GDZJ - SERIES 500mW EPITAXIAL ZENER DIODE FEATURES DO-35 0.2 3.8 ± 0.2 26 ± 1 Φ 0.5 ± 0.1 • Planar die construction • 500mW Power Dissipation • Ideally Suited for Automated Assembly Processes • High temperature soldering : 260°C /10 seconds at terminals • Glass package has Underwriters Laboratory Flammability Classification • In compliance with EU RoHS 2002/95/EC directives Φ 1.8 ± MECHANICAL DATA 26 ± 1 • Case: Molded Glass DO-35 • Terminals: Axial leads, solderable per MIL-STD-202G, Method 208 • Polarity: See Diagram Below • Mounting position:Any • Weight: 0.13 gram All Dimensions in mm ABSOLUTE MAXIMUM RATINGS(LIMITING VALUES)(TA=25℃) Symbols Value Units Ptot 500 mW TJ 175 TSTG -65 to +175 ℃ ℃ Zener current see table "Characteristics" Power dissipation at TA=25℃ Junction temperature Storage temperature range 1)Valid provided that a distance of 8mm from case are kept at ambient temperature ELECTRCAL CHARACTERISTICS(TA=25℃) Symbols Thermal resistance junction to ambient Forward voltage at IF=100mA Min Max Units RthA 0.3 K / mW VF 1.0 V 1) Valid provided that a distance at 8mm from case are kept at ambient temperature Typ GDZJ - SERIES 500mW EPITAXIAL ZENER DIODE Part Number GDZJ 2.0 GDZJ 2.2 GDZJ 2.4 GDZJ 2.7 GDZJ 3.0 GDZJ 3.3 GDZJ 3.6 GDZJ 3.9 GDZJ 4.3 GDZJ 4.7 GDZJ 5.1 GDZJ 5.6 GDZJ 6.2 GDZJ 6.8 GDZJ 7.5 GDZJ 8.2 GDZJ 9.1 GDZJ 10 GDZJ 11 C LA S S V Z @ IZT M i n. V M a x. V A 1.88 2.10 B 2.02 2.20 A 2.12 2.30 B 2.22 2.41 A 2.33 2.52 B 2.43 2.63 A 2.54 2.75 B 2.69 2.91 A 2.85 3.07 B 3.01 3.22 A 3.16 3.38 B 3.32 3.53 A 3.455 3.695 B 3.60 3.845 A 3.74 4.01 B 3.89 4.16 A 4.04 4.29 IZ (m A ) VR (V ) IR ( u A ) MA X Iz t (mA ) Z ZT ( Ω ) MA X Iz k (mA ) Z ZK ( Ω ) MA X 5 0.5 120 5 100 0.5 1000 5 0.7 100 5 100 0.5 1000 5 1.0 120 5 100 0.5 1000 5 1.0 100 5 110 0.5 1000 5 1.0 50 5 120 0.5 1000 5 1.0 20 5 120 0.5 1000 5 5 1.0 1.0 10 5 5 5 100 100 1 1 1000 1000 M A RK ING C OD E Z2A0 Z2B0 Z2A2 Z2B2 Z2A4 Z2B4 Z2A7 Z2B7 Z3A0 Z3B0 Z3A3 Z3B3 Z3A6 Z3B6 Z3A9 Z3B9 Z4A3 B 4.17 4.43 C 4.30 4.57 A 4.44 4.68 B 4.55 4.80 C 4.68 4.93 A 4.81 5.07 B 4.94 5.20 C 5.09 5.37 A 5.28 5.55 B 5.45 5.73 C 5.61 5.91 Z5C6 A 5.78 6.09 Z6A2 B 5.96 6.27 C 6.12 6.44 A 6.29 6.63 B 6.49 6.83 C 6.66 7.01 A 6.85 7.22 B 7.07 7.45 C 7.29 7.67 A 7.53 7.92 B 7.78 8.19 C 8.03 8.45 A 8.29 8.73 B 8.57 9.01 C 8.83 9.30 5 1.0 5 5 100 1 1000 Z4B3 Z4C3 Z4A7 5 1.0 5 5 90 1 900 Z4B7 Z4C7 Z5A1 5 1.5 5 5 80 1 800 Z5B1 Z5C1 Z5A6 5 5 2.5 3.0 5 5 5 5 60 60 1 1 500 300 Z5B6 Z6B2 Z6C2 Z6A8 5 3.5 2 5 20 0.5 150 Z6B8 Z6C8 Z7A5 5 4.0 0.5 5 20 0.5 120 Z7B5 Z7C5 Z8A2 5 5.0 0.5 5 20 0.5 120 Z8B2 Z8C2 Z9A1 5 6.0 0.5 5 25 0.5 120 Z9B1 Z9C1 A 9.12 9.59 Z10A B 9.41 9.90 Z10B C 9.70 10.20 D 9.94 10.44 A 10.18 10.71 B 10.50 11.05 C 10.82 11.38 5 7.0 0.2 5 30 0.5 120 Z10C Z11D Z11A 5 8.0 0.2 5 30 0.5 120 Z11B Z11C GDZJ - SERIES 500mW EPITAXIAL ZENER DIODE Part Number GDZJ 12 GDZJ 13 GDZJ 15 GDZJ 16 GDZJ 18 GDZJ 20 GDZJ 22 GDZJ 24 GDZJ 27 GDZJ 30 LA S S V Z @ IZT M i n. V M a x. V A 11.13 11.71 B 11.44 12.03 C 11.74 12.35 A 12.11 12.75 B 12.55 13.21 C 12.99 13.66 A 13.44 14.13 B 13.89 14.62 C 14.35 15.09 A 14.80 15.57 B 15.25 16.04 C 15.69 16.51 A 16.22 17.06 B 16.82 17.70 IZ (m A ) VR (V ) IR ( u A ) MA X Iz t (mA ) Z ZT ( Ω ) MA X Iz k (mA ) Z ZK ( Ω ) MA X 5 9.0 0.2 5 30 0.5 110 M A RK ING C OD E Z12A Z12B Z12C Z13A 5 10 0.2 5 35 0.5 110 Z13B Z13C Z15A 5 11 0.2 5 40 0.5 110 Z15B Z15C Z16A 5 12 0.2 5 40 0.5 150 Z16B Z16C Z18A 5 13 0.2 5 45 0.5 150 Z18B C 17.42 18.33 A 18.02 18.96 Z18C Z20A B 18.63 19.59 Z20B C 19.23 20.22 D 19.72 20.72 A 20.15 21.20 Z22A B 20.64 21.71 Z22B C 21.08 22.17 D 21.52 22.63 Z22D A 22.05 23.18 Z24A B 22.61 23.77 C 23.12 24.31 5 15 0.2 5 55 0.5 200 Z20C Z20D 5 5 17 19 0.2 0.2 5 5 30 35 0.5 0.5 200 200 Z22C Z24B Z24C D 23.63 24.85 Z24D A 24.26 25.52 Z27A B 24.97 26.26 C 25.63 26.95 5 21 0.2 5 45 0.5 250 Z27B Z27C D 26.29 27.64 Z27D A 26.99 28.39 Z30A B 27.70 29.13 C 28.36 29.82 5 23 0.2 5 55 0.5 250 Z30B Z30C D 29.02 30.51 A 29.68 31.22 Z33A B 30.32 31.88 Z33B C 30.90 32.50 D 31.49 33.11 Z33D A 32.14 33.79 Z36A B 32.79 34.49 C 33.40 35.13 D 34.01 35.77 A 34.68 36.47 Z39A B 35.36 37.19 Z39B C 36.00 37.85 D 36.63 38.52 GDZJ 43 40.00 GDZJ 47 44.00 GDZJ 51 48.00 54.00 5 39 0.2 5 110 GDZJ 56 53.00 60.00 5 43 0.2 5 110 GDZJ 33 GDZJ 36 GDZJ 39 Z30D 5 5 25 27 0.2 0.2 5 5 65 75 0.5 0.5 250 250 Z33C Z36B Z36C Z36D 5 30 0.2 5 85 0.5 250 45.00 5 33 0.2 5 90 -- -- Z43 49.00 5 36 0.2 5 90 -- -- Z47 -- -- Z51 -- -- Z56 Z39C Z39D GDZJ - SERIES 500 1.3 V Ztn – R elative Voltage Change R thJA –Therm.R esist. Junction/Ambient ( K /W ) RATINGS AND CHARACTERISTIC CURVES 400 300 l l 200 100 V Ztn=V Zt/VZ(25°C) 1.2 TK VZ =10 x 10–4/K 8 x 10–4/K 6 x 10–4/K 1.1 4 x 10–4/K 2 x 10–4/K 0 1.0 –2 x 10–4/K –4 x 10–4/K 0.9 TL =constant 0 0 5 10 0.8 –60 20 15 l – Lead Length ( mm ) 600 500 400 300 200 100 0 40 80 120 160 120 180 240 200 15 10 5 I Z=5mA 0 –5 0 10 Tamb – Ambient Temperature(°C ) 20 30 40 50 V Z – Z-Voltag e ( V ) Fig. 2 Total Power Dissipation vs. Ambient Temperature Fig. 5 Temperature Coefficient of Vz vs. Z-Voltage 1000 200 CD – Diode Capacitance ( pF ) VZ – Voltage Change ( mV ) 60 Fig. 4 Typical Change of Working Voltage vs. Junction Temperature TK V Z – Temperature Coefficient of V Z ( 10– 4 /K) Ptot – Total Power Dissipation ( mW) Fig. 1 Thermal Resistance vs. Lead Length 0 0 Tj – Junction Temperature (°C ) Tj =25°C 100 I Z=5mA 10 1 150 V R=2V Tj =25°C 100 50 0 0 5 10 15 20 25 V Z – Z-Voltag e ( V ) Fig. 3 Typical Change of Working Voltage under Operating Conditions at Tamb=25°C 0 5 10 15 20 V Z – Z-Voltag e ( V ) Fig. 6 Diode Capacitance vs. Z-Voltage 25 GDZJ - SERIES 100 50 10 40 I Z – Z- Current (mA ) I F – Forward Current ( mA ) RATINGS AND CHARACTERISTIC CURVES Tj =25°C 1 0.1 0.01 Ptot=500mW Tamb=25°C 30 20 10 0.001 0 0 0.2 0.4 0.6 0.8 1.0 15 20 V F – Forward Voltage ( V ) Fig. 9 Z-Current vs. Z-Voltage r Z – Differential Z- R esistance ( Ω ) I Z – Z- Current (mA ) 100 80 Ptot=500mW Tamb=25°C 60 40 20 0 1000 I Z=1mA 100 5mA 10 10mA Tj =25°C 1 0 4 8 12 16 20 0 V Z – Z-Voltage ( V ) 5 10 tp/T=0.5 tp/T=0.2 Single Pulse RthJA=300K/W T=Tjmax–Tamb tp/T=0.01 tp/T=0.1 tp/T=0.02 tp/T=0.05 1 10–1 iZM =(–VZ+(VZ2+4rzj x T/Zthp)1/2)/(2rzj) 100 101 tp – Pulse Length ( ms ) Fig. 11 Thermal Response 20 25 Fig. 10 Differential Z-Resistance vs. Z-Voltage 1000 10 15 V Z – Z-Voltage ( V ) Fig. 8 Z-Current vs. Z-Voltage 100 35 30 V Z – Z-Voltag e ( V ) Fig. 7 Forward Current vs. Forward Voltage Zthp– Thermal R esistance for Pulse Cond.(K/W ) 25 102