LITE-ON TECHNOLOGY CORPORATION Property of Lite-On Only Features * Lead(Pb) free product - RoHS compliant * Low power consumption. * High efficiency & reliability. * Versatile mounting on p.c. board or panel. * I.C. compatible/low current requirement. * Popular T-1diameter. Package Dimensions Part No. Lens Color Emitted Color LTW-42NT6-SC-012A Water Clear InGaN White NOTES: 1. All dimensions are in millimeters (inches). 2. Tolerance is ±0.25mm(.010") unless otherwise noted. 3. Protruded resin under flange is 1.0mm(.04") max. 4. Lead spacing is measured where the leads emerge from the package. 5. Specifications are subject to change without notice. Part No. : LTW-42NT6-SC-012A BNS-OD-C131/A4 Page : 1 of 10 LITE-ON TECHNOLOGY CORPORATION Property of Lite-On Only Absolute Maximum Ratings at Ta=25℃ PARAMETER MAXIMUM RATING UNIT 120 mW 100 mA DC Forward Current 30 mA Reverse Voltage 5 V 1000 V Power Dissipation Peak Forward Current (1/10 Duty Cycle, 0.1ms Pulse Width) Electrostatic Discharge Threshold(HBM) Note A Operating Temperature Range -30℃ to + 85℃ Storage Temperature Range -40℃ to + 100℃ Lead Soldering Temperature [2mm(.08") From Body] 260℃ for 5 Seconds Note A : Product resistance to electrostatic discharge (ESD) according to HBM is defines as below. ESD screening performed on 100% of devices. (There may be cases where 5% or less of the devices do not meet HBM>1kV) (From Dice Vendor’s DS) Part No. : LTW-42NT6-SC-012A BNS-OD-C131/A4 Page : 2 of 10 LITE-ON TECHNOLOGY CORPORATION Property of Lite-On Only Electrical / Optical Characteristics at Ta=25℃ UNIT TEST CONDITION (1900) mcd IF = 20mA Note 1,2,3 Iv Spec. Table 2θ1/2 50 deg Note 4 x 0.30 IF = 20mA Note 5 Hue Spec. Table & y 0.30 Chromaticity Diagram Forward Voltage VF 3.3 Reverse Current IR PARAMETER Luminous Intensity Viewing Angle SYMBOL Iv MIN. 1150 TYP. MAX. Chromaticity Coordinates 3.6 V IF = 20mA 10 μA VR = 5V NOTE: 1. Luminous intensity is measured with a light sensor and filter combination that approximates the CIE eye-response curve. 2. The Iv guarantee should be added ±15﹪tolerance. 3. Iv classification code is marked on each packing bag. 4. θ1/2 is the off-axis angle at which the luminous intensity is half the axial luminous intensity. 5. The chromaticity coordinates (x, y) is derived from the 1931 CIE chromaticity diagram. 6. Precautions in handling: ‧ When soldering, leave 2mm of minimum clearance from the resin to the soldering point. ‧ Dipping the resin to solder must be avoided. ‧ Correcting the soldered position after soldering must be avoided. ‧ In soldering, do not apply any stress to the lead frame particularly when heated. ‧ Lead forming must be done before soldering. ‧ It is necessary to cut the lead frame at normal temperature. 7. Caution in ESD: Static Electricity and surge damages the LED. It is recommend to use a wrist band or anti-electrostatic glove when handling the LED. All devices, equipment and machinery must be properly grounded. Part No. : LTW-42NT6-SC-012A BNS-OD-C131/A4 Page : 3 of 10 LITE-ON TECHNOLOGY CORPORATION Property of Lite-On Only Typical Electrical / Optical Characteristics Curves (25℃ Ambient Temperature Unless Otherwise Noted) Forward Current vs. Chromaticity Coordinate Spectrum Relative Luminosity(a.u.) 1.2 1.0 0.8 0.6 0.4 0.2 0.0 350 450 550 650 750 Wavelength(nm) Forward Voltage vs. Forward Current Ambient Temperature vs. Forward Current Ambient Temperature vs. Relative Luminous Intensity Part No. : LTW-42NT6-SC-012A BNS-OD-C131/A4 Forward Current vs. Relative Luminous Intensity Directivity Page : 4 of 10 LITE-ON TECHNOLOGY CORPORATION Property of Lite-On Only * Compatible with radial lead automatic insertion equipment. * Most radial lead plastic lead lamps available packaged in tape and folding. * 2.54mm (0.1") straight lead spacing available. * Folding packaging simplifies handling and testing. Package Dimensions Item Tape Feed Hole Diameter Component Lead Pitch Front to Rear Deflection Feed Hole to Bottom of Component Feed Hole to Overall Component Height Lead Length After Component Height Feed Hole Pitch Lead Location Center of Component Location Total Tape Thickness Feed Hole Location Adhesive Tape Width Adhesive Tape Position Tape Width Part No. : LTW-42NT6-SC-012A BNS-OD-C131/A4 Symbol D F △H H1 H2 L P P1 P2 T W0 W1 W2 W3 Specification Minimum Maximum mm inch mm inch 3.8 0.149 4.2 0.165 2.3 0.091 3.0 0.118 --2.0 0.078 21.5 0.846 22.5 0.886 25.7 1.012 27.2 1.071 W0 11.0 0.433 12.4 0.488 13.0 0.511 4.4 0.173 5.8 0.228 5.05 0.198 7.65 0.301 --0.90 0.035 8.5 0.334 9.75 0.384 12.5 0.492 13.5 0.531 0 0 3.0 0.118 17.5 0.689 19.0 0.748 Page : 5 of 10 LITE-ON TECHNOLOGY CORPORATION Property of Lite-On Only Packing Spec 3000 pcs per inner carton 10 Inner cartons per outer carton Total 30000 pcs per outer carton Part No. : LTW-42NT6-SC-012A BNS-OD-C131/A4 Page : 6 of 10 LITE-ON TECHNOLOGY CORPORATION Property of Lite-On Only Iv Spec. Table for Reference Luminous Intensity (mcd) , If = 20mA Iv Rank min. QR 1150 ST 1900 UV 3200 Luminous Intensity Measurement allowance is 15% max. 1900 3200 5500 Vf Spec. Table for Reference Vf Rank 2E 3E 4E 5E Forward Voltage (V) , If = 20mA min. max. 2.80 3.00 3.00 3.20 3.20 3.40 3.40 3.60 Forward Voltage Measurement allowance is ±0.1 (V) Part No. : LTW-42NT6-SC-012A BNS-OD-C131/A4 Page : 7 of 10 LITE-ON TECHNOLOGY CORPORATION Property of Lite-On Only Hue Spec. Table for Reference Hue Rank C1 C2 C3 C4 C5 C6 Chromaticity Coordinates, If = 20mA x 0.30 0.30 0.28 0.28 y 0.30 0.27 0.27 0.28 x 0.30 0.28 0.28 0.30 y 0.30 0.28 0.31 0.33 x 0.32 0.32 0.30 0.30 y 0.32 0.29 0.27 0.30 x 0.32 0.30 0.30 0.32 y 0.32 0.30 0.33 0.35 x 0.34 0.34 0.32 0.32 y 0.34 0.31 0.29 0.32 x 0.34 0.32 0.32 0.34 y 0.34 0.32 0.35 0.37 Color Coordinates Measurement allowance is ± 0.01 C.I.E. 1931 Chromaticity Diagram Part No. : LTW-42NT6-SC-012A BNS-OD-C131/A4 Page : 8 of 10 LITE-ON TECHNOLOGY CORPORATION Property of Lite-On Only CAUTIONS 1. Application The LEDs described here are intended to be used for ordinary electronic equipment (such as office equipment, communication equipment and household applications). Consult Liteon’s Sales in advance for information on applications in which exceptional reliability is required, particularly when the failure or malfunction of the LEDs may directly jeopardize life or health (such as in aviation, transportation, traffic control equipment, medical and life support systems and safety devices). 2. Storage The storage ambient for the LEDs should not exceed 30°C temperature or 70% relative humidity. It is recommended that LEDs out of their original packaging are used within three months. For extended storage out of their original packaging, it is recommended that the LEDs be stored in a sealed container with appropriate desiccant or in a dessicator with nitrogen ambient. 3. Cleaning Use alcohol-based cleaning solvents such as isopropyl alcohol to clean the LEDs if necessary. 4. Lead Forming & Assembly During lead forming, the leads should be bent at a point at least 3mm from the base of LED lens. Do not use the base of the leadframe as a fulcrum during forming. Lead forming must be done before soldering at normal temperature. During assembly on PCB, use minimum clinch force possible to avoid excessive mechanical stress 5. Soldering When soldering, leave a minimum of 2mm clearance from the base of the lens to the soldering point. Dipping the lens into the solder must be avoided. Do not apply any external stress to the lead frame during soldering while the LED is at high temperature. Recommended soldering condition: Soldering iron Temperature Soldering time Wave soldering 300°C Max. 3 sec. Max. (one time only) Pre-heat Pre-heat time Solder wave Soldering time 100°C Max. 60 sec. Max. 260°C Max. 5 sec. Max. Note: Excessive soldering temperature and/or time might result in deformation of the LED lens or catastrophic failure of the LED. IR re-flow is not suitable process for through hole type LED lamp production. 6. Drive Method An LED is a current operated device, In order to ensure intensity uniformity on multiple LEDs connected in parallel in an application; it is recommended that a current limiting resistor be incorporated in the drive circuit. In series with each LED as shown in Circuit A below. (A) Recommended circuit. Circuit model A LED Circuit model B LED (B) The brightness of each LED might appear different due to the differences in the I-V characteristics of those LEDs Part No. : LTW-42NT6-SC-012A BNS-OD-C131/A4 Page : 9 of 10 LITE-ON TECHNOLOGY CORPORATION Property of Lite-On Only 7. ESD (Electrostatic Discharge) Static Electricity or power surge will damage the LED. Suggestions to prevent ESD damage. ■ Use a conductive wrist band or anti-electrostatic glove when handling these LEDs. ■ All devices , equipment , and machinery must be properly grounded. ■ Work tables , storage racks , etc. should be properly grounded. ■ Use ion blower to neutralize the static charge which might have built up on surface of the LED's plastic lens as a result of friction between LEDs during storage and handling. ESD-damaged LEDs will exhibit abnormal characteristics such as high reverse leakage current, low forward voltage, or “no lightup” at low currents. To verify for ESD damage, check for “lightup” and Vf of the suspect LEDs at low currents. Suggested checking list : Training and Certification 1. Everyone working in a static-safe area is ESD-certified? 2. Training records kept and re-certification dates monitored? Static-Safe Workstation & Work Areas 1. Static-safe workstation or work-areas have ESD signs? 2. All surfaces and objects at all static-safe workstation and within 1 ft measure less than 100V? 3. All ionize activated, positioned towards the units? 4. Each work surface mats grounding is good? Personnel Grounding 1. Every person (including visitors) handling ESD sensitive (ESDS) items wears wrist strap, heel strap or conductive shoes with conductive flooring? 2. If conductive footwear used, conductive flooring also present where operator stand or walk? 3. Garments, hairs or anything closer than 1 ft to ESD items measure less than 100V*? 4. Every wrist strap or heel strap/conductive shoes checked daily and result recorded for all DLs? 5. All wrist strap or heel strap checkers calibration up to date? Note: *50V for Blue LED. Device Handling 1. Every ESDS items identified by EIA-471 labels on item or packaging? 2. All ESDS items completely inside properly closed static-shielding containers when not at static-safe workstation? 3. No static charge generators (e.g. plastics) inside shielding containers with ESDS items? 4. All flexible conductive and dissipative package materials inspected before reuse or recycle? Others 1. Audit result reported to entity ESD control coordinator? 2. Corrective action from previous audits completed? 3. Are audit records complete and on file? 8. Others White LED is materialized by combining blue LED and phosphors. Color of White LED is changed a little by an operating current. The appearance and specifications of the product may be modified for improvement, without prior notice. Part No. : LTW-42NT6-SC-012A BNS-OD-C131/A4 Page : 10 of 10