rising Edge Polarity)
4
3
4
ACLKR/X (CLKRP = CLKXP = 0)(A)
ACLKR/X (CLKRP = CLKXP = 1)(B)
PRODUCT PREVIEW
6
5
AFSR/X (Bit Width, 0 Bit Delay)
AFSR/X (Bit Width, 1 Bit Delay)
AFSR/X (Bit Width, 2 Bit Delay)
AFSR/X (Slot Width, 0 Bit Delay)
AFSR/X (Slot Width, 1 Bit Delay)
AFSR/X (Slot Width, 2 Bit Delay)
8
7
AXR[n] (Data In/Receive)
A0
A1
A30 A31 B0 B1
B30 B31 C0 C1
C2 C3
C31
A.
For CLKRP = CLKXP = 0, the McASP transmitter is configured for rising edge (to shift data out) and the McASP
receiver is configured for falling edge (to shift data in).
B.
For CLKRP = CLKXP = 1, the McASP transmitter is configured for falling edge (to shift data out) and the McASP
receiver is configured for rising edge (to shift data in).
Figure 6-31. McASP Input Timings
128
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
SPRS586 – JUNE 2009
10
10
9
AHCLKR/X (Falling Edge Polarity)
AHCLKR/X (Rising Edge Polarity)
12
11
12
ACLKR/X (CLKRP = CLKXP = 1)(A)
ACLKR/X (CLKRP = CLKXP = 0)(B)
13
13
13
PRODUCT PREVIEW
13
AFSR/X (Bit Width, 0 Bit Delay)
AFSR/X (Bit Width, 1 Bit Delay)
AFSR/X (Bit Width, 2 Bit Delay)
13
13
13
AFSR/X (Slot Width, 0 Bit Delay)
AFSR/X (Slot Width, 1 Bit Delay)
AFSR/X (Slot Width, 2 Bit Delay)
14
15
AXR[n] (Data Out/Transmit)
A0
A1
A30 A31 B0 B1
B30 B31 C0
C1 C2 C3
A.
For CLKRP = CLKXP = 1, the McASP transmitter is configured for falling edge (to shift data out) and the McASP
receiver is configured for rising edge (to shift data in).
B.
For CLKRP = CLKXP = 0, the McASP transmitter is configured for rising edge (to shift data out) and the McASP
receiver is configured for falling edge (to shift data in).
C31
Figure 6-32. McASP Output Timings
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
129
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
www.ti.com
6.15 Multichannel Buffered Serial Port (McBSP)
The McBSP provides these functions:
• Full-duplex communication
• Double-buffered data registers, which allow a continuous data stream
• Independent framing and clocking for receive and transmit
• Direct interface to industry-standard codecs, analog interface chips (AICs), and other serially
connected analog-to-digital (A/D) and digital-to-analog (D/A) devices
• External shift clock or an internal, programmable frequency shift clock for data transfer
• Transmit & Receive FIFO Buffers allow the McBSP to operate at a higher sample rate by making it
more tolerant to DMA latency
PRODUCT PREVIEW
If internal clock source is used, the CLKGDV field of the Sample Rate Generator Register (SRGR) must
always be set to a value of 1 or greater.
6.15.1 McBSP Peripheral Register Description(s)
Table 6-49. McBSP/FIFO Registers
McBSP0
BYTE
ADDRESS
McBSP1
BYTE
ADDRESS
ACRONYM
0x01D1 0000
0x01D1 1000
DRR
McBSP Data Receive Register (read-only)
0x01D1 0004
0x01D1 1004
DXR
McBSP Data Transmit Register
0x01D1 0008
0x01D1 1008
SPCR
0x01D1 000C 0x01D1 100C
RCR
McBSP Receive Control Register
0x01D1 0010
0x01D1 1010
XCR
McBSP Transmit Control Register
0x01D1 0014
0x01D1 1014
SRGR
0x01D1 0018
0x01D1 1018
REGISTER DESCRIPTION
McBSP Registers
McBSP Serial Port Control Register
McBSP Sample Rate Generator register
MCR
McBSP Multichannel Control Register
0x01D1 001C 0x01D1 101C
RCERE0
McBSP Enhanced Receive Channel Enable Register 0 Partition A/B
0x01D1 0020
0x01D1 1020
XCERE0
McBSP Enhanced Transmit Channel Enable Register 0 Partition A/B
0x01D1 0024
0x01D1 1024
PCR
0x01D1 0028
0x01D1 1028
RCERE1
McBSP Enhanced Receive Channel Enable Register 1 Partition C/D
0x01D1 002C 0x01D1 102C
XCERE1
McBSP Enhanced Transmit Channel Enable Register 1 Partition C/D
0x01D1 0030
0x01D1 1030
RCERE2
McBSP Enhanced Receive Channel Enable Register 2 Partition E/F
0x01D1 0034
0x01D1 1034
XCERE2
McBSP Enhanced Transmit Channel Enable Register 2 Partition E/F
0x01D1 0038
0x01D1 1038
RCERE3
McBSP Enhanced Receive Channel Enable Register 3 Partition G/H
0x01D1 003C 0x01D1 103C
XCERE3
McBSP Enhanced Transmit Channel Enable Register 3 Partition G/H
McBSP Pin Control Register
McBSP FIFO Control and Status Registers
0x01D1 0800
0x01D1 1800
BFIFOREV
BFIFO Revision Identification Register
0x01D1 0810
0x01D1 1810
WFIFOCTL
Write FIFO Control Register
0x01D1 0814
0x01D1 1814
WFIFOSTS
Write FIFO Status Register
0x01D1 0818
0x01D1 1818
RFIFOCTL
Read FIFO Control Register
0x01D1 081C 0x01D1 181C
RFIFOSTS
Read FIFO Status Register
McBSP FIFO Data Registers
0x01F1 0000
0x01F1 1000
RBUF
McBSP FIFO Receive Buffer
0x01F1 0000
0x01F1 1000
XBUF
McBSP FIFO Transmit Buffer
130
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
SPRS586 – JUNE 2009
6.15.2 McBSP Electrical Data/Timing
The following assume testing over recommended operating conditions.
6.15.2.1
Multichannel Buffered Serial Port (McBSP) Timing
Table 6-50. Timing Requirements for McBSP0 [1.2V, 1.1V] (1) (see Figure 6-33)
2
tc(CKRX)
Cycle time, CLKR/X
3
tw(CKRX)
Pulse duration, CLKR/X high or CLKR/X low
4
tt
Transition time, rising edge or falling edge
5
tsu(FRH-CKRL)
Setup time, external FSR high before CLKR
low
6
th(CKRL-FRH)
Hold time, external FSR high after CLKR low
7
tsu(DRV-CKRL) Setup time, DR valid before CLKR low
8
th(CKRL-DRV)
10
tsu(FXH-CKXL) Setup time, external FSX high before CLKX low
11
th(CKXL-FXH)
(1)
(2)
(3)
(4)
1.2V
PARAMETER
Hold time, DR valid after CLKR low
Hold time, external FSX high after CLKX low
MIN
CLKR/X ext
CLKR/X ext
1.1V
MAX
2P or 20 (2) (3)
P-1
MIN
MAX
2P or 25 (2) (3)
(4)
ns
P - 1 (4)
5
UNIT
ns
5
CLKR int
14
15.5
CLKR ext
4
5
CLKR int
6
6
CLKR ext
3
3
CLKR int
14
15.5
CLKR ext
4
5
CLKR int
3
3
CLKR ext
3
3
CLKX int
14
15.5
CLKX ext
4
5
CLKX int
6
6
CLKX ext
3
3
ns
ns
ns
ns
ns
ns
CLKRP = CLKXP = FSRP = FSXP = 0. If polarity of any of the signals is inverted, then the timing references of that signal are also
inverted.
P = AYNC3 period in ns. For example, when the ASYNC clock domain is running at 100 MHz, use 10 ns.
Use whichever value is greater. Minimum CLKR/X cycle times must be met, even when CLKR/X is generated by an internal clock
source. The minimum CLKR/X cycle times are based on internal logic speed; the maximum usable speed may be lower due to EDMA
limitations and AC timing requirements.
This parameter applies to the maximum McBSP frequency. Operate serial clocks (CLKR/X) in the reasonable range of 40/60 duty cycle.
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
131
PRODUCT PREVIEW
NO.
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
www.ti.com
Table 6-51. Timing Requirements for McBSP0 [1.0V] (1) (see Figure 6-33)
NO.
2
tc(CKRX)
Cycle time, CLKR/X
PRODUCT PREVIEW
3
tw(CKRX)
Pulse duration, CLKR/X high or CLKR/X low
4
tt
Transition time, rising edge or falling edge
5
tsu(FRH-CKRL) Setup time, external FSR high before CLKR low
6
th(CKRL-FRH)
7
tsu(DRV-CKRL) Setup time, DR valid before CLKR low
8
th(CKRL-DRV)
10
tsu(FXH-CKXL) Setup time, external FSX high before CLKX low
11
th(CKXL-FXH)
(1)
(2)
(3)
(4)
132
1.0V
PARAMETER
Hold time, external FSR high after CLKR low
Hold time, DR valid after CLKR low
Hold time, external FSX high after CLKX low
MIN
CLKR/X ext
CLKR/X ext
MAX
2P or
26.6 (2) (3)
P-1
UNIT
ns
(4)
ns
5
CLKR int
20
CLKR ext
5
CLKR int
6
CLKR ext
3
CLKR int
20
CLKR ext
5
CLKR int
3
CLKR ext
3
CLKX int
20
CLKX ext
5
CLKX int
6
CLKX ext
3
ns
ns
ns
ns
ns
ns
CLKRP = CLKXP = FSRP = FSXP = 0. If polarity of any of the signals is inverted, then the timing references of that signal are also
inverted.
P = AYNC3 period in ns. For example, when the ASYNC clock domain is running at 100 MHz, use 10 ns.
Use whichever value is greater. Minimum CLKR/X cycle times must be met, even when CLKR/X is generated by an internal clock
source. The minimum CLKR/X cycle times are based on internal logic speed; the maximum usable speed may be lower due to EDMA
limitations and AC timing requirements.
This parameter applies to the maximum McBSP frequency. Operate serial clocks (CLKR/X) in the reasonable range of 40/60 duty cycle.
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
SPRS586 – JUNE 2009
Table 6-52. Switching Characteristics for McBSP0 [1.2V, 1.1V] (1) (2)
(see Figure 6-33)
1.2V
PARAMETER
1.1V
MIN
MAX
MIN
MAX
2
14.5
2
16
UNIT
1
td(CKSH-CKRXH)
Delay time, CLKS high to CLKR/X high for internal
CLKR/X generated from CLKS input
2
tc(CKRX)
Cycle time, CLKR/X
CLKR/X int
2P or
20 (3) (4) (5)
3
tw(CKRX)
Pulse duration, CLKR/X high or
CLKR/X low
CLKR/X int
C - 2 (6)
C + 2 (6)
C - 2 (6)
C + 2 (6)
ns
4
td(CKRH-FRV)
Delay time, CLKR high to internal FSR
valid
CLKR int
-4
5.5
-4
5.5
ns
CLKR ext
2
14.5
2
16
9
td(CKXH-FXV)
Delay time, CLKX high to internal FSX
valid
CLKX int
-4
5.5
-4
5.5
CLKX ext
2
14.5
2
16
12
tdis(CKXH-DXHZ)
Disable time, DX high impedance
following last data bit from CLKX high
CLKX int
-4
7.5
-5.5
7.5
CLKX ext
-2
16
-22
16
13
td(CKXH-DXV)
Delay time, CLKX high to DX valid
CLKX int
-4 + D1 (7)
5.5 + D2 (7)
-4 + D1 (7)
5.5 + D2 (7)
CLKX ext
2 + D1 (7)
14.5 + D2 (7)
2 + D1 (7)
16 + D2 (7)
14
td(FXH-DXV)
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
2P or
25 (3) (4) (5)
ns
ns
Delay time, FSX high to DX valid
FSX int
-4 (8)
5 (8)
-4 (8)
5 (8)
ONLY applies when in data
delay 0 (XDATDLY = 00b) mode
FSX ext
-2 (8)
14.5 (8)
-2 (8)
16 (8)
ns
ns
ns
ns
CLKRP = CLKXP = FSRP = FSXP = 0. If polarity of any of the signals is inverted, then the timing references of that signal are also
inverted.
Minimum delay times also represent minimum output hold times.
Minimum CLKR/X cycle times must be met, even when CLKR/X is generated by an internal clock source. Minimum CLKR/X cycle times
are based on internal logic speed; the maximum usable speed may be lower due to EDMA limitations and AC timing requirements.
P = AYNC3 period in ns. For example, when the ASYNC clock domain is running at 100 MHz, use 10 ns.
Use whichever value is greater.
C = H or L
S = sample rate generator input clock = P if CLKSM = 1 (P = ASYNC period)
S = sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)
H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even
H = (CLKGDV + 1)/2 * S if CLKGDV is odd
L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even
L = (CLKGDV + 1)/2 * S if CLKGDV is odd
CLKGDV should be set appropriately to ensure the McBSP bit rate does not exceed the maximum limit (see (4) above).
Extra delay from CLKX high to DX valid applies only to the first data bit of a device, if and only if DXENA = 1 in SPCR.
if DXENA = 0, then D1 = D2 = 0
if DXENA = 1, then D1 = 6P, D2 = 12P
Extra delay from FSX high to DX valid applies only to the first data bit of a device, if and only if DXENA = 1 in SPCR.
if DXENA = 0, then D1 = D2 = 0
if DXENA = 1, then D1 = 6P, D2 = 12P
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
133
PRODUCT PREVIEW
NO.
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
www.ti.com
Table 6-53. Switching Characteristics for McBSP0 [1.0V] (1) (2)
(see Figure 6-33)
NO.
1.0V
PARAMETER
MIN
MAX
3
21.5
UNIT
1
td(CKSH-CKRXH)
Delay time, CLKS high to CLKR/X high for internal CLKR/X generated from
CLKS input
2
tc(CKRX)
Cycle time, CLKR/X
CLKR/X int
2P or
26.6 (3) (4) (5)
3
tw(CKRX)
Pulse duration, CLKR/X high or CLKR/X low
CLKR/X int
C - 2 (6)
C + 2 (6)
ns
CLKR int
-4
10
ns
CLKR ext
2.5
21.5
PRODUCT PREVIEW
4
td(CKRH-FRV)
Delay time, CLKR high to internal FSR valid
9
td(CKXH-FXV)
Delay time, CLKX high to internal FSX valid
12
tdis(CKXH-DXHZ)
Disable time, DX high impedance following last data bit from CLKX
high
13
td(CKXH-DXV)
Delay time, CLKX high to DX valid
14
td(FXH-DXV)
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
ns
CLKX int
-4
10
CLKX ext
2.5
21.5
CLKX int
-4
10
CLKX ext
-2
21.5
CLKX int
-4 + D1 (7)
CLKX ext
2.5 + D1
ns
ns
ns
10 + D2 (7)
(7)
21.5 + D2 (7)
Delay time, FSX high to DX valid
FSX int
-4 (8)
5 (8)
ONLY applies when in data
delay 0 (XDATDLY = 00b) mode
FSX ext
-2 (8)
21.5 (8)
ns
ns
CLKRP = CLKXP = FSRP = FSXP = 0. If polarity of any of the signals is inverted, then the timing references of that signal are also
inverted.
Minimum delay times also represent minimum output hold times.
Minimum CLKR/X cycle times must be met, even when CLKR/X is generated by an internal clock source. Minimum CLKR/X cycle times
are based on internal logic speed; the maximum usable speed may be lower due to EDMA limitations and AC timing requirements.
P = AYNC3 period in ns. For example, when the ASYNC clock domain is running at 100 MHz, use 10 ns.
Use whichever value is greater.
C = H or L
S = sample rate generator input clock = P if CLKSM = 1 (P = ASYNC period)
S = sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)
H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even
H = (CLKGDV + 1)/2 * S if CLKGDV is odd
L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even
L = (CLKGDV + 1)/2 * S if CLKGDV is odd
CLKGDV should be set appropriately to ensure the McBSP bit rate does not exceed the maximum limit (see (4) above).
Extra delay from CLKX high to DX valid applies only to the first data bit of a device, if and only if DXENA = 1 in SPCR.
if DXENA = 0, then D1 = D2 = 0
if DXENA = 1, then D1 = 6P, D2 = 12P
Extra delay from FSX high to DX valid applies only to the first data bit of a device, if and only if DXENA = 1 in SPCR.
if DXENA = 0, then D1 = D2 = 0
if DXENA = 1, then D1 = 6P, D2 = 12P
Table 6-54. Timing Requirements for McBSP1 [1.2V, 1.1V] (1) (see Figure 6-33)
NO.
1.2V
PARAMETER
MIN
1.1V
MAX
MIN
MAX
UNIT
2
tc(CKRX)
Cycle time, CLKR/X
CLKR/X ext
2P or 20 (2) (3)
2P or 25 (2) (4)
ns
3
tw(CKRX)
Pulse duration, CLKR/X high or CLKR/X low
CLKR/X ext
P - 1 (5)
P - 1 (6)
ns
4
tt
Transition time, rising edge or falling edge
(1)
(2)
(3)
(4)
(5)
(6)
134
5
5
CLKRP = CLKXP = FSRP = FSXP = 0. If polarity of any of the signals is inverted, then the timing references of that signal are also
inverted.
P = AYNC3 period in ns. For example, when the ASYNC clock domain is running at 100 MHz, use 10 ns.
Use whichever value is greater. Minimum CLKR/X cycle times must be met, even when CLKR/X is generated by an internal clock
source. The minimum CLKR/X cycle times are based on internal logic speed; the maximum usable speed may be lower due to EDMA
limitations and AC timing requirements.
Use whichever value is greater. Minimum CLKR/X cycle times must be met, even when CLKR/X is generated by an internal clock
source. The minimum CLKR/X cycle times are based on internal logic speed; the maximum usable speed may be lower due to EDMA
limitations and AC timing requirements.
This parameter applies to the maximum McBSP frequency. Operate serial clocks (CLKR/X) in the reasonable range of 40/60 duty cycle.
This parameter applies to the maximum McBSP frequency. Operate serial clocks (CLKR/X) in the reasonable range of 40/60 duty cycle.
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
SPRS586 – JUNE 2009
Table 6-54. Timing Requirements for McBSP1 [1.2V, 1.1V] (see Figure 6-33) (continued)
1.2V
PARAMETER
5
tsu(FRH-CKRL)
Setup time, external FSR high before CLKR
low
6
th(CKRL-FRH)
Hold time, external FSR high after CLKR low
7
tsu(DRV-CKRL) Setup time, DR valid before CLKR low
8
th(CKRL-DRV)
10
tsu(FXH-CKXL) Setup time, external FSX high before CLKX low
11
th(CKXL-FXH)
Hold time, DR valid after CLKR low
Hold time, external FSX high after CLKX low
Submit Documentation Feedback
MIN
1.1V
MAX
MIN
CLKR int
15
18
CLKR ext
5
5
CLKR int
6
6
CLKR ext
3
3
CLKR int
15
18
CLKR ext
5
5
CLKR int
3
3
CLKR ext
3
3
CLKX int
15
18
CLKX ext
5
5
CLKX int
6
6
CLKX ext
3
3
MAX
Peripheral Information and Electrical Specifications
UNIT
ns
ns
ns
ns
ns
ns
135
PRODUCT PREVIEW
NO.
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
www.ti.com
Table 6-55. Timing Requirements for McBSP1 [1.0V] (1) (see Figure 6-33)
NO.
2
tc(CKRX)
Cycle time, CLKR/X
PRODUCT PREVIEW
3
tw(CKRX)
Pulse duration, CLKR/X high or CLKR/X low
4
tt
Transition time, rising edge or falling edge
5
tsu(FRH-CKRL) Setup time, external FSR high before CLKR low
6
th(CKRL-FRH)
7
tsu(DRV-CKRL) Setup time, DR valid before CLKR low
8
th(CKRL-DRV)
10
tsu(FXH-CKXL) Setup time, external FSX high before CLKX low
11
th(CKXL-FXH)
(1)
(2)
(3)
(4)
136
1.0V
PARAMETER
Hold time, external FSR high after CLKR low
Hold time, DR valid after CLKR low
Hold time, external FSX high after CLKX low
MIN
CLKR/X ext
CLKR/X ext
MAX
2P or
26.6 (2) (3)
P-1
UNIT
ns
(4)
ns
5
CLKR int
21
CLKR ext
10
CLKR int
6
CLKR ext
3
CLKR int
21
CLKR ext
10
CLKR int
3
CLKR ext
3
CLKX int
21
CLKX ext
10
CLKX int
6
CLKX ext
3
ns
ns
ns
ns
ns
ns
CLKRP = CLKXP = FSRP = FSXP = 0. If polarity of any of the signals is inverted, then the timing references of that signal are also
inverted.
P = AYNC3 period in ns. For example, when the ASYNC clock domain is running at 100 MHz, use 10 ns.
Use whichever value is greater. Minimum CLKR/X cycle times must be met, even when CLKR/X is generated by an internal clock
source. The minimum CLKR/X cycle times are based on internal logic speed; the maximum usable speed may be lower due to EDMA
limitations and AC timing requirements.
This parameter applies to the maximum McBSP frequency. Operate serial clocks (CLKR/X) in the reasonable range of 40/60 duty cycle.
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
SPRS586 – JUNE 2009
Table 6-56. Switching Characteristics for McBSP1 [1.2V, 1.1V] (1) (2)
(see Figure 6-33)
1.2V
PARAMETER
1.1V
MIN
MAX
MIN
MAX
2.5
16.5
3
18
UNIT
1
td(CKSH-CKRXH)
Delay time, CLKS high to CLKR/X high for internal
CLKR/X generated from CLKS input
2
tc(CKRX)
Cycle time, CLKR/X
CLKR/X int
2P or
20 (3) (4) (5)
3
tw(CKRX)
Pulse duration, CLKR/X high or
CLKR/X low
CLKR/X int
C - 2 (6)
C + 2 (6)
C - 2 (6)
C + 2 (6)
ns
4
td(CKRH-FRV)
Delay time, CLKR high to internal FSR
valid
CLKR int
-4
6.5
-4
13
ns
CLKR ext
2.5
16.5
2.5
18
9
td(CKXH-FXV)
Delay time, CLKX high to internal FSX
valid
CLKX int
-4
6.5
-4
13
CLKX ext
2.5
16.5
2.5
18
12
tdis(CKXH-DXHZ)
Disable time, DX high impedance
following last data bit from CLKX high
CLKX int
-4
6.5
-4
13
CLKX ext
-2
16.5
-2
18
13
td(CKXH-DXV)
Delay time, CLKX high to DX valid
CLKX int
-4 + D1 (7)
6.5 + D2 (7)
-4 + D1 (7)
13 + D2 (7)
CLKX ext
2.5 + D1 (7)
16.5 + D2 (7)
2.5 + D1 (7)
18 + D2 (7)
14
td(FXH-DXV)
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
2P or
25 (3) (4) (5)
ns
ns
Delay time, FSX high to DX valid
FSX int
-4 (8)
6.5 (8)
-4 (8)
13 (8)
ONLY applies when in data
delay 0 (XDATDLY = 00b) mode
FSX ext
-2 (8)
16.5 (8)
-2 (8)
18 (9)
ns
ns
ns
ns
CLKRP = CLKXP = FSRP = FSXP = 0. If polarity of any of the signals is inverted, then the timing references of that signal are also
inverted.
Minimum delay times also represent minimum output hold times.
Minimum CLKR/X cycle times must be met, even when CLKR/X is generated by an internal clock source. Minimum CLKR/X cycle times
are based on internal logic speed; the maximum usable speed may be lower due to EDMA limitations and AC timing requirements.
P = AYNC3 period in ns. For example, when the ASYNC clock domain is running at 100 MHz, use 10 ns.
Use whichever value is greater.
C = H or L
S = sample rate generator input clock = P if CLKSM = 1 (P = ASYNC period)
S = sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)
H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even
H = (CLKGDV + 1)/2 * S if CLKGDV is odd
L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even
L = (CLKGDV + 1)/2 * S if CLKGDV is odd
CLKGDV should be set appropriately to ensure the McBSP bit rate does not exceed the maximum limit (see (4) above).
Extra delay from CLKX high to DX valid applies only to the first data bit of a device, if and only if DXENA = 1 in SPCR.
if DXENA = 0, then D1 = D2 = 0
if DXENA = 1, then D1 = 6P, D2 = 12P
Extra delay from FSX high to DX valid applies only to the first data bit of a device, if and only if DXENA = 1 in SPCR.
if DXENA = 0, then D1 = D2 = 0
if DXENA = 1, then D1 = 6P, D2 = 12P
Extra delay from FSX high to DX valid applies only to the first data bit of a device, if and only if DXENA = 1 in SPCR.
if DXENA = 0, then D1 = D2 = 0
if DXENA = 1, then D1 = 6P, D2 = 12P
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
137
PRODUCT PREVIEW
NO.
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
www.ti.com
Table 6-57. Switching Characteristics for McBSP1 [1.0V] (1) (2)
(see Figure 6-33)
NO.
1.0V
PARAMETER
MIN
MAX
3
23
UNIT
PRODUCT PREVIEW
1
td(CKSH-CKRXH)
Delay time, CLKS high to CLKR/X high for internal CLKR/X generated from
CLKS input
2
tc(CKRX)
Cycle time, CLKR/X
CLKR/X int
2P or
26.6 (3) (4) (5)
3
tw(CKRX)
Pulse duration, CLKR/X high or CLKR/X low
CLKR/X int
C - 2 (6)
C + 2 (6)
ns
CLKR int
-4
13
ns
CLKR ext
2.5
23
CLKX int
-4
13
CLKX ext
2.5
23
CLKX int
-4
13
CLKX ext
-2
23
CLKX int
-4 + D1 (7)
4
td(CKRH-FRV)
Delay time, CLKR high to internal FSR valid
9
td(CKXH-FXV)
Delay time, CLKX high to internal FSX valid
12
tdis(CKXH-DXHZ)
Disable time, DX high impedance following last data bit from CLKX
high
13
td(CKXH-DXV)
Delay time, CLKX high to DX valid
14
td(FXH-DXV)
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
138
CLKX ext
2.5 + D1
(8)
ns
ns
13 + D2 (8)
23 + D2 (8)
Delay time, FSX high to DX valid
FSX int
-4 (9)
13 (9)
ONLY applies when in data
delay 0 (XDATDLY = 00b) mode
FSX ext
-2 (9)
23 (9)
ns
ns
ns
ns
CLKRP = CLKXP = FSRP = FSXP = 0. If polarity of any of the signals is inverted, then the timing references of that signal are also
inverted.
Minimum delay times also represent minimum output hold times.
Minimum CLKR/X cycle times must be met, even when CLKR/X is generated by an internal clock source. Minimum CLKR/X cycle times
are based on internal logic speed; the maximum usable speed may be lower due to EDMA limitations and AC timing requirements.
P = AYNC3 period in ns. For example, when the ASYNC clock domain is running at 100 MHz, use 10 ns.
Use whichever value is greater.
C = H or L
S = sample rate generator input clock = P if CLKSM = 1 (P = ASYNC period)
S = sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)
H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even
H = (CLKGDV + 1)/2 * S if CLKGDV is odd
L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even
L = (CLKGDV + 1)/2 * S if CLKGDV is odd
CLKGDV should be set appropriately to ensure the McBSP bit rate does not exceed the maximum limit (see (4) above).
Extra delay from CLKX high to DX valid applies only to the first data bit of a device, if and only if DXENA = 1 in SPCR.
if DXENA = 0, then D1 = D2 = 0
if DXENA = 1, then D1 = 6P, D2 = 12P
Extra delay from CLKX high to DX valid applies only to the first data bit of a device, if and only if DXENA = 1 in SPCR.
if DXENA = 0, then D1 = D2 = 0
if DXENA = 1, then D1 = 6P, D2 = 12P
Extra delay from FSX high to DX valid applies only to the first data bit of a device, if and only if DXENA = 1 in SPCR.
if DXENA = 0, then D1 = D2 = 0
if DXENA = 1, then D1 = 6P, D2 = 12P
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
SPRS586 – JUNE 2009
CLKS
1
2
3
3
CLKR
4
4
FSR (int)
5
6
FSR (ext)
7
8
DR
Bit(n1)
(n2)
(n3)
2
3
PRODUCT PREVIEW
3
CLKX
9
FSX (int)
11
10
FSX (ext)
FSX (XDATDLY=00b)
14
13 (A)
Bit(n1)
12
DX
Bit 0
13 (A)
(n2)
(n3)
Figure 6-33. McBSP Timing(B)
Table 6-58. Timing Requirements for McBSP0 FSR When GSYNC = 1 (see Figure 6-34)
NO.
1.2V
PARAMETER
MIN
MAX
1.1V
MIN
MAX
1.0V
MIN
MAX
UNIT
1
tsu(FRH-CKSH)
Setup time, FSR high before CLKS high
4
4.5
5
ns
2
th(CKSH-FRH)
Hold time, FSR high after CLKS high
4
4
4
ns
Table 6-59. Timing Requirements for McBSP1 FSR When GSYNC = 1 (see Figure 6-34)
NO.
1.2V
PARAMETER
MIN
MAX
1.1V
MIN
MAX
1.0V
MIN
MAX
UNIT
1
tsu(FRH-CKSH)
Setup time, FSR high before CLKS high
5
5
10
ns
2
th(CKSH-FRH)
Hold time, FSR high after CLKS high
4
4
4
ns
CLKS
1
2
FSR external
CLKR/X (no need to resync)
CLKR/X (needs resync)
Figure 6-34. FSR Timing When GSYNC = 1
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
139
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
www.ti.com
6.16 Serial Peripheral Interface Ports (SPI0, SPI1)
Figure 6-35 is a block diagram of the SPI module, which is a simple shift register and buffer plus control
logic. Data is written to the shift register before transmission occurs and is read from the buffer at the end
of transmission. The SPI can operate either as a master, in which case, it initiates a transfer and drives
the SPIx_CLK pin, or as a slave. Four clock phase and polarity options are supported as well as many
data formatting options.
SPIx_SIMO
SPIx_SOMI
Peripheral
Configuration Bus
PRODUCT PREVIEW
Interrupt and
DMA Requests
16-Bit Shift Register
16-Bit Buffer
SPIx_ENA
State
GPIO
Machine SPIx_SCS
Control
(all pins) Clock SPIx_CLK
Control
Figure 6-35. Block Diagram of SPI Module
The SPI supports 3-, 4-, and 5-pin operation with three basic pins (SPIx_CLK, SPIx_SIMO, and
SPIx_SOMI) and two optional pins (SPIx_SCS, SPIx_ENA).
The optional SPIx_SCS (Slave Chip Select) pin is most useful to enable in slave mode when there are
other slave devices on the same SPI port. The device will only shift data and drive the SPIx_SOMI pin
when SPIx_SCS is held low.
In slave mode, SPIx_ENA is an optional output and can be driven in either a push-pull or open-drain
manner. The SPIx_ENA output provides the status of the internal transmit buffer (SPIDAT0/1 registers). In
four-pin mode with the enable option, SPIx_ENA is asserted only when the transmit buffer is full, indicating
that the slave is ready to begin another transfer. In five-pin mode, the SPIx_ENA is additionally qualified
by SPIx_SCS being asserted. This allows a single handshake line to be shared by multiple slaves on the
same SPI bus.
In master mode, the SPIx_ENA pin is an optional input and the master can be configured to delay the start
of the next transfer until the slave asserts SPIx_ENA. The addition of this handshake signal simplifies SPI
communications and, on average, increases SPI bus throughput since the master does not need to delay
each transfer long enough to allow for the worst-case latency of the slave device. Instead, each transfer
can begin as soon as both the master and slave have actually serviced the previous SPI transfer.
140
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
SPRS586 – JUNE 2009
Optional − Slave Chip Select
SPIx_SCS
SPIx_SCS
SPIx_ENA
SPIx_ENA
SPIx_CLK
SPIx_CLK
SPIx_SOMI
SPIx_SOMI
SPIx_SIMO
SPIx_SIMO
MASTER SPI
SLAVE SPI
PRODUCT PREVIEW
Optional Enable (Ready)
Figure 6-36. Illustration of SPI Master-to-SPI Slave Connection
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
141
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
www.ti.com
6.16.1 SPI Peripheral Registers Description(s)
Table 6-60 is a list of the SPI registers.
Table 6-60. SPIx Configuration Registers
PRODUCT PREVIEW
142
SPI0
BYTE ADDRESS
SPI1
BYTE ADDRESS
0x01C4 1000
0x01F0 E000
SPIGCR0
Global Control Register 0
0x01C4 1004
0x01F0 E004
SPIGCR1
Global Control Register 1
0x01C4 1008
0x01F0 E008
SPIINT0
Interrupt Register
0x01C4 100C
0x01F0 E00C
SPILVL
Interrupt Level Register
0x01C4 1010
0x01F0 E010
SPIFLG
Flag Register
0x01C4 1014
0x01F0 E014
SPIPC0
Pin Control Register 0 (Pin Function)
REGISTER NAME
DESCRIPTION
0x01C4 1018
0x01F0 E018
SPIPC1
Pin Control Register 1 (Pin Direction)
0x01C4 101C
0x01F0 E01C
SPIPC2
Pin Control Register 2 (Pin Data In)
0x01C4 1020
0x01F0 E020
SPIPC3
Pin Control Register 3 (Pin Data Out)
0x01C4 1024
0x01F0 E024
SPIPC4
Pin Control Register 4 (Pin Data Set)
0x01C4 1028
0x01F0 E028
SPIPC5
Pin Control Register 5 (Pin Data Clear)
0x01C4 102C
0x01F0 E02C
Reserved
Reserved - Do not write to this register
0x01C4 1030
0x01F0 E030
Reserved
Reserved - Do not write to this register
0x01C4 1034
0x01F0 E034
Reserved
Reserved - Do not write to this register
0x01C4 1038
0x01F0 E038
SPIDAT0
Shift Register 0 (without format select)
0x01C4 103C
0x01F0 E03C
SPIDAT1
Shift Register 1 (with format select)
0x01C4 1040
0x01F0 E040
SPIBUF
Buffer Register
0x01C4 1044
0x01F0 E044
SPIEMU
Emulation Register
0x01C4 1048
0x01F0 E048
SPIDELAY
Delay Register
0x01C4 104C
0x01F0 E04C
SPIDEF
Default Chip Select Register
0x01C4 1050
0x01F0 E050
SPIFMT0
Format Register 0
0x01C4 1054
0x01F0 E054
SPIFMT1
Format Register 1
0x01C4 1058
0x01F0 E058
SPIFMT2
Format Register 2
0x01C4 105C
0x01F0 E05C
SPIFMT3
Format Register 3
0x01C4 1060
0x01F0 E060
INTVEC0
Interrupt Vector for SPI INT0
0x01C4 1064
0x01F0 E064
INTVEC1
Interrupt Vector for SPI INT1
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
SPRS586 – JUNE 2009
6.16.2 SPI Electrical Data/Timing
6.16.2.1 Serial Peripheral Interface (SPI) Timing
Table 6-61 through Table 6-76 assume testing over recommended operating conditions (see Figure 6-37
through Figure 6-40).
Table 6-61. General Timing Requirements for SPI0 Master Modes (1)
PARAMETER
1.2V
1.1V
1.0V
MIN
MAX
MIN
MAX
MIN
MAX
20 (2)
256P
30 (2)
256P
40 (2)
256P
UNIT
1
tc(SPC)M
Cycle Time, SPI0_CLK, All Master
Modes
2
tw(SPCH)M
Pulse Width High, SPI0_CLK, All
Master Modes
0.5M-1
0.5M-1
0.5M-1
ns
3
tw(SPCL)M
Pulse Width Low, SPI0_CLK, All
Master Modes
0.5M-1
0.5M-1
0.5M-1
ns
Polarity = 0, Phase = 0,
to SPI0_CLK rising
5
5
6
Polarity = 0, Phase = 1,
to SPI0_CLK rising
-0.5M+5
-0.5M+5
-0.5M+6
td(SIMO_SPC)M
Delay,
initial
data bit
valid on
SPI0_SI
MO after
initial
edge on
SPI0_CL
K (3)
Polarity = 1, Phase = 0,
to SPI0_CLK falling
5
5
6
Polarity = 1, Phase = 1,
to SPI0_CLK falling
-0.5M+5
-0.5M+5
-0.5M+6
Delay,
subsequ
ent bits
valid on
SPI0_SI
MO after
transmit
edge of
SPI0_CL
K
Polarity = 0, Phase = 0,
from SPI0_CLK rising
5
5
6
Polarity = 0, Phase = 1,
from SPI0_CLK falling
5
5
6
Polarity = 1, Phase = 0,
from SPI0_CLK falling
5
5
6
Polarity = 1, Phase = 1,
from SPI0_CLK rising
5
5
6
Output
hold
time,
SPI0_SI
MO valid
after
receive
edge of
SPI0_CL
K
Polarity = 0, Phase = 0,
from SPI0_CLK falling
0.5M-3
0.5M-3
0.5M-3
Polarity = 0, Phase = 1,
from SPI0_CLK rising
0.5M-3
0.5M-3
0.5M-3
Polarity = 1, Phase = 0,
from SPI0_CLK rising
0.5M-3
0.5M-3
0.5M-3
Polarity = 1, Phase = 1,
from SPI0_CLK falling
0.5M-3
0.5M-3
0.5M-3
Input
Setup
Time,
SPI0_S
OMI
valid
before
receive
edge of
SPI0_CL
K
Polarity = 0, Phase = 0,
to SPI0_CLK falling
1.5
1.5
1.5
Polarity = 0, Phase = 1,
to SPI0_CLK rising
1.5
1.5
1.5
Polarity = 1, Phase = 0,
to SPI0_CLK rising
1.5
1.5
1.5
Polarity = 1, Phase = 1,
to SPI0_CLK falling
1.5
1.5
1.5
4
5
6
7
(1)
(2)
(3)
td(SPC_SIMO)M
toh(SPC_SIMO)M
tsu(SOMI_SPC)M
ns
ns
ns
ns
ns
P = SYSCLK2 period; M = tc(SPC)M (SPI master bit clock period)
This timing is limited by the timing shown or 2P, whichever is greater.
First bit may be MSB or LSB depending upon SPI configuration. MO(0) refers to first bit and MO(n) refers to last bit output on
SPI0_SIMO. MI(0) refers to the first bit input and MI(n) refers to the last bit input on SPI0_SOMI.
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
143
PRODUCT PREVIEW
NO.
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
www.ti.com
Table 6-61. General Timing Requirements for SPI0 Master Modes (continued)
NO.
8
1.2V
PARAMETER
tih(SPC_SOMI)M
Input
Hold
Time,
SPI0_S
OMI
valid
after
receive
edge of
SPI0_CL
K
MIN
1.1V
MAX
MIN
1.0V
MAX
MIN
Polarity = 0, Phase = 0,
from SPI0_CLK falling
4
4
5
Polarity = 0, Phase = 1,
from SPI0_CLK rising
4
4
5
Polarity = 1, Phase = 0,
from SPI0_CLK rising
4
4
5
Polarity = 1, Phase = 1,
from SPI0_CLK falling
4
4
5
MAX
UNIT
ns
PRODUCT PREVIEW
Table 6-62. General Timing Requirements for SPI0 Slave Modes (1)
NO.
PARAMETER
1.2V
1.1V
1.0V
MIN
MAX
MIN
MAX
MIN
MAX
40 (2)
256P
50 (2)
256P
60 (2)
256P
UNIT
9
tc(SPC)S
Cycle Time, SPI0_CLK, All Slave Modes
10
tw(SPCH)S
Pulse Width High, SPI0_CLK, All Slave Modes
18
22
27
ns
11
tw(SPCL)S
Pulse Width Low, SPI0_CLK, All Slave Modes
18
22
27
ns
Polarity = 0, Phase = 0,
to SPI0_CLK rising
2P
2P
2P
Polarity = 0, Phase = 1,
to SPI0_CLK rising
2P
2P
2P
Polarity = 1, Phase = 0,
to SPI0_CLK falling
2P
2P
2P
Polarity = 1, Phase = 1,
to SPI0_CLK falling
2P
2P
2P
12
13
14
15
(1)
(2)
(3)
(4)
144
tsu(SOMI_SPC)S
td(SPC_SOMI)S
toh(SPC_SOMI)S
tsu(SIMO_SPC)S
Setup time, transmit
data written to SPI
before initial clock
edge from
master. (3) (4)
Delay, subsequent
bits valid on
SPI0_SOMI after
transmit edge of
SPI0_CLK
Output hold time,
SPI0_SOMI valid
after
receive edge of
SPI0_CLK
Input Setup Time,
SPI0_SIMO valid
before
receive edge of
SPI0_CLK
ns
ns
Polarity = 0, Phase = 0,
from SPI0_CLK rising
17
20
27
Polarity = 0, Phase = 1,
from SPI0_CLK falling
17
20
27
Polarity = 1, Phase = 0,
from SPI0_CLK falling
17
20
27
Polarity = 1, Phase = 1,
from SPI0_CLK rising
17
20
27
ns
Polarity = 0, Phase = 0,
from SPI0_CLK falling
0.5S-6
0.5S-16
0.5S-20
Polarity = 0, Phase = 1,
from SPI0_CLK rising
0.5S-6
0.5S-16
0.5S-20
Polarity = 1, Phase = 0,
from SPI0_CLK rising
0.5S-6
0.5S-16
0.5S-20
Polarity = 1, Phase = 1,
from SPI0_CLK falling
0.5S-6
0.5S-16
0.5S-20
Polarity = 0, Phase = 0,
to SPI0_CLK falling
1.5
1.5
1.5
Polarity = 0, Phase = 1,
to SPI0_CLK rising
1.5
1.5
1.5
Polarity = 1, Phase = 0,
to SPI0_CLK rising
1.5
1.5
1.5
Polarity = 1, Phase = 1,
to SPI0_CLK falling
1.5
1.5
1.5
ns
ns
P = SYSCLK2 period; S = tc(SPC)S (SPI slave bit clock period)
This timing is limited by the timing shown or 2P, whichever is greater.
First bit may be MSB or LSB depending upon SPI configuration. SO(0) refers to first bit and SO(n) refers to last bit output on
SPI0_SOMI. SI(0) refers to the first bit input and SI(n) refers to the last bit input on SPI0_SIMO.
Measured from the termination of the write of new data to the SPI module, In analyzing throughput requirements, additional internal bus
cycles must be accounted for to allow data to be written to the SPI module by the DSP CPU.
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
SPRS586 – JUNE 2009
Table 6-62. General Timing Requirements for SPI0 Slave Modes (continued)
NO.
tih(SPC_SIMO)S
Input Hold Time,
SPI0_SIMO valid
after
receive edge of
SPI0_CLK
1.2V
MIN
1.1V
MAX
MIN
1.0V
MAX
MIN
Polarity = 0, Phase = 0,
from SPI0_CLK falling
4
4
5
Polarity = 0, Phase = 1,
from SPI0_CLK rising
4
4
5
Polarity = 1, Phase = 0,
from SPI0_CLK rising
4
4
5
Polarity = 1, Phase = 1,
from SPI0_CLK falling
4
4
5
MAX
UNIT
ns
PRODUCT PREVIEW
16
PARAMETER
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
145
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
www.ti.com
Table 6-63. Additional SPI0 Master Timings, 4-Pin Enable Option
NO.
17
18
(1)
(2)
(3)
(4)
(5)
146
1.2V
PARAMETER
td(ENA_SPC)M
td(SPC_ENA)M
Delay from slave assertion of SPI0_ENA active to first
SPI0_CLK from master. (4)
Max delay for slave to deassert SPI0_ENA after final SPI0_CLK
edge to ensure master does not begin the next transfer. (5)
(1) (2) (3)
MIN
MAX
1.1V
MIN
1.0V
MAX
MIN
MAX
Polarity = 0, Phase = 0,
to SPI0_CLK rising
3P+5
3P+5
3P+6
Polarity = 0, Phase = 1,
to SPI0_CLK rising
0.5M+3P+5
0.5M+3P+5
0.5M+3P+6
Polarity = 1, Phase = 0,
to SPI0_CLK falling
3P+5
3P+5
3P+6
Polarity = 1, Phase = 1,
to SPI0_CLK falling
0.5M+3P+5
0.5M+3P+5
0.5M+3P+6
Polarity = 0, Phase = 0,
from SPI0_CLK falling
0.5M+P+5
0.5M+P+5
0.5M+P+6
Polarity = 0, Phase = 1,
from SPI0_CLK falling
P+5
P+5
P+6
Polarity = 1, Phase = 0,
from SPI0_CLK rising
0.5M+P+5
0.5M+P+5
0.5M+P+6
Polarity = 1, Phase = 1,
from SPI0_CLK rising
P+5
P+5
P+6
UNIT
ns
ns
These parameters are in addition to the general timings for SPI master modes (Table 6-61).
P = SYSCLK2 period; M = tc(SPC)M (SPI master bit clock period)
Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes.
In the case where the master SPI is ready with new data before SPI0_ENA assertion.
In the case where the master SPI is ready with new data before SPI0_EN A deassertion.
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
SPRS586 – JUNE 2009
Table 6-64. Additional SPI0 Master Timings, 4-Pin Chip Select Option
NO.
19
20
(1)
(2)
(3)
(4)
(5)
(6)
(7)
1.2V
PARAMETER
td(SCS_SPC)M
td(SPC_SCS)M
Delay from SPI0_SCS active to first SPI0_CLK (4) (5)
Delay from final SPI0_CLK edge to master deasserting
SPI0_SCS (6) (7)
(1) (2) (3)
MIN
1.1V
MAX
MIN
1.0V
MAX
MIN
Polarity = 0, Phase = 0,
to SPI0_CLK rising
2P-1
2P-2
2P-3
Polarity = 0, Phase = 1,
to SPI0_CLK rising
0.5M+2P-1
0.5M+2P-2
0.5M+2P-3
Polarity = 1, Phase = 0,
to SPI0_CLK falling
2P-1
2P-2
2P-3
Polarity = 1, Phase = 1,
to SPI0_CLK falling
0.5M+2P-1
0.5M+2P-2
0.5M+2P-3
Polarity = 0, Phase = 0,
from SPI0_CLK falling
0.5M+P-1
0.5M+P-2
0.5M+P-3
Polarity = 0, Phase = 1,
from SPI0_CLK falling
P-1
P-2
P-3
Polarity = 1, Phase = 0,
from SPI0_CLK rising
0.5M+P-1
0.5M+P-2
0.5M+P-3
Polarity = 1, Phase = 1,
from SPI0_CLK rising
P-1
P-2
P-3
MAX
UNIT
ns
ns
These parameters are in addition to the general timings for SPI master modes (Table 6-61).
P = SYSCLK2 period; M = tc(SPC)M (SPI master bit clock period)
Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes.
In the case where the master SPI is ready with new data before SPI0_SCS assertion.
This delay can be increased under software control by the register bit field SPIDELAY.C2TDELAY[4:0].
Except for modes when SPIDAT1.CSHOLD is enabled and there is additional data to transmit. In this case, SPI0_SCS will remain asserted.
This delay can be increased under software control by the register bit field SPIDELAY.T2CDELAY[4:0].
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
147
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
www.ti.com
Table 6-65. Additional SPI0 Master Timings, 5-Pin Option
NO.
18
20
21
22
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
148
1.2V
PARAMETER
td(SPC_ENA)M
td(SPC_SCS)M
Max delay for slave to deassert
SPI0_ENA after final SPI0_CLK edge
to ensure master does not begin the
next transfer. (4)
Delay from final SPI0_CLK edge to
master deasserting SPI0_SCS (5) (6)
MIN
td(SCS_SPC)M
1.1V
MAX
MIN
1.0V
MAX
MIN
MAX
Polarity = 0, Phase = 0,
from SPI0_CLK falling
0.5M+P+5
0.5M+P+5
0.5M+P+6
Polarity = 0, Phase = 1,
from SPI0_CLK falling
P+5
P+5
P+6
Polarity = 1, Phase = 0,
from SPI0_CLK rising
0.5M+P+5
0.5M+P+5
0.5M+P+6
Polarity = 1, Phase = 1,
from SPI0_CLK rising
P+5
P+5
P+6
UNIT
ns
Polarity = 0, Phase = 0,
from SPI0_CLK falling
0.5M+P-2
0.5M+P-2
0.5M+P-3
Polarity = 0, Phase = 1,
from SPI0_CLK falling
P-2
P-2
P-3
Polarity = 1, Phase = 0,
from SPI0_CLK rising
0.5M+P-2
0.5M+P-2
0.5M+P-3
Polarity = 1, Phase = 1,
from SPI0_CLK rising
P-2
P-2
P-3
ns
Max delay for slave SPI to drive SPI0_ENA valid after master
td(SCSL_ENAL)M asserts SPI0_SCS to delay the master from beginning the next
transfer,
Delay from SPI0_SCS active to first
SPI0_CLK (7) (8) (9)
(1) (2) (3)
C2TDELAY+P
C2TDELAY+P
C2TDELAY+P
Polarity = 0, Phase = 0,
to SPI0_CLK rising
2P-2
2P-2
2P-3
Polarity = 0, Phase = 1,
to SPI0_CLK rising
0.5M+2P-2
0.5M+2P-2
0.5M+2P-3
Polarity = 1, Phase = 0,
to SPI0_CLK falling
2P-2
2P-2
2P-3
Polarity = 1, Phase = 1,
to SPI0_CLK falling
0.5M+2P-2
0.5M+2P-2
0.5M+2P-3
ns
ns
These parameters are in addition to the general timings for SPI master modes (Table 6-62).
P = SYSCLK2 period; M = tc(SPC)M (SPI master bit clock period)
Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes.
In the case where the master SPI is ready with new data before SPI0_ENA deassertion.
Except for modes when SPIDAT1.CSHOLD is enabled and there is additional data to transmit. In this case, SPI0_SCS will remain asserted.
This delay can be increased under software control by the register bit field SPIDELAY.T2CDELAY[4:0].
If SPI0_ENA is asserted immediately such that the transmission is not delayed by SPI0_ENA.
In the case where the master SPI is ready with new data before SPI0_SCS assertion.
This delay can be increased under software control by the register bit field SPIDELAY.C2TDELAY[4:0].
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
SPRS586 – JUNE 2009
Table 6-65. Additional SPI0 Master Timings, 5-Pin Option (continued)
NO.
23
1.2V
PARAMETER
td(ENA_SPC)M
Delay from assertion of SPI0_ENA
low to first SPI0_CLK edge. (10)
MIN
1.1V
MAX
MIN
1.0V
MAX
MIN
MAX
Polarity = 0, Phase = 0,
to SPI0_CLK rising
3P+5
3P+5
3P+6
Polarity = 0, Phase = 1,
to SPI0_CLK rising
0.5M+3P+5
0.5M+3P+5
0.5M+3P+6
Polarity = 1, Phase = 0,
to SPI0_CLK falling
3P+5
3P+5
3P+6
Polarity = 1, Phase = 1,
to SPI0_CLK falling
0.5M+3P+5
0.5M+3P+5
0.5M+3P+6
UNIT
ns
(10) If SPI0_ENA was initially deasserted high and SPI0_CLK is delayed.
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
149
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
www.ti.com
Table 6-66. Additional SPI0 Slave Timings, 4-Pin Enable Option
NO.
24
(1)
(2)
(3)
150
1.2V
PARAMETER
td(SPC_ENAH)S
Delay from final
SPI0_CLK edge to
slave deasserting
SPI0_ENA.
(1) (2) (3)
1.1V
1.0V
MIN
MAX
MIN
MAX
MIN
MAX
Polarity = 0, Phase = 0,
from SPI0_CLK falling
1.5P-3
2.5P+17.5
1.5P-3
2.5P+20
1.5P-3
2.5P+27
Polarity = 0, Phase = 1,
from SPI0_CLK falling
– 0.5M+1.5P-3
–
0.5M+2.5P+17.
5
– 0.5M+1.5P-3
–
0.5M+2.5P+20
– 0.5M+1.5P-3
–
0.5M+2.5P+27
Polarity = 1, Phase = 0,
from SPI0_CLK rising
1.5P-3
2.5P+17.5
1.5P-3
2.5P+20
1.5P-3
2.5P+27
Polarity = 1, Phase = 1,
from SPI0_CLK rising
– 0.5M+1.5P-3
–
0.5+2.5P+17.5
– 0.5M+1.5P-3
– 0.5+2.5P+20
– 0.5M+1.5P-3
– 0.5+2.5P+27
UNIT
ns
These parameters are in addition to the general timings for SPI slave modes (Table 6-62).
P = SYSCLK2 period; M = tc(SPC)M (SPI master bit clock period)
Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes.
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
SPRS586 – JUNE 2009
Table 6-67. Additional SPI0 Slave Timings, 4-Pin Chip Select Option
NO.
25
26
1.2V
PARAMETER
td(SCSL_SPC)S
td(SPC_SCSH)S
MIN
Required delay from SPI0_SCS asserted at slave to first SPI0_CLK edge at slave.
Required delay from final SPI0_CLK edge before SPI0_SCS is
deasserted.
(1) (2) (3)
1.1V
MAX
MIN
1.0V
MAX
MIN
P + 1.5
P + 1.5
P + 1.5
Polarity = 0, Phase = 0,
from SPI0_CLK falling
0.5M+P+4
0.5M+P+4
0.5M+P+5
Polarity = 0, Phase = 1,
from SPI0_CLK falling
P+4
P+4
P+5
Polarity = 1, Phase = 0,
from SPI0_CLK rising
0.5M+P+4
0.5M+P+4
0.5M+P+5
Polarity = 1, Phase = 1,
from SPI0_CLK rising
P+4
P+4
P+5
MAX
UNIT
ns
ns
27
tena(SCSL_SOMI)S
Delay from master asserting SPI0_SCS to slave driving SPI0_SOMI valid
P+17.
5
P+20
P+27
ns
28
tdis(SCSH_SOMI)S
Delay from master deasserting SPI0_SCS to slave 3-stating SPI0_SOMI
P+17.
5
P+20
P+27
ns
(1)
(2)
(3)
These parameters are in addition to the general timings for SPI slave modes (Table 6-62).
P = SYSCLK2 period; M = tc(SPC)M (SPI master bit clock period)
Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes.
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
151
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
www.ti.com
Table 6-68. Additional SPI0 Slave Timings, 5-Pin Option
NO.
25
26
1.2V
PARAMETER
td(SCSL_SPC)S
td(SPC_SCSH)S
MIN
Required delay from SPI0_SCS asserted at slave to first SPI0_CLK edge at slave.
Required delay from final SPI0_CLK edge before SPI0_SCS is
deasserted.
(1) (2) (3)
1.1V
MAX
MIN
1.0V
MAX
MIN
P + 1.5
P + 1.5
P + 1.5
Polarity = 0, Phase = 0,
from SPI0_CLK falling
0.5M+P
+4
0.5M+P
+4
0.5M+P
+5
Polarity = 0, Phase = 1,
from SPI0_CLK falling
P+4
P+4
P+5
Polarity = 1, Phase = 0,
from SPI0_CLK rising
0.5M+P
+4
0.5M+P
+4
0.5M+P
+5
Polarity = 1, Phase = 1,
from SPI0_CLK rising
P+4
P+4
P+5
MAX
UNIT
ns
ns
27
tena(SCSL_SOMI)S
Delay from master asserting SPI0_SCS to slave driving SPI0_SOMI valid
P+17.5
P+20
P+27
ns
28
tdis(SCSH_SOMI)S
Delay from master deasserting SPI0_SCS to slave 3-stating SPI0_SOMI
P+17.5
P+20
P+27
ns
29
tena(SCSL_ENA)S
Delay from master deasserting SPI0_SCS to slave driving SPI0_ENA valid
17.5
20
27
ns
Polarity = 0, Phase = 0,
from SPI0_CLK falling
2.5P+17
.5
2.5P+20
2.5P+27
Polarity = 0, Phase = 1,
Delay from final clock receive edge on SPI0_CLK to slave 3-stating from SPI0_CLK rising
or driving high SPI0_ENA. (4)
Polarity = 1, Phase = 0,
from SPI0_CLK rising
2.5P+17
.5
2.5P+20
2.5P+27
2.5P+17
.5
2.5P+20
2.5P+27
Polarity = 1, Phase = 1,
from SPI0_CLK falling
2.5P+17
.5
2.5P+20
2.5P+27
30
(1)
(2)
(3)
(4)
152
tdis(SPC_ENA)S
ns
These parameters are in addition to the general timings for SPI slave modes (Table 6-62).
P = SYSCLK2 period; M = tc(SPC)M (SPI master bit clock period)
Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes.
SPI0_ENA is driven low after the transmission completes if the SPIINT0.ENABLE_HIGHZ bit is programmed to 0. Otherwise it is tri-stated. If tri-stated, an external pullup resistor
should be used to provide a valid level to the master. This option is useful when tying several SPI slave devices to a single master.
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
SPRS586 – JUNE 2009
Table 6-69. General Timing Requirements for SPI1 Master Modes (1)
1
1.2V
PARAMETER
1.1V
1.0V
MIN
MAX
MIN
MAX
MIN
MAX
20 (2)
256P
30 (2)
256P
40 (2)
256P
UNIT
tc(SPC)M
Cycle Time, SPI1_CLK, All Master Modes
2
tw(SPCH)M
Pulse Width High, SPI1_CLK, All Master
Modes
0.5M-1
0.5M-1
0.5M-1
ns
3
tw(SPCL)M
Pulse Width Low, SPI1_CLK, All Master
Modes
0.5M-1
0.5M-1
0.5M-1
ns
4,5
5
td(SIMO_SPC)M
td(SPC_SIMO)M
Delay, initial data
bit valid on
SPI1_SIMO to
initial edge on
SPI1_CLK (3)
Polarity = 0, Phase =
0,
to SPI1_CLK rising
5
5
6
Polarity = 0, Phase =
1,
to SPI1_CLK rising
-0.5M+5
-0.5M+5
-0.5M+6
Polarity = 1, Phase =
0,
to SPI1_CLK falling
5
5
6
Polarity = 1, Phase =
1,
to SPI1_CLK falling
-0.5M+5
-0.5M+5
-0.5M+6
Polarity = 0, Phase =
0,
from SPI1_CLK
rising
5
5
6
5
5
6
ns
Polarity = 0, Phase =
1,
Delay, subsequent from SPI1_CLK
bits valid on
falling
SPI1_SIMO after
Polarity = 1, Phase =
transmit edge of
0,
SPI1_CLK
from SPI1_CLK
falling
ns
Polarity = 1, Phase =
1,
from SPI1_CLK
rising
6
(1)
(2)
(3)
toh(SPC_SIMO)M
Output hold time,
SPI1_SIMO valid
after
receive edge of
SPI1_CLK
ns
5
5
6
5
5
6
Polarity = 0, Phase =
0,
from SPI1_CLK
falling
0.5M-3
0.5M-3
0.5M-3
Polarity = 0, Phase =
1,
from SPI1_CLK
rising
0.5M-3
0.5M-3
0.5M-3
Polarity = 1, Phase =
0,
from SPI1_CLK
rising
0.5M-3
0.5M-3
0.5M-3
Polarity = 1, Phase =
1,
from SPI1_CLK
falling
0.5M-3
0.5M-3
0.5M-3
ns
P = SYSCLK2 period; M = tc(SPC)M (SPI master bit clock period)
This timing is limited by the timing shown or 2P, whichever is greater.
First bit may be MSB or LSB depending upon SPI configuration. MO(0) refers to first bit and MO(n) refers to last bit output on
SPI1_SIMO. MI(0) refers to the first bit input and MI(n) refers to the last bit input on SPI1_SOMI.
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
153
PRODUCT PREVIEW
NO.
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
www.ti.com
Table 6-69. General Timing Requirements for SPI1 Master Modes (continued)
NO.
7
PRODUCT PREVIEW
8
154
1.2V
PARAMETER
tsu(SOMI_SPC)M
tih(SPC_SOMI)M
Input Setup Time,
SPI1_SOMI valid
before
receive edge of
SPI1_CLK
Input Hold Time,
SPI1_SOMI valid
after
receive edge of
SPI1_CLK
MIN
1.1V
MAX
MIN
1.0V
MAX
MIN
Polarity = 0, Phase =
0,
to SPI1_CLK falling
1.5
1.5
1.5
Polarity = 0, Phase =
1,
to SPI1_CLK rising
1.5
1.5
1.5
Polarity = 1, Phase =
0,
to SPI1_CLK rising
1.5
1.5
1.5
Polarity = 1, Phase =
1,
to SPI1_CLK falling
1.5
1.5
1.5
Polarity = 0, Phase =
0,
from SPI1_CLK
falling
4
5
6
Polarity = 0, Phase =
1,
from SPI1_CLK
rising
4
5
6
Polarity = 1, Phase =
0,
from SPI1_CLK
rising
4
5
6
Polarity = 1, Phase =
1,
from SPI1_CLK
falling
4
5
6
Peripheral Information and Electrical Specifications
MAX
UNIT
ns
ns
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
SPRS586 – JUNE 2009
Table 6-70. General Timing Requirements for SPI1 Slave Modes (1)
1.2V
PARAMETER
1.1V
1.0V
MIN
MAX
MIN
MAX
MIN
MAX
40 (2)
256P
50 (2)
256P
60 (2)
256P
UNIT
9
tc(SPC)S
Cycle Time, SPI1_CLK, All Slave Modes
10
tw(SPCH)S
Pulse Width High, SPI1_CLK, All Slave Modes
18
22
27
ns
11
tw(SPCL)S
Pulse Width Low, SPI1_CLK, All Slave Modes
18
22
27
ns
Polarity = 0, Phase = 0,
to SPI1_CLK rising
2P
2P
2P
Polarity = 0, Phase = 1,
to SPI1_CLK rising
2P
2P
2P
Polarity = 1, Phase = 0,
to SPI1_CLK falling
2P
2P
2P
Polarity = 1, Phase = 1,
to SPI1_CLK falling
2P
2P
2P
12
tsu(SOMI_SPC)S
Setup time, transmit data
written to SPI before initial
clock edge from
master. (3) (4)
ns
Polarity = 0, Phase = 0,
from SPI1_CLK rising
13
td(SPC_SOMI)S
Polarity = 0, Phase = 1,
Delay, subsequent bits valid from SPI1_CLK falling
on SPI1_SOMI after
transmit edge of SPI1_CLK Polarity = 1, Phase = 0,
from SPI1_CLK falling
14
15
16
(1)
(2)
(3)
(4)
toh(SPC_SOMI)S
tsu(SIMO_SPC)S
tih(SPC_SIMO)S
Input Setup Time,
SPI1_SIMO valid before
receive edge of SPI1_CLK
Input Hold Time,
SPI1_SIMO valid after
receive edge of SPI1_CLK
15
17
19
15
17
19
15
17
19
15
17
19
ns
Polarity = 1, Phase = 1,
from SPI1_CLK rising
Output hold time,
SPI1_SOMI valid after
receive edge of SPI1_CLK
ns
Polarity = 0, Phase = 0,
from SPI1_CLK falling
0.5S-4
0.5S-10
0.5S-12
Polarity = 0, Phase = 1,
from SPI1_CLK rising
0.5S-4
0.5S-10
0.5S-12
Polarity = 1, Phase = 0,
from SPI1_CLK rising
0.5S-4
0.5S-10
0.5S-12
Polarity = 1, Phase = 1,
from SPI1_CLK falling
0.5S-4
0.5S-10
0.5S-12
Polarity = 0, Phase = 0,
to SPI1_CLK falling
1.5
1.5
1.5
Polarity = 0, Phase = 1,
to SPI1_CLK rising
1.5
1.5
1.5
Polarity = 1, Phase = 0,
to SPI1_CLK rising
1.5
1.5
1.5
Polarity = 1, Phase = 1,
to SPI1_CLK falling
1.5
1.5
1.5
Polarity = 0, Phase = 0,
from SPI1_CLK falling
4
5
6
Polarity = 0, Phase = 1,
from SPI1_CLK rising
4
5
6
Polarity = 1, Phase = 0,
from SPI1_CLK rising
4
5
6
Polarity = 1, Phase = 1,
from SPI1_CLK falling
4
5
6
ns
ns
ns
P = SYSCLK2 period; S = tc(SPC)S (SPI slave bit clock period)
This timing is limited by the timing shown or 2P, whichever is greater.
First bit may be MSB or LSB depending upon SPI configuration. SO(0) refers to first bit and SO(n) refers to last bit output on
SPI1_SOMI. SI(0) refers to the first bit input and SI(n) refers to the last bit input on SPI1_SIMO.
Measured from the termination of the write of new data to the SPI module, In analyzing throughput requirements, additional internal bus
cycles must be accounted for to allow data to be written to the SPI module by the DSP CPU.
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
155
PRODUCT PREVIEW
NO.
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
www.ti.com
Table 6-71. Additional (1) SPI1 Master Timings, 4-Pin Enable Option (2) (3)
NO.
17
td(EN
PRODUCT PREVIEW
18
(1)
(2)
(3)
(4)
(5)
1.2V
PARAMETER
A_SPC)M
td(SPC_ENA)M
Delay from slave
assertion of SPI1_ENA
active to first
SPI1_CLK from
master. (4)
Max delay for slave to
deassert SPI1_ENA
after final SPI1_CLK
edge to ensure master
does not begin the
next transfer. (5)
MIN
1.1V
MAX
MIN
1.0V
MAX
MIN
MAX
Polarity = 0, Phase = 0,
to SPI1_CLK rising
3P+5
3P+5
3P+6
Polarity = 0, Phase = 1,
to SPI1_CLK rising
0.5M+3P+5
0.5M+3P+5
0.5M+3P+6
Polarity = 1, Phase = 0,
to SPI1_CLK falling
3P+5
3P+5
3P+6
Polarity = 1, Phase = 1,
to SPI1_CLK falling
0.5M+3P+5
0.5M+3P+5
0.5M+3P+6
Polarity = 0, Phase = 0,
from SPI1_CLK falling
0.5M+P+5
0.5M+P+5
0.5M+P+6
Polarity = 0, Phase = 1,
from SPI1_CLK falling
P+5
P+5
P+6
Polarity = 1, Phase = 0,
from SPI1_CLK rising
0.5M+P+5
0.5M+P+5
0.5M+P+6
Polarity = 1, Phase = 1,
from SPI1_CLK rising
P+5
P+5
P+6
UNIT
ns
ns
These parameters are in addition to the general timings for SPI master modes (Table 6-69).
P = SYSCLK2 period; M = tc(SPC)M (SPI master bit clock period)
Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes.
In the case where the master SPI is ready with new data before SPI1_ENA assertion.
In the case where the master SPI is ready with new data before SPI1_ENA deassertion.
Table 6-72. Additional (1) SPI1 Master Timings, 4-Pin Chip Select Option (2) (3)
NO.
19
20
(1)
(2)
(3)
(4)
(5)
(6)
(7)
156
PARAMETER
td(SCS_SPC)M
td(SPC_SCS)M
Delay from
SPI1_SCS active
to first
SPI1_CLK (4) (5)
Delay from final
SPI1_CLK edge to
master
deasserting
SPI1_SCS (6) (7)
1.2V
MIN
1.1V
MAX
MIN
1.0V
MAX
MIN
Polarity = 0, Phase = 0,
to SPI1_CLK rising
2P-1
2P-5
2P-6
Polarity = 0, Phase = 1,
to SPI1_CLK rising
0.5M+2P-1
0.5M+2P-5
0.5M+2P-6
Polarity = 1, Phase = 0,
to SPI1_CLK falling
2P-1
2P-5
2P-6
Polarity = 1, Phase = 1,
to SPI1_CLK falling
0.5M+2P-1
0.5M+2P-5
0.5M+2P-6
Polarity = 0, Phase = 0,
from SPI1_CLK falling
0.5M+P-1
0.5M+P-5
0.5M+P-6
Polarity = 0, Phase = 1,
from SPI1_CLK falling
P-1
P-5
P-6
Polarity = 1, Phase = 0,
from SPI1_CLK rising
0.5M+P-1
0.5M+P-5
0.5M+P-6
Polarity = 1, Phase = 1,
from SPI1_CLK rising
P-1
P-5
P-6
MAX
UNIT
ns
ns
These parameters are in addition to the general timings for SPI master modes (Table 6-69).
P = SYSCLK2 period; M = tc(SPC)M (SPI master bit clock period)
Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes.
In the case where the master SPI is ready with new data before SPI1_SCS assertion.
This delay can be increased under software control by the register bit field SPIDELAY.C2TDELAY[4:0].
Except for modes when SPIDAT1.CSHOLD is enabled and there is additional data to transmit. In this case, SPI1_SCS will remain
asserted.
This delay can be increased under software control by the register bit field SPIDELAY.T2CDELAY[4:0].
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
SPRS586 – JUNE 2009
Table 6-73. Additional (1) SPI1 Master Timings, 5-Pin Option (2) (3)
NO.
18
20
21
22
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
1.2V
PARAMETER
td(SPC_ENA)M
td(SPC_SCS)M
MIN
Max delay for slave to deassert SPI1_ENA after final
SPI1_CLK edge to ensure master does not begin the next
transfer. (4)
Delay from final SPI1_CLK edge to
master deasserting SPI1_SCS (5) (6)
td(SCS_SPC)M
Delay from SPI1_SCS active to first SPI1_CLK
MAX
MIN
1.0V
MAX
MIN
MAX
Polarity = 0, Phase = 0,
from SPI1_CLK falling
0.5M+P+5
0.5M+P+5
0.5M+P+6
Polarity = 0, Phase = 1,
from SPI1_CLK falling
P+5
P+5
P+6
Polarity = 1, Phase = 0,
from SPI1_CLK rising
0.5M+P+5
0.5M+P+5
0.5M+P+6
Polarity = 1, Phase = 1,
from SPI1_CLK rising
P+5
P+5
P+6
UNIT
ns
Polarity = 0, Phase = 0,
from SPI1_CLK falling
0.5M+P-1
0.5M+P-5
0.5M+P-6
Polarity = 0, Phase = 1,
from SPI1_CLK falling
P-1
P-5
P-6
Polarity = 1, Phase = 0,
from SPI1_CLK rising
0.5M+P-1
0.5M+P-5
0.5M+P-6
Polarity = 1, Phase = 1,
from SPI1_CLK rising
P-1
P-5
P-6
ns
Max delay for slave SPI to drive SPI1_ENA valid after master asserts SPI1_SCS to
td(SCSL_ENAL)M delay the
master from beginning the next transfer,
(7) (8) (9)
1.1V
C2TDELAY+P
C2TDELAY+P
C2TDELAY+P
Polarity = 0, Phase = 0,
to SPI1_CLK rising
2P-1
2P-5
2P-6
Polarity = 0, Phase = 1,
to SPI1_CLK rising
0.5M+2P-1
0.5M+2P-5
0.5M+2P-6
Polarity = 1, Phase = 0,
to SPI1_CLK falling
2P-1
2P-5
2P-6
Polarity = 1, Phase = 1,
to SPI1_CLK falling
0.5M+2P-1
0.5M+2P-5
0.5M+2P-6
ns
ns
These parameters are in addition to the general timings for SPI master modes (Table 6-70).
P = SYSCLK2 period; M = tc(SPC)M (SPI master bit clock period)
Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes.
In the case where the master SPI is ready with new data before SPI1_ENA deassertion.
Except for modes when SPIDAT1.CSHOLD is enabled and there is additional data to transmit. In this case, SPI1_SCS will remain asserted.
This delay can be increased under software control by the register bit field SPIDELAY.T2CDELAY[4:0].
If SPI1_ENA is asserted immediately such that the transmission is not delayed by SPI1_ENA.
In the case where the master SPI is ready with new data before SPI1_SCS assertion.
This delay can be increased under software control by the register bit field SPIDELAY.C2TDELAY[4:0].
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
157
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
www.ti.com
Table 6-73. Additional SPI1 Master Timings, 5-Pin Option (continued)
NO.
23
1.2V
PARAMETER
td(ENA_SPC)M
Delay from assertion of SPI1_ENA low to first SPI1_CLK
edge. (10)
MIN
1.1V
MAX
MIN
1.0V
MAX
MIN
MAX
Polarity = 0, Phase = 0,
to SPI1_CLK rising
3P+5
3P+5
3P+6
Polarity = 0, Phase = 1,
to SPI1_CLK rising
0.5M+3P+5
0.5M+3P+5
0.5M+3P+6
Polarity = 1, Phase = 0,
to SPI1_CLK falling
3P+5
3P+5
3P+6
Polarity = 1, Phase = 1,
to SPI1_CLK falling
0.5M+3P+5
0.5M+3P+5
0.5M+3P+6
UNIT
ns
(10) If SPI1_ENA was initially deasserted high and SPI1_CLK is delayed.
158
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
SPRS586 – JUNE 2009
Table 6-74. Additional (1) SPI1 Slave Timings, 4-Pin Enable Option (2) (3)
NO.
24
(1)
(2)
(3)
1.2V
PARAMETER
Delay from final
td(SPC_ENAH)S SPI1_CLK edge to slave
deasserting SPI1_ENA.
1.1V
1.0V
MIN
MAX
MIN
MAX
MIN
MAX
Polarity = 0, Phase = 0,
from SPI1_CLK falling
1.5P-3
2.5P+15
1.5P-10
2.5P+17
1.5P-12
2.5P+19
Polarity = 0, Phase = 1,
from SPI1_CLK falling
–0.5M+1.5P-3
–0.5M+2.5P+15
–0.5M+1.5P-10
–0.5M+2.5P+17
–0.5M+1.5P-12
–0.5M+2.5P+19
Polarity = 1, Phase = 0,
from SPI1_CLK rising
1.5P-3
2.5P+15
1.5P-10
2.5P+17
1.5P-12
2.5P+19
Polarity = 1, Phase = 1,
from SPI1_CLK rising
–0.5M+1.5P-3
–0.5M+2.5P+15
–0.5M+1.5P-10
–0.5M+2.5P+17
–0.5M+1.5P-12
–0.5M+2.5P+19
UNIT
ns
These parameters are in addition to the general timings for SPI slave modes (Table 6-70).
P = SYSCLK2 period; M = tc(SPC)M (SPI master bit clock period)
Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes.
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
159
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
www.ti.com
Table 6-75. Additional (1) SPI1 Slave Timings, 4-Pin Chip Select Option (2) (3)
NO.
25
26
1.2V
PARAMETER
td(SCSL_SPC)S
td(SPC_SCSH)S
MIN
Required delay from SPI1_SCS asserted at slave to first SPI1_CLK edge at slave.
Required delay from final SPI1_CLK edge before
SPI1_SCS is deasserted.
1.1V
MAX
MIN
1.0V
MAX
MIN
P+1.5
P+1.5
P+1.5
Polarity = 0, Phase = 0,
from SPI1_CLK falling
0.5M+P+4
0.5M+P+5
0.5M+P+6
Polarity = 0, Phase = 1,
from SPI1_CLK falling
P+4
P+5
P+6
Polarity = 1, Phase = 0,
from SPI1_CLK rising
0.5M+P+4
0.5M+P+5
0.5M+P+6
Polarity = 1, Phase = 1,
from SPI1_CLK rising
P+4
P+5
P+6
MAX
UNIT
ns
ns
27
tena(SCSL_SOMI)S
Delay from master asserting SPI1_SCS to slave driving SPI1_SOMI valid
P+15
P+17
P+19
ns
28
tdis(SCSH_SOMI)S
Delay from master deasserting SPI1_SCS to slave 3-stating SPI1_SOMI
P+15
P+17
P+19
ns
(1)
(2)
(3)
160
These parameters are in addition to the general timings for SPI slave modes (Table 6-70).
P = SYSCLK2 period; M = tc(SPC)M (SPI master bit clock period)
Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes.
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
SPRS586 – JUNE 2009
Table 6-76. Additional (1) SPI1 Slave Timings, 5-Pin Option (2) (3)
NO.
25
26
1.2V
PARAMETER
td(SCSL_SPC)S
td(SPC_SCSH)S
MIN
Required delay from SPI1_SCS asserted at slave to first SPI1_CLK edge at slave.
Required delay from final SPI1_CLK edge before
SPI1_SCS is deasserted.
1.1V
MAX
MIN
1.0V
MAX
MIN
P+1.5
P+1.5
P+1.5
Polarity = 0, Phase = 0,
from SPI1_CLK falling
0.5M+P+4
0.5M+P+5
0.5M+P+6
Polarity = 0, Phase = 1,
from SPI1_CLK falling
P+4
P+5
P+6
Polarity = 1, Phase = 0,
from SPI1_CLK rising
0.5M+P+4
0.5M+P+5
0.5M+P+6
Polarity = 1, Phase = 1,
from SPI1_CLK rising
P+4
P+5
P+6
MAX
UNIT
ns
ns
27
tena(SCSL_SOMI)S Delay from master asserting SPI1_SCS to slave driving SPI1_SOMI valid
P+15
P+17
P+19
ns
28
tdis(SCSH_SOMI)S
Delay from master deasserting SPI1_SCS to slave 3-stating SPI1_SOMI
P+15
P+17
P+19
ns
29
tena(SCSL_ENA)S
Delay from master deasserting SPI1_SCS to slave driving SPI1_ENA valid
15
17
19
ns
Polarity = 0, Phase = 0,
from SPI1_CLK falling
2.5P+15
2.5P+17
2.5P+19
Polarity = 0, Phase = 1,
from SPI1_CLK rising
2.5P+15
2.5P+17
2.5P+19
Polarity = 1, Phase = 0,
from SPI1_CLK rising
2.5P+15
2.5P+17
2.5P+19
Polarity = 1, Phase = 1,
from SPI1_CLK falling
2.5P+15
2.5P+17
2.5P+19
30
(1)
(2)
(3)
(4)
tdis(SPC_ENA)S
Delay from final clock receive edge on SPI1_CLK to slave
3-stating or driving high SPI1_ENA. (4)
ns
These parameters are in addition to the general timings for SPI slave modes (Table 6-70).
P = SYSCLK2 period; M = tc(SPC)M (SPI master bit clock period)
Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes.
SPI1_ENA is driven low after the transmission completes if the SPIINT0.ENABLE_HIGHZ bit is programmed to 0. Otherwise it is tri-stated. If tri-stated, an external pullup resistor
should be used to provide a valid level to the master. This option is useful when tying several SPI slave devices to a single master.
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
161
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
www.ti.com
1
2
MASTER MODE
POLARITY = 0 PHASE = 0
3
SPIx_CLK
5
4
SPIx_SIMO
MO(0)
7
SPIx_SOMI
6
MO(1)
MO(n−1)
MO(n)
8
MI(0)
MI(1)
MI(n−1)
MI(n)
MASTER MODE
POLARITY = 0 PHASE = 1
PRODUCT PREVIEW
4
SPIx_CLK
6
5
SPIx_SIMO
MO(0)
7
SPIx_SOMI
MO(1)
MO(n−1)
MI(1)
MI(n−1)
MO(n)
8
MI(0)
MI(n)
4
MASTER MODE
POLARITY = 1 PHASE = 0
SPIx_CLK
5
SPIx_SIMO
6
MO(0)
7
SPIx_SOMI
MO(1)
MO(n−1)
MO(n)
8
MI(0)
MI(1)
MI(n−1)
MI(n)
MASTER MODE
POLARITY = 1 PHASE = 1
SPIx_CLK
5
4
SPIx_SIMO
MO(0)
7
SPIx_SOMI
MI(0)
6
MO(1)
MO(n−1)
MI(1)
MI(n−1)
MO(n)
8
MI(n)
Figure 6-37. SPI Timings—Master Mode
162
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
SPRS586 – JUNE 2009
9
12
10
SLAVE MODE
POLARITY = 0 PHASE = 0
11
SPIx_CLK
15
SPIx_SIMO
16
SI(0)
SI(1)
SI(n−1)
13
SPIx_SOMI
SO(0)
SI(n)
14
SO(1)
SO(n−1)
12
SO(n)
PRODUCT PREVIEW
SLAVE MODE
POLARITY = 0 PHASE = 1
SPIx_CLK
15
SPIx_SIMO
16
SI(0)
SI(1)
13
SPIx_SOMI
SO(0)
SI(n−1)
SI(n)
SO(n−1)
SO(n)
14
SO(1)
SLAVE MODE
POLARITY = 1 PHASE = 0
12
SPIx_CLK
15
SPIx_SIMO
16
SI(0)
SI(1)
SI(n−1)
13
SPIx_SOMI
SO(0)
SI(n)
14
SO(1)
SO(n−1)
SO(n)
SLAVE MODE
POLARITY = 1 PHASE = 1
12
SPIx_CLK
15
16
SPIx_SIMO
SI(0)
SPIx_SOMI
SO(0)
SI(1)
13
SO(1)
SI(n−1)
SI(n)
14
SO(n−1)
SO(n)
Figure 6-38. SPI Timings—Slave Mode
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
163
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
www.ti.com
MASTER MODE 4 PIN WITH ENABLE
17
18
SPIx_CLK
SPIx_SIMO
MO(0)
SPIx_SOMI
MI(0)
MO(1)
MO(n−1)
MI(1)
MI(n−1)
MO(n)
MI(n)
SPIx_ENA
MASTER MODE 4 PIN WITH CHIP SELECT
19
20
SPIx_CLK
SPIx_SIMO
MO(0)
SPIx_SOMI
MI(0)
MO(1)
MO(n−1)
MO(n)
MI(1)
MI(n−1)
MI(n)
PRODUCT PREVIEW
SPIx_SCS
MASTER MODE 5 PIN
22
20
MO(1)
23
18
SPIx_CLK
SPIx_SIMO
MO(0)
MO(n−1)
MO(n)
SPIx_SOMI
21
SPIx_ENA
MI(0)
MI(1)
MI(n−1)
MI(n)
DESEL(A)
DESEL(A)
SPIx_SCS
A. DESELECTED IS PROGRAMMABLE EITHER HIGH OR
3−STATE (REQUIRES EXTERNAL PULLUP)
Figure 6-39. SPI Timings—Master Mode (4-Pin and 5-Pin)
164
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
SPRS586 – JUNE 2009
SLAVE MODE 4 PIN WITH ENABLE
24
SPIx_CLK
SPIx_SOMI
SO(0)
SO(1)
SO(n−1)
SO(n)
SPIx_SIMO
SI(0)
SPIx_ENA
SI(1)
SI(n−1) SI(n)
SLAVE MODE 4 PIN WITH CHIP SELECT
26
25
SPIx_CLK
SPIx_SOMI
28
SO(n−1)
SO(0)
SO(1)
SO(n)
PRODUCT PREVIEW
27
SPIx_SIMO
SI(0)
SPIx_SCS
SI(1)
SI(n−1)
SI(n)
SLAVE MODE 5 PIN
26
30
25
SPIx_CLK
27
SPIx_SOMI
28
SO(1)
SO(0)
SO(n−1)
SO(n)
SPIx_SIMO
29
SPIx_ENA
DESEL(A)
SI(0)
SI(1)
SI(n−1)
SI(n)
DESEL(A)
SPIx_SCS
A. DESELECTED IS PROGRAMMABLE EITHER HIGH OR
3−STATE (REQUIRES EXTERNAL PULLUP)
Figure 6-40. SPI Timings—Slave Mode (4-Pin and 5-Pin)
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
165
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
www.ti.com
6.17 Inter-Integrated Circuit Serial Ports (I2C)
6.17.1 I2C Device-Specific Information
Each I2C port supports:
• Compatible with Philips® I2C Specification Revision 2.1 (January 2000)
• Fast Mode up to 400 Kbps (no fail-safe I/O buffers)
• Noise Filter to Remove Noise 50 ns or less
• Seven- and Ten-Bit Device Addressing Modes
• Master (Transmit/Receive) and Slave (Transmit/Receive) Functionality
• Events: DMA, Interrupt, or Polling
• General-Purpose I/O Capability if not used as I2C
PRODUCT PREVIEW
Figure 6-41 is block diagram of the device I2C Module.
Clock Prescaler
I2CPSCx
Control
Prescaler
Register
I2CCOARx
Own Address
Register
I2CSARx
Slave Address
Register
Bit Clock Generator
I2Cx_SCL
Noise
Filter
I2CCLKHx
Clock Divide
High Register
I2CCMDRx
Mode Register
I2CCLKLx
Clock Divide
Low Register
I2CEMDRx
Extended Mode
Register
I2CCNTx
Data Count
Register
I2CPID1
Peripheral ID
Register 1
I2CPID2
Peripheral ID
Register 2
Transmit
I2Cx_SDA
Noise
Filter
I2CXSRx
Transmit Shift
Register
I2CDXRx
Transmit Buffer
Interrupt/DMA
Receive
I2CIERx
I2CDRRx
Receive Buffer
I2CSTRx
I2CRSRx
Receive Shift
Register
I2CSRCx
I2CPFUNC
Pin Function
Register
I2CPDOUT
Interrupt Enable
Register
Interrupt Status
Register
Interrupt Source
Register
Peripheral
Configuration
Bus
Interrupt DMA
Requests
Control
I2CPDIR
I2CPDIN
Pin Direction
Register
Pin Data In
Register
I2CPDSET
I2CPDCLR
Pin Data Out
Register
Pin Data Set
Register
Pin Data Clear
Register
Figure 6-41. I2C Module Block Diagram
166
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
SPRS586 – JUNE 2009
6.17.2 I2C Peripheral Registers Description(s)
Table 6-77 is the list of the I2C registers.
Table 6-77. Inter-Integrated Circuit (I2C) Registers
I2C0
BYTE ADDRESS
I2C1
BYTE ADDRESS
ACRONYM
0x01C2 2000
0x01E2 8000
ICOAR
I2C Own Address Register
0x01C2 2004
0x01E2 8004
ICIMR
I2C Interrupt Mask Register
0x01C2 2008
0x01E2 8008
ICSTR
I2C Interrupt Status Register
0x01C2 200C
0x01E2 800C
ICCLKL
I2C Clock Low-Time Divider Register
0x01C2 2010
0x01E2 8010
ICCLKH
I2C Clock High-Time Divider Register
0x01C2 2014
0x01E2 8014
ICCNT
I2C Data Count Register
0x01C2 2018
0x01E2 8018
ICDRR
I2C Data Receive Register
0x01C2 201C
0x01E2 801C
ICSAR
I2C Slave Address Register
0x01C2 2020
0x01E2 8020
ICDXR
I2C Data Transmit Register
0x01C2 2024
0x01E2 8024
ICMDR
I2C Mode Register
0x01C2 2028
0x01E2 8028
ICIVR
I2C Interrupt Vector Register
0x01C2 202C
0x01E2 802C
ICEMDR
I2C Extended Mode Register
0x01C2 2030
0x01E2 8030
ICPSC
I2C Prescaler Register
0x01C2 2034
0x01E2 8034
REVID1
I2C Revision Identification Register 1
0x01C2 2038
0x01E2 8038
REVID2
I2C Revision Identification Register 2
0x01C2 2048
0x01E2 8048
ICPFUNC
I2C Pin Function Register
0x01C2 204C
0x01E2 804C
ICPDIR
I2C Pin Direction Register
0x01C2 2050
0x01E2 8050
ICPDIN
I2C Pin Data In Register
0x01C2 2054
0x01E2 8054
ICPDOUT
I2C Pin Data Out Register
0x01C2 2058
0x01E2 8058
ICPDSET
I2C Pin Data Set Register
0x01C2 205C
0x01E2 805C
ICPDCLR
I2C Pin Data Clear Register
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
PRODUCT PREVIEW
REGISTER DESCRIPTION
167
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
www.ti.com
6.17.3 I2C Electrical Data/Timing
6.17.3.1 Inter-Integrated Circuit (I2C) Timing
Table 6-78 and Table 6-79 assume testing over recommended operating conditions (see Figure 6-42 and
Figure 6-43).
Table 6-78. Timing Requirements for I2C Input
1.2V, 1.1V, 1.0V
NO.
PARAMETER
Standard Mode
MIN
MAX
Fast Mode
MIN
UNIT
MAX
PRODUCT PREVIEW
1
tc(SCL)
Cycle time, I2Cx_SCL
10
2.5
µs
2
tsu(SCLH-SDAL)
Setup time, I2Cx_SCL high before I2Cx_SDA low
4.7
0.6
µs
3
th(SCLL-SDAL)
Hold time, I2Cx_SCL low after I2Cx_SDA low
4
0.6
µs
4
tw(SCLL)
Pulse duration, I2Cx_SCL low
4.7
1.3
µs
5
tw(SCLH)
Pulse duration, I2Cx_SCL high
4
0.6
µs
6
tsu(SDA-SCLH)
Setup time, I2Cx_SDA before I2Cx_SCL high
250
100
7
th(SDA-SCLL)
Hold time, I2Cx_SDA after I2Cx_SCL low
0
0
8
tw(SDAH)
Pulse duration, I2Cx_SDA high
4.7
1.3
ns
0.9
µs
µs
9
tr(SDA)
Rise time, I2Cx_SDA
1000
20 + 0.1Cb
300
ns
10
tr(SCL)
Rise time, I2Cx_SCL
1000
20 + 0.1Cb
300
ns
11
tf(SDA)
Fall time, I2Cx_SDA
300
20 + 0.1Cb
300
ns
12
tf(SCL)
Fall time, I2Cx_SCL
300
20 + 0.1Cb
300
ns
13
tsu(SCLH-SDAH)
Setup time, I2Cx_SCL high before I2Cx_SDA high
14
tw(SP)
Pulse duration, spike (must be suppressed)
15
Cb
Capacitive load for each bus line
4
0.6
N/A
0
µs
400
Table 6-79. Switching Characteristics for I2C
50
ns
400
pF
(1)
1.2V, 1.1V, 1.0V
NO.
PARAMETER
Standard Mode
MIN
MAX
Fast Mode
MIN
UNIT
MAX
16
tc(SCL)
Cycle time, I2Cx_SCL
10
2.5
µs
17
tsu(SCLH-SDAL)
Setup time, I2Cx_SCL high before I2Cx_SDA low
4.7
0.6
µs
18
th(SDAL-SCLL)
Hold time, I2Cx_SCL low after I2Cx_SDA low
4
0.6
µs
19
tw(SCLL)
Pulse duration, I2Cx_SCL low
4.7
1.3
µs
20
tw(SCLH)
Pulse duration, I2Cx_SCL high
4
0.6
µs
21
tsu(SDAV-SCLH)
Setup time, I2Cx_SDA valid before I2Cx_SCL high
250
100
22
th(SCLL-SDAV)
Hold time, I2Cx_SDA valid after I2Cx_SCL low
0
0
23
tw(SDAH)
Pulse duration, I2Cx_SDA high
4.7
1.3
µs
28
tsu(SCLH-SDAH)
Setup time, I2Cx_SCL high before I2Cx_SDA high
4
0.6
µs
(1)
168
ns
0.9
µs
I2C must be configured correctly to meet the timings in Table 6-79.
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
SPRS586 – JUNE 2009
11
9
I2Cx_SDA
6
8
14
4
13
5
10
I2Cx_SCL
12
3
2
7
3
Stop
Start
Repeated
Start
Stop
PRODUCT PREVIEW
1
Figure 6-42. I2C Receive Timings
26
24
I2Cx_SDA
21
23
19
28
20
25
I2Cx_SCL
16
27
18
17
22
18
Stop
Start
Repeated
Start
Stop
Figure 6-43. I2C Transmit Timings
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
169
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
6.18
www.ti.com
Universal Asynchronous Receiver/Transmitter (UART)
PRODUCT PREVIEW
Each UART has the following features:
• 16-byte storage space for both the transmitter and receiver FIFOs
• 1, 4, 8, or 14 byte selectable receiver FIFO trigger level for autoflow control and DMA
• DMA signaling capability for both received and transmitted data
• Programmable auto-rts and auto-cts for autoflow control
• Programmable Baud Rate up to 3MBaud
• Programmable Oversampling Options of x13 and x16
• Frequency pre-scale values from 1 to 65,535 to generate appropriate baud rates
• Prioritized interrupts
• Programmable serial data formats
– 5, 6, 7, or 8-bit characters
– Even, odd, or no parity bit generation and detection
– 1, 1.5, or 2 stop bit generation
• False start bit detection
• Line break generation and detection
• Internal diagnostic capabilities
– Loopback controls for communications link fault isolation
– Break, parity, overrun, and framing error simulation
• Modem control functions (CTS, RTS)
The UART registers are listed in Section 6.18.1
6.18.1 UART Peripheral Registers Description(s)
Table 6-80 is the list of UART registers.
Table 6-80. UART Registers
UART0
BYTE ADDRESS
UART1
BYTE ADDRESS
UART2
BYTE ADDRESS
ACRONYM
0x01C4 2000
0x01D0 C000
0x01D0 D000
RBR
Receiver Buffer Register (read only)
0x01C4 2000
0x01D0 C000
0x01D0 D000
THR
Transmitter Holding Register (write only)
0x01C4 2004
0x01D0 C004
0x01D0 D004
IER
Interrupt Enable Register
0x01C4 2008
0x01D0 C008
0x01D0 D008
IIR
Interrupt Identification Register (read only)
0x01C4 2008
0x01D0 C008
0x01D0 D008
FCR
FIFO Control Register (write only)
0x01C4 200C
0x01D0 C00C
0x01D0 D00C
LCR
Line Control Register
0x01C4 2010
0x01D0 C010
0x01D0 D010
MCR
Modem Control Register
0x01C4 2014
0x01D0 C014
0x01D0 D014
LSR
Line Status Register
0x01C4 2018
0x01D0 C018
0x01D0 D018
MSR
Modem Status Register
0x01C4 201C
0x01D0 C01C
0x01D0 D01C
SCR
Scratchpad Register
0x01C4 2020
0x01D0 C020
0x01D0 D020
DLL
Divisor LSB Latch
0x01C4 2024
0x01D0 C024
0x01D0 D024
DLH
Divisor MSB Latch
0x01C4 2028
0x01D0 C028
0x01D0 D028
REVID1
0x01C4 2030
0x01D0 C030
0x01D0 D030
PWREMU_MGMT
0x01C4 2034
0x01D0 C034
0x01D0 D034
MDR
170
Peripheral Information and Electrical Specifications
REGISTER DESCRIPTION
Revision Identification Register 1
Power and Emulation Management Register
Mode Definition Register
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
SPRS586 – JUNE 2009
6.18.2 UART Electrical Data/Timing
Table 6-81. Timing Requirements for UART Receive (1) (see Figure 6-44)
NO.
1.2V, 1.1V, 1.0V
PARAMETER
MIN
MAX
UNIT
4
tw(URXDB)
Pulse duration, receive data bit (RXDn)
0.96U
1.05U
ns
5
tw(URXSB)
Pulse duration, receive start bit
0.96U
1.05U
ns
(1)
U = UART baud time = 1/programmed baud rate.
NO.
(1)
1.2V, 1.1V, 1.0V
PARAMETER
1
f(baud)
Maximum programmable baud rate
2
tw(UTXDB)
Pulse duration, transmit data bit (TXDn)
3
tw(UTXSB)
Pulse duration, transmit start bit
MIN
MAX
UNIT
3
MBaud
U-2
U+2
ns
U-2
U+2
ns
U = UART baud time = 1/programmed baud rate.
3
2
UART_TXDn
Start
Bit
Data Bits
5
4
UART_RXDn
Start
Bit
Data Bits
Figure 6-44. UART Transmit/Receive Timing
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
171
PRODUCT PREVIEW
Table 6-82. Switching Characteristics Over Recommended Operating Conditions for UARTx Transmit (1)
(see Figure 6-44)
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
www.ti.com
6.19 Universal Serial Bus OTG Controller (USB0) [USB2.0 OTG]
PRODUCT PREVIEW
The USB2.0 peripheral supports the following features:
• USB 2.0 peripheral at speeds high speed (HS: 480 Mb/s - C6747 only) and full speed (FS: 12 Mb/s)
• USB 2.0 host at speeds HS, FS, and low speed (LS: 1.5 Mb/s)
• All transfer modes (control, bulk, interrupt, and isochronous)
• 4 Transmit (TX) and 4 Receive (RX) endpoints in addition to endpoint 0
• FIFO RAM
– 4K endpoint
– Programmable size
• Integrated USB 2.0 High Speed PHY
• Connects to a standard Charge Pump for VBUS 5 V generation
• RNDIS mode for accelerating RNDIS type protocols using short packet termination over USB
Table 6-83 is the list of USB OTG registers.
Table 6-83. Universal Serial Bus OTG (USB0) Registers
BYTE ADDRESS
ACRONYM
REGISTER DESCRIPTION
0x01E0 0000
REVID
Revision Register
0x01E0 0004
CTRLR
Control Register
0x01E0 0008
STATR
Status Register
0x01E0 000C
EMUR
Emulation Register
0x01E0 0010
MODE
Mode Register
0x01E0 0014
AUTOREQ
Autorequest Register
0x01E0 0018
SRPFIXTIME
SRP Fix Time Register
0x01E0 001C
TEARDOWN
Teardown Register
0x01E0 0020
INTSRCR
USB Interrupt Source Register
0x01E0 0024
INTSETR
USB Interrupt Source Set Register
0x01E0 0028
INTCLRR
USB Interrupt Source Clear Register
0x01E0 002C
INTMSKR
USB Interrupt Mask Register
0x01E0 0030
INTMSKSETR
USB Interrupt Mask Set Register
0x01E0 0034
INTMSKCLRR
USB Interrupt Mask Clear Register
0x01E0 0038
INTMASKEDR
USB Interrupt Source Masked Register
0x01E0 003C
EOIR
USB End of Interrupt Register
0x01E0 0040
INTVECTR
USB Interrupt Vector Register
0x01E0 0050
GENRNDISSZ1
Generic RNDIS Size EP1
0x01E0 0054
GENRNDISSZ2
Generic RNDIS Size EP2
0x01E0 0058
GENRNDISSZ3
Generic RNDIS Size EP3
0x01E0 005C
GENRNDISSZ4
Generic RNDIS Size EP4
0x01E0 0400
FADDR
Function Address Register
0x01E0 0401
POWER
Power Management Register
0x01E0 0402
INTRTX
Interrupt Register for Endpoint 0 plus Transmit Endpoints 1 to 4
0x01E0 0404
INTRRX
Interrupt Register for Receive Endpoints 1 to 4
0x01E0 0406
INTRTXE
Interrupt enable register for INTRTX
0x01E0 0408
INTRRXE
Interrupt Enable Register for INTRRX
0x01E0 040A
INTRUSB
Interrupt Register for Common USB Interrupts
0x01E0 040B
INTRUSBE
0x01E0 040C
FRAME
Frame Number Register
0x01E0 040E
INDEX
Index Register for Selecting the Endpoint Status and Control Registers
0x01E0 040F
TESTMODE
172
Interrupt Enable Register for INTRUSB
Register to Enable the USB 2.0 Test Modes
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
OMAP-L138 Low-Power Applications Processor
www.ti.com
SPRS586 – JUNE 2009
Table 6-83. Universal Serial Bus OTG (USB0) Registers (continued)
BYTE ADDRESS
ACRONYM
REGISTER DESCRIPTION
Indexed Registers
These registers operate on the endpoint selected by the INDEX register
TXMAXP
Maximum Packet Size for Peripheral/Host Transmit Endpoint (Index register set to select
Endpoints 1-4 only)
0x01E0 0412
PERI_CSR0
Control Status Register for Endpoint 0 in Peripheral Mode. (Index register set to select Endpoint
0)
HOST_CSR0
Control Status Register for Endpoint 0 in Host Mode.
(Index register set to select Endpoint 0)
PERI_TXCSR
Control Status Register for Peripheral Transmit Endpoint. (Index register set to select Endpoints
1-4)
HOST_TXCSR
Control Status Register for Host Transmit Endpoint.
(Index register set to select Endpoints 1-4)
0x01E0 0414
RXMAXP
0x01E0 0416
PERI_RXCSR
Control Status Register for Peripheral Receive Endpoint. (Index register set to select Endpoints
1-4)
HOST_RXCSR
Control Status Register for Host Receive Endpoint.
(Index register set to select Endpoints 1-4)
0x01E0 0418
Maximum Packet Size for Peripheral/Host Receive Endpoint (Index register set to select
Endpoints 1-4 only)
COUNT0
Number of Received Bytes in Endpoint 0 FIFO.
(Index register set to select Endpoint 0)
RXCOUNT
0x01E0 041A
Number of Bytes in Host Receive Endpoint FIFO.
(Index register set to select Endpoints 1- 4)
HOST_TYPE0
HOST_TXTYPE
0x01E0 041B
HOST_NAKLIMIT0
Defines the speed of Endpoint 0
Sets the operating speed, transaction protocol and peripheral endpoint number for the host
Transmit endpoint. (Index register set to select Endpoints 1-4 only)
Sets the NAK response timeout on Endpoint 0.
(Index register set to select Endpoint 0)
HOST_TXINTERVAL Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk
transactions for host Transmit endpoint. (Index register set to select Endpoints 1-4 only)
0x01E0 041C
0x01E0 041D
0x01E0 041F
HOST_RXTYPE
Sets the operating speed, transaction protocol and peripheral endpoint number for the host
Receive endpoint. (Index register set to select Endpoints 1-4 only)
HOST_RXINTERVAL Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk
transactions for host Receive endpoint. (Index register set to select Endpoints 1-4 only)
CONFIGDATA
Returns details of core configuration. (Index register set to select Endpoint 0)
FIFO
0x01E0 0420
FIFO0
Transmit and Receive FIFO Register for Endpoint 0
0x01E0 0424
FIFO1
Transmit and Receive FIFO Register for Endpoint 1
0x01E0 0428
FIFO2
Transmit and Receive FIFO Register for Endpoint 2
0x01E0 042C
FIFO3
Transmit and Receive FIFO Register for Endpoint 3
0x01E0 0430
FIFO4
Transmit and Receive FIFO Register for Endpoint 4
OTG Device Control
0x01E0 0460
DEVCTL
Device Control Register
Dynamic FIFO Control
0x01E0 0462
TXFIFOSZ
Transmit Endpoint FIFO Size
(Index register set to select Endpoints 1-4 only)
0x01E0 0463
RXFIFOSZ
Receive Endpoint FIFO Size
(Index register set to select Endpoints 1-4 only)
0x01E0 0464
TXFIFOADDR
Transmit Endpoint FIFO Address
(Index register set to select Endpoints 1-4 only)
0x01E0 0464
HWVERS
Hardware Version Register
0x01E0 0466
RXFIFOADDR
Receive Endpoint FIFO Address
(Index register set to select Endpoints 1-4 only)
Target Endpoint 0 Control Registers, Valid Only in Host Mode
Submit Documentation Feedback
Peripheral Information and Electrical Specifications
173
PRODUCT PREVIEW
0x01E0 0410
OMAP-L138 Low-Power Applications Processor
SPRS586 – JUNE 2009
www.ti.com
Table 6-83. Universal Serial Bus OTG (USB0) Registers (continued)
BYTE ADDRESS
ACRONYM
REGISTER DESCRIPTION
0x01E0 0480
TXFUNCADDR
Address of the target function that has to be accessed through the associated Transmit
Endpoint.
0x01E0 0482
TXHUBADDR
Address of the hub that has to be accessed through the associated Transmit Endpoint. This is
used only when full speed or low speed device is connected via a USB2.0 high-speed hub.
0x01E0 0483
TXHUBPORT
Port of the hub that has to be accessed through the associated Transmit Endpoint. This is used
only when full speed or low speed device is connected via a USB2.0 high-speed hub.
0x01E0 0484
RXFUNCADDR
Address of the target function that has to be accessed through the associated Receive
Endpoint.
0x01E0 0486
RXHUBADDR
Address of the hub that has to be accessed through the associated Receive Endpoint. This is
used only when full speed or low speed device is connected via a USB2.0 high-speed hub.
0x01E0 0487
RXHUBPORT
Port of the hub that has to be accessed through the associated Receive Endpoint. This is used
only when full speed or low speed device is connected via a USB2.0 high-speed hub.
PRODUCT PREVIEW
Target Endpoint 1 Control Registers, Valid Only in Host Mode
0x01E0 0488
TXFUNCADDR
Address of the target function that has to be accessed through the associated Transmit
Endpoint.
0x01E0 048A
TXHUBADDR
Address of the hub that has to be accessed through the associated Transmit Endpoint. This is
used only when full speed or low speed device is connected via a USB2.0 high-speed hub.
0x01E0 048B
TXHUBPORT
Port of the hub that has to be accessed through the associated Transmit Endpoint. This is used
only when full speed or low speed device is connected via a USB2.0 high-speed hub.
0x01E0 048C
RXFUNCADDR
Address of the target function that has to be accessed through the associated Receive
Endpoint.
0x01E0 048E
RXHUBADDR
Address of the hub that has to be accessed through the associated Receive Endpoint. This is
used only when full speed or low speed device is connected via a USB2.0 high-speed hub.
0x01E0 048F
RXHUBPORT
Port of the hub that has to be accessed through the associated Receive Endpoint. This is used
only when f