CS4245 104 dB, 24-Bit, 192 kHz Stereo Audio CODEC D/A Features A/D Features Multi-bit Delta Sigma Modulator Multi-bit Delta Sigma Modulator 104 dB Dynamic Range 104 dB Dynamic Range -90 dB THD+N -95 dB THD+N Up to 192 kHz Sampling Rates Stereo 6:1 Input Multiplexer Single-Ended Analog Architecture Programmable Gain Amplifier (PGA) Volume Control with Soft Ramp – – – – 0.5 dB Step Size Zero Crossing, Click-Free Transitions Popguard® Technology Stereo Microphone Inputs – Minimizes the Effects of Output Transients Filtered Line-Level Outputs Selectable Serial Audio Interface Formats – Left-Justified up to 24-bit – I²S up to 24-bit – Right-Justified 16-, 18-, 20-, and 24-bit Selectable 50/15 µs De-Emphasis Control Output for External Muting Reset Serial Audio Output PCM Serial Interface Level Translator http://www.cirrus.com +32 dB Gain Stage Low-Noise Bias Supply Up to 192 kHz Sampling Rates Selectable Serial Audio Interface Formats – – Left-Justified up to 24-bit I²S up to 24-bit High-Pass Filter or DC Offset Calibration Volume Control Volume Control Interpolation Filter Interpolation Filter 3.3 V to 5 V Multibit ΔΣ Modulator Switched Capacitor DAC and Filter Multibit ΔΣ Modulator Switched Capacitor DAC and Filter Left DAC Output Mute Control Register Configuration High Pass Filter High Pass Filter Low-Latency Anti-Alias Filter Low-Latency Anti-Alias Filter Mute Control Right DAC Output MUX PCM Serial Interface ADC Overflow Level Translator Interrupt Level Translator I2C/SPI Control Data – – 3.3 V to 5 V 1.8 V to 5 V Serial Audio Input ± 12 dB Gain, 0.5 dB Step Size Zero Crossing, Click-Free Transitions Left Aux Output Right Aux Output Internal Voltage Reference Multibit Oversampling ADC Multibit Oversampling ADC Copyright © Cirrus Logic, Inc. 2007 (All Rights Reserved) Stereo Input 1 Stereo Input 2 Stereo Input 3 PGA MUX PGA +32 dB Stereo Input 4 / Mic Input 1 & 2 +32 dB Stereo Input 5 Stereo Input 6 AUGUST '07 DS656F2 CS4245 System Features General Description Direct Interface with 1.8 V to 5 V Logic Levels The CS4245 is a highly integrated stereo audio CODEC. The CS4245 performs stereo analog-to-digital (A/D) and digital-to-analog (D/A) conversion of up to 24-bit serial values at sample rates up to 192 kHz. Optional Asynchronous Serial Port Operation – Each Serial Port Supports Master or Slave Operation Selectable Auxiliary Analog Output – Allows Analog Monitoring of Either the ADC Input Signal after PGA or DAC Output Signal Internal Digital Loopback Power-Down Mode – Available for A/D, D/A, CODEC, Mic Preamplifier +3.3 V to +5 V Analog Power Supply +3.3 V to +5 V Digital Power Supply Supports I²C® and SPITM Control Port Interfaces Pin-Compatible with CS5345 A 6:1 stereo input multiplexer is included for selecting between line-level or microphone-level inputs. The microphone input path includes a +32 dB gain stage and a low-noise bias voltage supply. The PGA is available for line or microphone inputs and provides gain/attenuation of ±12 dB in 0.5 dB steps. The output of the PGA is followed by an advanced 5thorder, multi-bit delta sigma modulator and digital filtering/decimation. Sampled data is transmitted by the serial audio interface at rates from 4 kHz to 192 kHz in either Slave or Master Mode. The D/A converter is based on a 4th-order multi-bit delta sigma modulator with an ultra-linear low-pass filter and offers a volume control that operates with a 0.5 dB step size. It incorporates selectable soft ramp and zero crossing transition functions to eliminate clicks and pops. Standard 50/15 μs de-emphasis is available for a 44.1 kHz sample rate for compatibility with digital audio programs mastered using the 50/15 μs pre-emphasis technique. Integrated level translators allow easy interfacing between the CS4245 and other devices operating over a wide range of logic levels. The CS4245 is available in a 48-pin LQFP package in both Commercial (-10° to +70° C) and Automotive (-40° to +105° C) grade. The CDB4245 Customer Demonstration board is also available for device evaluation and implementation suggestions. Please see “Ordering Information” on page 57 for complete details. 2 DS656F2 CS4245 TABLE OF CONTENTS 1. PIN DESCRIPTIONS ........................................................................................................................ 6 2. CHARACTERISTICS AND SPECIFICATIONS ...................................................................................... 8 SPECIFIED OPERATING CONDITIONS ............................................................................................. 8 ABSOLUTE MAXIMUM RATINGS ....................................................................................................... 8 DAC ANALOG CHARACTERISTICS ................................................................................................... 9 DAC COMBINED INTERPOLATION & ON-CHIP ANALOG FILTER RESPONSE ............................ 10 ADC ANALOG CHARACTERISTICS ................................................................................................. 12 ADC ANALOG CHARACTERISTICS ................................................................................................. 14 ADC DIGITAL FILTER CHARACTERISTICS ..................................................................................... 15 AUXILIARY OUTPUT ANALOG CHARACTERISTICS ...................................................................... 16 AUXILIARY OUTPUT ANALOG CHARACTERISTICS ...................................................................... 17 AUXILIARY OUTPUT ANALOG CHARACTERISTICS ...................................................................... 18 DC ELECTRICAL CHARACTERISTICS ............................................................................................. 19 DIGITAL INTERFACE CHARACTERISTICS ...................................................................................... 20 SWITCHING CHARACTERISTICS - SERIAL AUDIO PORT 1 .......................................................... 21 SWITCHING CHARACTERISTICS - SERIAL AUDIO PORT 2 .......................................................... 23 SWITCHING CHARACTERISTICS - CONTROL PORT - I²C FORMAT ............................................ 26 SWITCHING CHARACTERISTICS - CONTROL PORT - SPI FORMAT ........................................... 27 3. TYPICAL CONNECTION DIAGRAM ................................................................................................... 28 4. APPLICATIONS ................................................................................................................................... 29 4.1 Recommended Power-Up Sequence ............................................................................................. 29 4.2 System Clocking ............................................................................................................................. 29 4.2.1 Synchronous / Asynchronous Mode ...................................................................................... 29 4.2.2 Master Clock ......................................................................................................................... 29 4.2.3 Master Mode ......................................................................................................................... 30 4.2.4 Slave Mode ........................................................................................................................... 30 4.3 High-Pass Filter and DC Offset Calibration .................................................................................... 31 4.4 Analog Input Multiplexer, PGA, and Mic Gain ................................................................................ 32 4.5 Input Connections ........................................................................................................................... 32 4.6 Output Connections ........................................................................................................................ 32 4.7 Output Transient Control ................................................................................................................ 33 4.7.1 Power-Up .............................................................................................................................. 33 4.7.2 Power-Down .......................................................................................................................... 33 4.7.3 Serial Interface Clock Changes ............................................................................................. 33 4.8 Auxiliary Analog Output .................................................................................................................. 33 4.9 De-Emphasis Filter ......................................................................................................................... 33 4.10 Internal Digital Loopback .............................................................................................................. 34 4.11 Mute Control ................................................................................................................................. 34 4.12 Control Port Description and Timing ............................................................................................. 35 4.12.1 SPI Mode ............................................................................................................................. 35 4.12.2 I²C Mode .............................................................................................................................. 36 4.13 Interrupts and Overflow ................................................................................................................ 37 4.14 Reset ............................................................................................................................................ 38 4.15 Synchronization of Multiple Devices ............................................................................................. 38 4.16 Grounding and Power Supply Decoupling .................................................................................... 38 5. REGISTER QUICK REFERENCE ........................................................................................................ 39 6. REGISTER DESCRIPTION .................................................................................................................. 40 6.1 Chip ID - Register 01h .................................................................................................................... 40 6.2 Power Control - Address 02h ......................................................................................................... 40 6.2.1 Freeze (Bit 7) ......................................................................................................................... 40 6.2.2 Power-Down MIC (Bit 3) ........................................................................................................ 40 6.2.3 Power-Down ADC (Bit 2) ....................................................................................................... 40 DS656F2 3 CS4245 6.2.4 Power-Down DAC (Bit 1) ....................................................................................................... 41 6.2.5 Power-Down Device (Bit 0) ................................................................................................... 41 6.3 DAC Control - Address 03h ............................................................................................................ 41 6.3.1 DAC Functional Mode (Bits 7:6) ............................................................................................ 41 6.3.2 DAC Digital Interface Format (Bits 5:4) ................................................................................. 41 6.3.3 Mute DAC (Bit 2) ................................................................................................................... 41 6.3.4 De-Emphasis Control (Bit 1) .................................................................................................. 42 6.3.5 DAC Master / Slave Mode (Bit 0) .......................................................................................... 42 6.4 ADC Control - Address 04h ............................................................................................................ 42 6.4.1 ADC Functional Mode (Bits 7:6) ............................................................................................ 42 6.4.2 ADC Digital Interface Format (Bit 4) ...................................................................................... 43 6.4.3 Mute ADC (Bit 2) ................................................................................................................... 43 6.4.4 ADC High-Pass Filter Freeze (Bit 1) ..................................................................................... 43 6.4.5 ADC Master / Slave Mode (Bit 0) .......................................................................................... 43 6.5 MCLK Frequency - Address 05h .................................................................................................... 43 6.5.1 Master Clock 1 Frequency (Bits 6:4) ..................................................................................... 43 6.5.2 Master Clock 2 Frequency (Bits 2:0) ..................................................................................... 44 6.6 Signal Selection - Address 06h ...................................................................................................... 44 6.6.1 Auxiliary Output Source Select (Bits 6:5) .............................................................................. 44 6.6.2 Digital Loopback (Bit 1) ......................................................................................................... 44 6.6.3 Asynchronous Mode (Bit 0) ................................................................................................... 44 6.7 Channel B PGA Control - Address 07h .......................................................................................... 45 6.7.1 Channel B PGA Gain (Bits 5:0) ............................................................................................. 45 6.8 Channel A PGA Control - Address 08h .......................................................................................... 45 6.8.1 Channel A PGA Gain (Bits 5:0) ............................................................................................. 45 6.9 ADC Input Control - Address 09h ................................................................................................... 45 6.9.1 PGA Soft Ramp or Zero Cross Enable (Bits 4:3) .................................................................. 45 6.9.2 Analog Input Selection (Bits 2:0) ........................................................................................... 46 6.10 DAC Channel A Volume Control - Address 0Ah ........................................................................... 46 6.11 DAC Channel B Volume Control - Address 0Bh ........................................................................... 46 6.11.1 Volume Control (Bits 7:0) .................................................................................................... 46 6.12 DAC Control 2 - Address 0Ch ...................................................................................................... 47 6.12.1 DAC Soft Ramp or Zero Cross Enable (Bits 7:6) ................................................................ 47 6.12.2 Invert DAC Output (Bit 5) .................................................................................................... 47 6.12.3 Active High/Low (Bit 0) ........................................................................................................ 48 6.13 Interrupt Status - Address 0Dh ..................................................................................................... 48 6.13.1 ADC Clock Error (Bit 3) ....................................................................................................... 48 6.13.2 DAC Clock Error (Bit 2) ....................................................................................................... 48 6.13.3 ADC Overflow (Bit 1) ........................................................................................................... 48 6.13.4 ADC Underflow (Bit 0) ......................................................................................................... 48 6.14 Interrupt Mask - Address 0Eh ....................................................................................................... 48 6.15 Interrupt Mode MSB - Address 0Fh .............................................................................................. 49 6.16 Interrupt Mode LSB - Address 10h ............................................................................................... 49 7. PARAMETER DEFINITIONS ................................................................................................................ 50 8. DAC FILTER PLOTS .................................................................................................................... 51 9. ADC FILTER PLOTS ......................................................................................................................... 53 10. PACKAGE DIMENSIONS .................................................................................................................. 55 11. THERMAL CHARACTERISTICS AND SPECIFICATIONS ............................................................. 55 12. ORDERING INFORMATION ..................................................................................................... 56 13. REVISION HISTORY .......................................................................................................................... 56 LIST OF FIGURES Figure 1.DAC Output Test Load ................................................................................................................ 11 4 DS656F2 CS4245 Figure 2.Maximum DAC Loading .............................................................................................................. 11 Figure 3.Master Mode Timing - Serial Audio Port 1 .................................................................................. 22 Figure 4.Slave Mode Timing - Serial Audio Port 1 .................................................................................... 22 Figure 5.Master Mode Timing - Serial Audio Port 2 .................................................................................. 24 Figure 6.Slave Mode Timing - Serial Audio Port 2 .................................................................................... 24 Figure 7.Format 0, Left-Justified up to 24-Bit Data ................................................................................... 25 Figure 8.Format 1, I²S up to 24-Bit Data ................................................................................................... 25 Figure 9.Format 2, Right-Justified 16-Bit Data. Format 3, Right-Justified 24-Bit Data. ....................................................................................................... 25 Figure 10.Control Port Timing - I²C Format ............................................................................................... 26 Figure 11.Control Port Timing - SPI Format .............................................................................................. 27 Figure 12.Typical Connection Diagram ..................................................................................................... 28 Figure 13.Master Mode Clocking .............................................................................................................. 30 Figure 14.Analog Input Architecture .......................................................................................................... 32 Figure 15.De-Emphasis Curve .................................................................................................................. 34 Figure 16.Suggested Active-Low Mute Circuit .......................................................................................... 35 Figure 17.Control Port Timing in SPI Mode .............................................................................................. 36 Figure 18.Control Port Timing, I²C Write ................................................................................................... 36 Figure 19.Control Port Timing, I²C Read ................................................................................................... 37 Figure 20.De-Emphasis Curve .................................................................................................................. 42 Figure 21.DAC Single-Speed Stopband Rejection ................................................................................... 51 Figure 22.DAC Single-Speed Transition Band .......................................................................................... 51 Figure 23.DAC Single-Speed Transition Band .......................................................................................... 51 Figure 24.DAC Single-Speed Passband Ripple ........................................................................................ 51 Figure 25.DAC Double-Speed Stopband Rejection .................................................................................. 51 Figure 26.DAC Double-Speed Transition Band ........................................................................................ 51 Figure 27.DAC Double-Speed Transition Band ........................................................................................ 52 Figure 28.DAC Double-Speed Passband Ripple ...................................................................................... 52 Figure 29.DAC Quad-Speed Stopband Rejection ..................................................................................... 52 Figure 30.DAC Quad-Speed Transition Band ........................................................................................... 52 Figure 31.DAC Quad-Speed Transition Band ........................................................................................... 52 Figure 32.DAC Quad-Speed Passband Ripple ......................................................................................... 52 Figure 33.ADC Single-Speed Stopband Rejection ................................................................................... 53 Figure 34.ADC Single-Speed Stopband Rejection ................................................................................... 53 Figure 35.ADC Single-Speed Transition Band (Detail) ............................................................................. 53 Figure 36.ADC Single-Speed Passband Ripple ........................................................................................ 53 Figure 37.ADC Double-Speed Stopband Rejection .................................................................................. 53 Figure 38.ADC Double-Speed Stopband Rejection .................................................................................. 53 Figure 39.ADC Double-Speed Transition Band (Detail) ............................................................................ 54 Figure 40.ADC Double-Speed Passband Ripple ...................................................................................... 54 Figure 41.ADC Quad-Speed Stopband Rejection ..................................................................................... 54 Figure 42.ADC Quad-Speed Stopband Rejection ..................................................................................... 54 Figure 43.ADC Quad-Speed Transition Band (Detail) .............................................................................. 54 Figure 44.ADC Quad-Speed Passband Ripple ......................................................................................... 54 LIST OF TABLES Table 1. Speed Modes .............................................................................................................................. 29 Table 2. Common Clock Frequencies ....................................................................................................... 30 Table 3. Slave Mode Serial Bit Clock Ratios ............................................................................................. 31 Table 4. Device Revision .......................................................................................................................... 40 Table 5. Freeze-able Bits .......................................................................................................................... 40 Table 6. Functional Mode Selection ......................................................................................................... 41 Table 7. DAC Digital Interface Formats .................................................................................................... 41 DS656F2 5 CS4245 Table 8. De-Emphasis Control .................................................................................................................. 42 Table 9. Functional Mode Selection .......................................................................................................... 42 Table 10. ADC Digital Interface Formats .................................................................................................. 43 Table 11. MCLK 1 Frequency ................................................................................................................... 43 Table 12. MCLK 2 Frequency ................................................................................................................... 44 Table 13. Auxiliary Output Source Selection ............................................................................................. 44 Table 14. Example Gain and Attenuation Settings ................................................................................... 45 Table 15. PGA Soft Cross or Zero Cross Mode Selection ........................................................................ 46 Table 16. Analog Input Multiplexer Selection ............................................................................................ 46 Table 17. Digital Volume Control Example Settings ................................................................................. 47 Table 18. DAC Soft Cross or Zero Cross Mode Selection ........................................................................ 47 6 DS656F2 CS4245 SDIN SCLK2 LRCK2 MCLK2 SDOUT SCLK1 LRCK1 MCLK1 DGND VD INT OVFL 1. PIN DESCRIPTIONS 48 47 46 45 44 43 42 41 40 39 38 37 SDA/CDOUT 1 36 VLS SCL/CCLK 2 35 MUTEC AD0/CS 3 34 AOUTB AD1/CDIN 4 33 AOUTA VLC 5 32 AGND RESET 6 31 AGND AIN3A 7 30 VA AIN3B 8 29 AUXOUTB AIN2A 9 28 AUXOUTA AIN2B 10 27 AIN6B AIN1A 11 26 AIN6A AIN1B 12 25 MICBIAS CS4245 AIN5B AIN5A AIN4B/MICIN2 AIN4A/MICIN1 FILT2+ FILT1+ VQ2 VQ1 AFILTB AFILTA VA AGND 13 14 15 16 17 18 19 20 21 22 23 24 Pin Name # Pin Description SDA/CDOUT 1 Serial Control Data (Input/Output) - SDA is a data I/O in I²C Mode. CDOUT is the output data line for the control port interface in SPI Mode. SCL/CCLK 2 Serial Control Port Clock (Input) - Serial clock for the serial control port. AD0/CS 3 Address Bit 0 (I²C) / Control Port Chip Select (SPI) (Input) - AD0 is a chip address pin in I²C Mode; CS is the chip-select signal for SPI format. AD1/CDIN 4 Address Bit 1 (I²C) / Serial Control Data Input (SPI) (Input) - AD1 is a chip address pin in I²C Mode; CDIN is the input data line for the control port interface in SPI Mode. VLC 5 Control Port Power (Input) - Determines the required signal level for the control port interface. Refer to the Recommended Operating Conditions for appropriate voltages. RESET 6 Reset (Input) - The device enters a low power mode when this pin is driven low. AIN3A AIN3B 7, 8 Stereo Analog Input 3 (Input) - The full-scale level is specified in the ADC Analog Characteristics specification table. AIN2A AIN2B 9, 10 Stereo Analog Input 2 (Input) - The full-scale level is specified in the ADC Analog Characteristics specification table. AIN1A AIN1B 11, 12 Stereo Analog Input 1 (Input) - The full-scale level is specified in the ADC Analog Characteristics specification table. DS656F2 7 CS4245 AGND 13 Analog Ground (Input) - Ground reference for the internal analog section. VA 14 Analog Power (Input) - Positive power for the internal analog section. AFILTA 15 Antialias Filter Connection (Output) - Antialias filter connection for the channel A ADC input. AFILTB 16 Antialias Filter Connection (Output) - Antialias filter connection for the channel B ADC input. VQ1 17 Quiescent Voltage 1 (Output) - Filter connection for the internal quiescent reference voltage. VQ2 18 Quiescent Voltage 2 (Output) - Filter connection for the internal quiescent reference voltage. FILT1+ 19 Positive Voltage Reference 1 (Output) - Positive reference voltage for the internal sampling circuits. FILT2+ 20 Positive Voltage Reference 2 (Output) - Positive reference voltage for the internal sampling circuits. AIN4A/MICIN1 Stereo Analog Input 4 / Microphone Input 1 & 2 (Input) - The full-scale level is specified in the ADC 21, 22 AIN4B/MICIN2 Analog Characteristics specification table. AIN5A AIN5B MICBIAS 23, 24 25 Stereo Analog Input 5 (Input) - The full-scale level is specified in the ADC Analog Characteristics specification table. Microphone Bias Supply (Output) - Low-noise bias supply for external microphone. Electrical characteristics are specified in the DC Electrical Characteristics specification table. AIN6A AIN6B 26, 27 Stereo Analog Input 6 (Input) - The full-scale level is specified in the ADC Analog Characteristics specification table. AUXOUTA AUXOUTB 28, 29 Auxiliary Analog Audio Output (Output) - Analog output from either the DAC, the PGA block, or high impedance. See “Auxiliary Output Source Select (Bits 6:5)” on page 45. VA 30 Analog Power (Input) - Positive power for the internal analog section. AGND 31, 32 Analog Ground (Input) - Ground reference for the internal analog section. AOUTA AOUTB 33, 34 MUTEC 35 Mute Control (Output) - This pin is active during power-up initialization, reset, muting, when master clock to left/right clock frequency ratio is incorrect, or power-down. VLS 36 Serial Audio Interface Power (Input) - Determines the required signal level for the serial audio interface. Refer to the Recommended Operating Conditions for appropriate voltages. SDIN 37 Serial Audio Data Input (Input) - Input for two’s complement serial audio data. SCLK2 38 Serial Port 2 Serial Bit Clock (Input/Output) - Serial bit clock for serial audio interface 2. LRCK2 39 Serial Port 2 Left Right Clock (Input/Output) - Determines which channel, Left or Right, is currently active on the serial audio input data line. MCLK2 40 Master Clock 2 (Input) - Optional asynchronous clock source for the DAC’s delta-sigma modulators. SDOUT 41 Serial Audio Data Output (Output) - Output for two’s complement serial audio data. SCLK1 42 Serial Port 1 Serial Bit Clock (Input/Output) - Serial bit clock for serial audio interface 1. LRCK1 43 Serial Port 1 Left Right Clock (Input/Output) - Determines which channel, Left or Right, is currently active on the serial audio output data line. MCLK1 44 Master Clock 1 (Input) - Clock source for the ADC’s delta-sigma modulators. By default, this signal also clocks the DAC’s delta-sigma modulators. DGND 45 Digital Ground (Input) - Ground reference for the internal digital section. VD 46 Digital Power (Input) - Positive power for the internal digital section. INT 47 Interrupt (Output) - Indicates an interrupt condition has occurred. OVFL 48 ADC Overflow (Output) - Indicates an ADC overflow condition is present. 8 DAC Analog Audio Output (Output) - The full-scale output level is specified in the DAC Analog Characteristics specification table. DS656F2 CS4245 2. CHARACTERISTICS AND SPECIFICATIONS SPECIFIED OPERATING CONDITIONS AGND = DGND = 0 V; All voltages with respect to ground. Parameters Symbol Min Nom Max Units Analog Digital Logic - Serial Port Logic - Control Port Ambient Operating Temperature (Power Applied) Commercial Automotive VA VD VLS VLC TA TA 3.13 3.13 1.71 1.71 -10 -40 5.0 3.3 3.3 3.3 - 5.25 (Note 1) 5.25 5.25 +70 +105 V V V V °C °C DC Power Supplies: Notes: 1. Maximum of VA+0.25 V or 5.25 V, whichever is less. ABSOLUTE MAXIMUM RATINGS AGND = DGND = 0 V All voltages with respect to ground. (Note 2) Parameter DC Power Supplies: Input Current Analog Digital Logic - Serial Port Logic - Control Port (Note 3) Analog Input Voltage Symbol Min Max Units VA VD VLS VLC Iin -0.3 -0.3 -0.3 -0.3 +6.0 +6.0 +6.0 +6.0 V V V V - ±10 mA VINA AGND-0.3 VA+0.3 V VIND-S VIND-C -0.3 -0.3 VLS+0.3 VLC+0.3 V V Ambient Operating Temperature (Power Applied) TA -50 +125 °C Storage Temperature Tstg -65 +150 °C Digital Input Voltage Logic - Serial Port Logic - Control Port 2. Operation beyond these limits may result in permanent damage to the device. Normal operation is not guaranteed at these extremes. 3. Any pin except supplies. Transient currents of up to ±100 mA on the analog input pins will not cause SCR latch-up. DS656F2 9 CS4245 DAC ANALOG CHARACTERISTICS Test Conditions (unless otherwise specified): AGND = DGND = 0 V; VA = 3.13 V to 5.25 V; VD = 3.13 V to 5.25 V or VA + 0.25 V, whichever is less; VLS = VLC = 1.71 V to 5.25 V; TA = -10° to +70° C for Commercial or -40° to +85° C for Automotive; Output test signal: 997 Hz full-scale sine wave; Test load RL = 3 kΩ, CL = 10 pF (see Figure 1), Fs = 48/96/192 kHz. Measurement Bandwidth 10 Hz to 20 kHz Synchronous mode; All Connections as shown in Figure 12 on page 29. Commercial Grade Parameter Symbol Automotive Grade Min Typ Max Min Typ Max Unit 98 95 90 87 104 101 96 93 - 96 93 88 85 104 101 96 93 - dB dB dB dB - -90 -81 -41 -93 -73 -33 -84 -87 - - -90 -81 -41 -93 -73 -33 -82 -85 - dB dB dB dB dB dB 95 92 88 85 101 98 93 90 - 93 90 86 83 101 98 93 90 - dB dB dB dB - -87 -78 -38 -90 -70 -30 -79 -82 - - -87 -78 -38 -90 -70 -30 -77 -80 - dB dB dB dB dB dB - 100 - - 100 - dB Interchannel Gain Mismatch - 0.1 0.25 - 0.1 0.25 dB Gain Drift - 100 - - 100 - ppm/°C Dynamic Performance for VA = 4.75 V to 5.25 V Dynamic Range 18 to 24-Bit 16-Bit (Note 4) A-Weighted unweighted A-Weighted unweighted Total Harmonic Distortion + Noise 18 to 24-Bit (Note 4) 0 dB -20 dB -60 dB THD+N 0 dB -20 dB -60 dB 16-Bit Dynamic Performance for VA = 3.13 V to 3.46 V Dynamic Range 18 to 24-Bit 16-Bit (Note 4) A-Weighted unweighted A-Weighted unweighted Total Harmonic Distortion + Noise 18 to 24-Bit 16-Bit Interchannel Isolation (Note 4) 0 dB -20 dB -60 dB THD+N 0 dB -20 dB -60 dB (1 kHz) DC Accuracy Analog Output Full Scale Output Voltage 0.60*VA 0.65*VA 0.70*VA 0.60*VA 0.65*VA 0.70*VA Vpp DC Current draw from an AOUT pin (Note 5) IOUT - - 10 - - 10 μA AC-Load Resistance (Note 6) RL 3 - - 3 - - kΩ Load Capacitance (Note 6) CL - - 100 - - 100 pF ZOUT - 150 - - 150 - Ω Output Impedance 4. One-half LSB of triangular PDF dither added to data. 5. Guaranteed by design. The DC current draw represents the allowed current draw from the AOUT pin due to typical leakage through the electrolytic DC blocking capacitors. 10 DS656F2 CS4245 6. Guaranteed by design. See Figure 2. RL and CL reflect the recommended minimum resistance and maximum capacitance required for the internal op-amp’s stability. CL affects the dominant pole of the internal output amp; increasing CL beyond 100 pF can cause the internal op-amp to become unstable. DAC COMBINED INTERPOLATION & ON-CHIP ANALOG FILTER RESPONSE Parameter (Note 7,10) Symbol Combined Digital and On-chip Analog Filter Response Passband (Note 7) Min Typ Max Unit Single-Speed Mode to -0.1 dB corner to -3 dB corner 0 0 - 0.35 0.4992 Fs Fs Frequency Response 10 Hz to 20 kHz -0.175 - +0.01 dB StopBand 0.5465 - - Fs 50 - - dB - 10/Fs - s - - +0.05/-0.25 dB StopBand Attenuation (Note 8) Group Delay De-emphasis Error (Note 9) tgd Fs = 44.1 kHz Combined Digital and On-chip Analog Filter Response Passband (Note 7) Double-Speed Mode to -0.1 dB corner to -3 dB corner Frequency Response 10 Hz to 20 kHz StopBand StopBand Attenuation (Note 8) Group Delay tgd 0 0 - 0.22 0.501 Fs Fs -0.15 - +0.15 dB 0.5770 - - Fs 55 - - dB - 5/Fs - s Combined Digital and On-chip Analog Filter Response Quad-Speed Mode Passband (Note 7) 0 0 - 0.110 0.469 Fs Fs -0.12 - 0 dB 0.7 - - Fs 51 - - dB - 2.5/Fs - s to -0.1 dB corner to -3 dB corner Frequency Response 10 Hz to 20 kHz StopBand StopBand Attenuation (Note 8) Group Delay tgd 7. Filter response is guaranteed by design. 8. For Single-Speed Mode, the Measurement Bandwidth is 0.5465 Fs to 3 Fs. For Double-Speed Mode, the Measurement Bandwidth is 0.577 Fs to 1.4 Fs. For Quad-Speed Mode, the Measurement Bandwidth is 0.7 Fs to 1 Fs. 9. De-emphasis is available only in Single-Speed Mode. 10. Response is clock dependent and will scale with Fs. Note that the amplitude vs. frequency plots of this data (Figures 21 to 30) have been normalized to Fs and can be de-normalized by multiplying the X-axis scale by Fs. DS656F2 11 CS4245 3.3 µF V out AOUTx R L AGND C L Capacitive Load -- C L (pF) 125 100 75 25 2.5 3 Figure 1. DAC Output Test Load 12 Safe Operating Region 50 5 10 15 20 Resistive Load -- RL (kΩ ) Figure 2. Maximum DAC Loading DS656F2 CS4245 ADC ANALOG CHARACTERISTICS Test conditions (unless otherwise specified): AGND = DGND = 0 V; VA = 3.13 V to 5.25 V; VD = 3.13 V to 5.25 V or VA + 0.25 V, whichever is less; VLS = VLC = 1.71 V to 5.25 V; TA = -10° to +70° C for Commercial or -40° to +85° C for Automotive; Input test signal: 1 kHz sine wave; measurement bandwidth is 10 Hz to 20 kHz; Fs = 48/96/192 kHz. Synchronous mode; All connections as shown in Figure 12 on page 29. Line-Level Inputs Commercial Grade Parameter Symbol Dynamic Performance for VA = 4.75 V to 5.25 V Automotive Grade Min Typ Max Min Typ Max Unit 98 95 - 104 101 98 - 96 93 - 104 101 98 - dB dB dB 92 89 - 98 95 92 - 90 87 - 98 95 92 - dB dB dB - -95 -81 -41 -92 -89 - - -95 -81 -41 -92 -87 - dB dB dB dB - -92 -75 -35 -89 -86 - - -92 -75 -35 -89 -84 - dB dB dB dB 93 90 - 101 98 95 - 91 88 - 101 98 95 - dB dB dB 89 86 - 95 92 89 - 87 84 - 95 92 89 - dB dB dB - -92 -78 -38 -84 -86 - - -92 -78 -38 -84 -84 - dB dB dB dB - -89 -72 -32 -81 -83 - - -89 -72 -32 -81 -81 - dB dB dB dB Dynamic Range (Note 13) (Note 13) PGA Setting: -12 dB to +6 dB A-weighted unweighted 40 kHz bandwidth unweighted PGA Setting: +12 dB Gain A-weighted unweighted 40 kHz bandwidth unweighted Total Harmonic Distortion + Noise (Note 12) PGA Setting: -12 dB to +6 dB -1 dB -20 dB -60 dB (Note 13) 40 kHz bandwidth -1 dB THD+N PGA Setting: +12 dB Gain -1 dB -20 dB -60 dB (Note 13) 40 kHz bandwidth -1 dB Dynamic Performance for VA = 3.13 V to 3.46 V Dynamic Range (Note 13) (Note 13) PGA Setting: -12 dB to +6 dB A-weighted unweighted 40 kHz bandwidth unweighted PGA Setting: +12 dB Gain A-weighted unweighted 40 kHz bandwidth unweighted Total Harmonic Distortion + Noise (Note 12) PGA Setting: -12 dB to +6 dB -1 dB -20 dB -60 dB (Note 13) 40 kHz bandwidth -1 dB THD+N PGA Setting: +12 dB Gain -1 dB -20 dB -60 dB (Note 13) 40 kHz bandwidth -1 dB DS656F2 13 CS4245 Line-Level Inputs Commercial Grade Parameter Symbol Interchannel Isolation Automotive Grade Min Typ Max Min Typ Max Unit - 90 - - 90 - dB - ±100 - ±10 - - ±100 - ±10 - % ppm/°C DC Accuracy Gain Error Gain Drift Line-Level Input Characteristics Full-scale Input Voltage Input Impedance (Note 11) Maximum Interchannel Input Impedance Mismatch 0.51*VA 0.57*VA 0.63*VA 0.51*VA 0.57*VA 0.63*VA 6.12 6.8 7.48 5.44 6.8 8.16 - 5 - - 5 - Vpp kΩ % Line-Level and Microphone-Level Inputs Commercial Grade Parameter Symbol Automotive Grade Min Typ Max Min Typ Max Unit - 0.1 - - 0.1 - dB - 0.5 - 0.4 - 0.5 - 0.4 dB dB DC Accuracy Interchannel Gain Mismatch Programmable Gain Characteristics Gain Step Size Absolute Gain Step Error 11. Valid for the selected input pair. 14 DS656F2 CS4245 ADC ANALOG CHARACTERISTICS (Continued) Microphone-Level Inputs Commercial Grade Parameter Symbol Dynamic Performance for VA = 4.75 V to 5.25 V Automotive Grade Min Typ Max Min Typ Max Unit 77 74 83 80 - 75 72 83 80 - dB dB 65 62 71 68 - 63 60 71 68 - dB dB - -80 -60 -20 -74 - - -80 -60 -20 -72 - dB dB dB - -68 - - -68 - dB 77 74 83 80 - 75 72 83 80 - dB dB 65 62 71 68 - 63 60 71 68 - dB dB - -80 -60 -20 -74 - - -80 -60 -20 -72 - dB dB dB - -68 80 - - -68 80 - dB dB - ±300 ±5 - - ±300 ±5 - % ppm/°C Dynamic Range PGA Setting: -12 dB to 0 dB A-weighted unweighted PGA Setting: +12 dB A-weighted unweighted Total Harmonic Distortion + Noise (Note 12) PGA Setting: -12 dB to 0 dB -1 dB -20 dB THD+N -60 dB PGA Setting: +12 dB -1 dB Dynamic Performance for VA = 3.13 V to 3.46 V Dynamic Range PGA Setting: -12 dB to 0 dB A-weighted unweighted PGA Setting: +12 dB A-weighted unweighted Total Harmonic Distortion + Noise (Note 12) PGA Setting: -12 dB to 0 dB -1 dB -20 dB THD+N -60 dB PGA Setting: +12 dB -1 dB Interchannel Isolation DC Accuracy Gain Error Gain Drift Microphone-Level Input Characteristics Full-scale Input Voltage Input Impedance (Note 14) 0.013*VA 0.017*VA 0.021*VA 0.013*VA 0.017*VA 0.021*VA 60 60 - Vpp kΩ 12. Referred to the typical line-level full-scale input voltage 13. Valid for Double- and Quad-Speed Modes only. 14. Valid when the microphone-level inputs are selected. DS656F2 15 CS4245 ADC DIGITAL FILTER CHARACTERISTICS Parameter (Notes 15, 17) Symbol Min Typ Max Unit 0 - 0.4896 Fs - - 0.035 dB 0.5688 - - Fs 70 - - dB - 12/Fs - s 0 - 0.4896 Fs - - 0.025 dB Single-Speed Mode Passband (-0.1 dB) Passband Ripple Stopband Stopband Attenuation Total Group Delay (Fs = Output Sample Rate) tgd Double-Speed Mode Passband (-0.1 dB) Passband Ripple Stopband Stopband Attenuation Total Group Delay (Fs = Output Sample Rate) tgd 0.5604 - - Fs 69 - - dB - 9/Fs - s 0 - 0.2604 Fs - - 0.025 dB Quad-Speed Mode Passband (-0.1 dB) Passband Ripple Stopband Stopband Attenuation Total Group Delay (Fs = Output Sample Rate) tgd 0.5000 - - Fs 60 - - dB - 5/Fs - s - 1 20 - Hz Hz - 10 - Deg - 0 dB High-Pass Filter Characteristics Frequency Response Phase Deviation -3.0 dB -0.13 dB (Note 16) @ 20 Hz (Note 16) Passband Ripple Filter Settling Time - 105/Fs s 15. Filter response is guaranteed by design. 16. Response shown is for Fs = 48 kHz. 17. Response is clock-dependent and will scale with Fs. Note that the response plots (Figures 33 to 44) are normalized to Fs and can be de-normalized by multiplying the X-axis scale by Fs. 16 DS656F2 CS4245 AUXILIARY OUTPUT ANALOG CHARACTERISTICS Test conditions (unless otherwise specified): AGND = DGND = 0 V; VA = 3.13 V to 5.25 V; VD = 3.13 V to 5.25 V or VA + 0.25 V, whichever is less; VLS = VLC = 1.71 V to 5.25 V; TA = -10° to +70° C for Commercial or -40° to +85° C for Automotive; Input test signal: 1 kHz sine wave; Measurement bandwidth: 10 Hz to 20 kHz; Fs = 48/96/192 kHz; Synchronous mode; All connections as shown in Figure 12 on page 29. VA = 4.75 V to 5.25 V Commercial Grade Parameter Symbol Min Typ Max Dynamic Performance with PGA Output Selected, Line Level Input Automotive Grade Min Typ Max Unit Dynamic Range PGA Setting: -12 dB to +6 dB A-weighted unweighted PGA Setting: +12 dB Gain A-weighted unweighted Total Harmonic Distortion + Noise (Note 19) PGA Setting: -12 dB to +6 dB -1 dB -20 dB -60 dB THD+N PGA Setting: +12 dB Gain -1 dB -20 dB -60 dB 98 95 104 101 - 96 93 104 101 - dB dB 92 89 98 95 - 90 87 98 95 - dB dB - -80 -81 -41 -74 - - -80 -81 -41 -72 - dB dB dB - -80 -75 -35 -74 - - -80 -75 -35 -72 - dB dB dB Dynamic Performance with PGA Output Selected, Mic Level Input Dynamic Range PGA Setting: -12 dB to 0 dB A-weighted unweighted PGA Setting: +12 dB A-weighted unweighted Total Harmonic Distortion + Noise (Note 19) PGA Setting: -12 dB to 0 dB -1 dB -20 dB THD+N -60 dB PGA Setting: +12 dB -1 dB 77 74 83 80 - 75 72 83 80 - dB dB 65 62 71 68 - 63 60 71 68 - dB dB - -74 -60 -20 -68 - - -74 -60 -20 -66 - dB dB dB - -68 - - -68 - dB 98 95 90 87 104 101 96 93 - 96 93 88 85 104 101 96 93 - dB dB dB dB - -80 -81 -41 -80 -73 -33 -74 -74 - - -80 -81 -41 -80 -73 -33 -72 -72 - dB dB dB dB dB dB Dynamic Performance with DAC Output Selected Dynamic Range 18 to 24-Bit (Notes 18) A-weighted unweighted 16-Bit A-Weighted unweighted Total Harmonic Distortion + Noise (Notes 18, 20) 18 to 24-Bit 0 dB -20 dB -60 dB THD+N 16-Bit 0 dB -20 dB -60 dB DS656F2 17 CS4245 AUXILIARY OUTPUT ANALOG CHARACTERISTICS (Continued) VA = 3.13 V to 3.46 V Commercial Grade Parameter Symbol Min Typ Max Dynamic Performance with PGA Output Selected, Line Level Input Automotive Grade Min Typ Max Unit Dynamic Range PGA Setting: -12 dB to +6 dB A-weighted unweighted PGA Setting: +12 dB Gain A-weighted unweighted Total Harmonic Distortion + Noise (Note 19) PGA Setting: -12 dB to +6 dB -1 dB -20 dB -60 dB THD+N PGA Setting: +12 dB Gain -1 dB -20 dB -60 dB 93 90 101 98 - 91 88 101 98 - dB dB 89 86 95 92 - 87 84 95 92 - dB dB - -80 -78 -38 -74 - - -80 -78 -38 -72 - dB dB dB - -80 -72 -32 -74 - - -80 -72 -32 -72 - dB dB dB Dynamic Performance with PGA Output Selected, Mic Level Input Dynamic Range PGA Setting: -12 dB to 0 dB A-weighted unweighted PGA Setting: +12 dB A-weighted unweighted Total Harmonic Distortion + Noise (Note 19) PGA Setting: -12 dB to 0 dB -1 dB -20 dB THD+N -60 dB PGA Setting: +12 dB -1 dB 77 74 83 80 - 75 72 83 80 - dB dB 65 62 71 68 - 63 60 71 68 - dB dB - -74 -60 -20 -68 - - -74 -60 -20 -66 - dB dB dB - -68 - - -68 - dB 95 92 88 85 101 98 93 90 - 93 90 86 83 101 98 93 90 - dB dB dB dB - -80 -78 -38 -80 -70 -30 -74 -74 - - -80 -78 -38 -80 -70 -30 -72 -72 - dB dB dB dB dB dB Dynamic Performance with DAC Output Selected Dynamic Range 18 to 24-Bit (Notes 18) A-Weighted unweighted 16-Bit A-Weighted unweighted Total Harmonic Distortion + Noise (Notes 18, 20) 18 to 24-Bit 0 dB -20 dB -60 dB THD+N 16-Bit 0 dB -20 dB -60 dB 18. One-half LSB of triangular PDF dither added to data. 19. Referred to the typical Line-Level Full-Scale Input Voltage. 18 DS656F2 CS4245 20. Referred to the typical DAC Full-Scale Output Voltage. AUXILIARY OUTPUT ANALOG CHARACTERISTICS (Continued) VA = 3.13 V to 5.25 V Commercial Grade Automotive Grade Parameter Symbol Min DC Accuracy with PGA Output Selected, Line Level Input Typ Max Min Typ Max Unit Interchannel Gain Mismatch Gain Error Gain Drift - 0.1 ±5 ±100 - - 0.1 ±5 ±100 - dB % ppm/°C - 0.3 ±5 ±300 - - 0.3 ±5 ±300 - dB % ppm/°C - ±100 0.1 - - ±100 0.1 - dB ppm/°C -0.1dB 100 - 180 - 180 - +0.1dB 1 20 dB deg μA kΩ pF DC Accuracy with PGA Output Selected, Mic Level Input Interchannel Gain Mismatch Gain Error Gain Drift DC Accuracy with DAC Output Selected Interchannel Gain Mismatch Gain Drift Analog Output Frequency Response 10 Hz to 20 kHz Analog In to Analog Out Phase Shift DC Current draw from an AUXOUT pin AC-Load Resistance Load Capacitance (Note 22) (Note 21) IOUT RL CL +0.1dB -0.1dB 1 100 20 - 21. Valid only when PGA output is selected. 22. Guaranteed by design. DS656F2 19 CS4245 DC ELECTRICAL CHARACTERISTICS AGND = DGND = 0 V, all voltages with respect to ground. MCLK=12.288 MHz; Fs=48 kHz; Master Mode. Parameter Symbol Min Typ Max Unit V V V V IA IA ID ID - 41 37 39 23 50 45 47 28 mA mA mA mA VA = 5 V VLS, VLC, VD=5 V IA ID - 0.50 0.54 - mA mA Power Consumption (Normal Operation) VA, VD, VLS, VLC = 5 V (Power-Down Mode) VA, VD, VLS, VLC = 3.3 V VA, VD, VLS, VLC = 5 V - - 400 198 4.2 485 241 - mW mW mW PSRR - 55 - dB VQ1 - 0.5 x VA - VDC IQ1 - - 1 μA ZQ1 - 23 - kΩ VQ2 - 0.5 x VA - VDC IQ2 - - 1 μA VQ2 Output Impedance ZQ2 - 4.5 - kΩ FILT1+ Nominal Voltage FILT1+ - VA - VDC FILT2+ Nominal Voltage FILT2+ - VA - VDC Microphone Bias Voltage MICBIAS - 0.8 x VA - VDC IMB - - 2 mA Power Supply Current (Normal Operation) VA = 5 VA = 3.3 VD, VLS, VLC = 5 VD, VLS, VLC = 3.3 Power Supply Current (Power-Down Mode) (Note 23) Power Supply Rejection Ratio (1 kHz) (Note 24) VQ Characteristics Quiescent Voltage 1 DC Current from VQ1 (Note 25) VQ1 Output Impedance Quiescent Voltage 2 DC Current from VQ2 Current from MICBIAS (Note 25) 23. Power-Down Mode is defines as RESET = Low with all clock and data lines held static and no analog input. 24. Valid with the recommended capacitor values on FILT1+, FILT2+, VQ1 and VQ2 as shown in the Typical Connection Diagram. 25. Guaranteed by design. The DC current draw represents the allowed current draw due to typical leakage through the electrolytic de-coupling capacitors. 20 DS656F2 CS4245 DIGITAL INTERFACE CHARACTERISTICS Test conditions (unless otherwise specified): AGND = DGND = 0 V; VLS = VLC = 1.71 V to 5.25 V. Parameters (Note 26) Symbol Min Typ Max Units VIH VIH VIH VIH VIL VIL VOH VOH VOH VOL VOL VOL Iin 0.8xVLS 0.8xVLC 0.7xVLS 0.7xVLC VLS-1.0 VLC-1.0 VA-1.0 - 3 0.2xVLS 0.2xVLC 0.4 0.4 0.4 ±10 1 - V V V V V V V V V V V V μA pF mA - - μs High-Level Input Voltage VL = 1.71 V VL > 2.0 V Low-Level Input Voltage High-Level Output Voltage at Io = 2 mA Low-Level Output Voltage at Io = 2 mA Input Leakage Current Input Capacitance Maximum MUTEC Drive Current Minimum OVFL Active Time Serial Port Control Port Serial Port Control Port Serial Port Control Port Serial Port Control Port MUTEC Serial Port Control Port MUTEC (Note 27) 6 10 -------------------LRCK1 26. Serial Port signals include: MCLK1, MCLK2, SCLK1, SCLK2, LRCK1, LRCK2, SDIN, SDOUT. Control Port signals include: SCL/CCLK, SDA/CDOUT, AD0/CS, AD1/CDIN, RESET, INT, OVFL. 27. Guaranteed by design. DS656F2 21 CS4245 SWITCHING CHARACTERISTICS - SERIAL AUDIO PORT 1 Logic ‘0’ = DGND = AGND = 0 V; Logic ‘1’ = VL, CL = 20 pF. (Note 28) Parameter Sample Rate Single Speed Mode Double Speed Mode Quad Speed Mode Symbol Min Typ Max Unit Fs Fs Fs 4 50 100 - 50 100 200 kHz kHz kHz fmclk tclkhl 1.024 8 - 51.200 - MHz ns tslr tsdo -10 0 50 50 - 10 36 % % ns ns 40 50 60 % - - ns - - ns MCLK Specifications MCLK1 Input Frequency MCLK1 Input Pulse Width High/Low Master Mode LRCK1 Duty Cycle SCLK1 Duty Cycle SCLK1 falling to LRCK1 edge SCLK1 falling to SDOUT valid Slave Mode LRCK1 Duty Cycle SCLK1 Period 9 Single-Speed Mode tsclkw 10 --------------------( 128 )Fs Double-Speed Mode tsclkw 10 -----------------( 64 )Fs Quad-Speed Mode tsclkw 10 -----------------( 64 )Fs - - ns tsclkh tsclkl tslr tsdo 30 48 -10 0 - 10 36 ns ns ns ns SCLK1 Pulse Width High SCLK1 Pulse Width Low SCLK1 falling to LRCK1 edge SCLK1 falling to SDOUT valid 9 9 28. See Figure 3 and Figure 4 on page 23. 22 DS656F2 CS4245 LRCK1 Output t slr SCLK1 Output t sdo SDOUT Figure 3. Master Mode Timing - Serial Audio Port 1 LRCK1 Input t slr t sclkh t sclkl SCLK1 Input t sdo t sclkw SDOUT Figure 4. Slave Mode Timing - Serial Audio Port 1 DS656F2 23 CS4245 SWITCHING CHARACTERISTICS - SERIAL AUDIO PORT 2 Logic ‘0’ = DGND = AGND = 0 V; Logic ‘1’ = VL, CL = 20 pF. (Note 29) Parameter Sample Rate Single Speed Mode Double Speed Mode Quad Speed Mode Symbol Min Typ Max Unit Fs Fs Fs 4 50 100 - 50 100 200 kHz kHz kHz fmclk tclkhl 1.024 8 - 51.200 - MHz ns tslr tsdis tsdih -10 16 20 50 50 - 10 - % % ns ns ns 40 50 60 % - - ns - - ns MCLK Specifications MCLK2 Input Frequency MCLK2 Input Pulse Width High/Low Master Mode LRCK2 Duty Cycle SCLK2 Duty Cycle SCLK2 falling to LRCK edge SDIN valid to SCLK2 rising setup time SCLK2 rising to SDIN hold time Slave Mode LRCK2 Duty Cycle SCLK2 Period 9 Single-Speed Mode tsclkw 10 --------------------( 128 )Fs Double-Speed Mode tsclkw 10 -----------------( 64 )Fs Quad-Speed Mode tsclkw 10 -----------------( 64 )Fs - - ns tsclkh tsclkl tslr tsdis tsdih 30 48 -10 16 20 - 10 - ns ns ns ns ns SCLK2 Pulse Width High SCLK2 Pulse Width Low SCLK2 falling to LRCK2 edge SDIN valid to SCLK2 rising setup time SCLK2 rising to SDIN hold time 9 9 29. See Figure 5 and Figure 6 on page 25. 24 DS656F2 CS4245 LRCK2 Output t slr SCLK2 Output t sdis t sdih SDIN Figure 5. Master Mode Timing - Serial Audio Port 2 LRCK2 Input t t sclkh slr t sclkl SCLK2 Input t sclkw t sdis t sdih SDIN Figure 6. Slave Mode Timing - Serial Audio Port 2 DS656F2 25 CS4245 Channel B - Right Channel A - Left LRCK SCLK SDATA MSB -1 -2 -3 -4 -5 +5 +4 +3 +2 +1 LSB MSB -1 -2 -3 +5 -4 +4 +3 +2 +1 LSB Figure 7. Format 0, Left-Justified up to 24-Bit Data Channel A - Left LRCK Channel B - Right SCLK SDATA MSB -1 -2 -3 -4 -5 +5 +4 +3 +2 +1 LSB MSB -1 -2 -3 +5 +4 +3 +2 +1 LSB -4 Figure 8. Format 1, I²S up to 24-Bit Data LRCK Channel B - Right Channel A - Left SCLK SDATA LSB MSB -1 -2 -3 -4 -5 -6 +6 +5 +4 +3 +2 +1 LSB MSB -1 -2 -3 -4 -5 -6 +6 +5 +4 +3 +2 +1 LSB Figure 9. Format 2, Right-Justified 16-Bit Data. Format 3, Right-Justified 24-Bit Data. 26 DS656F2 CS4245 SWITCHING CHARACTERISTICS - CONTROL PORT - I²C FORMAT Inputs: Logic 0 = DGND = AGND = 0 V, Logic 1 = VLC, CL = 30 pF. Parameter Symbol Min Max Unit SCL Clock Frequency fscl - 100 kHz RESET Rising Edge to Start tirs 500 - ns Bus Free Time Between Transmissions tbuf 4.7 - µs Start Condition Hold Time (prior to first clock pulse) thdst 4.0 - µs Clock Low time tlow 4.7 - µs Clock High Time thigh 4.0 - µs tsust 4.7 - µs thdd 0 - µs tsud 250 - ns - 1 µs Setup Time for Repeated Start Condition SDA Hold Time from SCL Falling (Note 30) SDA Setup time to SCL Rising Rise Time of SCL and SDA (Note 31) trc, trd Fall Time SCL and SDA (Note 31) tfc, tfd - 300 ns Setup Time for Stop Condition tsusp 4.7 - µs Acknowledge Delay from SCL Falling tack 300 1000 ns 30. Data must be held for sufficient time to bridge the transition time, tfc, of SCL. 31. Guaranteed by design. RST t irs Stop R e p e ate d Sta rt Start t rd t fd Stop SDA t buf t t hdst t high t fc hdst t susp SCL t lo w t hdd t sud t ack t sust t rc Figure 10. Control Port Timing - I²C Format DS656F2 27 CS4245 SWITCHING CHARACTERISTICS - CONTROL PORT - SPI FORMAT Inputs: Logic 0 = DGND = AGND = 0 V, Logic 1 = VLC, CL = 30 pF. Parameter Symbol Min Max Units CCLK Clock Frequency fsck - 6.0 MHz RESET Rising Edge to CS Falling tsrs 500 - ns CS High Time Between Transmissions tcsh 1.0 - μs CS Falling to CCLK Edge tcss 20 - ns CCLK Low Time tscl 66 - ns CCLK High Time tsch 66 - ns CDIN to CCLK Rising Setup Time tdsu 40 - ns tdh 15 - ns CCLK Falling to CDOUT Stable tpd - 50 ns Rise Time of CDOUT tr1 - 25 ns Fall Time of CDOUT tf1 - 25 ns CCLK Rising to DATA Hold Time (Note 32) Rise Time of CCLK and CDIN (Note 33) tr2 - 100 ns Fall Time of CCLK and CDIN (Note 33) tf2 - 100 ns 32. Data must be held for sufficient time to bridge the transition time of CCLK. 33. For fsck <1 MHz. t srs RST CS t scl t css t sch t csh CCLK t r2 t f2 CDIN t dsu t dh t pd CDOUT Figure 11. Control Port Timing - SPI Format 28 DS656F2 CS4245 3. TYPICAL CONNECTION DIAGRAM +3.3V to +5V 10 µF VD +1.8V to +5V 0.1 µF 0.1 µF 0.1 µF 0.1 µF +3.3V to +5V 10 µF VA VA 3.3 µF AUXOUTA VLS 3.3 µF AUXOUTB MCLK2 SCLK2 Digital Audio Playback Mute Drive MUTEC LRCK2 3.3 µF SDIN AOUTA MCLK1 SCLK1 Digital Audio Capture * C 10 kΩ * C AIN1A CS4245 1800 pF * INT OVFL AIN1B R ext Optional Analog Muting R ext 470 Ω 3.3 µF SDOUT 1800 pF * Left Analog Input 1 10 µF 100 Ω 100 kΩ 10 µF 100 kΩ 100 Ω Right Analog Input 1 RESET MicroController AIN2A SCL/CCLK SDA/CDOUT AD1/CDIN AIN2B AD0/CS AIN3A 2 kΩ 2 kΩ See Note 1 +1.8V to +5V 10 kΩ AOUTB LRCK1 See Note 2 470 Ω VLC AIN3B 0.1 µF AIN4A/MICIN1 Note 1: Resistors are required for I²C control port operation AIN4B/MICIN2 Note 2 : 1800 pF * 1800 pF * 1800 pF * 1800 pF * 1800 pF * 1800 pF * Left Analog Input 2 10 µF 100 Ω 100 kΩ 10 µF 100 kΩ 100 Ω Right Analog Input 2 Left Analog Input 3 10 µF 100 Ω 100 kΩ 10 µF 100 kΩ 100 Ω Right Analog Input 3 Left Analog Input 4 10 µF 100 Ω 100 kΩ 10 µF 100 kΩ 100 Ω Right Analog Input 4 For best response to Fs/2 : C= R ext + 470 4π Fs (R ext × 470 ) AIN5A This circuitry is intended for applications where the CS4245 connects directly to an unbalanced output of the design . For internal routing applications please see the DAC Analog Output Characteristics section for loading limitations . AIN5B AIN6A VQ1 FILT1+ 10 µF 0.1 µF 47 µF AIN6B 0.1 µF 0.1 µF 47 µF 0.1 µF AGND AGND FILT2+ VQ2 Note 3: The value of R L is dictated by the microphone carteridge. 1800 pF * 1800 pF * 1800 pF * DGND Left Analog Input 5 10 µF 100 Ω 100 kΩ 10 µF 100 kΩ 100 Ω Right Analog Input 5 Left Analog Input 6 10 µF 100 Ω 100 kΩ 10 µF 100 kΩ 100 Ω Right Analog Input 6 Note 3 MICBIAS AGND 10 µF 1800 pF * 47 µF * AFILTA AFILTB RL * 2.2nF 2.2nF * Capacitors must be C0G or equivalent Figure 12. Typical Connection Diagram DS656F2 29 CS4245 4. APPLICATIONS 4.1 Recommended Power-Up Sequence 1. Hold RESET low until the power supply,MCLK1, MCLK2 (if used), LRCK1 and LRCK2 are stable. In this state, the Control Port is reset to its default settings. 2. Bring RESET high. The device will remain in a low power state with the PDN bit set by default. The control port will be accessible. 3. The desired register settings can be loaded while the PDN bit remains set. 4. Clear the PDN bit to initiate the power-up sequence. 4.2 System Clocking The CS4245 will operate at sampling frequencies from 4 kHz to 200 kHz. This range is divided into three speed modes as shown in Table 1. Mode Sampling Frequency Single-Speed 4-50 kHz Double-Speed 50-100 kHz Quad-Speed 100-200 kHz Table 1. Speed Modes The CS4245 has two serial ports which may be operated synchronously or asynchronously. Serial port 1 consists of the SCLK1 and LRCK1 signals and clocks the serial audio output, SDOUT. Serial port 2 consists of the SCLK2 and LRCK2 signals and clocks the serial audio input, SDIN. Each serial port may be independently placed into Single, Double, or Quad Speed mode. The serial ports may also be independently placed into Master or Slave mode. 4.2.1 Synchronous / Asynchronous Mode By default, the CS4245 operates in Synchronous Mode with both serial ports synchronous to MCLK1. In this mode, the serial ports may operate at different synchronous rates as set by the ADC_FM and DAC_FM bits, and MCLK2 does not need to be provided (the MCLK2 pin may be left unconnected). If the Asynch bit is set (see “Asynchronous Mode (Bit 0)” on page 45), the CS4245 will operate in asynchronous mode. The serial ports will operate asynchronously with Serial Port 1 clocked from MCLK1 and Serial Port 2 clocked from MCLK2. In this mode, the serial ports may operate at different asynchronous rates. 4.2.2 Master Clock In Asynchronous Mode, MCLK1/LRCK1 and MCLK2/LRCK2 must maintain an integer ratio. In synchronous mode MCLK1/LRCK1 and MCLK1/LRCK2 must maintain an integer ratio. Some common ratios are shown in Table 2.The LRCK frequency is equal to Fs, the frequency at which audio samples for each channel are clocked into or out of the device. The ADC_FM and DAC_FM bits and the MCLK Freq bits (See “MCLK Frequency - Address 05h” on page 44.) configure the device to generate the proper clocks 30 DS656F2 CS4245 in Master Mode and receive the proper clocks in Slave Mode. Table 2 illustrates several standard audio sample rates and the required MCLK and LRCK frequencies. LRCK (kHz) MCLK (MHz) 64x 96x 128x 192x 256x 384x 512x 768x 1024x 32 - - - - 8.1920 12.2880 16.3840 24.5760 32.7680 44.1 - - - - 11.2896 16.9344 22.5792 33.8680 45.1584 48 - - - - 12.2880 18.4320 24.5760 36.8640 49.1520 64 - - 8.1920 12.2880 16.3840 24.5760 32.7680 - - 88.2 - - 11.2896 16.9344 22.5792 33.8680 45.1584 - - 96 - - 12.2880 18.4320 24.5760 36.8640 49.1520 - - 128 8.1920 12.2880 16.3840 24.5760 32.7680 - - - - 176.4 11.2896 16.9344 22.5792 33.8680 45.1584 - - - - 192 12.2880 18.4320 24.5760 36.8640 49.1520 - - - - Mode DSM QSM SSM Table 2. Common Clock Frequencies 4.2.3 Master Mode As a clock master, LRCK and SCLK will operate as outputs. The two serial ports may be independently placed into Master or Slave mode. Each LRCK and SCLK is internally derived from its respective MCLK with LRCK equal to Fs and SCLK equal to 64 x Fs as shown in Figure 13. MCLK1 Freq Bits MCLK1 ÷1 000 ÷1.5 001 ÷2 010 ÷3 011 ÷4 100 MCLK2 Freq Bits ÷128 01 ÷64 10 LRCK1 ÷4 00 ÷2 01 ÷1 10 ÷256 00 ÷128 01 ÷64 10 SCLK1 ASynch Bit ÷1 000 ÷1.5 001 ÷2 010 ÷3 011 1 ÷4 00 ADC_FM Bits 0 MCLK2 ÷256 LRCK2 DAC_FM Bits ÷4 00 ÷2 01 ÷1 10 SCLK2 100 Figure 13. Master Mode Clocking 4.2.4 Slave Mode In Slave Mode, SCLK and LRCK operate as inputs. Each serial port may be independently placed into Slave Mode. The Left/Right clock signal must be equal to the sample rate, Fs. If operating in Asynchronous Mode, LRCK1 must be synchronously derived from MCLK1 and LRCK2 must be synchronously derived from MCLK2. If operating in Synchronous Mode, LRCK1, and LRCK2 must be synchronously DS656F2 31 CS4245 derived from MCLK1. For more information on Synchronous and Asynchronous Modes, see “Synchronous / Asynchronous Mode” on page 30. For each serial port, the serial bit clock must be equal to 128x, 64x, 48x or 32x Fs, depending on the desired speed mode. If operating in Asynchronous Mode, the serial bit clock SCLK1 must be synchronously derived from MCLK1 and SCLK2 must be synchronously derived from MCLK2. If operating in Synchronous Mode, SCLK1, and SCLK2 must be synchronously derived from MCLK1. Refer to Table 3 for required serial bit clock to Left/Right clock ratios. SCLK/LRCK Ratio Single-Speed Double-Speed Quad-Speed 32x, 48x, 64x, 128x 32x, 48x, 64x 32x, 48x, 64x Table 3. Slave Mode Serial Bit Clock Ratios 4.3 High-Pass Filter and DC Offset Calibration When using operational amplifiers in the input circuitry driving the CS4245, a small DC offset may be driven into the A/D converter. The CS4245 includes a high-pass filter after the decimator to remove any DC offset which could result in recording a DC level, possibly yielding clicks when switching between devices in a multichannel system. The high-pass filter continuously subtracts a measure of the DC offset from the output of the decimation filter. If the HPFFreeze bit (See “ADC High-Pass Filter Freeze (Bit 1)” on page 44.) is set during normal operation, the current value of the DC offset for the each channel is frozen and this DC offset will continue to be subtracted from the conversion result. This feature makes it possible to perform a system DC offset calibration by: 1. Running the CS4245 with the high-pass filter enabled until the filter settles. See the ADC Digital Filter Characteristics section for filter settling time. 2. Disabling the high-pass filter and freezing the stored DC offset. A system calibration performed in this way will eliminate offsets anywhere in the signal path between the calibration point and the CS4245. 32 DS656F2 CS4245 4.4 Analog Input Multiplexer, PGA, and Mic Gain The CS4245 contains a stereo 6-to-1 analog input multiplexer followed by a programmable gain amplifier (PGA). The input multiplexer can select one of six possible stereo analog input sources and route it to the PGA. Analog inputs 4A and 4B are able to insert a +32 dB gain stage before the input multiplexer, allowing them to be used for microphone-level signals without the need for any external gain. The PGA stage provides ±12 dB of gain or attenuation in 0.5 dB steps. Figure 14 shows the architecture of the input multiplexer, PGA, and microphone gain stages. AIN1A AIN2A AIN3A AIN4A/MICIN1 MUX PGA Out to ADC Channel A +32 dB AIN5A AIN6A Channel A PGA Gain Bits Analog Input Selection Bits AIN1B AIN2B Channel B PGA Gain Bits AIN3B AIN4B/MICIN2 MUX PGA Out to ADC Channel B +32 dB AIN5B AIN6B Figure 14. Analog Input Architecture The ““Analog Input Selection (Bits 2:0)” on page 47” outlines the bit settings necessary to control the input multiplexer and mic gain. “Channel B PGA Control - Address 07h” on page 46 and “Channel A PGA Control - Address 08h” on page 46 outline the register settings necessary to control the PGA. By default, linelevel input 1 is selected, and the PGA is set to 0 dB. 4.5 Input Connections The analog modulator samples the input at 6.144 MHz (MCLK=12.288 MHz). The digital filter will reject signals within the stopband of the filter. However, there is no rejection for input signals which are (n × 6.144 MHz) the digital passband frequency, where n=0,1,2,... Refer to the Typical Connection Diagram for the recommended analog input circuit that will attenuate noise energy at 6.144 MHz. The use of capacitors which have a large voltage coefficient (such as general-purpose ceramics) must be avoided since these can degrade signal linearity. Any unused analog input pairs should be left unconnected. 4.6 Output Connections The CS4245 DACs implement a switched-capacitor filter, followed by a continuous time low-pass filter. Its response, combined with that of the digital interpolator, is shown in Section 8. “DAC Filter Plots” on page 52”. The recommended external analog circuitry is shown in the Typical Connection Diagram. The CS4245 DAC does not include phase or amplitude compensation for an external filter. Therefore, the DAC system phase and amplitude response is dependent on the external analog circuitry. DS656F2 33 CS4245 4.7 Output Transient Control The CS4245 uses Popguard® technology to minimize the effects of output transients during power-up and power-down. This technique eliminates the audio transients commonly produced by single-ended, singlesupply converters when it is implemented with external DC-blocking capacitors connected in series with the audio outputs. To make best use of this feature, it is necessary to understand its operation. 4.7.1 Power-Up When the device is initially powered-up, the audio outputs AOUTA and AOUTB are clamped to VQ2, which is initially low. After the PDN bit is released (set to ‘0’), the DAC outputs begin to ramp with VQ2 towards the nominal quiescent voltage. This ramp takes approximately 200 ms to complete. The gradual voltage ramping allows time for the external DC-blocking capacitors to charge to VQ2, effectively blocking the quiescent DC voltage. Audio output will begin after approximately 2000 sample periods. 4.7.2 Power-Down To prevent audio transients at power-down, the DC-blocking capacitors must fully discharge before turning off the power. In order to do this, either the PDN bit should be set or the device should be reset about 250 ms before removing power. During this time, the voltage on VQ2 and the DAC outputs discharge gradually to GND. If power is removed before this 250 ms time period has passed, a transient will occur when the VA supply drops below that of VQ2. There is no minimum time for a power cycle; power may be re-applied at any time. 4.7.3 Serial Interface Clock Changes When changing the DAC clock ratio or sample rate, it is recommended that zero data (or near zero data) be present on SDIN for at least 10 LRCK samples before the change is made. During the clocking change, the DAC outputs will always be in a zero data state. If non-zero serial audio input is present at the time of switching, a slight click or pop may be heard as the DAC output automatically goes to its zero data state. 4.8 Auxiliary Analog Output The CS4245 includes an auxiliary analog output through the AUXOUT pins. These pins can be configured to output the analog input to the ADC as selected with the input MUX and gained or attenuated with the PGA, the analog output of the DAC, or alternatively they may be set to high-impedance. See “Section 6.6.1 “Auxiliary Output Source Select (Bits 6:5)” on page 45” for information on configuring the auxiliary analog output. The auxiliary analog output can source very little current. As current from the AUXOUT pins increases, distortion will increase. For this reason, a high input impedance buffer must be used on the AUXOUT pins to achieve full performance. Refer to the table in “Auxiliary Output Analog Characteristics” on page 17 for acceptable loading conditions. 4.9 De-Emphasis Filter The CS4245 includes on-chip digital de-emphasis optimized for a sample rate of 44.1 kHz. The filter response is shown in Figure 15. The frequency response of the de-emphasis curve scales proportionally with changes in sample rate, Fs. Please see Section 6.3.4 “De-Emphasis Control (Bit 1)” on page 43 for de-emphasis control. The de-emphasis feature is included to accommodate audio recordings that utilize 50/15 μs pre-emphasis equalization as a means of noise reduction. 34 DS656F2 CS4245 De-emphasis is only available in Single-Speed Mode. Gain dB T1=50 µs 0dB T2 = 15 µs -10dB F1 3.183 kHz F2 Frequency 10.61 kHz Figure 15. De-Emphasis Curve 4.10 Internal Digital Loopback The CS4245 supports an internal digital loopback mode in which the output of the ADC is routed to the input of the DAC. This mode may be activated by setting the LOOP bit in the Signal Selection register (See Section 6.6 “Signal Selection - Address 06h” on page 45). To use this mode, the ADC and DAC must be operating at the same synchronous sample rate. When this bit is set, the status of the DAC_DIF[1:0] bits in register 03h will be disregarded by the CS4245. Any changes made to the DAC_DIF[1:0] bits while the LOOP bit is set will have no impact on operation until the LOOP bit is cleared, at which time the Digital Interface Format of the DAC will operate according to the format selected by the DAC_DIF[1:0] bits. While the LOOP bit is set, data will be present on the SDOUT pin in the format selected by the ADC_DIF bit in register 04h. 4.11 Mute Control The MUTEC pin becomes active during power-up initialization, reset, and muting if the MCLK2 to LRCK2 ratio is incorrect in Asynchronous Mode or the MCLK1 to LRCK2 ratio is incorrect in Synchronous Mode, and during power-down. The MUTEC pin is intended to be used as control for an external mute circuit in order to add off-chip mute capability. Use of the Mute Control function is not mandatory, but recommended, for designs requiring the absolute minimum in extraneous clicks and pops. Also, use of the Mute Control function can enable the system de- DS656F2 35 CS4245 signer to achieve idle channel noise/signal-to-noise ratios which are only limited by the external mute circuit. The MUTEC pin is an active-low CMOS driver. See Figure 16 for a suggested active-low mute circuit. +VEE AC Couple AOUT 560 Ω LPF Audio Out 47 kΩ CS4245 -VEE +VA MMUN2111LT1 MUTEC 2 kΩ 10 kΩ -VEE Figure 16. Suggested Active-Low Mute Circuit 4.12 Control Port Description and Timing The control port is used to access the registers, allowing the CS4245 to be configured for the desired operational modes and formats. The operation of the control port may be completely asynchronous with respect to the audio sample rates. However, to avoid potential interference problems, the control port pins should remain static if no operation is required. The control port has two modes: SPI and I²C, with the CS4245 acting as a slave device. SPI Mode is selected if there is a high-to-low transition on the AD0/CS pin, after the RESET pin has been brought high. I²C Mode is selected by connecting the AD0/CS pin through a resistor to VLC or DGND, thereby permanently selecting the desired AD0 bit address state. 4.12.1 SPI Mode In SPI Mode, CS is the CS4245 chip-select signal; CCLK is the control port bit clock (input into the CS4245 from the microcontroller); CDIN is the input data line from the microcontroller; CDOUT is the output data line to the microcontroller. Data is clocked in on the rising edge of CCLK and out on the falling edge. Figure 17 shows the operation of the control port in SPI Mode. To write to a register, bring CS low. The first seven bits on CDIN form the chip address and must be 1001111. The eighth bit is a read/write indicator (R/W), which should be low to write. The next eight bits form the Memory Address Pointer (MAP), which is set to the address of the register that is to be updated. The next eight bits are the data that will be placed into the register designated by the MAP. During writes, the CDOUT output stays in the Hi-Z state. It may be externally pulled high or low with a 47 kΩ resistor, if desired. To read a register, the MAP has to be set to the correct address by executing a partial write cycle which finishes (CS high) immediately after the MAP byte. To begin a read, bring CS low, send out the chip ad- 36 DS656F2 CS4245 dress and set the read/write bit (R/W) high. The next falling edge of CCLK will clock out the MSB of the addressed register (CDOUT will leave the high-impedance state). For both read and write cycles, the memory address pointer will automatically increment following each data byte in order to facilitate block reads and writes of successive registers. CS CC LK C H IP ADDRESS MAP 1001111 C D IN C H IP ADDRESS DATA 1001111 LSB MSB R/W b y te 1 R/W b y te n High Impedance LSB MSB MSB CDOUT LSB MAP = Memory Address Pointer, 8 bits, MSB first Figure 17. Control Port Timing in SPI Mode 4.12.2 I²C Mode In I²C Mode, SDA is a bidirectional data line. Data is clocked into and out of the part by the clock, SCL. There is no CS pin. Pins AD0 and AD1 form the two least-significant bits of the chip address and should be connected through a resistor to VLC or DGND as desired. The state of the pins is sensed while the CS4245 is being reset. The signal timings for a read and write cycle are shown in Figure 18 and Figure 19. A Start condition is defined as a falling transition of SDA while the clock is high. A Stop condition is a rising transition while the clock is high. All other transitions of SDA occur while the clock is low. The first byte sent to the CS4245 after a Start condition consists of a 7-bit chip address field and a R/W bit (high for a read, low for a write). The upper 5 bits of the 7-bit address field are fixed at 10011. To communicate with a CS4245, the chip address field, which is the first byte sent to the CS4245, should match 10011 followed by the settings of the AD1 and AD0. The eighth bit of the address is the R/W bit. If the operation is a write, the next byte is the Memory Address Pointer (MAP) which selects the register to be read or written. If the operation is a read, the contents of the register pointed to by the MAP will be output. Following each data byte, the memory address pointer will automatically increment to facilitate block reads and writes of successive registers. Each byte is separated by an acknowledge bit. The ACK bit is output from the CS4245 after each input byte is read, and is input to the CS4245 from the microcontroller after each transmitted byte. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 24 25 26 27 28 SCL CHIP ADDRESS (WRITE) 1 SDA 0 0 1 MAP BYTE 1 AD1 AD0 0 6 ACK 6 5 4 3 2 1 0 7 ACK 6 1 DATA +n DATA +1 DATA 0 7 ACK START 6 1 0 7 6 1 0 ACK STOP Figure 18. Control Port Timing, I²C Write DS656F2 37 CS4245 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 SCL CHIP ADDRESS (WRITE) SDA 1 0 0 1 STOP MAP BYTE 7 1 AD1 AD0 0 6 5 4 3 2 1 CHIP ADDRESS (READ) 1 0 0 0 1 ACK ACK START DATA 1 AD1 AD0 1 START 7 ACK DATA +1 0 7 ACK 0 DATA + n 7 0 NO ACK STOP Figure 19. Control Port Timing, I²C Read Since the read operation cannot set the MAP, an aborted write operation is used as a preamble. As shown in Figure 19, the write operation is aborted after the acknowledge for the MAP byte by sending a stop condition. The following pseudocode illustrates an aborted write operation followed by a read operation. Send start condition. Send 10011xx0 (chip address & write operation). Receive acknowledge bit. Send MAP byte. Receive acknowledge bit. Send stop condition, aborting write. Send start condition. Send 10011xx1(chip address & read operation). Receive acknowledge bit. Receive byte, contents of selected register. Send acknowledge bit. Send stop condition. 4.13 Interrupts and Overflow The CS4245 has a comprehensive interrupt capability. The INT output pin is intended to drive the interrupt input pin on the host microcontroller. The INT pin may function as either an active high CMOS driver or an active low open-drain driver (see “Active High/Low (Bit 0)” on page 49). When configured as active low open-drain, the INT pin has no active pull-up transistor, allowing it to be used for wired-OR hook-ups with multiple peripherals connected to the microcontroller interrupt input pin. In this configuration, an external pull-up resistor must be placed on the INT pin for proper operation. Many conditions can cause an interrupt, as listed in the interrupt status register descriptions (see “Interrupt Status - Address 0Dh” on page 49). Each source may be masked off through mask register bits. In addition, each source may be set to rising edge, falling edge, or level-sensitive. Combined with the option of levelsensitive or edge-sensitive modes within the microcontroller, many different configurations are possible, depending on the needs of the equipment designer. The CS4245 also has a dedicated overflow output. The OVFL pin functions as active low open drain and has no active pull-up transistor, thereby requiring an external pull-up resistor. The OVFL pin outputs an OR of the ADCOverflow and ADCUnderflow conditions available in the Interrupt Status register; however, these conditions do not need to be unmasked for proper operation of the OVFL pin. 38 DS656F2 CS4245 4.14 Reset When RESET is low, the CS4245 enters a low-power mode and all internal states are reset, including the control port and registers, the outputs are muted. When RESET is high, the control port becomes operational, and the desired settings should be loaded into the control registers. Writing a 0 to the PDN bit in the Power Control register will then cause the part to leave the low-power state and begin operation. The delta-sigma modulators settle in a matter of microseconds after the analog section is powered, either through the application of power or by setting the RESET pin high. However, the voltage reference will take much longer to reach a final value due to the presence of external capacitance on the FILT1+ and FILT2+ pins. During this voltage reference ramp delay, both SDOUT and DAC outputs will be automatically muted. It is recommended that RESET be activated if the analog or digital supplies drop below the recommended operating condition to prevent power-glitch-related issues. 4.15 Synchronization of Multiple Devices In systems where multiple ADCs are required, care must be taken to achieve simultaneous sampling. To ensure synchronous sampling, the master clocks and left/right clocks must be the same for all of the CS4245s in the system. If only one master clock source is needed, one solution is to place one CS4245 in Master Mode, and slave all of the other CS4245s to the one master. If multiple master clock sources are needed, a possible solution would be to supply all clocks from the same external source and time the CS4245 reset with the inactive edge of master clock. This will ensure that all converters begin sampling on the same clock edge. 4.16 Grounding and Power Supply Decoupling As with any high-resolution converter, the CS4245 requires careful attention to power supply and grounding arrangements if its potential performance is to be realized. Figure 12 shows the recommended power arrangements, with VA connected to a clean supply. VD, which powers the digital filter, may be run from the system logic supply (VLS or VLC) or may be powered from the analog supply (VA) via a resistor. In this case, no additional devices should be powered from VD. Power supply decoupling capacitors should be as near to the CS4245 as possible, with the low value ceramic capacitor being the nearest. All signals, especially clocks, should be kept away from the FILT1+, FILT2+, VQ1 and VQ2 pins in order to avoid unwanted coupling into the modulators. The FILT1+, FILT2+, VQ1 and VQ2 decoupling capacitors, particularly the 0.1 µF, must be positioned to minimize the electrical path from FILT1+ and FILT2+ and AGND. The CS4245 evaluation board demonstrates the optimum layout and power supply arrangements. To minimize digital noise, connect the CS4245 digital outputs only to CMOS inputs. DS656F2 39 CS4245 5. REGISTER QUICK REFERENCE This table shows the register names and their associated default values. Addr Function 01h Chip ID 02h Power Control 7 6 5 4 3 2 1 0 PART3 PART2 PART1 PART0 REV3 REV2 REV1 REV0 1 1 0 0 0 0 0 1 Reserved PDN_MIC PDN_ADC PDN_DAC PDN 0 0 0 0 1 Reserved MuteDAC DeEmph DAC_M/S Freeze 0 Reserved Reserved 0 0 03h DAC Control 1 DAC_FM1 DAC_FM0 DAC_DIF1 DAC_DIF0 0 04h ADC Control 05h MCLK Frequency 0 0 ADC_FM1 ADC_FM0 Reserved 1 0 0 0 Reserved MuteADC HPFFreeze ADC_M/S 0 0 0 0 0 0 0 0 Reserved MCLK1 Freq2 MCLK1 Freq1 MCLK1 Freq0 Reserved MCLK2 Freq2 MCLK2 Freq1 MCLK2 Freq0 0 0 0 0 0 0 0 0 Reserved Reserved Reserved LOOP ASynch 06h Signal Selection Reserved AOutSel1 AOutSel0 07h PGA Ch B Gain Control Reserved Reserved 08h PGA Ch A Gain Control Reserved Reserved 0 0 0 09h Analog Input Control 0 ADC_DIF 1 0 0 0 0 0 0 0 0 Gain5 Gain4 Gain3 Gain2 Gain1 Gain0 0 0 0 0 0 0 Gain5 Gain4 Gain3 Gain2 Gain1 Gain0 0 0 0 0 0 0 PGASoft PGAZero Sel2 Sel1 Sel0 Reserved Reserved Reserved 0 0 0 1 1 0 0 1 0Ah DAC Ch A Volume Control Vol7 Vol6 Vol5 Vol4 Vol3 Vol2 Vol1 Vol0 0 0 0 0 0 0 0 0 0Bh DAC Ch B Volume Control Vol7 Vol6 Vol5 Vol4 Vol3 Vol2 Vol1 Vol0 0 0 0 0Ch DAC Control 2 DACSoft 0 0 0 0 0 Reserved Reserved Reserved Active_H/L 0 0 0 0 0 0Dh Interrupt Status Reserved Reserved Reserved Reserved ADCClkErr DACClkErr ADCOvfl ADCUndrfl 0 0 0 0 0 0 ADCOvflM ADCUndrflM 0 0 ADCOvfl1 ADCUndrfl1 1 0Eh Interrupt Mask DACZero InvertDAC Reserved 1 0 0 0 Reserved Reserved Reserved 0 0 0 0Fh Interrupt Mode MSB Reserved Reserved Reserved 10h Interrupt Mode LSB Reserved Reserved Reserved 0 0 40 0 0 0 0 Reserved ADCClkErrM DACClkErrM 0 0 0 Reserved ADCClkErr1 DACClkErr1 0 0 0 Reserved ADCClkErr0 DACClkErr0 0 0 0 0 0 ADCOvfl0 ADCUndrfl0 0 0 DS656F2 CS4245 6. REGISTER DESCRIPTION 6.1 Chip ID - Register 01h 7 PART3 6 PART2 5 PART1 4 PART0 3 REV3 2 REV2 1 REV1 0 REV0 Function: This register is Read-Only. Bits 7 through 4 are the part number ID, which is 1100b (0Ch), and the remaining bits (3 through 0) indicate the device revision as shown in Table 4 below. REV[2:0] Revision 001 A 010 B, C0 011 C1 Table 4. Device Revision 6.2 Power Control - Address 02h 7 Freeze 6.2.1 6 Reserved 5 Reserved 4 Reserved 3 PDN_MIC 2 PDN_ADC 1 PDN_DAC 0 PDN Freeze (Bit 7) Function: This function allows modifications to be made to certain control port bits without the changes taking effect until the Freeze bit is disabled. To make multiple changes to these bits take effect simultaneously, set the Freeze bit, make all changes, then clear the Freeze bit. The bits affected by the Freeze function are listed in Table 5. Name Register Bit(s) MuteDAC 03h 2 MuteADC 04h 2 Gain[5:0] 07h 5:0 Gain[5:0] 08h 5:0 Vol[7:0] 0Ah 7:0 Vol[7:0] 0Bh 7:0 Table 5. Freeze-able Bits 6.2.2 Power-Down MIC (Bit 3) Function: The microphone preamplifier block will enter a low-power state whenever this bit is set. 6.2.3 Power-Down ADC (Bit 2) Function: The ADC pair will remain in a reset state whenever this bit is set. DS656F2 41 CS4245 6.2.4 Power-Down DAC (Bit 1) Function: The DAC pair will remain in a reset state whenever this bit is set. 6.2.5 Power-Down Device (Bit 0) Function: The device will enter a low-power state whenever this bit is set. The power-down bit is set by default and must be cleared before normal operation can occur. The contents of the control registers are retained when the device is in power-down. 6.3 DAC Control - Address 03h 7 6 5 4 3 2 1 0 DAC_FM1 DAC_FM0 DAC_DIF1 DAC_DIF0 Reserved MuteDAC DeEmph DAC_M/S 6.3.1 DAC Functional Mode (Bits 7:6) Function: Selects the required range of input sample rates. DAC_FM1 DAC_FM0 Mode 0 0 Single-Speed Mode: 4 to 50 kHz sample rates 0 1 Double-Speed Mode: 50 to 100 kHz sample rates 1 0 Quad-Speed Mode: 100 to 200 kHz sample rates 1 1 Reserved Table 6. Functional Mode Selection 6.3.2 DAC Digital Interface Format (Bits 5:4) Function: The required relationship between LRCK, SCLK and SDIN for the DAC is defined by the DAC Digital Interface Format and the options are detailed in Table 7 and Figures 7-9. DAC_DIF1 DAC_DIF0 Description 0 0 Left Justified, up to 24-bit data (default) 0 1 I²S, up to 24-bit data 1 0 Right-Justified, 16-bit Data 1 1 Right-Justified, 24-bit Data Format 0 1 2 3 Figure 7 8 9 9 Table 7. DAC Digital Interface Formats 6.3.3 Mute DAC (Bit 2) Function: The DAC outputs will mute and the MUTEC pin will become active when this bit is set. Though this bit is active high, it should be noted that the MUTEC pin is active low. The common mode voltage on the outputs will be retained when this bit is set. The muting function is effected, similar to attenuation changes, by the DACSoft and DACZero bits in the DAC Control 2 register. 42 DS656F2 CS4245 6.3.4 De-Emphasis Control (Bit 1) Function: The standard 50/15 μs digital de-emphasis filter response, Figure 20, may be implemented for a sample rate of 44.1 kHz when the DeEmph bit is configured as shown in Table 8. NOTE: De-emphasis is available only in Single-Speed Mode. DeEmph 0 1 Description Disabled (default) 44.1 kHz de-emphasis Table 8. De-Emphasis Control Gain dB T1=50 µs 0dB T2 = 15 µs -10dB F1 3.183 kHz F2 Frequency 10.61 kHz Figure 20. De-Emphasis Curve 6.3.5 DAC Master / Slave Mode (Bit 0) Function: This bit selects either master or slave operation for serial audio port 2. Setting this bit will select Master Mode, while clearing this bit will select Slave Mode. 6.4 ADC Control - Address 04h 7 6 5 4 3 2 1 0 ADC_FM1 ADC_FM0 Reserved ADC_DIF Reserved MuteADC HPFFreeze ADC_M/S 6.4.1 ADC Functional Mode (Bits 7:6) Function: Selects the required range of output sample rates. ADC_FM1 ADC_FM0 0 0 Single-Speed Mode: 4 to 50 kHz sample rates Mode 0 1 Double-Speed Mode: 50 to 100 kHz sample rates 1 0 Quad-Speed Mode: 100 to 200 kHz sample rates 1 1 Reserved Table 9. Functional Mode Selection DS656F2 43 CS4245 6.4.2 ADC Digital Interface Format (Bit 4) Function: The required relationship between LRCK1, SCLK1 and SDOUT is defined by the ADC Digital Interface Format bit. The options are detailed in Table 10 and may be seen in Figure 7 and Figure 8. ADC_DIF Description Format Figure 0 1 Left-Justified, up to 24-bit data (default) 0 7 I²S, up to 24-bit data 1 8 Table 10. ADC Digital Interface Formats 6.4.3 Mute ADC (Bit 2) Function: When this bit is set, the serial audio output of the both ADC channels is muted. 6.4.4 ADC High-Pass Filter Freeze (Bit 1) Function: When this bit is set, the internal high-pass filter is disabled.The current DC offset value will be frozen and continue to be subtracted from the conversion result. See “High-Pass Filter and DC Offset Calibration” on page 32. 6.4.5 ADC Master / Slave Mode (Bit 0) Function: This bit selects either master or slave operation for serial audio port 1. Setting this bit selects Master Mode, while clearing this bit selects Slave Mode. 6.5 MCLK Frequency - Address 05h 7 Reserved 6.5.1 6 MCLK1 Freq2 5 MCLK1 Freq1 4 MCLK1 Freq0 3 2 MCLK2 Freq2 Reserved 1 MCLK2 Freq1 0 MCLK2 Freq0 Master Clock 1 Frequency (Bits 6:4) Function: Sets the frequency of the supplied MCLK1 signal. See Table 11 for the appropriate settings. MCLK1 Divider MCLK1 Freq2 MCLK1 Freq1 MCLK1 Freq0 ÷1 0 0 0 ÷ 1.5 0 0 1 ÷2 0 1 0 ÷3 0 1 1 ÷4 1 0 0 Reserved 1 0 1 Reserved 1 1 x Table 11. MCLK 1 Frequency 44 DS656F2 CS4245 6.5.2 Master Clock 2 Frequency (Bits 2:0) Function: These bits set the frequency of the supplied MCLK2 signal. See Table 12 for the appropriate settings. MCLK2 Divider MCLK2 Freq2 MCLK2 Freq1 MCLK2 Freq0 ÷1 0 0 0 ÷ 1.5 0 0 1 ÷2 0 1 0 ÷3 0 1 1 ÷4 1 0 0 Reserved 1 0 1 Reserved 1 1 x Table 12. MCLK 2 Frequency 6.6 Signal Selection - Address 06h 7 6 5 4 3 2 1 0 Reserved AOutSel1 AOutSel0 Reserved Reserved Reserved LOOP ASynch 6.6.1 Auxiliary Output Source Select (Bits 6:5) Function: These bits are used to select the analog output source. Please refer to Table 13. AOutSel1 0 0 1 1 AOutSel0 0 1 0 1 Auxiliary Output Source High Impedance DAC Output PGA Output Reserved Table 13. Auxiliary Output Source Selection 6.6.2 Digital Loopback (Bit 1) Function: When this bit is set, an internal digital loopback from the ADC to the DAC are enabled. Please refer to “Internal Digital Loopback” on page 35. 6.6.3 Asynchronous Mode (Bit 0) Function: When this bit is set, the DAC and ADC may be operated at independent asynchronous sample rates derived from MCLK1 and MCLK2. When this bit is cleared, the DAC and ADC must operate at synchronous sample rates derived from MCLK1. DS656F2 45 CS4245 6.7 Channel B PGA Control - Address 07h 7 Reserved 6.7.1 6 Reserved 5 Gain5 4 Gain4 3 Gain3 2 Gain2 1 Gain1 0 Gain0 3 Gain3 2 Gain2 1 Gain1 0 Gain0 Channel B PGA Gain (Bits 5:0) Function: See “Channel A PGA Gain (Bits 5:0)” on page 46. 6.8 Channel A PGA Control - Address 08h 7 Reserved 6.8.1 6 Reserved 5 Gain5 4 Gain4 Channel A PGA Gain (Bits 5:0) Function: Sets the gain or attenuation for the ADC input PGA stage. The gain may be adjusted from -12 dB to +12 dB in 0.5 dB steps. The gain bits are in two’s complement with the Gain0 bit set for a 0.5 dB step. Register settings outside of the ±12 dB range are reserved and must not be used. See Table 14 for example settings. Gain[5:0] Setting 101000 -12 dB 000000 0 dB 011000 +12 dB Table 14. Example Gain and Attenuation Settings 6.9 ADC Input Control - Address 09h 7 Reserved 6.9.1 6 Reserved 5 Reserved 4 PGASoft 3 PGAZero 2 Sel2 1 Sel1 0 Sel0 PGA Soft Ramp or Zero Cross Enable (Bits 4:3) Function: Soft Ramp Enable Soft Ramp allows level changes, both muting and attenuation, to be implemented by incrementally ramping, in 1/8 dB steps, from the current level to the new level at a rate of 1 dB per 8 left/right clock periods. See Table 15. Zero Cross Enable Zero Cross Enable dictates that signal-level changes, either by attenuation changes or muting, will occur on a signal zero crossing to minimize audible artifacts. The requested level change will occur after a timeout period between 512 and 1024 sample periods (10.7 ms to 21.3 ms at 48 kHz sample rate) if the signal does not encounter a zero crossing. The zero cross function is independently monitored and implemented for each channel. See Table 15. Soft Ramp and Zero Cross Enable Soft Ramp and Zero Cross Enable dictate that signal-level changes, either by attenuation changes or muting, will occur in 1/8 dB steps and be implemented on a signal zero crossing. The 1/8 dB level change will 46 DS656F2 CS4245 occur after a time-out period between 512 and 1024 sample periods (10.7 ms to 21.3 ms at 48 kHz sample rate) if the signal does not encounter a zero crossing. The zero cross function is independently monitored and implemented for each channel. See Table 15. PGASoft 0 0 1 1 PGAZeroCross 0 1 0 1 Mode Changes to affect immediately Zero Cross enabled Soft Ramp enabled Soft Ramp and Zero Cross enabled (default) Table 15. PGA Soft Cross or Zero Cross Mode Selection 6.9.2 Analog Input Selection (Bits 2:0) Function: These bits are used to select the input source for the PGA and ADC. Please see Table 16. Sel2 Sel1 Sel0 PGA/ADC Input 0 0 0 Microphone-Level Inputs (+32 dB Gain Enabled) 0 0 1 Line-Level Input Pair 1 0 1 0 Line-Level Input Pair 2 0 1 1 Line-Level Input Pair 3 1 0 0 Line-Level Input Pair 4 1 0 1 Line-Level Input Pair 5 1 1 0 Line-Level Input Pair 6 1 1 1 Reserved Table 16. Analog Input Multiplexer Selection 6.10 DAC Channel A Volume Control - Address 0Ah See 6.11 DAC Channel B Volume Control - Address 0Bh. 6.11 DAC Channel B Volume Control - Address 0Bh 7 Vol7 6.11.1 6 Vol6 5 Vol5 4 Vol4 3 Vol3 2 Vol2 1 Vol1 0 Vol0 Volume Control (Bits 7:0) Function: The digital volume control allows the user to attenuate the signal in 0.5 dB increments from 0 to -127 dB. The Vol0 bit activates a 0.5 dB attenuation when set, and no attenuation when cleared. The Vol[7:1] bits activate attenuation equal to their decimal equivalent (in dB). Example volume settings are decoded as DS656F2 47 CS4245 shown in Table 17. The volume changes are implemented as dictated by the DACSoft and DACZeroCross bits in the DAC Control 2 register (see Section 6.12.1). Binary Code Volume Setting 00000000 0 dB 00000001 -0.5 dB 00101000 -20 dB 00101001 -20.5 dB 11111110 -127 dB 11111111 -127.5 dB Table 17. Digital Volume Control Example Settings 6.12 DAC Control 2 - Address 0Ch 7 6 5 4 3 2 1 0 DACSoft DACZero InvertDAC Reserved Reserved Reserved Reserved Active_H/L 6.12.1 DAC Soft Ramp or Zero Cross Enable (Bits 7:6) Function: Soft Ramp Enable Soft Ramp allows level changes, both muting and attenuation, to be implemented by incrementally ramping, in 1/8 dB steps, from the current level to the new level at a rate of 1 dB per 8 left/right clock periods. See Table 18. Zero Cross Enable Zero Cross Enable dictates that signal-level changes, either by attenuation changes or muting, will occur on a signal zero crossing to minimize audible artifacts. The requested level change will occur after a timeout period between 512 and 1024 sample periods (10.7 ms to 21.3 ms at 48 kHz sample rate) if the signal does not encounter a zero crossing. The zero cross function is independently monitored and implemented for each channel. See Table 18. Soft Ramp and Zero Cross Enable Soft Ramp and Zero Cross Enable dictate that signal-level changes, either by attenuation changes or muting, will occur in 1/8 dB steps and be implemented on a signal zero crossing. The 1/8 dB level change will occur after a time-out period between 512 and 1024 sample periods (10.7 ms to 21.3 ms at 48 kHz sample rate) if the signal does not encounter a zero crossing. The zero cross function is independently monitored and implemented for each channel. See Table 18. DACSoft DACZeroCross Mode 0 0 Changes to affect immediately 0 1 Zero Cross enabled 1 0 Soft Ramp enabled 1 1 Soft Ramp and Zero Cross enabled (default) Table 18. DAC Soft Cross or Zero Cross Mode Selection 6.12.2 Invert DAC Output (Bit 5) Function: When this bit is set, the output of the DAC is inverted. 48 DS656F2 CS4245 6.12.3 Active High/Low (Bit 0) Function: When this bit is set, the INT pin functions as an active high CMOS driver. When this bit is cleared, the INT pin functions as an active low open drain driver and will require an external pull-up resistor for proper operation. 6.13 Interrupt Status - Address 0Dh 7 Reserved 6 Reserved 5 Reserved 4 Reserved 3 ADCClkErr 2 DACClkErr 1 ADCOvfl 0 ADCUndrfl For all bits in this register, a ‘1’ means the associated interrupt condition has occurred at least once since the register was last read. A ‘0’ means the associated interrupt condition has NOT occurred since the last reading of the register. Status bits that are masked off in the associated mask register will always be ‘0’ in this register. This register defaults to 00h. 6.13.1 ADC Clock Error (Bit 3) Function: Indicates the occurrence of an ADC clock error condition. 6.13.2 DAC Clock Error (Bit 2) Function: Indicates the occurrence of a DAC clock error condition. 6.13.3 ADC Overflow (Bit 1) Function: Indicates the occurrence of an ADC overflow condition. 6.13.4 ADC Underflow (Bit 0) Function: Indicates the occurrence of an ADC underflow condition. 6.14 Interrupt Mask - Address 0Eh 7 Reserved 6 Reserved 5 Reserved 4 Reserved 3 ADCClkErrM 2 DACClkErrM 1 ADCOvflM 0 ADCUndrflM Function: The bits of this register serve as a mask for the Status sources found in the register “Interrupt Status - Address 0Dh” on page 49. If a mask bit is set to 1, the error is unmasked, meaning that its occurrence will affect the INT pin and the status register. If a mask bit is set to 0, the error is masked, meaning that its occurrence will not affect the INT pin or the status register. The bit positions align with the corresponding bits in the Status register. DS656F2 49 CS4245 6.15 Interrupt Mode MSB - Address 0Fh 6.16 Interrupt Mode LSB - Address 10h 7 Reserved Reserved 6 Reserved Reserved 5 Reserved Reserved 4 Reserved Reserved 3 ADCClkErr1 ADCClkErr0 2 DACClkErr1 DACClkErr0 1 ADCOvfl1 ADCOvfl0 0 ADCUndrfl1 ADCUndrfl0 Function: The two Interrupt Mode registers form a 2-bit code for each Interrupt Status register function. There are three ways to set the INT pin active in accordance with the interrupt condition. In the Rising-Edge Active Mode, the INT pin becomes active on the arrival of the interrupt condition. In the Falling-Edge Active Mode, the INT pin becomes active on the removal of the interrupt condition. In Level-Active Mode, the INT pin remains active during the interrupt condition. 00 - Rising edge active 01 - Falling edge active 10 - Level active 11 - Reserved 50 DS656F2 CS4245 7. PARAMETER DEFINITIONS Dynamic Range The ratio of the rms value of the signal to the rms sum of all other spectral components over the specified bandwidth. Dynamic Range is a signal-to-noise ratio measurement over the specified bandwidth made with a -60 dBFS signal. 60 dB is added to resulting measurement to refer the measurement to full scale. This technique ensures that the distortion components are below the noise level and do not affect the measurement. This measurement technique has been accepted by the Audio Engineering Society, AES17-1991, and the Electronic Industries Association of Japan, EIAJ CP-307. Expressed in decibels. Total Harmonic Distortion + Noise The ratio of the rms value of the signal to the rms sum of all other spectral components over the specified bandwidth (typically 10 Hz to 20 kHz), including distortion components. Expressed in decibels. Measured at -1 and -20 dBFS as suggested in AES17-1991 Annex A. Frequency Response A measure of the amplitude response variation from 10 Hz to 20 kHz relative to the amplitude response at 1 kHz. Units in decibels. Interchannel Isolation A measure of crosstalk between the left and right channels. Measured for each channel at the converter's output with no signal to the input under test and a full-scale signal applied to the other channel. Units in decibels. Interchannel Gain Mismatch The gain difference between left and right channels. Units in decibels. Gain Drift The change in gain value with temperature. Units in ppm/°C. DS656F2 51 CS4245 8. DAC FILTER PLOTS Figure 21. DAC Single-Speed Stopband Rejection Figure 22. DAC Single-Speed Transition Band 0 -1 0.05 -2 0 -3 -0.05 Amplitude dB Amplitude dB -4 -5 -6 -0. 1 -0.15 -7 -0. 2 -8 -0.25 -9 -10 0.45 52 0.46 0.47 0.48 0.49 0.5 0.51 Frequency (normalized to Fs) 0.52 0.53 0.54 0.5 5 0 0.05 0.1 0.15 0.2 0.25 0.3 Frequency (normalized to Fs) 0.35 0.4 0.45 Figure 23. DAC Single-Speed Transition Band Figure 24. DAC Single-Speed Passband Ripple Figure 25. DAC Double-Speed Stopband Rejection Figure 26. DAC Double-Speed Transition Band 0.5 DS656F2 CS4245 1 0.8 0 0.7 -1 0.6 -2 0.5 Amplitude dB Amplitude dB -3 -4 -5 0.4 0.3 0.2 -6 0.1 -7 0 -8 -0. 1 -9 - 10 0.45 0.46 0.47 0.48 0.49 0.5 0.51 Frequency (normalized to Fs) 0.52 0.53 0.54 -0. 2 0.55 0 Figure 27. DAC Double-Speed Transition Band 0.05 0.1 0.15 0.2 0.25 0.3 Frequency (normalized to Fs) 0.35 0.4 0.45 0.5 Figure 28. DAC Double-Speed Passband Ripple 0 0 -10 -10 -20 -20 -30 Amplitude (dB) Amplitude (dB) -40 -50 -60 -30 -40 -70 -50 -80 -60 -90 -100 0 0.1 0.2 0.3 0.4 0.5 0.6 Frequency(normalized to Fs) 0.7 0.8 0.9 1 0.35 Figure 29. DAC Quad-Speed Stopband Rejection 0.4 0.45 0.5 0.55 0.6 Frequency(normalized to Fs) 0.65 0.7 0.75 Figure 30. DAC Quad-Speed Transition Band 0 0 -5 -10 -15 Amplitude dB Amplitude (dB) -0. 5 -20 -25 -30 -1 -35 -40 -45 -50 0.4 0.45 0.5 0.55 0.6 Frequency(normalized to Fs) 0.65 Figure 31. DAC Quad-Speed Transition Band DS656F2 0.7 -1. 5 0 0.05 0.1 0.15 0.2 0.25 0.3 Frequency (normalized to Fs) 0.35 0.4 0.45 0.5 Figure 32. DAC Quad-Speed Passband Ripple 53 CS4245 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 Amplitude (dB) Amplitude (dB) 9. ADC FILTER PLOTS 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 0.40 0.42 0.44 Frequency (norm alized to Fs) 0 0.10 -1 0.08 -2 0.06 -3 0.04 -4 -5 -6 -7 0.58 0.60 0.00 -0.04 -0.06 -0.08 -0.10 0.46 0.47 0.48 0.49 0.5 0.51 0.52 0.53 0.54 0 0.55 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Figure 36. ADC Single-Speed Passband Ripple Amplitude (dB) 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 0.1 0.05 Frequency (norm alized to Fs) Figure 35. ADC Single-Speed Transition Band (Detail) Amplitude (dB) 0.56 -0.02 -9 Frequency (norm alized to Fs) 0.9 1.0 Frequency (norm alized to Fs) Figure 37. ADC Double-Speed Stopband Rejection 54 0.54 0.02 -8 0.0 0.52 Figure 34. ADC Single-Speed Stopband Rejection Amplitude (dB) Amplitude (dB) Figure 33. ADC Single-Speed Stopband Rejection -10 0.45 0.46 0.48 0.50 Frequency (norm alized to Fs) 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 0.40 0.42 0.44 0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.60 Frequency (norm alized to Fs) Figure 38. ADC Double-Speed Stopband Rejection DS656F2 0 0.10 -1 0.08 -2 0.06 -3 0.04 Amplitude (dB) Amplitude (dB) CS4245 -4 -5 -6 -7 0.02 0.00 -0.02 -0.04 -8 -0.06 -9 -0.08 -10 0.46 0.47 0.48 0.49 0.50 0.51 -0.10 0.00 0.05 0.52 Frequency (norm alized to Fs) 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 Figure 40. ADC Double-Speed Passband Ripple Amplitude (dB) Amplitude (dB) Figure 39. ADC Double-Speed Transition Band (Detail) 0.0 0.10 Frequency (norm alized to Fs) 0.9 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 1.0 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 Frequency (norm alized to Fs) Frequency (norm alized to Fs) Figure 41. ADC Quad-Speed Stopband Rejection Figure 42. ADC Quad-Speed Stopband Rejection 0 0.10 -1 0.08 -3 0.06 -4 0.04 Amplitude (dB) Amplitude (dB) -2 -5 -6 -7 -8 -0.04 -0.08 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 Frequency (norm alized to Fs) Figure 43. ADC Quad-Speed Transition Band (Detail) DS656F2 0.00 -0.02 -0.06 -9 -10 0.10 0.02 -0.10 0.00 0.03 0.05 0.08 0.10 0.13 0.15 0.18 0.20 0.23 0.25 0.28 Frequency (norm alized to Fs) Figure 44. ADC Quad-Speed Passband Ripple 55 CS4245 10.PACKAGE DIMENSIONS 48L LQFP PACKAGE DRAWING E E1 D D1 1 e B ∝ A A1 L DIM A A1 B D D1 E E1 e* L MIN --0.002 0.007 0.343 0.272 0.343 0.272 0.016 0.018 0.000° ∝ * Nominal pin pitch is 0.50 mm INCHES NOM MAX MIN 0.055 0.063 --0.004 0.006 0.05 0.009 0.011 0.17 0.354 0.366 8.70 0.28 0.280 6.90 0.354 0.366 8.70 0.28 0.280 6.90 0.020 0.024 0.40 0.24 0.030 0.45 4° 7.000° 0.00° *Controlling dimension is mm. MILLIMETERS NOM MAX 1.40 1.60 0.10 0.15 0.22 0.27 9.0 BSC 9.30 7.0 BSC 7.10 9.0 BSC 9.30 7.0 BSC 7.10 0.50 BSC 0.60 0.60 0.75 4° 7.00° *JEDEC Designation: MS022 11.THERMAL CHARACTERISTICS AND SPECIFICATIONS Parameters Package Thermal Resistance (Note 1) Allowable Junction Temperature 48-LQFP Symbol Min Typ Max Units θJA θJC - 48 15 - 125 °C/Watt °C/Watt °C 1. θJA is specified according to JEDEC specifications for multi-layer PCBs. 56 DS656F2 CS4245 12.ORDERING INFORMATION Product CS4245 CS4245 CDB4245 Description 24-bit, 192 kHz Stereo Audio CODEC 24-bit, 192 kHz Stereo Audio CODEC Package Pb-Free 48-LQFP 48-LQFP CS4245 Evaluation Board Yes Grade Commercial Temp Range -10° to +70° C Yes Automotive -40° to +105° C No - - Container Order # Tray CS4245-CQZ Tape & Reel CS4245-CQZR Tray CS4245-DQZ Tape & Reel CS4245-DQZR - CDB4245 13.REVISION HISTORY Release F1 F2 Changes – Removed the MAP auto-increment functional description from the Control Port Description and Timing section beginning on page 36. – Added device revision information to the Chip ID - Register 01h description on page 41. – Updated the VQ1 Output Impedance specification in the DC Electrical Characteristics table on page 20. – Updated the Microphone Interchannel Isolation specification in the ADC Analog Characteristics table on page 15. – Added Automotive Grade – Changed MCLK1 and MCLK2 to input only in the Pin Descriptions table on page 7. – Updated the DAC Analog Characteristics table on page 10. – Updated the ADC Analog Characteristics table on page 13. – Updated the Auxiliary Output Analog Characteristics table on page 17. – Updated the DC Electrical Characteristics table on page 20. – Updated the Digital Interface Characteristics table on page 21. – Updated the Switching Characteristics - Serial Audio Port 1 table on page 22. – Updated the Switching Characteristics - Control Port - SPI Format table on page 28. – Updated the Typical Connection Diagram on page 29. – Switched Channel B PGA Control - Address 07h on page 46 and Channel A PGA Control - Address 08h on page 46. Contacting Cirrus Logic Support For all product questions and inquiries, contact a Cirrus Logic Sales Representative. To find the one nearest you, go to www.cirrus.com IMPORTANT NOTICE Cirrus Logic, Inc. and its subsidiaries (“Cirrus”) believe that the information contained in this document is accurate and reliable. However, the information is subject to change without notice and is provided “AS IS” without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, indemnification, and limitation of liability. No responsibility is assumed by Cirrus for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third parties. This document is the property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights, copyrights, trademarks, trade secrets or other intellectual property rights. Cirrus owns the copyrights associated with the information contained herein and gives consent for copies to be made of the information only for use within your organization with respect to Cirrus integrated circuits or other products of Cirrus. This consent does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale. CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN AIRCRAFT SYSTEMS, MILITARY APPLICATIONS, PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DEVICES, LIFE SUPPORT PRODUCTS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER’S RISK AND CIRRUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT IS USED IN SUCH A MANNER. IF THE CUSTOMER OR CUSTOMER’S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL APPLICATIONS, CUSTOMER AGREES, BY SUCH USE, TO FULLY INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND OTHER AGENTS FROM ANY AND ALL LIABILITY, INCLUDING ATTORNEYS’ FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH THESE USES. Cirrus Logic, Cirrus, the Cirrus Logic logo designs, and Popguard are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be trademarks or service marks of their respective owners. I²C is a registered trademark of Philips Semiconductor. SPI is a trademark of Motorola, Inc. DS656F2 57