256MBit MOBILE SDR SDRAM based on 4M x 4Bank x16 I/O Specification of 256M (16Mx16bit) Mobile SDRAM Memory Cell Array - Organized as 4banks of 4,194,304 x16 This document is a general product description and is subject to change without notice. Hynix does not assume any responsibility for use of circuits described. No patent licenses are implied. Rev 1.1 / July. 2009 1 11 256Mbit (16Mx16bit) Mobile SDR H55S2562JFR Series Document Title 4Bank x 4M x 16bits Synchronous DRAM Revision History Revision No. History Draft Date Remark 0.1 Initial Draft May 2008 Preliminary 0.2 IDD Specification updated May 2008 Preliminary 1.0 The final version Nov. 2008 1.1 Omit a typo in package information July. 2009 Rev 1.1 / July. 2009 2 11 256Mbit (16Mx16bit) Mobile SDR H55S2562JFR Series DESCRIPTION The Hynix H55S2562JFR is suited for non-PC application which use the batteries such as PDAs, 2.5G and 3G cellular phones with internet access and multimedia capabilities, mini-notebook, hand-held PCs. The Hynix 256M Mobile SDRAM is 268,435,456-bit CMOS Mobile Synchronous DRAM(Mobile SDR), ideally suited for the main memory applications which requires large memory density and high bandwidth. It is organized as 4banks of 4,194,304x16. Mobile SDRAM is a type of DRAM which operates in synchronization with input clock. The Hynix Mobile SDRAM latch each control signal at the rising edge of a basic input clock (CLK) and input/output data in synchronization with the input clock (CLK). The address lines are multiplexed with the Data Input/ Output signals on a multiplexed x16 Input/ Output bus. All the commands are latched in synchronization with the rising edge of CLK. The Mobile SDRAMs provides for programmable read or write Burst length of Programmable burst lengths: 1, 2, 4, 8 locations or full page. An AUTO PRECHARGE function may be enabled to provide a self-timed row precharge that is initiated at the end of the burst access. The Mobile SDRAM uses an internal pipelined architecture to achieve high-speed operation. This architecture is compartible with the 2n rule of prefetch architectures, but it also allows the column address to be changed on every clock cycle to achieve a high-speed, fully random access. Precharging one bank while accessing one of the other three banks will hide the precharge cycles and provide seamless, high-speed, randomaccess operation. Read and write accesses to the Hynix Mobile SDRAMs are burst oriented; accesses start at a selected location and continue for a programmed number of locations in a programmed sequence. Accesses begin with the registration of an ACTIVE command, which is then followed by a READ or WRITE command. The address bits registered coincident with the ACTIVE command are used to select the bank and the row to be accessed. The address bits registered coincident with the READ or WRITE command are used to select the bank and the starting column location for the burst access. A burst of Read or Write cycles in progress can be terminated by a burst terminate command or can be interrupted and replaced by a new burst Read or Write command on any cycle(This pipelined design is not restricted by a 2N rule). The Hynix Mobile SDR also provides for special programmable options including Partial Array Self Refresh of full array, half array, quarter array Temperature Compensated Self Refresh of 45 or 85 degrees oC. The Hynix Mobile SDR has the special Low Power function of Auto TCSR(Temperature Compensated Self Refresh) to reduce self refresh current consumption. Since an internal temperature sensor is implanted, it enables to automatically adjust refresh rate according to temperature without external EMRS command. Deep Power Down Mode is a additional operating mode for Mobile SDR. This mode can achieve maximum power reduction by removing power to the memory array within each Mobile SDR. By using this feature, the system can cut off almost all DRAM power without adding the cost of a power switch and giving up mother-board power-line layout flexibility. All inputs are LV-CMOS compatible. Devices will have a VDD and VDDQ supply of 1.8V (nominal). Rev 1.1 / July. 2009 3 11 256Mbit (16Mx16bit) Mobile SDR H55S2562JFR Series INFORMATION for Hynix KNOWN GOOD DIE With the advent of Multi-Chip package (MCPs), Package on Package (PoP) and system in a package (SiP) applications, customer demand for Known Good Die (KGD) has increased. Requirements for smaller form factors and higher memory densities are fueling the need for Wafer-level memory solutions due to their superior flexibility. Hynix Known Good Die (KGD) products can be used in packaging technologies such as systems-in-a-package (SIPs) and multi-chip packages (MCPs) to reduce the board area required, making them ideal for hand-held PCs, and many other portable digital applications. Hynix Mobile DRAM will be able to continue its constant effort of enabling the Advanced package products of all application customers. - Please Contact Hynix Office for Hynix KGD product availability and informations. Rev 1.1 / July. 2009 4 11 256Mbit (16Mx16bit) Mobile SDR H55S2562JFR Series FEATURES ● Standard SDRAM Protocol ● Clock Synchronization Operation - All the commands registered on positive edge of basic input clock (CLK) ● MULTIBANK OPERATION - Internal 4bank operation - During burst Read or Write operation, burst Read or Write for a different bank is performed. - During burst Read or Write operation, a different bank is activated and burst Read or Write for that bank is performed - During auto precharge burst Read or Write, burst Read or Write for a different bank is performed ● Power Supply Voltage: VDD = 1.8V, VDDQ = 1.8V ● LVCMOS compatible I/O Interface ● Low Voltage interface to reduce I/O power ● Programmable burst length: 1, 2, 4, 8 or full page ● Programmable Burst Type: sequential or interleaved ● Programmable CAS latency of 3 or 2 ● Programmable Drive Strength ● ● ● ● Low Power Features - Programmable PASR(Partial Array Self Refresh) - Auto TCSR (Temperature Compensated Self Refresh) - Programmable DS (Drive Strength) - Deep Power Down Mode Operating Temperature - Mobile Temp.: -30oC ~ 85oC Package Type - 54ball FBGA, 0.8mm pitch, 8mm x 8mm, t=1.0mm max This product is in compliance with the directive pertaining of RoHS. Rev 1.1 / July. 2009 5 11 256Mbit (16Mx16bit) Mobile SDR H55S2562JFR Series 256Mb Mobile SDR SDRAM ORDERING INFORMATION CAS Organization Interface Latency Part Number Clock Frequency H55S2562JFR-60M 166MHz 3 H55S2562JFR-75M 133MHz 3 H55S2562JFR-A3M 105MHz 3 Rev 1.1 / July. 2009 4banks x 4Mb x 16 LVCMOS Operating temperature 54Ball FBGA Mobile Temp Lead & Halogen Free (-30oC ~ 85oC) 6 11 256Mbit (16Mx16bit) Mobile SDR H55S2562JFR Series BALL DESCRIPTION 1 2 3 A VSS DQ15 B DQ14 C 4 6 7 8 9 VSSQ VDDQ DQ0 VDD DQ13 VDDQ VSSQ DQ2 DQ1 DQ12 DQ11 VSSQ VDDQ DQ4 DQ3 D DQ10 DQ9 VDDQ VSSQ DQ6 DQ5 E DQ8 NC VSS VDD LDQM DQ7 F UDQM CLK CKE /CAS /RAS /WE G A12 A11 A9 BA0 BA1 /CS H A8 A7 A6 A0 A1 A10 J VSS A5 A4 A3 A2 VDD TOP VIEW Top view Rev 1.1 / July. 2009 7 11 256Mbit (16Mx16bit) Mobile SDR H55S2562JFR Series BALL DESCRIPTION SYMBOL TYPE DESCRIPTION CLK INPUT Clock: The system clock input. All other inputs are registered to the SDRAM on the rising edge of CLK CKE INPUT Clock Enable: Controls internal clock signal and when deactivated, the SDRAM will be one of the states among (deep) power down, suspend or self refresh CS INPUT Chip Select: Enables or disables all inputs except CLK, CKE, UDQM and LDQM BA0, BA1 INPUT Bank Address: Selects bank to be activated during RAS activity Selects bank to be read/written during CAS activity A0 ~ A12 INPUT Row Address: RA0 ~ RA12, Column Address: CA0 ~ CA8 Auto-precharge flag: A10 RAS, CAS, WE INPUT Command Inputs: RAS, CAS and WE define the operation Refer function truth table for details UDQM, LDQM INPUT Data Mask: Controls output buffers in read mode and masks input data in write mode DQ0 ~ DQ15 I/O VDD/VSS SUPPLY Power supply for internal circuits VDDQ/VSSQ SUPPLY Power supply for output buffers NC - Rev 1.1 / July. 2009 Data Input/Output: Multiplexed data input/output pin No connection 8 11 256Mbit (16Mx16bit) Mobile SDR H55S2562JFR Series ABSOLUTE MAXIMUM RATING Symbol Rating Ambient Temperature Parameter TA -30 ~ 85 o Storage Temperature TSTG -55 ~ 125 o VIN, VOUT VDD VDDQ IOS PD -1.0 ~ 2.6 -1.0 ~ 2.6 -1.0 ~ 2.6 50 1 TSOLDER 260 . 20 Voltage on Any Pin relative to VSS Voltage on VDD relative to VSS Voltage on VDDQ relative to VSS Short Circuit Output Current Power Dissipation Soldering Temperature . Time Unit C C V V V mA W oC . Sec DC OPERATING CONDITION (TA= -30 to 85oC) Parameter Power Supply Voltage Power Supply Voltage Input High Voltage Input Low Voltage Symbol VDD VDDQ VIH VIL Min 1.7 1.7 0.8*VDDQ -0.3 Typ 1.8 1.8 - Max 1.95 1.95 VDDQ+0.3 0.3 Unit V V V V Note 1 1, 2 1, 2 1, 2 Value 0.9*VDDQ/0.2 0.5*VDDQ 1 0.5*VDDQ 30 Unit V V ns V pF Note: 1. All Voltages are referenced to VSS = 0V 2. VDDQ must not exceed the level of VDD AC OPERATING TEST CONDITION (TA= -30 to 85 oC, VDD = 1.8V, VSS = 0V) Parameter AC Input High/Low Level Voltage Input Timing Measurement Reference Level Voltage Input Rise/Fall Time Output Timing Measurement Reference Level Voltage Output Load Capacitance for Access Time Measurement Rev 1.1 / July. 2009 Symbol VIH / VIL Vtrip tR / tF Voutref CL 9 11 256Mbit (16Mx16bit) Mobile SDR H55S2562JFR Series CAPACITANCE (TA= 25 oC, f=1MHz) 6/H Parameter Pin Input capacitance Symbol Unit Min Max CLK CI1 2 4.0 pF A0~A12, BA0, BA1, CKE, CS, RAS, CAS, WE, UDQM, LDQM CI2 2 4.0 pF DQ0 ~ DQ15 CI/O 2.0 4.5 pF Data input/output capacitance DC CHARACTERRISTICS I (TA= -30 to 85oC) Parameter Symbol Min Max Unit Note Input Leakage Current ILI -1 1 uA 1 Output Leakage Current ILO -1 1 uA 2 Output High Voltage VOH VDDQ-0.2 - V 3 Output Low Voltage VOL - 0.2 V 4 Note: 1. VIN = 0 to 1.8V. All other pins are not tested under VIN=0V. 2. DOUT is disabled. VOUT= 0 to 1.95V. 3. IOUT = - 0.1mA 4. IOUT = + 0.1mA Rev 1.1 / July. 2009 10 11 256Mbit (16Mx16bit) Mobile SDR H55S2562JFR Series DC CHARACTERISTICS II (TA= -30 to 85oC) Speed Parameter Symbol Test Condition Unit Note 166MHz 133MHz 105MHz Operating Current IDD1 Burst length=1, One bank active tRC ≥ tRC(min), IOL=0mA Precharge Standby Current in Power Down Mode IDD2P CKE ≤ VIL(max), tCK = min 0.3 mA IDD2PS CKE ≤ VIL(max), tCK = ∞ 0.3 mA IDD2N Precharge Standby Current in Non Power Down Mode Active Standby Current in Power Down Mode 50 CKE ≥ VIH(min), CS ≥ VIH(min), tCK = min, Input signals are changed one time during 2clks. All other pins ≥ VDD-0.2V or ≤ 0.2V 40 1 IDD3P CKE ≤ VIL(max), tCK = min 3 IDD3PS CKE ≤ VIL(max), tCK = ∞ 3 mA CKE ≥ VIH(min), CS ≥ VIH(min), tCK = min, Input signals are changed one time during 2clks. All other pins ≥ VDD-0.2V or ≤ 0.2V IDD3NS CKE ≥ VIH(min), tCK = ∞ Input signals are stable. Burst Mode Operating Current IDD4 tCK ≥ tCK(min), IOL=0mA All banks active Auto Refresh Current IDD5 Self Refresh Current IDD6 CKE ≤ 0.2V Standby Current in Deep Power Down Mode IDD7 See p.50~51 tRFC ≥ tRFC(min), 1 mA CKE ≥ VIH(min), tCK = ∞ Input signals are stable. IDD3N mA 5 IDD2NS Active Standby Current in Non Power Down Mode 40 10 mA 5 55 45 45 mA 1 70 mA See Next Page mA 2 10 uA 3 Note: 1. IDD1 and IDD4 depend on output loading and cycle rates. Specified values are measured with the output open. 2. See the tables of next page for more specific IDD6 current values. Rev 1.1 / July. 2009 11 11 256Mbit (16Mx16bit) Mobile SDR H55S2562JFR Series DC CHARACTERISTICS III - Low Power (IDD6) Memory Array Temp. (oC) 4 Banks 2 Banks 1 Bank 45 200 150 130 uA 85 320 280 250 uA Unit Notes: 1. VDD / VDDQ = 1.8V 2. Related numerical values in this 45oC are examples for reference sample value only. 3. With a on-chip temperature sensor of Mobile memory, auto temperature compensated self refresh will automatically adjust the interval of self-refresh operation according to ambient temperature variations. Rev 1.1 / July. 2009 12 11 256Mbit (16Mx16bit) Mobile SDR H55S2562JFR Series AC CHARACTERISTICS I (AC operating conditions unless otherwise noted) 166MHz Parameter 133MHz 105MHz Symbol Unit Note Min Max Min Max Min Max tCK3 6.0 1000 7.5 1000 9.5 1000 ns tCK2 12 1000 12 1000 15 1000 ns Clock High Pulse Width tCHW 2.0 - 2.5 - 3.0 - ns 1 Clock Low Pulse Width tCLW 2.0 - 2.5 - 3.0 - ns 1 CAS Latency=3 tAC3 - 5.4 - 5.4 - 5.4 ns 2, 3 CAS Latency=2 tAC2 - 6.0 - 8.0 - 10 ns 2, 3 Data-out Hold Time tOH 2.6 - 2.6 - 2.6 - ns 3 Data-Input Setup Time tDS 2.0 - 2.0 - 3.0 - ns 1 Data-Input Hold Time tDH 1.0 - 1.0 - 1.5 - ns 1 Address Setup Time tAS 2.0 - 2.0 - 3.0 - ns 1 Address Hold Time tAH 1.0 - 1.0 - 1.5 - ns 1 CKE Setup Time tCKS 2.0 - 2.0 - 3.0 - ns 1 CKE Hold Time tCKH 1.0 - 1.0 - 1.5 - ns 1 Command Setup Time tCS 2.0 - 2.0 - 3.0 - ns 1 Command Hold Time tCH 1.0 - 1.0 - 1.5 - ns 1 CLK to Data Output in Low-Z Time tOLZ 1.0 - 1.0 - 1.0 - ns CLK to Data Output in High-Z Time CAS Latency=3 tOHZ3 5.4 6.0 7.0 ns CAS Latency=2 tOHZ2 6.0 8.0 10 ns System Clock Cycle Time CAS Latency=3 CAS Latency=2 Access Time From Clock Note: 1. Assume tR / tF (input rise and fall time) is 1ns. If tR & tF> 1ns, then [(tR+tF)/2-1]ns should be added to the parameter. 2. Access time to be measured with input signals of 1V/ns edge rate, from 0.8V to 0.2V. If tR> 1ns, then (tR/2-0.5)ns should be added to the parameter. 3. Output Load: 30pF+No termination ● ● ● ● ● AC high level input voltage / low level input voltage: 1.6 / 0.2V Z = 50 Input timing measurement reference level: 0.9V Output Ω tCK tCH CLK 1.6V 0.9V 0.2V Input 1.6V 0.9V 0.2V 30pF tSETUP Transition time (input rise and fall time): 0.5ns Output Load Output timing measurement reference level: 0.9V tCL tHOLD tAC tOH Output load: CL = 30pF Rev 1.1 / July. 2009 Output 13 11 256Mbit (16Mx16bit) Mobile SDR H55S2562JFR Series AC CHARACTERISTICS II (AC operating conditions unless otherwise noted) 166MHz Parameter 133MHz 105MHz Symbol Unit Note Min Max Min Max Min Max RAS Cycle Time tRC 60 - 72.5 - 90 - ns RAS to CAS Delay tRCD 18 - 22.5 - 28.5 - ns RAS Active Time tRAS 50 100K 50 100K 60 100K ns RAS Precharge Time tRP 18 - 22.5 - 28.5 - ns RAS to RAS Bank Active Delay tRRD 12 - 15 - 19 - ns AUTO REFRESH Period tRFC 72 - 72 - 72 - ns CAS to CAS Delay tCCD 1 - 1 - 1 - CLK Write Command to Data-In Delay tWTL 0 - 0 - 0 - CLK Data-in to Precharge Command tDPL 2 - 2 - 2 - CLK Data-In to Active Command tDAL DQM to Data-Out Hi-Z tDQZ 2 - 2 - 2 - CLK DQM to Data-In Mask tDQM 0 - 0 - 0 - CLK MRS to New Command tMRD 2 - 2 - 2 - CLK Precharge to Data Output CAS Latency=3 High-Z CAS Latency=2 tPROZ3 3 - 3 - 3 - CLK tPROZ2 2 - 2 - 2 - CLK Power Down Exit Time tDPE 1CLK + tCKS - 1CLK + tCKS - 1CLK + tCKS - CLK Self Refresh Exit Time tXSR 112.5 - 112.5 - 112.5 - ns Refresh Time tREF - 64 - 64 - 64 ms Rev 1.1 / July. 2009 tDPL+tRP 14 11 256Mbit (16Mx16bit) Mobile SDR H55S2562JFR Series FUNCTIONAL BLOCK DIAGRAM 4Mbit x 4banks x 16 I/O Mobile Synchronous DRAM PASR Extended Mode Register Self refresh logic & timer Internal Row Counter CLK CKE 16 Output Buffer & Logic Column Pre Decoder LDQM, UDQM Memory Cell Array Sense AMP & I/O Gate Column Active /WE Row decoders Refresh 4Mx16 Bank3 4Mx16 Bank2 4Mx16 Bank1 4Mx16 Bank0 Row decoders /CAS Row decoders /RAS State Machine /CS Row Pre Decoder Row Active DQ0 16 DQ15 Column decoders Column Add Counter Bank Select A0 BA0 Rev 1.1 / July. 2009 Address Register Burst Counter Burst Length A12 BA1 Address Buffers A1 Mode Register CAS Latency Data Out Control 15 11 256Mbit (16Mx16bit) Mobile SDR H55S2562JFR Series BASIC FUNCTIONAL DESCRIPTION Mode Register BA1 BA0 A12 A11 A10 A9 A8 A7 0 0 0 0 0 OP Code 0 0 A6 A5 A4 A3 CAS Latency OP Code BT A2 A1 A0 Burst Length Burst Type A9 Write Mode 0 Burst Read and Burst Write 1 Burst Read and Single Write CAS Latency A3 Burst Type 0 Sequential 1 Interleave Burst Length A6 A5 A4 CAS Latency 0 0 0 Reserved 0 0 1 0 1 0 1 1 0 1 0 A2 A1 A0 Reserved 0 0 0 2 0 1 3 0 Reserved 1 Burst Length A3 = 0 A3=1 0 1 1 0 1 2 2 0 1 0 4 4 0 1 1 8 8 Reserved 1 0 0 Reserved Reserved 1 1 0 Reserved 1 0 1 Reserved Reserved 1 1 1 Reserved 1 1 0 Reserved Reserved 1 1 1 Full page Reserved Rev 1.1 / July. 2009 16 11 256Mbit (16Mx16bit) Mobile SDR H55S2562JFR Series BASIC FUNCTIONAL DESCRIPTION (Continued) Extended Mode Register BA1 BA0 A12 A11 A10 A9 A8 1 0 0 0 0 0 0 DS (Driver Strength) A7 A6 A5 0 0 0 0 0 1 0 1 0 1 Driver Strength A7 A6 A5 DS A4 A3 0 0 A2 A1 PASR PASR (Partial Array Self Refresh) A2 A1 A0 Full 0 0 0 All Banks 1/2 Strength 0 0 1 Half of Total Bank (BA1=0 or Bank 0,1) 0 1/4 Strength 0 1 0 Quarter of Total Bank (BA1=BA0=0 or Bank 0) 1 1 Reserved 0 1 1 Reserved 0 0 3/4 Strength 1 0 0 Reserved 1 0 1 Half of Bank 0(Bank 0 and Row Address MSB=0) 1 1 0 Quarter of Bank 0(Bank 0 and Row Address 2 MSBs=0) 1 1 1 Reserved Rev 1.1 / July. 2009 A0 Self Refresh Coverage 17 11 256Mbit (16Mx16bit) Mobile SDR H55S2562JFR Series COMMAND TRUTH TABLE Function CKEn CS RAS CAS WE DQM Mode Register Set H X L L L L X Op Code 2 Extended Mode Register Set H X L L L L X Op Code 2 No Operation H X L H H H X X Device Deselect H X H X X X X X Bank Active H X L L H H X Read H X L H L H Read with Autoprecharge H X L H L H Write H X L H L Write with Autoprecharge H X L H Precharge All Banks H X L L Precharge selected Bank H X L L Burst stop H X L H Data Write/Output Enable H X X Data Mask/Output Disable H X X Auto Refresh H H Self Refresh Entry H L Self Refresh Exit L H Precharge Power Down Entry H L Precharge Power Down Exit L H Clock Suspend Entry H L Clock Suspend Exit L H Deep Power Down Entry H L Deep Power Down Exit L H L L Row Address BA L V X Column H V L X Column L V L L X Column H V H L X X H X H L X X L V H L X X X X V X L H X X X X X X X X X X X X L L L H X X X L H H H H X X X L H H H H X X X L H H H H X X X L V V V L H H L X Note V Column H X ADDR A10 /AP CKEn-1 X X X X X X 1 Note: 1. Exiting Self Refresh occurs by asynchronously bringing CKE from low to high. 2. BA1/BA0 must be issued 0/0 in the mode register set, and 1/0 in the extended mode register set. Rev 1.1 / July. 2009 18 11 256Mbit (16Mx16bit) Mobile SDR H55S2562JFR Series CURRENT STATE TRUTH TABLE (Sheet 1 of 4) Command Current State Idle Row Active Read CS RAS CAS WE BA0/ BA1 L L L L L L L H X L L H L L L H L H L Amax-A0 Notes Mode Register Set Set the Mode Register 14 X Auto or Self Refresh Start Auto or Self Refresh 5 BA X Precharge No Operation H BA Row Add. Bank Activate Activate the specified bank and row L L BA Col Add. A10 Write/WriteAP ILLEGAL 4 H L H BA Col Add. A10 Read/ReadAP ILLEGAL 4 L H H H X X No Operation No Operation 3 H X X X X X Device Deselect No Operation or Power Down 3 L L L L Mode Register Set ILLEGAL 13,14 L L L H X X Auto or Self Refresh ILLEGAL 13 L L H L BA X Precharge Precharge 7 L L H H BA Row Add. Bank Activate ILLEGAL 4 L H L L BA Col Add. A10 Write/WriteAP Start Write: optional AP(A10=H) 6 L H L H BA Col Add. A10 Read/ReadAP Start Read: optional AP(A10=H) 6 L H H H X X No Operation No Operation H X X X X X Device Deselect No Operation L L L L Mode Register Set ILLEGAL 13,14 L L L H X X Auto or Self Refresh ILLEGAL 13 L L H L BA X Precharge Termination Burst: Start the Precharge L L H H BA Row Add. Bank Activate ILLEGAL L H L L BA Col Add. A10 Write/WriteAP Termination Burst: Start Write(optional AP) 8,9 L H L H BA Col Add. A10 Read/ReadAP Termination Burst: Start Read(optional AP) 8 L H H H X X No Operation Continue the Burst Rev 1.1 / July. 2009 OP CODE Action Description OP CODE OP CODE 4 19 11 256Mbit (16Mx16bit) Mobile SDR H55S2562JFR Series CURRENT STATE TRUTH TABLE (Sheet 2 of 4) Command Current State Read CS RAS CAS WE BA0/ BA1 Amax-A0 X X Write with Auto Precharge Notes H X X X L L L L L L L H X X Auto or Self Refresh ILLEGAL L L H L BA X Precharge Termination Burst: Start the Precharge 10 L L H H BA Row Add. Bank Activate ILLEGAL 4 L H L L BA Col Add. A10 Write/WriteAP Termination Burst: Start Write(optional AP) 8 L H L H BA Col Add. A10 Read/ReadAP Termination Burst: Start Read(optional AP) 8,9 L H H H X X No Operation Continue the Burst H X X X X X Device Deselect Continue the Burst L L L L Mode Register Set ILLEGAL L L L H X X Auto or Self Refresh ILLEGAL L L H L BA X Precharge ILLEGAL 4,12 L L H H BA Row Add. Bank Activate ILLEGAL 4,12 L H L L BA Col Add. A10 Write/WriteAP ILLEGAL 12 L H L H BA Col Add. A10 Read/ReadAP ILLEGAL 12 L H H H X X No Operation Continue the Burst H X X X X X Device Deselect Continue the Burst L L L L Mode Register Set ILLEGAL L L L H X X Auto or Self Refresh ILLEGAL L L H L BA X Precharge ILLEGAL 4,12 L L H H BA Row Add. Bank Activate ILLEGAL 4,12 L H L L BA Col Add. A10 Write/WriteAP ILLEGAL 12 L H L H BA Col Add. A10 Read/ReadAP ILLEGAL 12 L H H H X X No Operation Continue the Burst H X X X X X Device Deselect Continue the Burst OP CODE Write Read with Auto Precharge Action Description Rev 1.1 / July. 2009 OP CODE OP CODE Device Deselect Continue the Burst Mode Register Set ILLEGAL 13,14 13 13,14 13 13,14 13 20 11 256Mbit (16Mx16bit) Mobile SDR H55S2562JFR Series CURRENT STATE TRUTH TABLE (Sheet 3 of 4) Command Current State Precharging Row Activating Write Recovering CS RAS CAS WE BA0/ BA1 Amax-A0 Notes L L L L L L L H X X Auto or Self Refresh ILLEGAL L L H L BA X Precharge No Operation: Bank(s) idle after tRP L L H H BA Row Add. Bank Activate ILLEGAL 4,12 L H L L BA Col Add. A10 Write/WriteAP ILLEGAL 4,12 L H L H BA Col Add. A10 Read/ReadAP ILLEGAL 4,12 L H H H X X No Operation No Operation: Bank(s) idle after tRP H X X X X X Device Deselect No Operation: Bank(s) idle after tRP L L L L Mode Register Set ILLEGAL L L L H X X Auto or Self Refresh ILLEGAL L L H L BA X Precharge ILLEGAL 4,12 L L H H BA Row Add. Bank Activate ILLEGAL 4,11,1 2 L H L L BA Col Add. A10 Write/WriteAP ILLEGAL 4,12 L H L H BA Col Add. A10 Read/ReadAP ILLEGAL 4,12 L H H H X X No Operation No Operation: Row Active after tRCD H X X X X X Device Deselect No Operation: Row Active after tRCD L L L L Mode Register Set ILLEGAL L L L H X X Auto or Self Refresh ILLEGAL L L H L BA X Precharge ILLEGAL 4,13 L L H H BA Row Add. Bank Activate ILLEGAL 4,12 L H L L BA Col Add. A10 Write/WriteAP Start Write: Optional AP(A10=H) L H L H BA Col Add. A10 Read/ReadAP Start Read: Optional AP(A10=H) L H H H X X No Operation No Operation: Row Active after tDPL Rev 1.1 / July. 2009 OP CODE Action Description OP CODE OP CODE Mode Register Set ILLEGAL 13,14 13 13,14 13 13,14 13 9 21 11 256Mbit (16Mx16bit) Mobile SDR H55S2562JFR Series CURRENT STATE TRUTH TABLE (Sheet 4 of 4) Command Current State Write Recovering Write Recovering with Auto Precharge Refreshing Mode Register Accessing CS RAS CAS WE BA0/ BA1 Amax-A0 X X Action Notes Description Device Deselect No Operation: Row Active after tDPL Mode Register Set ILLEGAL H X X X L L L L L L L H X X Auto or Self Refresh ILLEGAL L L H L BA X Precharge ILLEGAL 4,13 L L H H BA Row Add. Bank Activate ILLEGAL 4,12 L H L L BA Col Add. A10 Write/WriteAP ILLEGAL 4,12 L H L H BA Col Add. A10 Read/ReadAP ILLEGAL 4,9,12 L H H H X X No Operation No Operation: Precharge after tDPL H X X X X X Device Deselect No Operation: Precharge after tDPL L L L L Mode Register Set ILLEGAL L L L H X X Auto or Self Refresh ILLEGAL 13 L L H L BA X Precharge ILLEGAL 13 L L H H BA Row Add. Bank Activate ILLEGAL 13 L H L L BA Col Add. A10 Write/WriteAP ILLEGAL 13 L H L H BA Col Add. A10 Read/ReadAP ILLEGAL 13 L H H H X X No Operation No Operation: idle after tRC H X X X X X Device Deselect No Operation: idle after tRC L L L L Mode Register Set ILLEGAL L L L H X X Auto or Self Refresh ILLEGAL 13 L L H L BA X Precharge ILLEGAL 13 L L H H BA Row Add. Bank Activate ILLEGAL 13 L H L L BA Col Add. A10 Write/WriteAP ILLEGAL 13 L H L H BA Col Add. A10 Read/ReadAP ILLEGAL 13 L H H H X X No Operation No Operation: idle after 2 clock cycles H X X X X X Device Deselect No Operation: idle after 2 clock cycles Rev 1.1 / July. 2009 OP CODE OP CODE OP CODE 13,14 13 13,14 13,14 22 11 256Mbit (16Mx16bit) Mobile SDR H55S2562JFR Series Note: 1. H: Logic High, L: Logic Low, X: Don't care, BA: Bank Address, AP: Auto Precharge. 2. All entries assume that CKE was active during the preceding clock cycle. 3. If both banks are idle and CKE is inactive, then in power down cycle 4. Illegal to bank in specified states. Function may be legal in the bank indicated by Bank Address, depending on the state of that bank. 5. If both banks are idle and CKE is inactive, then Self Refresh mode. 6. Illegal if tRCD is not satisfied. 7. Illegal if tRAS is not satisfied. 8. Must satisfy burst interrupt condition. 9. Must satisfy bus contention, bus turn around, and/or write recovery requirements. 10. Must mask preceding data which don't satisfy tDPL. 11. Illegal if tRRD is not satisfied 12. Illegal for single bank, but legal for other banks in multi-bank devices. 13. Illegal for all banks. 14. Mode Register Set and Extended Mode Register Set is same command truth table except BA1. Rev 1.1 / July. 2009 23 11 256Mbit (16Mx16bit) Mobile SDR H55S2562JFR Series CKE Enable(CKE) Truth TABLE (Sheet 2 of 1) Current State Self Refresh CKE Command Previous Current Cycle Cycle CS RAS CAS WE Notes H X X X X X X X INVALID 1 L H H X X X X X Exit Self Refresh with Device Deselect 2 L H L H H H X X Exit Self Refresh with No Operation 2 L H L H H L X X ILLEGAL 2 L H L H L X X X ILLEGAL 2 L H L L X X X X ILLEGAL 2 L L X X X X X X Maintain Self Refresh H X X X X X X X INVALID 1 L H H X X X X X L H H H X X Power Down mode exit, all banks idle 2 L X X X X X L X X X ILLEGAL 2 X X L X X Power Down L Deep Power Down Action BA0, AmaxBA1 A0 H L L L X X X X X X Maintain Power Down Mode H X X X X X X X INVALID 1 L H X X X X X X Deep Power Down mode exit 5 L L X X X X X X Maintain Deep Power Down Mode Rev 1.1 / July. 2009 24 11 256Mbit (16Mx16bit) Mobile SDR H55S2562JFR Series CKE Enable(CKE) Truth TABLE (Sheet 2 of 2) Current State All Banks Idle Any State other than listed above CKE Command Previous Current Cycle Cycle CS RAS CAS WE BA0, AmaxBA1 A0 Action H H H X X X H H L H X X H H L L H X H H L L L H X H H L L L L OP CODE H L H X X X H L L H X X H L L L H X H L L L L H X X Entry Self Refresh H L L L L L OP CODE Mode Register Set L X X X X X X X Power Down H H X X X X X X Refer to operations of the Current State Truth Table H L X X X X X X Begin Clock Suspend next cycle L H X X X X X X Exit Clock Suspend next cycle L L X X X X X X Maintain Clock Suspend Refer to the idle State section of the Current State Truth Table X Notes 3 3 3 Auto Refresh Mode Register Set Refer to the idle State section of the Current State Truth Table 4 3 3 3 4 4 Note: 1. For the given current state CKE must be low in the previous cycle. 2. When CKE has a low to high transition, the clock and other inputs are re-enabled asynchronously. When exiting power down mode, a NOP (or Device Deselect) command is required on the first positive edge of clock after CKE goes high. 3. The address inputs depend on the command that is issued. 4. The Precharge Power Down mode, the Self Refresh mode, and the Mode Register Set can only be entered from the all banks idle state. 5. When CKE has a low to high transition, the clock and other inputs are re-enabled asynchronously. When exiting deep power down mode, a NOP (or Device Deselect) command is required on the first positive edge of clock after CKE goes high and is maintained for a minimum 200usec. Rev 1.1 / July. 2009 25 11 256Mbit (16Mx16bit) Mobile SDR H55S2562JFR Series Mobile SDR SDRAM OPERATION State Diagram Power On ACT : Active DPDSX DPDS : Enter Deep Power-Down Auto Refresh Precharge All Bank DPDSX : Exit Deep PowerDownEMRS FA RE (EXTENDED) Mode Register Set (E)MRS EMRS : Ext. Mode Reg. Set REFS IDLE REFX Self Refresh MRS : Mode Register Set E CK igh H DS DP E CK w Lo PRE : Precharge DEEP POWER DOWN C Lo KE w WRITE with AP EA W Write Read READ ROW ACTIVE Write WRITE E CK w Lo WRITE SUSPEND PRE E PR Manual input Rev 1.1 / July. 2009 REFS : Enter Self Refresh REFSX : Exit Self Refresh READA : Read with Auto Precharge WRITE : Write w/o Auto Precharge WRITEA : Write with Auto Precharge PR E Automatic Sequence E CK igh H C H i KE gh READ SUSPEND REFA : Auto Refresh READ : Read w/o Auto Precharge Read C Lo KE w WRITEA SUSPEND RI T ow A AD RE igh CK EL CK EH READ with AP PREALL : Precharge All Banks C Hi KE gh E CK igh H Active Power Down ACT E CK w Lo READA SUSPEND Power Down Precharge All 26 11 256Mbit (16Mx16bit) Mobile SDR H55S2562JFR Series DESELECT The DESELECT function (CS = High) prevents new commands from being executed by the Mobile SDRAM, the Mobile SDRAM ignore command input at the clock. However, the internal status is held. The Mobile SDRAM is effectively deselected. Operations already in progress are not affected. NO OPERATION The NO OPERATION (NOP) command is used to perform a NOP to a Mobile SDRAM that is selected (CS = Low, RAS = CAS = WE = High). This command is not an execution command. However, the internal operations continue. This prevents unwanted commands from being registered during idle or wait states. Operations already in progress are not affected. (see to next figure) ACTIVE The Active command is used to activate a row in particular bank for a subsequent Read or Write access. The value of the BA0,BA1 inputs selects the bank, and the address provided on A0-A12(or the highest address bit) selects the row. This row remains active (or open) for accesses until a PRECHARGE command is issued to that bank. (see to next figure) CLK CKE CLK CKE High CS CS RAS RAS CAS CAS WE WE A0~A12 A0~A12 BA0,1 BA0,1 High RA Row Address BA Bank Address Don't Care NOP command Rev 1.1 / July. 2009 Don't Care ACTIVATING A SPECIFIC ROW IN A SPECIFIC BANK 27 11 256Mbit (16Mx16bit) Mobile SDR H55S2562JFR Series READ / WRITE COMMAND Before executing a read or write operation, the corresponding bank and the row address must be activated by the bank active (ACT) command. An interval of tRCD is required between the bank active command input and the following read/write command input. The READ command is used to initiate a Burst Read to an active row. The value of BA0 and BA1 selects the bank and address inputs select the starting column location. The value of A10 determines whether or not auto precharge is used. If auto-precharge is selected, the row being accessed will be precharged at the end of the read burst; if auto precharge is not selected, the row will remain open for subsequent access. The valid data-out elements will be available CAS latency after the READ command is issued. The WRITE command is used to initiate a Burst Write access to an active row. The value of BA0, BA1 selects the bank and address inputs select the starting column location. The value of A10 determines whether or not auto precharge is used. If auto-precharge is selected, the row being accessed will be precharged at the end of the write burst; if auto precharge is not selected, the row will remain open for subsequent access. CLK CKE CLK CKE H ig h CS CS RAS RAS CAS CAS WE WE A0 ~ A8 CA H ig h to E n a b le A u to P re c h a r g e A10 B A 0 ,1 A0 ~ A8 BA R ead Com m and O p e ra tio n L o w to D is a b le A u to P re c h a r g e H ig h CA A10 B A 0 ,1 D o n 't C a re BA W rite C o m m a n d O p e ra tio n READ / WRITE COMMAND Rev 1.1 / July. 2009 28 11 256Mbit (16Mx16bit) Mobile SDR H55S2562JFR Series READ A read operation starts when a read command is input. Output buffer becomes Low-Z in the (/CAS Latency - 1) cycle after read command set. The SDRAM can perform a burst read operation. The burst length can be set to 1, 2, 4 and 8. The start address for a burst read is specified by the column address and the bank select address at the read command set cycle. In a read operation, data output starts after the number of clocks specified by the /CAS Latency. The /CAS Latency can be set to 2 or 3. When the burst length is 1, 2, 4 and 8 the DOUT buffer automatically becomes High-Z at the next clock after the successive burst-length data has been output. The /CAS latency and burst length must be specified at the mode register. tCK CLK Command REA D NOP NOP tLZ DQ tOH Do0 Do1 Do2 Do3 Do1 Do2 tAC CL = 2 Command REA D NOP NOP NOP tLZ tOH Do0 DQ Do3 tAC CL = 3 Undefined Don't Care Read Burst Showing CAS Latency Rev 1.1 / July. 2009 29 11 256Mbit (16Mx16bit) Mobile SDR H55S2562JFR Series READ to READ Data from a read burst may be concatenated or truncated by a subsequent READ command. The first data from the new burst follows either the last element of a completed burst or the last desired element of a longer burst that is being truncated. When another read command is executed at the same ROW address of the same bank as the preceding read command execution, the second read can be performed after an interval of no less than 1 clock. Even when the first command is a burst read that is not yet finished, the data read by the second command will be valid. CLK Command Address READ NOP NOP READ ’ BA, Col BA, Col a b CL =2 DQ Do a0 Do a1 Do b0 Do b1 Do a1 Do b0 CL =3 DQ Do a0 Don't Care Consecutive Read Bursts A READ command can be initiated on any clock cycle following a previous READ command. Non-consecutive Reads are shown in Figure. Full-speed random read accesses within a page or pages can be performed as shown in Fig. Rev 1.1 / July. 2009 30 11 256Mbit (16Mx16bit) Mobile SDR H55S2562JFR Series CLK Command Address READ READ BA, Col BA, Col n b CL =2 DQ Dob Don CL =3 Dob Don DQ Don't Care 1) Don (or b): Data out from column n 2) BA, Col n (b) = Bank A, Column n (b) 3) Burst Length = 4 : 3 subseqnent elements of Data Out appear in the programmed order following Do n (b) Non-Consecutive Read Bursts CLK Command READ READ READ READ Address BA, Col BA, Col BA, Col BA, Col n x b g CL =2 DQ Don Don' Dox Dox' Dob Dob' Dog Dog' Don Don' Dox Dox' Dob Dob' Dog CL =3 DQ 1) Don, etc: Data out from column n, etc n', x', etc : Data Out elements, accoding to the programmd burst order 2) BA, Col n = Bank A, Column n 3) Burst Length = 1, 2, 4, 8 or full page in cases shown 4) Read are to active row in any banks Dog’ Don't Care Random Read Bursts Rev 1.1 / July. 2009 31 11 256Mbit (16Mx16bit) Mobile SDR H55S2562JFR Series READ BURST TERMINATE Data from any READ burst may be truncated with a BURST TERMINATE command. The BURST TERMINATE latency is equal to the read (CAS) latency, i.e., the BURST TERMINATE command should be issued X cycles after the READ command where X equals the desired data-out element. CLK Com m and Address READ BURST BA, Col n CL =2 DQ Do n Do n' CL =3 Do n DQ Do n' 1) Do n : Data out from column n 2) BA, Col n = Bank A, Column n 3) Cases shown are bursts of 4, 8, or full page terminated after 2 data elem ents Don't Care Terminating a Read Burst Rev 1.1 / July. 2009 32 11 256Mbit (16Mx16bit) Mobile SDR H55S2562JFR Series READ to WRITE Data from READ burst must be completed or truncated before a subsequent WRITE command can be issued. If truncation is necessary, the BURST TERMINATE command must be used, as shown in next fig. CLK Com m and Address READ BURST W RITE BA, Col BA, Col n b CL = 2 DQ Do n Do n' D I b0 D I b1 D I b2 DI b3 D I b0 D I b1 D I b2 D I b3 CL = 3 D on DQ D o n' 1) D O n = D ata Out from colum n n; DI b = D ata In to colum n b D on't Care Read to Write Note: 1. Same bank, same ROW address: When the write command is executed at the same ROW address of the same bank as the preceding read command, the write command can be performed after an interval of no less than 1 clock. However, DQM must be set High so that the output buffer becomes High-Z before data input. 2. Same bank, different ROW address: When the ROW address changes, consecutive write commands cannot be executed; it is necessary to separate the two commands with a precharge command and a bank active command. 3. Different bank: When the bank changes, the write command can be performed after an interval of no less than 1 cycle, provided that the other bank is in the bank active state. However, DQM must be set High so that the output buffer becomes High-Z before data input. Rev 1.1 / July. 2009 33 11 256Mbit (16Mx16bit) Mobile SDR H55S2562JFR Series READ to PRECHARGE Following the PRECHARGE command, a subsequent command to the same bank cannot be issued until tRP is met. Note that part of the row precharge time is hidden during the access of the last data element(s). In the case of a fixed-length burst being executed to completion, a PRECHARGE command issued at the optimum time (as described above) provides the same operation that would result from the same fixed-length burst with auto precharge. The disadvantage of the PRECHARGE command is that it requires that the command and address buses be available at the appropriate time to issue the command; the advantage of the PRECHARGE command is that it can be used to truncate fixed-length or full-page bursts. CLK Com m and R EAD PRE ACT tRP Address Bank A, All BA, Col n BA, Row CL = 2 DQ D on CL = 3 Don DQ D on't Care 1) D O n = D ata O ut from colum n n 2) Note that Precharge m ay not be issued before tRAS ns after the AC TIVE com m and for applicable banks. 3) The ACTIVE com m and m ay be applied if tRC has been m et. READ to PRECHARGE Rev 1.1 / July. 2009 34 11 256Mbit (16Mx16bit) Mobile SDR H55S2562JFR Series Write Input data appearing on the data bus, is written to the memory array subject to the DM input logic level appearing coincident with the data. If a given DM signal is registered Low, the corresponding data will be written to the memory; if the DM signal is registered High, the corresponding data inputs will be ignored, and a write will not be executed to that byte / column location. During WRITE bursts, the first valid data-in element will be registered coincident with the WRITE command. Subsequent data elements will be registered on each successive positive clock edge. Upon completion of a fixed-length burst, assuming no other commands have been initiated, the DQ will remain High-Z and any additional input data will be ignored. A full-page burst will continue until terminated. Data for any WRITE burst may be truncated with a subsequent WRITE command, and data for a fixed-length WRITE burst may be immediately followed by data for a WRITE command. The new WRITE command can be issued on any clock following the previous WRITE command, and the data provided coincident with the new command applies to the new command. CLK Command WRITE Address BA, Col b DQ D Ib0 DQ D Ib0 D Ib1 DQ D Ib0 D Ib1 D Ib2 D Ib3 DQ D Ib0 D Ib1 D Ib2 D Ib3 BL = 1 BL = 2 BL = 4 D Ib4 D Ib5 D Ib6 D Ib7 BL = 8 CL = 2 or 3 Basic Write timing parameters for Don't Care Write Burst Operation Note: 1. Same bank, same ROW address: When another write command is executed at the same ROW address of the same bank as the preceding write command, the second write can be performed after an interval of no less than 1 clock. In the case of burst writes, the second write command has priority. 2. Same bank, different ROW address: When the ROW address changes, consecutive write commands cannot be executed; it is necessary to separate the two write commands with a precharge command and a bank active command. 3. Different bank: When the bank changes, the second write can be performed after an interval of no less than 1 clock, provided that the other bank is in the bank active state. In the case of burst write, the second write command has priority. Rev 1.1 / July. 2009 35 11 256Mbit (16Mx16bit) Mobile SDR H55S2562JFR Series WRITE to WRITE Data for any WRITE burst may be concatenated with or truncated with a subsequent WRITE command. In either case, a continuous flow of input data, can be maintained. The new WRITE command can be issued on any positive edge of the clock following the previous WRITE command. The first data-in element from the new burst is applied after either the last element of a completed burst or the last desired data element of a longer burst which is being truncated. The new WRITE command should be issued X cycles after the first WRITE command, where X equals the number of desired data-in element. CLK Command WRITE WRITE Address BA, Col BA, Col b n DQ D Ib0 D Ib1 D Ib2 D Ib3 D In0 D In1 D In2 D In3 DM CL = 2 or 3 Don't Care Concatenated Write Bursts CLK Com m and W RITE W RITE W RITE W RITE W RITE Address BA, Col BA, Col BA, Col BA, Col BA, Col b x n a g DQ D Ib D I b' D Ix D Ix ’ D In D In ’ D Ia D Ia ’ D Ig N OP D Ig ’ DM CL = 2 or 3 D on't Care Random Write Cycles Rev 1.1 / July. 2009 36 11 256Mbit (16Mx16bit) Mobile SDR H55S2562JFR Series WRITE to READ CLK Command WRITE READ Address BA, Col BA, Col b n DIb0 DIb1 DIb0 DIb1 DO n0 DO n1 DOn2 DOn0 DOn1 CL = 2 DOn3 BL = 4 DQ DQ D On2 DOn3 CL = 3 BL = 4 Don't Care The preceding burst write operation can be aborted and a new burst read operation can be started by inputting a new read command in the write cycle. The data of the read command (READ) is output after the lapse of the /CAS latency. The preceding write operation (WRIT) writes only the data input before the read command. The data bus must go into a high-impedance state at least one cycle before output of the latest data. Note: 1. Same bank, same ROW address: When the read command is executed at the same ROW address of the same bank as the preceding write command, the read command can be performed after an interval of no less than 1 clock. However, in the case of a burst write, data will continue to be written until one clock before the read command is executed. 2. Same bank, different ROW address: When the ROW address changes, consecutive read commands cannot be executed; it is necessary to separate the two commands with a precharge command and a bank active command. 3. Different bank: When the bank changes, the read command can be performed after an interval of no less than 1 clock, provided that the other bank is in the bank active state. However, in the case of a burst write, data will continue to be written until one clock before the read command is executed (as in the case of the same bank and the same address). Rev 1.1 / July. 2009 37 11 256Mbit (16Mx16bit) Mobile SDR H55S2562JFR Series WRITE to PRECHARGE Data for any WRITE burst may be followed by a subsequent PRECHARGE command to the same bank (provided Auto Precharge was not activated). When the precharge command is executed for the same bank as the write command that preceded it, the minimum interval between the two commands is 1 clock. However, if the burst write operation is unfinished, the input data must be masked by means of DQM for assurance of the clock defined by tDPL. To follow a WRITE without truncating the WRITE burst, tDPL should be met as shown in Fig. CLK Command WRITE Address BA, Col DQ PRE b D Ib0 D Ib1 D IO b2 CL = 2 or 3 D Ib3 BL = 4 tDPL Non-Interrupting Write to Precharge Data for any WRITE burst may be truncated by a subsequent PRECHARGE command as shown in Figure. Note that only data-in that are registered prior to the tDPL period are written to the internal array, and any subsequent data-in should be masked with DM, as shown in next Fig. Following the PRECHARGE command, a subsequent command to the same bank cannot be issued until tRP is met. CLK Command WRITE Address BA, Col PRE b DIb0 DIb1 CL = 2 or 3 DIOb2 BL = 4 DQ tDPL Interrupting Write to Precharge Rev 1.1 / July. 2009 38 11 256Mbit (16Mx16bit) Mobile SDR H55S2562JFR Series BURST TERMINATE The BURST TERMINATE command is used to truncate read bursts or write bursts (with auto precharge disabled). The most recently registered READ or WRITE command prior to the BURST TERMINATE command will be truncated, as shown in the Operation section of this datasheet. The BURST TERMINATE command is not bank specific. CLK CKE High CS RAS CAS WE A0~A12 Don't Care BA0, 1 BURST TERMINATE COMMAND Rev 1.1 / July. 2009 39 11 256Mbit (16Mx16bit) Mobile SDR H55S2562JFR Series PRECHARGE The PRECHARGE command is used to deactivate the open row in a particular bank or the open row in all banks. Another command to the same bank (or banks) being precharged must not be issued until the precharge time (tRP) is completed. If one bank is to be precharged, the particular bank address needs to be specified. If all banks are to be precharged, A10 should be set high along with the PRECHARGE command. If A10 is high, BA0 and BA1 are ignored. A PRECHARGE command will be treated as a NOP if there is no open row in that bank, or if the previously open row is already in the process of precharging. CKE High A10 defines the precharge mode when a precharge command, a read command or a write command is issued. CS RAS If A10 = High when a precharge command is issued, all banks are precharged. CAS If A10 = Low when a precharge command is issued, only the bank that is selected by BA1/BA0 is precharged. WE A0~A9 A11, A12 If A10 = High when read or write command, autoprecharge function is enabled. While A10 = Low, autoprecharge function is disabled. A10 BA0,1 BA Bank Address Don't Care PRECHARGE command AUTO PRECHARGE Auto Precharge is a feature which performs the same individual bank precharge function as described above, but without requiring an explicit command. This is accomplished by using A10 (A10=high), to enable auto precharge in conjunction with a specific Read or Write command. This precharges the bank/row after the Read or Write burst is complete. Auto precharge is non persistent, so it should be enabled with a Read or Write command each time auto precharge is desired. Auto precharge ensures that a precharge is initiated at the earliest valid stage within a burst. The user must not issue another command to the same bank until the precharge time (tRP) is completed. Rev 1.1 / July. 2009 40 11 256Mbit (16Mx16bit) Mobile SDR H55S2562JFR Series AUTO REFRESH AND SELF REFRESH Mobile SDRAM devices require a refresh of all rows in any rolling 64ms interval. Each refresh is generated in one of two ways: by an explicit AUTO REFRESH command, or by an internally timed event in SELF REFRESH mode: - AUTO REFRESH. This command is used during normal operation of the Mobile SDRAM. It is non persistent, so must be issued each time a refresh is required. The refresh addressing is generated by the internal refresh controller.The Mobile SDRAM requires AUTO REFRESH commands at an average periodic interval of tREF. To allow for improved efficiency in scheduling and switching between tasks, some flexibility in the absolute refresh interval is provided. A maximum of eight AUTO REFRESH commands can be posted to any given Mobile SDRAM, and the maximum absolute interval between any AUTO REFRESH command and the next AUTO REFRESH command is 8*tREF. -SELF REFRESH. This state retains data in the Mobile SDRAM, even if the rest of the system is powered down. Note refresh interval timing while in Self Refresh mode is scheduled internally in the Mobile SDRAM and may vary and may not meet tREF time. After executing a self-refresh command, the self-refresh operation continues while CKE is held Low. During self-refresh operation, all ROW addresses are refreshed by the internal refresh timer. A self-refresh is terminated by a self-refresh exit command. Before and after self-refresh mode, execute auto-refresh to all refresh addresses in or within tREF (max.) period on the condition 1 and 2 below. 1. Enter self-refresh mode within time as below* after either burst refresh or distributed refresh at equal interval to all refresh addresses are completed. 2. Start burst refresh or distributed refresh at equal interval to all refresh addresses within time as below* after exiting from self-refresh mode. Note: tREF (max.) / refresh cycles. The use of SELF REFRESH mode introduces the possibility that an internally timed event can be missed when CKE is raised for exit from self refresh mode. Upon exit from SELF REFRESH an extra AUTO REFRESH command is recommended. In the self refresh mode, two additional power-saving options exist. They are Temperature Compensated Self Refresh and Partial Array Self Refresh and are described in the Extended Mode Register section. The Self Refresh command is used to retain cell data in the Mobile SDRAM. In the Self Refresh mode, the Mobile SDRAM operates refresh cycle asynchronously. The Self Refresh command is initiated like an Auto Refresh command except CKE is disabled(Low). The Mobile SDRAM can accomplish an special Self Refresh operation by the specific modes(PASR) programmed in extended mode registers. The Mobile SDRAM can control the refresh rate automatically by the temperature value of Auto TCSR(Temperature Compensated Self Refresh) to reduce self refresh current and select the memory array to be refreshed by the value of PASR(Partial Array Self Refresh). The Mobile SDRAM can reduce the self refresh current(IDD6) by using these two modes. Rev 1.1 / July. 2009 41 11 256Mbit (16Mx16bit) Mobile SDR H55S2562JFR Series CLK CLK CKE CKE High CS CS RAS RAS CAS CAS WE WE A0~A12 A0~A12 Don't Care BA0, 1 Don't Care BA0, 1 AUTO REFRESH COMMAND SELF REFRESH ENTRY COMMAND Note 1: If all banks are in the idle status and CKE is inactive (low level), the self refresh mode is set. Function CKEn-1 CKEn CS RAS CAS WE DQM Auto Refresh H H L L L H X X Self Refresh Entry H L L L L H X X Rev 1.1 / July. 2009 ADDR A10/AP BA 42 11 256Mbit (16Mx16bit) Mobile SDR H55S2562JFR Series MODE REGISTER SET The mode registers are loaded via the address bits. BA0 and BA1 are used to select between the Mode Register and the Extended Mode Register. See the Mode Register description in the register definition section. The MODE REGISTER SET command can only be issued when all banks are idle and no bursts are in progress, and a subsequent executable command cannot be issued until tMRD is met. CLK CKE H igh CS RAS CAS WE A 0~ A 12 Cod e BA0, 1 Cod e D on 't C are MODE REGISTER SET COMMAND Note: BA0=BA1=Low loads the Mode Register, whereas BA0=Low and BA1=High loads the Extended Mode Register. CLK Command MRS NOP Valid tMRD Address Code Valid Don't Care Code = Mode Register / Extended Mode Register selection (BA0, BA1) and op-code (A0 - An) tMRD DEFINITION Rev 1.1 / July. 2009 43 11 256Mbit (16Mx16bit) Mobile SDR H55S2562JFR Series POWER DOWN Power down occurs if CKE is set low coincident with Device Deselect or NOP command and when no accesses are in progress. If power down occurs when all banks are idle, it is Precharge Power Down. If Power down occurs when one or more banks are Active, it is referred to as Active power down. The device cannot stay in this mode for longer than the refresh requirements of the device, without losing data. The power down state is exited by setting CKE high while issuing a Device Deselect or NOP command. If power-down occurs when all banks are idle, this mode is referred to as precharge power-down; if power-down occurs when there is a row active in any bank, this mode is referred to as active power-down. Entering power-down deactivates the input and output buffers, excluding CKE, for maximum power savings while in standby. DEEP POWER-DOWN The Deep Power-Down (DPD) mode enables very low standby currents. All internal voltage generators inside the Mobile SDRAM are stopped and all memory data is lost in this mode. All the information in the Mode Register and the Extended Mode Register is lost. Next Figure, DEEP POWER-DOWN COMMAND shows the DEEP POWER-DOWN command All banks must be in idle state with no activity on the data bus prior to entering the DPD mode. While in this state, CKE must be held in a constant low state. To exit the DPD mode, CKE is taken high after the clock is stable and NOP command must be maintained for at least 200 us. After 200 us a complete re-initialization routing is required defined for the initialization sequence. CLK CLK CKE CKE CS CS RAS RAS CAS CAS WE WE A0~A12 A0~A12 BA0, 1 BA0, 1 Don't Care POWER-DOWN COMMAND Rev 1.1 / July. 2009 Don't Care DEEP POWER-DOWN COMMAND 44 11 256Mbit (16Mx16bit) Mobile SDR H55S2562JFR Series CLK CKE COMMAND NOP NOP ACTIVE All banks idle tRCD Input buffers gated off Enter power-down mode. tRAS Exit power-down mode. tRC DON’T CARE CLK CKE tCKS COMMAND PCG NOP tCKS NOP NOP Input buffers gated off Pre-charge all Deep Power down entry APCG 200us(min) Deep Power down Exit DON’T CARE Rev 1.1 / July. 2009 45 11 256Mbit (16Mx16bit) Mobile SDR H55S2562JFR Series Power-up and Initialization Like a Synchronous DRAM, Low Power SDRAM(Mobile SDRAM) must be powered up and initialized in a predefined manner. Power must be applied to VDD and VDDQ(simultaneously). The clock signal must be started at the same time. After power up, an initial pause of 200 usec is required. And a precharge all command will be issued to the Mobile SDRAM. Then, 2 or more Auto refresh cycles will be provided. After the Auto refresh cycles are completed, a mode register set(MRS) command will be issued to program the specific mode of operation (Cas Latency, Burst length, etc.) And a extended mode register set command will be issued to program specific mode of self refresh operation(PASR). The following these cycles, the Mobile SDRAM is ready for normal operation. Programming the registers Mode Register The mode register contains the specific mode of operation of the Mobile SDRAM. This register includes the selection of a burst length(1, 2, 4, 8, Full Page), a cas latency(2 or 3), a burst type. The mode register set must be done before any activate command after the power up sequence. Any contents of the mode register be altered by re-programming the mode register through the execution of mode register set command. Extended Mode Register The extended mode register contains the specific features of self refresh operation of the Mobile SDRAM. This register includes the selection of partial arrays to be refreshed(half array, quarter array, etc.). The extended mode register set must be done before any activate command after the power up sequence. Any contents of the mode register be altered by re-programming the mode register through the execution of extended mode register set command. Bank(Row) Active The Bank Active command is used to activate a row in a specified bank of the device. This command is initiated by activating CS, RAS and deasserting CAS, WE at the positive edge of the clock. The value on the BA1 and BA0 selects the bank, and the value on the A0-A12 selects the row. This row remains active for column access until a precharge command is issued to that bank. Read and write operations can only be initiated on this activated bank after the minimum tRCD time is passed from the activate command. Read The READ command is used to initiate the burst read of data. This command is initiated by activating CS, CAS, and deasserting WE, RAS at the positive edge of the clock. BA1 and BA0 inputs select the bank, A8-A0 address inputs select the starting column location. The value on input A10 determines whether or not Auto Precharge is used. If Auto Precharge is selected the row being accessed will be precharged at the end of the READ burst; if Auto Precharge is not selected, the row will remain active for subsequent accesses. The length of burst and the CAS latency will be determined by the values programmed during the MRS command. Write The WRITE command is used to initiate the burst write of data. This command is initiated by activating CS, CAS, WE and deasserting RAS at the positive edge of the clock. BA1 and BA0 inputs select the bank, A8-A0 address inputs select the starting column location. The value on input A10 determines whether or not Auto Precharge is used. If Auto Precharge is selected the row being accessed will be precharged at the end of the WRITE burst; if Auto Precharge is not selected, the row will remain active for subsequent accesses. Rev 1.1 / July. 2009 46 11 256Mbit (16Mx16bit) Mobile SDR H55S2562JFR Series Precharge The Precharge command is used to close the open row in a particular bank or the open row in all banks. When the precharge command is issued with address A10, high, then all banks will be precharged, and If A10 is low, the open row in a particular bank will be precharged. The bank(s) will be available when the minimum tRP time is met after the precharge command is issued. Auto Precharge The Auto Precharge command is issued to close the open row in a particular bank after READ or WRITE operation. If A10 is high when a READ or WRITE command is issued, the READ or WRITE with Auto Precharge is initiated. Burst Termination The Burst Termination is used to terminate the burst operation. This function can be accomplished by asserting a Burst Stop command or a Precharge command during a burst READ or WRITE operation. The Precharge command interrupts a burst cycle and close the active bank, and the Burst Stop command terminates the existing burst operation leave the bank open. Data Mask The Data Mask command is used to mask READ or WRITE data. During a READ operation, When this command is issued, data outputs are disabled and become high impedance after two clock delay. During a WRITE operation, When this command is issued, data inputs can't be written with no clock delay. If data mask is initiated by asserting low on DQM during the read cycle, the data outputs are enabled. If DQM is asserted to High. the data outputs are masked (disabled) and become Hi-Z state after 2 cycle later. During the write cycle, DQM mask data input with zero latency CK W RIT CM D DM Data M asking H i- Z D 0D IN0 D 1 DQ D ata M asking 0 Latency D0 MK D1 0 Latency D 0D IN2 D 1 D0 MK D1 W rite D ata M asking CK CMD READ DM D a ta M asking 2 Laten cy H i- Z DQ D0 D O U T 0D 1 D0 D O U T1D 1 D0 D D O T 2D 1 D0 MK D1 R ead D ata M askin g Rev 1.1 / July. 2009 47 11 256Mbit (16Mx16bit) Mobile SDR H55S2562JFR Series Clock Suspend The Clock Suspend command is used to suspend the internal clock of Mobile SDRAM. The clock suspend operation stops transmission of the clock to the internal circuits of the device during burst transfer of data to stop the operation of the device. During normal access mode, CKE is keeping High. When CKE is low, it freezes the internal clock and extends data Read and Write operations. (See examples in next Figures) CLK Command RD CKE Masked by CKE Internal CLK Frozen Int. CLK by CKE (CKE = Fixed Low) DQ Q1 Q2 Q3 Q4 Clock Suspend Mode Command WR CKE Masked by CKE Internal CLK Frozen Int. CLK by CKE (CKE = Fixed Low) DQ D1 D2 D3 D4 Clock Suspend Mode Rev 1.1 / July. 2009 48 11 256Mbit (16Mx16bit) Mobile SDR H55S2562JFR Series Power Down The Power Down command is used to reduce stand-by current. Before this command is issued, all banks must be precharged and tRP must be passed after a precharge command. Once the Power Down command is initiated by keeping CKE low, all of the input buffer except CKE are gated off. Auto Refresh The Auto Refresh command is used during normal operation and is similar to CBR refresh in Conventional DRAMs. This command must be issued each time a refresh is required. When an Auto Refresh command is issued, the address bits is ''Don't care'', because the specific address bits is generated by internal refresh address counter. Self Refresh The Self Refresh command is used to retain cell data in the Mobile SDRAM. In the Self Refresh mode, the Mobile SDRAM operates refresh cycle asynchronously. The Self Refresh command is initiated like an Auto Refresh command except CKE is disabled(Low). The Mobile SDRAM can accomplish an special Self Refresh operation by the specific modes(PASR) programmed in extended mode registers. The Mobile SDRAM can control the refresh rate automatically by the temperature value of Auto TCSR(Temperature Compensated Self Refresh) to reduce self refresh current and select the memory array to be refreshed by the value of PASR(Partial Array Self Refresh). The Mobile SDRAM can reduce the self refresh current(IDD6) by using these two modes. Deep Power Down The Deep Power Down Mode is used to achieve maximum power reduction by cutting the power of the whole memory array of the devices. For more information, see the special operation for Low Power consumption of this data sheet. Rev 1.1 / July. 2009 49 11 256Mbit (16Mx16bit) Mobile SDR H55S2562JFR Series Special Operation for Low Power Consumption Deep Power Down Mode Deep Power Down Mode is an operating mode to achieve maximum power reduction by cutting the power of the whole memory array of the devices. Data will not be retained once the device enters Deep Power Down Mode. Full initialization is required when the device exits from Deep Power Down Mode. Truth Table Current State Command CKEn-1 CKEn CS RAS CAS WE Idle Deep Power Down Entry H L L H H L Deep Power Down Deep Power Down Exit L H X X X X Deep Power Down Mode Entry The Deep Power Down Mode is entered by having CS and WE held low with RAS and CAS high at the rising edge of the clock, while CKE is low. The following diagram illustrates deep power down mode entry. CKE CS RAS CAS WE tRP Pre-charge if needed Rev 1.1 / July. 2009 Deep Power Down Entry 50 11 256Mbit (16Mx16bit) Mobile SDR H55S2562JFR Series Deep Power Down Mode (Continued) Deep Power Down Mode Exit Sequence The Deep Power Down mode is exited by asserting CKE high. After the exit, the following sequence is needed to enter a new command. 1. Maintain NOP input conditions for a minimum of 200usec 2. Issue precharge commands for all banks of the device 3. Issue 2 or more auto refresh commands 4. Issue a mode register set command to initialize the mode register 5. Issue an extended mode register set command to initialize the extended mode register The following timing diagram illustrates deep power down mode exit sequence. CLK CKE CS RAS CAS WE 200us Deep Power Down Exit Rev 1.1 / July. 2009 tRP All Banks Precharge tRC Auto Refresh Auto Refresh Mode Register Set Extended Mode Register Set New Command Accepted Here 51 11 256Mbit (16Mx16bit) Mobile SDR H55S2562JFR Series PACKAGE INFORMATION 54 Ball FBGA 0.8mm pitch (8.0mm x 8.0mm, t=1.0mm max) 8.00 Typ. 3.20 0.80 1.60 A1 INDEX MARK Unit [mm] 0.80 Typ. 8.00 Typ. Bottom View 0.45 +/- 0.05 0.34 +/- 0.05 0.80 1.375 Rev 1.1 / July. 2009 0.80 Typ. 1.00 max 52