TI V62/03618-02YE

 SGLS131B − JULY 2002 − REVISED DECEMBER 2003
D
D
D
D
D
− One Assembly/Test Site, One Fabrication
Site
Extended Temperature Performance of
−55°C to 125°C
Enhanced Diminishing Manufacturing
Sources (DMS) Support
Enhanced Product Change Notification
Qualification Pedigree†
Output Swing Includes Both Supply Rails
† Component qualification in accordance with JEDEC and industry
standards to ensure reliable operation over an extended
temperature range. This includes, but is not limited to, Highly
Accelerated Stress Test (HAST) or biased 85/85, temperature
cycle, autoclave or unbiased HAST, electromigration, bond
intermetallic life, and mold compound life. Such qualification
testing should not be viewed as justifying use of this component
beyond specified performance and environmental limits.
description
The TLC2272A and TLC2274A are dual and
quadruple operational amplifiers from Texas
Instruments. Both devices exhibit rail-to-rail
output performance for increased dynamic range
in single- or split-supply applications. The
TLC227xA family offers 2 MHz of bandwidth and
3 V/µs of slew rate for higher speed applications.
These devices offer comparable ac performance
while having better noise, input offset voltage, and
power dissipation than existing CMOS
operational amplifiers. The TLC227xA has a noise
voltage of 9 nV/√Hz, two times lower than
competitive solutions.
D Low Noise . . . 9 nV/√Hz Typ at f = 1 kHz
D Low Input Bias Current . . . 1 pA Typ
D Fully Specified for Both Single-Supply and
D
D
D
D
D
D
Split-Supply Operation
Common-Mode Input Voltage Range
Includes Negative Rail
High-Gain Bandwidth . . . 2.2 MHz Typ
High Slew Rate . . . 3.6 V/µs Typ
Low Input Offset Voltage
950 µV Max at TA = 25°C
Macromodel Included
Performance Upgrades for the TS272,
TS274, TLC272, and TLC274
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
SUPPLY VOLTAGE
V(OPP)
V O(PP) − Maximum Peak-to-Peak Output Voltage − V
D Controlled Baseline
16
TA = 25°C
14
12
IO = ± 50 µA
10
IO = ± 500 µA
8
6
The TLC227xA, exhibiting high input impedance
and low noise, is excellent for small-signal
4
16
4
6
8
10
12
14
conditioning for high-impedance sources, such as
|VDD ±| − Supply Voltage − V
piezoelectric transducers. Because of the micropower dissipation levels, these devices work well
in hand-held monitoring and remote-sensing
applications. In addition, the rail-to-rail output
feature, with single- or split-supplies, makes this
family a great choice when interfacing with analog-to-digital converters (ADCs). For precision applications, the
TLC227xA family has a maximum input offset voltage of 950 µV. This family is fully characterized at 5 V and
± 5 V.
The TLC2272/4 also makes great upgrades to the TLC272/4 or TS272/4 in standard designs. They offer
increased output dynamic range, lower noise voltage, and lower input offset voltage. This enhanced feature set
allows them to be used in a wider range of applications.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Advanced LinCMOS is a trademark of Texas Instruments.
Copyright
Copyright
 2002 −
2003,
2003 Texas Instruments Incorporated
!" # $" # %$&'" "(
$"# ! " #%"# % ") "!# # #"$!"#
#" *"+( $" %##, # " ##'+ '$
"#", '' %!"#(
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
 SGLS131A − JULY 2002 − REVISED NOVEMBER 2003
AVAILABLE OPTIONS
PACKAGED DEVICES
TA
VIOmax At
25°C
SMALL
OUTLINE
(D)
−55°C to 125°C
950 µV
2.5 mV
TLC2272AMDREP
TLC2272MDREP
TLC2272AMPWREP
TLC2272MPWREP
−55°C to 125°C
950 µV
2.5 mV
TLC2274AMDREP
TLC2274MDREP
TLC2274AMPWREP
TLC2274MPWREP
TLC2272
D OR PW PACKAGE
(TOP VIEW)
1OUT
1IN −
1IN +
VDD − /GND
2
1
8
2
7
3
6
4
5
VDD +
2OUT
2IN −
2IN +
POST OFFICE BOX 655303
TSSOP
(PW)
TLC2274
D OR PW PACKAGE
(TOP VIEW)
1OUT
1IN −
1IN +
VDD +
2IN +
2IN −
2OUT
1
14
2
13
3
12
4
11
5
10
6
9
7
8
• DALLAS, TEXAS 75265
4OUT
4IN −
4IN +
VDD −
3IN +
3IN −
3OUT
 SGLS131A − JULY 2002 − REVISED NOVEMBER 2003
equivalent schematic (each amplifier)
VDD +
Q3
Q6
Q9
Q12
Q14
Q16
IN +
OUT
C1
IN −
R5
Q1
Q4
Q13
Q15
Q17
D1
Q2
Q5
R3
R4
Q7
Q8
Q10
Q11
R1
R2
VDD−
ACTUAL DEVICE COMPONENT COUNT†
TLC2272
TLC2274
Transistors
COMPONENT
38
76
Resistors
26
52
9
18
Diodes
Capacitors
3
6
† Includes both amplifiers and all ESD, bias, and trim circuitry
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
3
 SGLS131A − JULY 2002 − REVISED NOVEMBER 2003
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage, VDD + (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 V
Supply voltage, VDD − (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −8 V
Differential input voltage, VID (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±16 V
Input voltage range, VI (any input, see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDD− − 0.3 V to VDD+
Input current, II (any input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±5 mA
Output current, IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±50 mA
Total current into VDD + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±50 mA
Total current out of VDD − . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±50 mA
Duration of short-circuit current at (or below) 25°C (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . unlimited
Continuous total dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table
Operating free-air temperature range, TA
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −55°C to 125°C
Storage temperature range (see Note 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or PW package . . . . . . . . . . . . . . . 260°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VDD+ and VDD −.
2. Differential voltages are at IN+ with respect to IN −. Excessive current will flow if input is brought below VDD − − 0.3 V.
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum
dissipation rating is not exceeded.
4. Long term high-temperature storage and/or extended use at maximum recommended operating conditions may result in a reduction
of overall device life. See http://www.ti.com/ep_quality for additional information on enhanced plastic packaging.
DISSIPATION RATING TABLE
PACKAGE
TA ≤ 25°C
25 C
POWER RATING
DERATING FACTOR
ABOVE TA = 25°C
70°C
TA = 70
C
POWER RATING
85°C
TA = 85
C
POWER RATING
125°C
TA = 125
C
POWER RATING
D-8
725 mW
5.8 mW/°C
464 mW
337 mW
145 mW
D-14
950 mW
7.6 mW/°C
608 mW
494 mW
190 mW
PW-8
525 mW
4.2 mW/°C
336 mW
273 mW
105 mW
PW-14
700 mW
5.6 mW/°C
448 mW
364 mW
—
recommended operating conditions
Supply voltage, VDD ±
Input voltage, VI
MIN
MAX
±2.2
±8
Common-mode input voltage, VIC
VDD −
VDD −
Operating free-air temperature, TA
−55
4
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
UNIT
V
VDD + − 1.5
VDD + − 1.5
V
125
°C
V
 SGLS131A − JULY 2002 − REVISED NOVEMBER 2003
TLC2272-EP electrical characteristics at specified free-air temperature, VDD = 5 V (unless
otherwise noted)
PARAMETER
VIO
Input offset voltage
αVIO
Temperature coefficient
of input offset voltage
Input offset voltage longterm drift (see Note 5)
IIO
Input offset current
IIB
Input bias current
VICR
Common-mode input
voltage
TEST CONDITIONS
High-level output
voltage
25°C
VDD ± = ± 2.5 V,
RS = 50 Ω
VIC = 0 V,
VO = 0 V,
Large-signal
differential voltage
amplification
2500
IOL = 5 mA
RL = 10 kه
VIC = 2.5 V,
VO = 1 V to 4 V
RL = 1 mه
µV
0.002
0.002
µV/mo
25°C
0.5
60
0.5
800
1
0
to 4
60
−0.3
to 4.2
1
4.85
Full range
4.85
25°C
4.25
Full range
4.25
−0.3
to 4.2
4.85
4.93
4.85
4.65
4.25
V
4.65
4.25
0.01
25°C
0.09
Full range
0.01
0.15
0.09
0.15
0.9
Full range
10
Full range
10
35
0.15
0.15
1.5
0.9
1.5
25°C
pA
4.99
4.93
25°C
25°C
pA
V
0
to 3.5
4.99
25°C
60
800
0
to 4
0
to 3.5
60
800
800
25°C
IOL = 500 µA
950
1500
UNIT
25°C
Full range
VIC = 2.5 V,
300
MAX
µV/°C
|VIO | ≤ 5 mV
IOL = 50 µA
TYP
2
25°C
IOH = − 200 µA
MIN
2
25°C
VIC = 2.5 V,
AVD
300
Full range
VIC = 2.5 V,
Low-level output voltage
MAX
Full range
RS = 50 Ω
Ω,
TLC2272A-EP
TYP
3000
25°C
25
C
to 125°C
IOH = − 1 mA
VOL
TLC2272-EP
MIN
Full range
IOH = − 20 µA
VOH
TA†
V
1.5
1.5
10
35
10
V/mV
25°C
175
175
rid
Differential input
resistance
25°C
1012
1012
Ω
ri
Common-mode input
resistance
25°C
1012
1012
Ω
ci
Common-mode input
capacitance
f = 10 kHz,
P package
25°C
8
8
pF
zo
Closed-loop output
impedance
f = 1 MHz,
AV = 10
25°C
140
140
Ω
CMRR
Common-mode rejection
ratio
VIC = 0 V to 2.7 V,
VO = 2.5 V,
RS = 50 Ω
25°C
70
Full range
70
kSVR
Supply-voltage rejection
ratio (∆VDD /∆VIO)
VDD = 4.4 V to 16 V,
VIC = VDD /2,
No load
25°C
80
Full range
80
IDD
Supply current
VO = 2.5 V,
Full range
25°C
No load
75
70
75
dB
70
95
80
95
dB
80
2.2
3
3
2.2
3
3
mA
† Full range is −55°C to 125°C for M level part.
‡ Referenced to 2.5 V
NOTE 5: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5
 SGLS131A − JULY 2002 − REVISED NOVEMBER 2003
TLC2272-EP operating characteristics at specified free-air temperature, VDD = 5 V
PARAMETER
TEST CONDITIONS
TLC2272-EP
TA†
MIN
TYP
25°C
2.3
3.6
Full
range
1.7
TLC2272A-EP
MAX
MIN
TYP
2.3
3.6
Slew rate at
unity gain
VO = 1.25 V to 2.75 V,
RL = 10 kه,
CL = 100 pF‡
Equivalent input
noise voltage
f = 10 Hz
25°C
50
50
Vn
f = 1 kHz
25°C
9
9
Peak-to-peak
equivalent input
noise voltage
f = 0.1 Hz to 1 Hz
25°C
1
1
VNPP
f = 0.1 Hz to 10 Hz
25°C
1.4
1.4
In
Equivalent input
noise current
25°C
0.6
0.6
THD + N
Total harmonic
distortion plus
noise
VO = 0.5 V to 2.5 V,
f = 20 kHz,
k ‡,
RL = 10 kΩ
Gain-bandwidth
product
f = 10 kHz,
CL = 100 pF‡
Maximum outputswing bandwidth
VO(PP) = 2 V,
RL = 10 kه,
Settling time
AV = − 1,
Step = 0.5 V to 2.5 V,
RL = 10 kه,
CL = 100 pF‡
SR
BOM
ts
φm
Phase margin at
unity gain
RL = 10 kه,
AV = 1
AV = 10
AV = 100
RL = 10 kه,
AV = 1,
CL = 100 pF‡
6
V/µs
µV
V
fA/√Hz
0.0013%
0.004%
0.004%
0.03%
0.03%
25°C
2.18
2.18
MHz
25°C
1
1
MHz
1.5
1.5
2.6
2.6
25°C
50°
50°
25°C
10
10
25°C
25
C
To 0.01%
POST OFFICE BOX 655303
nV/√Hz
0.0013%
µss
25°C
Gain margin
† Full range is −55°C to 125°C for M level part.
‡ Referenced to 2.5 V
UNIT
1.7
To 0.1%
CL = 100 pF‡
MAX
• DALLAS, TEXAS 75265
dB
 SGLS131A − JULY 2002 − REVISED NOVEMBER 2003
TLC2272-EP electrical characteristics at specified free-air temperature, VDD ± = ±5 V (unless
otherwise noted)
PARAMETER
VIO
Input offset voltage
αVIO
Temperature coefficient of
input offset voltage
Input offset voltage
long-term drift
(see Note 5)
IIO
Input offset current
IIB
Input bias current
VICR
Common-mode input
voltage
TEST CONDITIONS
25°C
VIC = 0 V,
RS = 50 Ω
VO = 0 V,
2500
VO = ± 4 V
IO = 5 mA
RL = 10 kΩ
RL = 1 mΩ
µV
0.002
0.002
µV/mo
25°C
0.5
60
0.5
800
1
−5
to 4
60
−5.3
to 4.2
1
25°C
4.85
4.85
25°C
4.25
Full range
4.25
25°C
−4.85
Full range
−4.85
25°C
−3.5
Full range
−3.5
25°C
20
Full range
20
25°C
pA
pA
V
4.99
4.93
4.85
4.93
4.85
4.65
4.25
V
4.65
4.25
−4.99
25°C
−5.3
to 4.2
−5
to 3.5
4.99
Full range
60
800
−5
to 4
−5
to 3.5
60
800
800
25°C
IO = 500 µA
950
1500
UNIT
25°C
Full range
VIC = 0 V,
300
MAX
µV/°C
|VIO | ≤ 5 mV
IO = 50 µA
TYP
2
25°C
C
25
IO = − 200 µA
MIN
2
25°C
VIC = 0 V,
Large-signal differential
voltage amplification
300
Full range
VIC = 0 V,
AVD
MAX
Full range
RS = 50 Ω
Ω,,
TLC2272A-EP
TYP
3000
25°C
25
C
to 125°C
IO = − 1 mA
Maximum negative peak
VOM −
output voltage
TLC2272-EP
MIN
Full range
IO = − 20 µA
Maximum positive peak
VOM +
output voltage
TA†
−4.99
−4.91
−4.85
−4.91
−4.85
−4.1
−3.5
V
−4.1
−3.5
50
20
50
20
V/mV
rid
Differential input resistance
25°C
300
1012
ri
Common-mode input
resistance
25°C
1012
1012
Ω
ci
Common-mode input
capacitance
f = 10 kHz,
P package
25°C
8
8
pF
zo
Closed-loop output
impedance
f = 1 MHz,
AV = 10
25°C
130
130
Ω
CMRR
Common-mode rejection
ratio
VIC = − 5 V to 2.7 V,
VO = 0 V,
RS = 50 Ω
25°C
75
Full range
75
kSVR
Supply-voltage rejection
ratio (∆VDD ± /∆VIO)
VDD = ± 2.2 V to ± 8 V,
VIC = 0 V,
No load
25°C
80
Full range
80
IDD
Supply current
VO = 2.5 V,
25°C
No load
Full range
80
75
300
1012
Ω
80
dB
75
95
80
95
dB
80
2.4
3
3
2.4
3
3
mA
† Full range is −55°C to 125°C for M level part.
NOTE 5: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
7
 SGLS131A − JULY 2002 − REVISED NOVEMBER 2003
TLC2272-EP operating characteristics at specified free-air temperature, VDD± = ±5 V
PARAMETER
TEST CONDITIONS
TLC2272-EP
TA†
MIN
TYP
25°C
2.3
3.6
Full
range
1.7
TLC2272A-EP
MAX
MIN
TYP
2.3
3.6
Slew rate at
unity gain
VO = ± 1 V,
CL = 100 pF
Equivalent input
noise voltage
f = 10 Hz
25°C
50
50
Vn
f = 1 kHz
25°C
9
9
Peak-to-peak
equivalent input
noise voltage
f = 0.1 Hz to 1 Hz
25°C
1
1
VNPP
f = 0.1 Hz to 10 Hz
25°C
1.4
1.4
In
Equivalent input
noise current
25°C
0.6
0.6
THD + N
Total harmonic
distortion plus
noise
VO = ± 2.3 V
RL = 10 kΩ,
f = 20 kHz
AV = 1
AV = 10
Gain-bandwidth
product
f = 10 kHz,
CL = 100 pF
RL = 10 kΩ,
Maximum
output-swing
bandwidth
VO(PP) = 4.6 V,
RL = 10 kΩ,
AV = 1,
CL = 100 pF
Settling time
AV = − 1,
Step = − 2.3 V to 2.3 V,
RL = 10 kΩ,
CL = 100 pF
SR
BOM
ts
φm
Phase margin at
unity gain
RL = 10 kΩ,
RL = 10 kΩ,
8
V/µs
µV
V
fA/√Hz
0.0011%
0.004%
0.004%
0.03%
0.03%
25°C
2.25
2.25
MHz
25°C
0.54
0.54
MHz
1.5
1.5
3.2
3.2
25°C
52°
52°
25°C
10
10
25°C
25
C
µss
25°C
To 0.01%
POST OFFICE BOX 655303
nV/√Hz
0.0011%
To 0.1%
Gain margin
† Full range is −55°C to 125°C for M level part.
UNIT
1.7
AV = 100
CL = 100 pF
MAX
• DALLAS, TEXAS 75265
dB
 SGLS131A − JULY 2002 − REVISED NOVEMBER 2003
TLC2274-EP electrical characteristics at specified free-air temperature, VDD = 5 V (unless
otherwise noted)
PARAMETER
VIO
Input offset voltage
αVIO
Temperature coefficient
of input offset voltage
Input offset voltage
long-term drift
(see Note 5)
IIO
Input offset current
IIB
Input bias current
VICR
Common-mode input
voltage
TA†
TEST CONDITIONS
25°C
High-level output
voltage
VIC = 0 V,
RS = 50 Ω
AVD
Large-signal differential
voltage amplification
2500
µV
0.002
0.002
µV/mo
25°C
0.5
60
0.5
800
1
0
to 4
60
Full range
0 to
3.5
−0.3
to 4.2
1
25°C
4.85
4.85
25°C
4.25
Full range
4.25
0
to 4
−0.3
to 4.2
pA
pA
V
0 to
3.5
4.99
4.93
4.85
4.93
4.85
4.65
4.25
V
4.65
4.25
25°C
0.01
25°C
0.09
Full range
0.01
0.15
0.09
0.15
25°C
60
800
4.99
Full range
60
800
800
25°C
VIC = 2.5 V,
IOL = 500 µA
950
1500
UNIT
25°C
25°C
C
25
IOL = 50 µA
300
MAX
µV/°C
|VIO | ≤ 5 mV
IOH = − 200 µA
TYP
2
25°C
RS = 50 Ω
Ω,,
MIN
2
Full range
VIC = 2.5 V,
Low-level output
voltage
300
Full range
IOH = − 1 mA
VOL
MAX
3000
25°C
25
C
to 125°C
VDD ± = ± 2.5 V,
VO = 0 V,
TLC2274A-EP
TYP
Full range
IOH = − 20 µA
VOH
TLC2274-EP
MIN
0.9
0.15
1.5
0.9
VIC = 2.5 V,
IOL = 5 mA
RL = 10 kه
25°C
10
VIC = 2.5 V,
VO = 1 V to 4 V
Full range
10
RL = 1 Mه
25°C
175
175
Full range
1.5
35
0.15
V
1.5
1.5
10
35
10
V/mV
rid
Differential input
resistance
25°C
1012
1012
Ω
ri
Common-mode input
resistance
25°C
1012
1012
Ω
ci
Common-mode input
capacitance
f = 10 kHz,
N package
25°C
8
8
pF
zo
Closed-loop output
impedance
f = 1 MHz,
AV = 10
25°C
140
140
Ω
CMRR
Common-mode
rejection ratio
VIC = 0 V to 2.7 V,
VO = 2.5 V,
RS = 50 Ω
25°C
70
Full range
70
kSVR
Supply-voltage rejection
ratio (∆VDD /∆VIO)
VDD = 4.4 V to 16 V,
VIC = VDD /2,
No load
25°C
80
Full range
80
IDD
Supply current
VO = 2.5 V,
Full range
25°C
No load
75
70
75
dB
70
95
80
95
dB
80
4.4
6
6
4.4
6
6
mA
† Full range is −55°C to 125°C for M level part.
‡ Referenced to 2.5 V
NOTE 5: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
9
 SGLS131A − JULY 2002 − REVISED NOVEMBER 2003
TLC2274-EP operating characteristics at specified free-air temperature, VDD = 5 V
PARAMETER
TEST CONDITIONS
CL = 100 pF‡
TLC2274-EP
TA†
MIN
TYP
25°C
2.3
3.6
Full
range
1.7
TLC2274A-EP
MAX
MIN
TYP
2.3
3.6
Slew rate at unity
gain
VO = 0.5 V to 2.5 V,
RL = 10 kه,
Equivalent input
noise voltage
f = 10 Hz
25°C
50
50
Vn
f = 1 kHz
25°C
9
9
Peak-to-peak
equivalent input
noise voltage
f = 0.1 Hz to 1 Hz
25°C
1
1
VN(PP)
f = 0.1 Hz to 10 Hz
25°C
1.4
1.4
In
Equivalent input
noise current
25°C
0.6
0.6
THD + N
Total harmonic
distortion plus
noise
SR
BOM
ts
φm
VO = 0.5 V to 2.5 V,
f = 20 kHz,
k ‡
RL = 10 kΩ
AV = 1
AV = 10
Gain-bandwidth
product
f = 10 kHz,
CL = 100 pF‡
RL = 10 kه,
Maximum output-swing bandwidth
VO(PP) = 2 V,
RL = 10 kه,
AV = 1,
CL = 100 pF‡
Settling time
AV = − 1,
Step = 0.5 V to 2.5 V,
RL = 10 kه,
CL = 100 pF‡
Phase margin at
unity gain
RL = 10 kه,
10
V/µs
µV
V
fA /√Hz
0.0013%
0.004%
0.004%
0.03%
0.03%
25°C
2.18
2.18
MHz
25°C
1
1
MHz
1.5
1.5
2.6
2.6
25°C
50°
50°
25°C
10
10
25°C
25
C
µss
25°C
To 0.01%
POST OFFICE BOX 655303
nV/√Hz
0.0013%
To 0.1%
Gain margin
† Full range is −55°C to 125°C for M level part.
‡ Referenced to 2.5 V
UNIT
1.7
AV = 100
CL = 100 pF‡
MAX
• DALLAS, TEXAS 75265
dB
 SGLS131A − JULY 2002 − REVISED NOVEMBER 2003
TLC2274-EP electrical characteristics at specified free-air temperature, VDD ± = ±5 V (unless
otherwise noted)
PARAMETER
TA†
TEST CONDITIONS
TLC2274-EP
MIN
25°C
VIO
Input offset voltage
αVIO
Temperature coefficient of
input offset voltage
Input offset voltage longterm drift (see Note 5)
IIO
Input offset current
IIB
Input bias current
VICR
Common-mode input
voltage
25°C
25
C
to 125°C
VO = 0 V,
AVD
950
1500
µV
V
25°C
0.002
0.002
µV/mo
25°C
0.5
Full range
60
0.5
800
1
−5
to 4
60
−5.3
to 4.2
1
25°C
IO = − 200 µA
A
25°C
4.85
Full range
4.85
25°C
4.25
Full range
4.25
VIC = 0 V,
IO = 50 µA
25°C
IO = 500 µA
A
25°C
−4.85
VIC = 0 V,
Full range
−4.85
25°C
−3.5
Full range
−3.5
20
RL = 10 kΩ
Full range
20
RL = 1 MΩ
25°C
pA
V
4.99
4.93
4.85
4.93
4.85
4.65
4.25
V
4.65
4.25
−4.99
25°C
−5.3
to 4.2
−5
to 3.5
4.99
pA
60
800
−5
to 4
−5
to 3.5
60
800
800
IO = − 20 µA
VO = ± 4 V
300
UNIT
µV/°C
V/°C
|VIO | ≤ 5 mV
IO = 5 mA
MAX
2
25°C
RS = 50 Ω
Ω,,
TYP
2
Full range
VIC = 0 V,
Large-signal differential
voltage amplification
2500
Full range
IO = − 1 mA
Maximum negative peak
VOM −
output voltage
300
MIN
3000
25°C
Maximum positive peak
VOM +
output voltage
MAX
Full range
VIC = 0 V,
RS = 50 Ω
TLC2274A-EP
TYP
−4.99
−4.91
−4.85
−4.91
−4.85
−4.1
−3.5
V
−4.1
−3.5
50
20
50
20
V/mV
rid
Differential input resistance
25°C
300
1012
ri
Common-mode input
resistance
25°C
1012
1012
Ω
ci
Common-mode input
capacitance
f = 10 kHz,
N package
25°C
8
8
pF
zo
Closed-loop output
impedance
f = 1 MHz,
AV = 10
25°C
130
130
Ω
CMRR
Common-mode rejection
ratio
VIC = − 5 V to 2.7 V
VO = 0 V,
RS = 50 Ω
kSVR
Supply-voltage rejection
ratio (∆VDD ± /∆VIO)
VDD ± = ± 2.2 V to ± 8 V,
VIC = 0 V,
No load
IDD
Supply current
VO = 0 V,
No load
25°C
75
Full range
75
25°C
80
Full range
80
25°C
Full range
80
75
300
1012
Ω
80
dB
75
95
80
95
dB
80
4.8
6
6
4.8
6
6
mA
† Full range is −55°C to 125°C for M level part.
NOTE 5: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
11
 SGLS131A − JULY 2002 − REVISED NOVEMBER 2003
TLC2274-EP operating characteristics at specified free-air temperature, VDD± = ±5 V
PARAMETER
TEST CONDITIONS
TLC2274-EP
TA†
MIN
TYP
25°C
2.3
3.6
Full
range
1.7
TLC2274A-EP
MAX
MIN
TYP
2.3
3.6
Slew rate at unity
gain
VO = ± 2.3 V,
CL = 100 pF
Equivalent input
noise voltage
f = 10 Hz
25°C
50
50
Vn
f = 1 kHz
25°C
9
9
Peak-to-peak
equivalent input
noise voltage
f = 0.1 Hz to 1 Hz
25°C
1
1
VN(PP)
f = 0.1 Hz to 10 Hz
25°C
1.4
1.4
In
Equivalent input
noise current
25°C
0.6
0.6
THD + N
Total harmonic
distortion plus
noise
VO = ± 2.3 V,
RL = 10 kΩ,
f = 20 kHz
Gain-bandwidth
product
f = 10 kHz,
CL = 100 pF
RL = 10 kΩ,
Maximum
output-swing
bandwidth
VO(PP) = 4.6 V,
RL = 10 kΩ,
AV = 1,
CL = 100 pF
Settling time
AV = − 1,
To 0.1%
Step = − 2.3 V to 2.3 V,
RL = 10 kΩ,
To 0.01%
CL = 100 pF
SR
BOM
ts
φm
Phase margin at
unit gain
RL = 10 kΩ,
RL = 10 kΩ,
AV = 1
AV = 10
Gain margin
† Full range is −55°C to 125°C for M level part.
12
POST OFFICE BOX 655303
UNIT
V/µs
1.7
nV/√Hz
µV
V
fA /√Hz
0.0011%
0.0011%
0.004%
0.004%
0.03%
0.03%
25°C
2.25
2.25
MHz
25°C
0.54
0.54
MHz
1.5
1.5
3.2
3.2
25°C
52°
52°
25°C
10
10
25°C
25
C
AV = 100
CL = 100 pF
MAX
µss
25°C
• DALLAS, TEXAS 75265
dB
 SGLS131A − JULY 2002 − REVISED NOVEMBER 2003
TYPICAL CHARACTERISTICS
Table of Graphs
FIGURE
VIO
Input offset voltage
Distribution
vs Common-mode voltage
αVIO
IIB /IIO
Input offset voltage temperature coefficient
Distribution
Input bias and input offset current
vs Free-air temperature
11
VI
Input voltage
vs Supply voltage
vs Free-air temperature
12
13
VOH
VOL
High-level output voltage
vs High-level output current
14
Low-level output voltage
vs Low-level output current
15, 16
VOM +
VOM −
Maximum positive peak output voltage
vs Output current
17
Maximum negative peak output voltage
vs Output current
18
VO(PP)
Maximum peak-to-peak output voltage
vs Frequency
19
IOS
Short-circuit output current
vs Supply voltage
vs Free-air temperature
20
21
VO
Output voltage
vs Differential input voltage
Large-signal differential voltage amplification
vs Load resistance
Large-signal differential voltage amplification
and phase margin
vs Frequency
25, 26
AVD
1−4
5, 6
7 − 10
22, 23
24
Large-signal differential voltage amplification
vs Free-air temperature
27, 28
zo
Output impedance
vs Frequency
29, 30
CMRR
Common-mode rejection ratio
vs Frequency
vs Free-air temperature
31
32
kSVR
Supply-voltage rejection ratio
vs Frequency
vs Free-air temperature
33, 34
35
IDD
Supply current
vs Supply voltage
vs Free-air temperature
36, 37
38, 39
SR
Slew rate
vs Load capacitance
vs Free-air temperature
40
41
VO
Vn
Inverting large-signal pulse response
42, 43
Voltage-follower large-signal pulse response
44, 45
Inverting small-signal pulse response
46, 47
Voltage-follower small-signal pulse response
48, 49
Equivalent input noise voltage
vs Frequency
Noise voltage over a 10-second period
THD + N
φm
50, 51
52
Integrated noise voltage
vs Frequency
53
Total harmonic distortion plus noise
vs Frequency
54
Gain-bandwidth product
vs Supply voltage
vs Free-air temperature
55
56
Phase margin
vs Load capacitance
57
Gain margin
vs Load capacitance
58
NOTE: For all graphs where VDD = 5 V, all loads are referenced to 2.5 V.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
13
 SGLS131A − JULY 2002 − REVISED NOVEMBER 2003
TYPICAL CHARACTERISTICS
DISTRIBUTION OF TLC2272
INPUT OFFSET VOLTAGE
DISTRIBUTION OF TLC2272
INPUT OFFSET VOLTAGE
15
20
891 Amplifiers From
2 Wafer Lots
VDD = ± 2.5 V
TA = 25°C
Percentage of Amplifiers − %
Percentage of Amplifiers − %
20
10
5
0
−1.6 −1.2 −0.8 −0.4
0
0.4
0.8
1.2
15
891 Amplifiers From
2 Wafer Lots
VDD = ± 5 V
TA = 25°C
10
5
0
−1.6 −1.2 −0.8 −0.4
1.6
Figure 1
0.8
1.2
1.6
Figure 2
DISTRIBUTION OF TLC2274
INPUT OFFSET VOLTAGE
DISTRIBUTION OF TLC2274
INPUT OFFSET VOLTAGE
20
20
992 Amplifiers From
2 Wafer Lots
VDD = ± 5 V
Percentage of Amplifiers − %
992 Amplifiers From
2 Wafer Lots
VDD = ± 2.5 V
Percentage of Amplifiers − %
0.4
VIO − Input Offset Voltage − mV
VIO − Input Offset Voltage − mV
15
10
5
0
−1.6 −1.2 −0.8
−0.4
0
0.4
0.8
1.2
1.6
15
10
5
0
−1.6 −1.2 −0.8
VIO − Input Offset Voltage − mV
−0.4
0
Figure 4
POST OFFICE BOX 655303
0.4
0.8
VIO − Input Offset Voltage − mV
Figure 3
14
0
• DALLAS, TEXAS 75265
1.2
1.6
 SGLS131A − JULY 2002 − REVISED NOVEMBER 2003
TYPICAL CHARACTERISTICS
INPUT OFFSET VOLTAGE
vs
COMMON-MODE VOLTAGE
INPUT OFFSET VOLTAGE
vs
COMMON-MODE VOLTAGE
1
VDD = 5 V
TA = 25°C
RS = 50 Ω
VIO − Input Offset Voltage − mV
VIO
VIO
VIO − Input Offset Voltage − mV
1
0.5
0
−0.5
−1
−1
0
2
1
3
0.5
0
−0.5
−1
−6 −5 −4 −3 −2
5
4
VDD = ± 5 V
TA = 25°C
RS = 50 Ω
VIC − Common-Mode Voltage − V
1
2
3
4
5
Figure 6
DISTRIBUTION OF TLC2272
vs
INPUT OFFSET VOLTAGE TEMPERATURE
COEFFICIENT†
DISTRIBUTION OF TLC2272
vs
INPUT OFFSET VOLTAGE TEMPERATURE
COEFFICIENT†
25
25
128 Amplifiers From
2 Wafer Lots
VDD = ± 2.5 V
P Package
25°C to 125°C
Percentage of Amplifiers − %
Percentage of Amplifiers − %
0
VIC − Common-Mode Voltage − V
Figure 5
20
−1
15
10
20
128 Amplifiers From
2 Wafer Lots
VDD = ± 5 V
P Package
25°C to 125°C
15
10
5
5
0
−5 −4
0
−5 −4
−3
−2
−1
0
1
2
3
4
5
αVIO − Temperature Coefficient − µV/°C
−3
−2
−1
0
1
2
3
4
5
αVIO − Temperature Coefficient − µV/°C
Figure 7
Figure 8
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
15
 SGLS131A − JULY 2002 − REVISED NOVEMBER 2003
TYPICAL CHARACTERISTICS
25
25
128 Amplifiers From
2 Wafer Lots
VDD = ± 2.5 V
N Package
TA = 25°C to 125°C
20
Percentage of Amplifiers − %
Percentage of Amplifiers − %
DISTRIBUTION OF TLC2274
vs
INPUT OFFSET VOLTAGE TEMPERATURE
COEFFICIENT†
DISTRIBUTION OF TLC2274
vs
INPUT OFFSET VOLTAGE TEMPERATURE
COEFFICIENT†
15
10
5
0
−5
128 Amplifiers From
2 Wafer Lots
VDD = ± 2.5 V
N Package
TA = 25°C to 125°C
20
15
10
5
0
−4
−3
−2
−1
0
2
1
3
4
−5
5
−4
−3
Figure 9
2
3
4
INPUT BIAS AND INPUT OFFSET CURRENT†
vs
FREE-AIR TEMPERATURE
INPUT VOLTAGE
vs
SUPPLY VOLTAGE
35
12
VDD = ± 2.5 V
VIC = 0 V
VO = 0 V
RS = 50 Ω
TA = 25°C
RS = 50 Ω
10
8
6
25
20
IIB
15
IIO
10
4
2
|VIO| ≤ 5 mV
0
−2
−4
−6
5
−8
0
− 10
25
45
65
85
105
125
2
TA − Free-Air Temperature − °C
3
4
5
6
7
|VDD ±| − Supply Voltage − V
Figure 11
Figure 12
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
16
5
Figure 10
V I − Input Voltage − V
IIB
I IO − Input Bias and Input Offset Currents − pA
IIB and IIO
1
αVIO − Temperature Coefficient − µV/°C
αVIO − Temperature Coefficient − µV/°C
30
−1 0
−2
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
8
 SGLS131A − JULY 2002 − REVISED NOVEMBER 2003
TYPICAL CHARACTERISTICS
INPUT VOLTAGE†
vs
FREE-AIR TEMPERATURE
HIGH-LEVEL OUTPUT VOLTAGE†
vs
HIGH-LEVEL OUTPUT CURRENT
5
6
VDD = 5 V
V0H
V
OH − High-Level Output Voltage − V
VDD = 5 V
V I − Input Voltage − V
4
3
|VIO| ≤ 5 mV
2
1
0
−1
−75 − 50
5
4
TA = 125°C
3
TA = 25°C
2
TA = − 55°C
1
0
− 25
0
25
50
75
100
125
0
TA − Free-Air Temperature − °C
1
Figure 13
4
LOW-LEVEL OUTPUT VOLTAGE†
vs
LOW-LEVEL OUTPUT CURRENT
1.2
1.4
VOL
VOL − Low-Level Output Voltage − V
VDD = 5 V
TA = 25°C
VOL
VOL − Low-Level Output Voltage − V
3
Figure 14
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
1
VIC = 0 V
0.8
VIC = 1.25 V
0.6
0.4
2
IOH − High-Level Output Current − mA
VIC = 2.5 V
0.2
0
VDD = 5 V
VIC = 2.5 V
1.2
1
TA = 125°C
0.8
TA = 25°C
0.6
TA = − 55°C
0.4
0.2
0
0
1
2
3
4
IOL − Low-Level Output Current − mA
5
0
5
1
2
3
4
IOL − Low-Level Output Current − mA
Figure 15
6
Figure 16
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
17
 SGLS131A − JULY 2002 − REVISED NOVEMBER 2003
TYPICAL CHARACTERISTICS
5
VDD ± = ± 5 V
4
TA = − 55°C
TA = 25°C
3
TA = 125°C
2
1
0
1
2
3
4
5
MAXIMUM NEGATIVE PEAK OUTPUT VOLTAGE†
vs
OUTPUT CURRENT
V OM − − Maximum Negative Peak Output Voltage − V
V OM + − Maximum Positive Peak Output Voltage − V
MAXIMUM POSITIVE PEAK OUTPUT VOLTAGE†
vs
OUTPUT CURRENT
−3.8
VDD = ± 5 V
VIC = 0 V
−4
TA = 125°C
−4.2
TA = 25°C
−4.4
TA = − 55°C
−4.6
−4.8
−5
0
1
|IO| − Output Current − mA
2
10
16
RL = 10 kΩ
TA = 25°C
9
8
7
6
VDD = 5 V
4
VDD = ± 5 V
3
2
1
VID = − 100 mV
12
8
4
0
VID = 100 mV
−4
VO = 0 V
TA = 25°C
−8
0
100 k
1M
10 M
2
f − Frequency − Hz
3
4
5
6
7
|VDD ±| − Supply Voltage − V
Figure 19
Figure 20
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
18
6
SHORT-CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE
IIOS
OS − Short-Circuit Output Current − mA
V(OPP)
V O(PP) − Maximum Peak-to-Peak Output Voltage − V
5
Figure 18
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
FREQUENCY
10 k
4
IO − Output Current − mA
Figure 17
5
3
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
8
 SGLS131A − JULY 2002 − REVISED NOVEMBER 2003
TYPICAL CHARACTERISTICS
SHORT-CIRCUIT OUTPUT CURRENT†
vs
FREE-AIR TEMPERATURE
IIOS
OS − Short-Circuit Output Current − mA
15
OUTPUT VOLTAGE
vs
DIFFERENTIAL INPUT VOLTAGE
5
VO = 0 V
VDD = ± 5 V
VID = − 100 mV
11
VO − Output Voltage − V
4
7
−3
VDD = 5 V
TA = 25°C
RL = 10 kΩ
VIC = 2.5 V
3
2
−1
VID = 100 mV
1
−5
−75
−50
−25
0
25
50
75 100
TA − Free-Air Temperature − °C
0
−800
125
800
−400
0
400
VID − Differential Input Voltage − µV
Figure 21
Figure 22
LARGE-SIGNAL DIFFERENTIAL
VOLTAGE AMPLIFICATION
vs
LOAD RESISTANCE
OUTPUT VOLTAGE
vs
DIFFERENTIAL INPUT VOLTAGE
VO − Output Voltage − V
3
1000
VDD = ± 5 V
TA = 25°C
RL = 10 kΩ
VIC = 0 V
VO = ± 1 V
TA = 25°C
AVD
AVD− Large-Signal Differential
Voltage Amplification − dB
5
1200
1
ÁÁ
ÁÁ
ÁÁ
−1
−3
−5
0
250 500 750 1000
−1000 −750 −500 −250
VID − Differential Input Voltage − µV
100
VDD = ± 5 V
10
VDD = 5 V
1
0.1
0.1
Figure 23
1
10
RL − Load Resistance − kΩ
100
Figure 24
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
19
 SGLS131A − JULY 2002 − REVISED NOVEMBER 2003
TYPICAL CHARACTERISTICS
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE MARGIN
vs
FREQUENCY
80
135°
40
90°
20
45°
0
0°
−20
φom
m − Phase Margin
AVD
AVD− Large-Signal Differential
Voltage Amplification − dB
60
ÁÁ
ÁÁ
ÁÁ
180°
VDD = 5 V
RL = 10 kΩ
CL = 100 pF
TA = 25°C
−45°
−40
1k
10 k
100 k
1M
−90°
10 M
f − Frequency − Hz
Figure 25
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE MARGIN
vs
FREQUENCY
VDD = ± 5 V
RL = 10 kΩ
CL = 100 pF
TA = 25°C
AVD
AVD− Large-Signal Differential
Voltage Amplification − dB
60
ÁÁ
ÁÁ
ÁÁ
135°
40
90°
20
45°
0°
0
−20
−45°
−40
1k
10 k
100 k
1M
f − Frequency − Hz
Figure 26
20
180°
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
−90°
10 M
φom
m − Phase Margin
80
 SGLS131A − JULY 2002 − REVISED NOVEMBER 2003
TYPICAL CHARACTERISTICS
LARGE-SIGNAL DIFFERENTIAL
VOLTAGE AMPLIFICATION†
vs
FREE-AIR TEMPERATURE
LARGE-SIGNAL DIFFERENTIAL
VOLTAGE AMPLIFICATION†
vs
FREE-AIR TEMPERATURE
1k
VDD = ± 5 V
VIC = 0 V
VO = ± 4 V
VDD = 5 V
VIC = 2.5 V
VO = 1 V to 4 V
AVD
AVD− Large-Signal Differential
Voltage Amplification − V/mV
AVD
AVD− Large-Signal Differential
Voltage Amplification − V/mV
1k
RL = 1 MΩ
100
ÁÁ
ÁÁ
−50
100
ÁÁ
ÁÁ
RL = 10 kΩ
10
−75
RL = 1 MΩ
−25
0
25
50
75 100
TA − Free-Air Temperature − °C
RL = 10 kΩ
10
−75
125
−50
−25
0
25
50
75 100
TA − Free-Air Temperature − °C
Figure 27
Figure 28
OUTPUT IMPEDANCE
vs
FREQUENCY
OUTPUT IMPEDANCE
vs
FREQUENCY
1000
1000
VDD = ± 5 V
TA = 25°C
100
zo
O
zo − Output Impedance − Ω
zo
O
zo − Output Impedance − Ω
VDD = 5 V
TA = 25°C
AV = 100
10
AV = 10
1
0.1
100
125
AV = 1
100
AV = 100
10
AV = 10
1
AV = 1
1k
10 k
100 k
1M
0.1
100
f − Frequency − Hz
1k
10 k
100 k
1M
f − Frequency − Hz
Figure 29
Figure 30
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
21
 SGLS131A − JULY 2002 − REVISED NOVEMBER 2003
TYPICAL CHARACTERISTICS
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
90
TA = 25°C
CMRR − Common-Mode Rejection Ratio − dB
CMRR − Common-Mode Rejection Ratio − dB
100
COMMON-MODE REJECTION RATIO
vs
FREE-AIR TEMPERATURE
VDD = ± 5 V
80
VDD = 5 V
60
40
20
86
82
VIC = − 5 V to 2.7 V
78
VDD = 5 V
74
0
10
100
1k
10 k
100 k
1M
VDD = ± 5 V
70
−75
10 M
VIC = 0 V to 2.7 V
−50
−25
0
Figure 31
100
125
100
VDD = 5 V
TA = 25°C
kSVR
k
SVR − Supply-Voltage Rejection Ratio − dB
kSVR
k SVR − Supply-Voltage Rejection Ratio − dB
75
SUPPLY-VOLTAGE REJECTION RATIO
vs
FREQUENCY
100
80
60
kSVR+
40
kSVR −
20
0
100
1k
10 k
100 k
1M
10 M
VDD = ± 5 V
TA = 25°C
80
60
kSVR+
40
kSVR −
20
0
−20
10
f − Frequency − Hz
100
1k
10 k
Figure 34
POST OFFICE BOX 655303
100 k
f − Frequency − Hz
Figure 33
22
50
Figure 32
SUPPLY-VOLTAGE REJECTION RATIO
vs
FREQUENCY
−20
10
25
TA − Free-Air Temperature − °C
f − Frequency − Hz
• DALLAS, TEXAS 75265
1M
10 M
 SGLS131A − JULY 2002 − REVISED NOVEMBER 2003
TYPICAL CHARACTERISTICS
TLC2272
SUPPLY CURRENT†
vs
SUPPLY VOLTAGE
SUPPLY VOLTAGE REJECTION RATIO†
vs
FREE-AIR TEMPERATURE
3
VDD ± = ± 2.2 V to ± 8 V
VO = 0 V
VO = 0 V
No Load
2.4
105
IIDD
DD − Supply Current − mA
kSVR
k
SVR − Supply Voltage Rejection Ratio − dB
110
100
95
TA = 25°C
TA = − 55°C
1.2
TA = 125°C
0.6
90
85
−75
1.8
0
−50
−25
0
25
50
75
100
0
125
1
TA − Free-Air Temperature − °C
2
3
4
5
6
|VDD ± | − Supply Voltage − V
Figure 35
100
125
TLC2272
SUPPLY CURRENT†
vs
FREE-AIR TEMPERATURE
3
6
VO = 0 V
No Load
VDD = ± 5 V
VO = 0 V
2.4
3.6
IIDD
DD − Supply Current − mA
4.8
IIDD
DD − Supply Current − mA
8
Figure 36
TLC2274
SUPPLY CURRENT†
vs
SUPPLY VOLTAGE
TA = 25°C
TA = − 55°C
2.4
TA = 125°C
1.2
0
7
VDD = 5 V
VO = 2.5 V
1.8
1.2
0.6
0
1
2
3
4
5
6
7
8
0
−75
−50
−25
0
25
50
75
TA − Free-Air Temperature − °C
|VDD ± | − Supply Voltage − V
Figure 37
Figure 38
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
23
 SGLS131A − JULY 2002 − REVISED NOVEMBER 2003
TYPICAL CHARACTERISTICS
TLC2274
SUPPLY CURRENT†
vs
FREE-AIR TEMPERATURE
SLEW RATE
vs
LOAD CAPACITANCE
5
6
VDD = ± 5 V
VO = 0 V
4
SR − Slew Rate − V/ µ s
IIDD
DD − Supply Current − mA
4.8
VDD = 5 V
VO = 2.5 V
3.6
2.4
SR −
3
2
SR +
1
1.2
0
−75
VDD = 5 V
AV = − 1
TA = 25°C
−50
−25
0
25
50
75
100
0
10
125
100
1k
CL − Load Capacitance − pF
TA − Free-Air Temperature − °C
Figure 39
Figure 40
SLEW RATE†
vs
FREE-AIR TEMPERATURE
INVERTING LARGE-SIGNAL PULSE RESPONSE
5
5
VDD = 5 V
RL = 10 kΩ
CL = 100 pF
TA = 25°C
AV = − 1
SR −
4
VO − Output Voltage − mV
VO
SR − Slew Rate − V/ µs
4
SR +
3
2
VDD = 5 V
RL = 10 kΩ
CL = 100 pF
AV = 1
1
0
−75
10 k
3
2
1
0
−50
−25
0
25
50
75
100
125
0
TA − Free-Air Temperature − °C
1
2
3
4
5
6
7
8
t − Time − µs
Figure 41
Figure 42
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
24
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
9
 SGLS131A − JULY 2002 − REVISED NOVEMBER 2003
TYPICAL CHARACTERISTICS
VOLTAGE-FOLLOWER
LARGE-SIGNAL PULSE RESPONSE
INVERTING LARGE-SIGNAL PULSE RESPONSE
5
3
2
4
VO − Output Voltage − V
VO
4
V
VO
O − Output Voltage − V
5
VDD = ± 5 V
RL = 10 kΩ
CL = 100 pF
TA = 25°C
AV = − 1
1
0
−1
−2
VDD = 5 V
RL = 10 kΩ
CL = 100 pF
AV = 1
TA = 25°C
3
2
−3
1
−4
−5
0
1
2
3
4
5
6
7
8
0
9
0
1
2
3
t − Time − µs
Figure 43
5
6
7
8
9
Figure 44
VOLTAGE-FOLLOWER
LARGE-SIGNAL PULSE RESPONSE
5
INVERTING SMALL-SIGNAL PULSE RESPONSE
2.65
VDD = ± 5 V
RL = 10 kΩ
CL = 100 pF
TA = 25°C
AV = 1
3
2
VDD = 5 V
RL = 10 kΩ
CL = 100 pF
TA = 25°C
AV = −1
2.6
VO − Output Voltage − V
VO
4
VO − Output Voltage − V
VO
4
t − Time − µs
1
0
−1
−2
−3
2.55
2.5
2.45
−4
−5
2.4
0
1
2
3
4
5
6
7
8
9
0
0.5
t − Time − µs
1 1.5
2 2.5 3
3.5 4
4.5
5 5.5
t − Time − µs
Figure 45
Figure 46
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
25
 SGLS131A − JULY 2002 − REVISED NOVEMBER 2003
TYPICAL CHARACTERISTICS
VOLTAGE-FOLLOWER
SMALL-SIGNAL PULSE RESPONSE
INVERTING SMALL-SIGNAL PULSE RESPONSE
2.65
VDD = ± 5 V
RL = 10 kΩ
CL = 100 pF
TA = 25°C
AV = 1
50
VDD = 5 V
RL = 10 kΩ
CL = 100 pF
TA = 25°C
AV = 1
2.6
VO − Output Voltage − V
VO
VO − Output Voltage − mV
VO
100
0
−50
2.55
2.5
2.45
−100
2.4
0
0.5
1
1.5
2
2.5
3
3.5
4
0
t − Time − µs
Figure 47
Figure 48
VDD = ± 5 V
RL = 10 kΩ
CL = 100 pF
TA = 25°C
AV = 1
Vn
nV HzHz
Vn − Equivalent Input Noise Voltage − nV/
VO − Output Voltage − mV
VO
50
0
−50
−100
1.5
60
VDD = 5 V
TA = 25°C
RS = 20 Ω
50
40
30
20
10
0
0
0.5
1
1.5
10
t − Time − µs
100
1k
f − Frequency − Hz
Figure 50
Figure 49
26
1
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
VOLTAGE-FOLLOWER
SMALL-SIGNAL PULSE RESPONSE
100
0.5
t − Time − µs
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
10 k
 SGLS131A − JULY 2002 − REVISED NOVEMBER 2003
TYPICAL CHARACTERISTICS
NOISE VOLTAGE
OVER A 10 SECOND PERIOD
60
1000
VDD = ± 5 V
TA = 25°C
RS = 20 Ω
50
VDD = 5 V
f = 0.1 Hz to 10 Hz
TA = 25°C
750
500
Noise Voltage − nV
Vn
nV HzHz
Vn − Equivalent Input Noise Voltage − nV/
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
40
30
20
250
0
−250
−500
10
−750
−1000
0
10
100
1k
f − Frequency − Hz
0
10 k
2
4
TOTAL HARMONIC DISTORTION PLUS NOISE
vs
FREQUENCY
THD + N − Total Harmonic Distortion Plus Noise − %
µ V RMS
Integrated Noise Voltage − uVRMS
100
Calculated Using
Ideal Pass-Band Filter
Lower Frequency = 1 Hz
TA= 25°C
10
1
0.1
100
1k
10
Figure 52
INTEGRATED NOISE VOLTAGE
vs
FREQUENCY
10
8
t − Time − s
Figure 51
1
6
10 k
100 k
1
VDD = 5 V
TA = 25°C
RL = 10 kΩ
0.1
AV = 100
0.01
AV = 10
0.001
AV = 1
0.0001
100
1k
10 k
100 k
f − Frequency − Hz
f − Frequency − Hz
Figure 54
Figure 53
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
27
 SGLS131A − JULY 2002 − REVISED NOVEMBER 2003
TYPICAL CHARACTERISTICS
GAIN-BANDWIDTH PRODUCT†
vs
FREE-AIR TEMPERATURE
GAIN-BANDWIDTH PRODUCT
vs
SUPPLY VOLTAGE
3
f = 10 kHz
RL = 10 kΩ
CL = 100 pF
TA = 25°C
2.4
VDD = 5 V
f = 10 kHz
RL = 10 kΩ
CL = 100 pF
2.8
Gain-Bandwidth Product − MHz
Gain-Bandwidth Product − MHz
2.5
2.3
2.2
2.1
2.6
2.4
2.2
2
1.8
1.6
1.4
2
0
1
6
2
3
4
5
|VDD ±| − Supply Voltage − V
7
8
−75
−50
Figure 55
GAIN MARGIN
vs
LOAD CAPACITANCE
15
VDD = ± 5 V
TA = 25°C
VDD = 5 V
AV = 1
RL = 10 kΩ
TA = 25°C
Rnull = 100 Ω
60°
12
Rnull = 50 Ω
Gain Margin − dB
φ m − Phase Margin
om
125
Figure 56
PHASE MARGIN
vs
LOAD CAPACITANCE
75°
−25
0
25
50
75 100
TA − Free-Air Temperature − °C
45°
Rnull = 20 Ω
30°
9
6
10 kΩ
15°
10 kΩ
3
VDD +
Rnull
VI
Rnull = 0
CL
0°
10
VDD −
Rnull = 10 Ω
100
1000
CL − Load Capacitance − pF
10000
0
10
Figure 57
100
1000
CL − Load Capacitance − pF
10000
Figure 58
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
28
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
 SGLS131A − JULY 2002 − REVISED NOVEMBER 2003
APPLICATION INFORMATION
macromodel information
Macromodel information provided was derived using Microsim Parts, the model generation software used
with Microsim PSpice. The Boyle macromodel (see Note 6) and subcircuit in Figure 59 were generated using
the TLC227x typical electrical and operating characteristics at TA = 25°C. Using this information, output
simulations of the following key parameters can be generated to a tolerance of 20% (in most cases):
D
D
D
D
D
D
D
D
D
D
D
D
Maximum positive output voltage swing
Maximum negative output voltage swing
Slew rate
Quiescent power dissipation
Input bias current
Open-loop voltage amplification
Unity gain frequency
Common-mode rejection ratio
Phase margin
DC output resistance
AC output resistance
Short-circuit output current limit
NOTE 6: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers”, IEEE Journal
of Solid-State Circuits, SC-9, 353 (1974).
99
3
VCC +
9
RSS
92
FB
+
10
VC
J1
DP
J2
IN +
11
RD1
VAD
DC
12
C1
R2
−
53
HLIM
−
C2
6
−
−
+
VIN
+
GCM
GA
VLIM
8
−
RD2
54
4
−
7
60
+
−
+ DIP
91
+
VIP
90
RO2
VB
IN −
VCC −
−
+
ISS
RP
2
1
DIN
EGND +
−
RO1
DE
5
+
VE
OUT
.SUBCKT TLC227x 1 2 3 4 5
C1
11
1214E−12
C2
6
760.00E−12
DC
5
53DX
DE
54
5DX
DLP
90
91DX
DLN
92
90DX
DP
4
3DX
EGND
99
0POLY (2) (3,0) (4,) 0 .5 .5
FB
99
0POLY (5) VB VC VE VLP VLN 0
+ 984.9E3 −1E6 1E6 1E6 −1E6
GA
6
011 12 377.0E−6
GCM 0 6 10 99 134E−9
ISS
3
10DC 216.OE−6
HLIM
90
0VLIM 1K
J1
11
210 JX
J2
12
110 JX
R2
6
9100.OE3
RD1
60
112.653E3
RD2
60
122.653E3
R01
8
550
R02
7
9950
RP
3
44.310E3
RSS
10
99925.9E3
VAD
60
4−.5
VB
9
0DC 0
VC 3 53 DC .78
VE
54
4DC .78
VLIM
7
8DC 0
VLP
91
0DC 1.9
VLN
0
92DC 9.4
.MODEL DX D (IS=800.0E−18)
.MODEL JX PJF (IS=1.500E−12BETA=1.316E-3
+ VTO=−.270)
.ENDS
Figure 59. Boyle Macromodel and Subcircuit
PSpice and Parts are trademarks of MicroSim Corporation.
!'#
#!$'" !'#
") !'# % &+ "'+ "'+
" *" &+ # $''+ %#", ''
") #%" %", )"#"# ")
#!$" %$" " *)) ") !' '"#(
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
29
PACKAGE OPTION ADDENDUM
www.ti.com
22-Sep-2008
PACKAGING INFORMATION
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
TLC2272AMDREP
ACTIVE
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC2272AMDREPG4
ACTIVE
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC2274AMDREP
ACTIVE
SOIC
D
14
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC2274AMPWREP
ACTIVE
TSSOP
PW
14
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC2274MDREP
ACTIVE
SOIC
D
14
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC2274MPWREP
ACTIVE
TSSOP
PW
14
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
V62/03618-01XE
ACTIVE
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
V62/03618-02UE
ACTIVE
TSSOP
PW
14
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
V62/03618-02YE
ACTIVE
SOIC
D
14
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
V62/03618-04UE
ACTIVE
TSSOP
PW
14
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
V62/03618-04YE
ACTIVE
SOIC
D
14
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
Lead/Ball Finish
MSL Peak Temp (3)
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS
compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
Addendum-Page 1
PACKAGE OPTION ADDENDUM
www.ti.com
22-Sep-2008
to Customer on an annual basis.
OTHER QUALIFIED VERSIONS OF TLC2272A-EP, TLC2274-EP, TLC2274A-EP :
TLC2272A, TLC2274, TLC2274A
• Catalog:
TLC2272A-Q1, TLC2274-Q1, TLC2274A-Q1
• Automotive:
• Military: TLC2272AM, TLC2274M, TLC2274AM
NOTE: Qualified Version Definitions:
- TI's standard catalog product
• Catalog
- Q100 devices qualified for high-reliability automotive applications targeting zero defects
• Automotive
• Military - QML certified for Military and Defense Applications
Addendum-Page 2
PACKAGE MATERIALS INFORMATION
www.ti.com
14-Jul-2012
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
TLC2272AMDREP
Package Package Pins
Type Drawing
SOIC
SPQ
Reel
Reel
A0
Diameter Width (mm)
(mm) W1 (mm)
B0
(mm)
K0
(mm)
P1
(mm)
W
Pin1
(mm) Quadrant
D
8
2500
330.0
12.4
6.4
5.2
2.1
8.0
12.0
Q1
TLC2274AMDREP
SOIC
D
14
2500
330.0
16.4
6.5
9.0
2.1
8.0
16.0
Q1
TLC2274AMPWREP
TSSOP
PW
14
2000
330.0
12.4
6.9
5.6
1.6
8.0
12.0
Q1
TLC2274MDREP
SOIC
D
14
2500
330.0
16.4
6.5
9.0
2.1
8.0
16.0
Q1
TLC2274MPWREP
TSSOP
PW
14
2000
330.0
12.4
6.9
5.6
1.6
8.0
12.0
Q1
Pack Materials-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
14-Jul-2012
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
TLC2272AMDREP
SOIC
TLC2274AMDREP
SOIC
D
8
2500
367.0
367.0
35.0
D
14
2500
333.2
345.9
28.6
TLC2274AMPWREP
TLC2274MDREP
TSSOP
PW
14
2000
367.0
367.0
35.0
SOIC
D
14
2500
333.2
345.9
TLC2274MPWREP
28.6
TSSOP
PW
14
2000
367.0
367.0
35.0
Pack Materials-Page 2
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All
semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time
of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which
have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such
components to meet such requirements.
Products
Applications
Audio
www.ti.com/audio
Automotive and Transportation www.ti.com/automotive
Amplifiers
amplifier.ti.com
Communications and Telecom www.ti.com/communications
Data Converters
dataconverter.ti.com
Computers and Peripherals
www.ti.com/computers
DLP® Products
www.dlp.com
Consumer Electronics
www.ti.com/consumer-apps
DSP
dsp.ti.com
Energy and Lighting
www.ti.com/energy
Clocks and Timers
www.ti.com/clocks
Industrial
www.ti.com/industrial
Interface
interface.ti.com
Medical
www.ti.com/medical
Logic
logic.ti.com
Security
www.ti.com/security
Power Mgmt
power.ti.com
Space, Avionics and Defense
www.ti.com/space-avionics-defense
Microcontrollers
microcontroller.ti.com
Video and Imaging
www.ti.com/video
RFID
www.ti-rfid.com
OMAP Mobile Processors
www.ti.com/omap
TI E2E Community
e2e.ti.com
Wireless Connectivity
www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated