MARVELL MVPG15E-XX

Cover
MVPG15x/MVPG16
Field Programmable DSP Switcher™
1 MHz, 1.5A Peak Current-Limit Step-Down
Regulator with AnyVoltage™ Technology
Datasheet
Doc. No. MV-S102809-00, Rev. G
April 14, 2008
Marvell. Moving Forward Faster
Document Classification: Proprietary
MVPG15x/MVPG16
Datasheet
Document Conventions
Note: Provides related information or information of special importance.
Caution: Indicates potential damage to hardware or software, or loss of data.
Warning: Indicates a risk of personal injury.
Document Status
Doc Status: 2.00
Technical Publication: 0.xx
For more information, visit our website at: www.marvell.com
Disclaimer
No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, for any purpose,
without the express written permission of Marvell. Marvell retains the right to make changes to this document at any time, without notice. Marvell makes no warranty of any
kind, expressed or implied, with regard to any information contained in this document, including, but not limited to, the implied warranties of merchantability or fitness for any
particular purpose. Further, Marvell does not warrant the accuracy or completeness of the information, text, graphics, or other items contained within this document.
Marvell products are not designed for use in life-support equipment or applications that would cause a life-threatening situation if any such products failed. Do not use
Marvell products in these types of equipment or applications.
With respect to the products described herein, the user or recipient, in the absence of appropriate U.S. government authorization, agrees:
1) Not to re-export or release any such information consisting of technology, software or source code controlled for national security reasons by the U.S. Export Control
Regulations ("EAR"), to a national of EAR Country Groups D:1 or E:2;
2) Not to export the direct product of such technology or such software, to EAR Country Groups D:1 or E:2, if such technology or software and direct products thereof are
controlled for national security reasons by the EAR; and,
3) In the case of technology controlled for national security reasons under the EAR where the direct product of the technology is a complete plant or component of a plant,
not to export to EAR Country Groups D:1 or E:2 the direct product of the plant or major component thereof, if such direct product is controlled for national security reasons
by the EAR, or is subject to controls under the U.S. Munitions List ("USML").
At all times hereunder, the recipient of any such information agrees that they shall be deemed to have manually signed this document in connection with their receipt of any
such information.
Copyright © 2008. Marvell International Ltd. All rights reserved. Marvell, the Marvell logo, Moving Forward Faster, Alaska, Fastwriter, Datacom Systems on Silicon, Libertas,
Link Street, NetGX, PHYAdvantage, Prestera, Raising The Technology Bar, The Technology Within, Virtual Cable Tester, and Yukon are registered trademarks of Marvell.
Ants, AnyVoltage, Discovery, DSP Switcher, Feroceon, GalNet, GalTis, Horizon, Marvell Makes It All Possible, RADLAN, UniMAC, and VCT are trademarks of Marvell. All
other trademarks are the property of their respective owners.
Doc. No. MV-S102809-00 Rev. G
Page 2
Copyright © 2008 Marvell
Document Classification: Proprietary
April 14, 2008, 2.00
MVPG15x/MVPG16
1 MHz, 1.5A Peak Current-Limit Step-Down Regulator
with AnyVoltage™ Technology
Datasheet
PRODUCT OVERVIEW
The Marvell® MVPG15x/MVPG16 is an intelligent digital
synchronous step-down (Buck) switching regulator
housed in a 4 mm x 3 mm DFN-12 package. The
MVPG15x has an additional on-chip Low-Drop-Out
(LDO) regulator controller. Internally self-compensated,
the step-down regulator requires no external
compensation and work with low-ESR output capacitors
to simplify the design, minimize the board space, and
reduce the amount of external components. The
switching frequency for the step-down regulator is
1 MHz, allowing the use of low profile surface mount
inductors and low value capacitors. The step-down
regulator includes programmable output voltage to
provide the user the ability to easily set the output
voltage with external resistors, logic control, or serial
data interface. The output voltage range is 0.72V to
3.63V.
Features
Tiny 4 mm x 3 mm DFN-12 package
1 MHz switching frequency
Small and low profile inductors
Stable with ceramic output capacitors
No external compensation required
Minimum amount of external components
Over 95% efficiency
High peak switch current limit: 1.5A
Input voltage range: 3.0V to 5.5V
Serial/Logic programmability
AnyVoltage™ Technology provides 64 output
voltage selections to provide flexibility
Programmable output voltage range: 0.72V to 3.63V
P-Channel LDO regulator controller with
programmable current limit (MVPG15x)
Lead-free packages
Built-in under voltage lockout
Over voltage protection
Thermal shutdown protection
Output voltage margining capability
„
„
„
„
„
„
„
„
„
„
„
„
„
The LDO regulator controller with an external P-Channel
MOSFET forms a low dropout regulator capable of
driving 800 mA output current. The output voltage of the
LDO regulator is fixed.
„
„
„
The MVPG15x/MVPG16 operate from an input voltage
range of 3.0V to 5.5V, making the device well-suited for
portable applications.
„
„
Application
Other key features of the MVPG15x/MVPG16 include an
internal current limit for the step-down regulator, an
Under Voltage Lockout (UVLO), and thermal shutdown.
Portable computing
Point of load power supplies
DSP power supplies
Disk drive power supplies
„
„
„
„
Figure 1: Typical High Efficiency 5.0V to 0.8V/3.0A Step-Down Regulator with 3.3V LDO Regulator
R1
8
11
12
R3
11K
10
LDR
SVIN
LFB
3
PSET
SHDN
SGND
L1
SW
SFB
Caution
V OUT1
3.3V/up to 0.8A
1
MVPG15B
V OUT2
0.8V/1A
6
4.7uH
5
EP
4
PVIN
VSET
C3
10uF/6.3V
2
U1
7
C1
0.1uF
FDC642P
47 mohm
C2
10uF/6.3V
ILIM
R2
10
PGND
V IN
+3.0V to + 5.5V
C4
10uF/6.3V
This is a very high frequency device and proper PCB layout is required. Refer to Section 6, Applications
Information, on page 49 for further information.
Copyright © 2008 Marvell
April 14, 2008, 2.00
Doc. No. MV-S102809-00 Rev. G
Document Classification: Proprietary
Page 3
MVPG15x/MVPG16
Datasheet
THIS PAGE INTENTIONALLY LEFT BLANK
Doc. No. MV-S102809-00 Rev. G
Page 4
Copyright © 2008 Marvell
Document Classification: Proprietary
April 14, 2008, 2.00
Table of Contents
Table of Contents
Product Overview ....................................................................................................................................... 3
Table of Contents ....................................................................................................................................... 5
List of Figures............................................................................................................................................. 7
List of Tables ............................................................................................................................................ 11
1
Signal Description ....................................................................................................................... 13
1.1
Pin Configuration.............................................................................................................................................13
1.2
Pin Type Definitions .......................................................................................................................................15
1.3
Pin Description ................................................................................................................................................15
2
Electrical Specifications ............................................................................................................. 17
2.1
Absolute Maximum Ratings ............................................................................................................................17
2.2
Recommended Operating Conditions .............................................................................................................18
2.3
Electrical Characteristics ................................................................................................................................19
2.4
Switching Step-down Regulator ......................................................................................................................20
2.5
LDO Regulator Controller................................................................................................................................21
3
Functional Description................................................................................................................ 23
3.1
Regulation and Startup ...................................................................................................................................24
3.1.1
Digital Soft Start ................................................................................................................................24
3.2
Output Voltage—AnyVoltage™ Technology ...................................................................................................26
3.3
Programmable Current Limit for the LDO Regulator Controller ......................................................................28
3.3.1
Maximum LDO Output Current .........................................................................................................29
3.4
Under Voltage Lockout....................................................................................................................................29
3.5
Over Voltage Protection ..................................................................................................................................29
3.6
Thermal Shutdown ..........................................................................................................................................30
3.7
Adaptive Transient Response .........................................................................................................................31
4
Functional Characteristics ......................................................................................................... 33
4.1
Startup Waveforms .........................................................................................................................................33
4.2
Switching Waveforms......................................................................................................................................36
4.3
Load Transient Waveforms .............................................................................................................................37
4.3.1
Step-Down Regulator .......................................................................................................................37
4.3.2
LDO Regulator ..................................................................................................................................38
5
Typical Characteristics ............................................................................................................... 39
5.1
Efficiency Graphs ............................................................................................................................................39
5.2
Load Regulation ..............................................................................................................................................40
Copyright © 2008 Marvell
April 14, 2008, 2.00
Doc. No. MV-S102809-00 Rev. G
Document Classification: Proprietary
Page 5
MVPG15x/MVPG16
Datasheet
5.3
Dropout Voltage ..............................................................................................................................................40
5.4
RDS (ON) Resistance .....................................................................................................................................41
5.5
IC Case and Inductor Temperature.................................................................................................................42
5.6
Input Voltage Graph ........................................................................................................................................43
5.6.1
Step-Down Regulator .......................................................................................................................43
5.6.2
LDO Regulator ..................................................................................................................................45
5.7
Temperature Graphs .......................................................................................................................................46
5.7.1
Step-Down Regulator .......................................................................................................................46
5.7.2
LDO Regulator ..................................................................................................................................48
6
Applications Information ............................................................................................................ 49
6.1
PC Board Layout Considerations and Guidelines ..........................................................................................49
6.1.1
PC Board Layout Examples for MVPG30x/MVPG31 .......................................................................51
6.2
Bill of Materials ................................................................................................................................................54
7
Mechanical Drawing .................................................................................................................... 57
7.1
Mechanical Drawing ........................................................................................................................................57
7.2
Dimensions .....................................................................................................................................................58
7.3
Typical Pad Layout Dimensions ......................................................................................................................59
7.3.1
Recommended Solder Pad Layout ...................................................................................................59
8
Part Order Numbering/Package Marking .................................................................................. 61
8.1
Part Order Numbering .....................................................................................................................................61
8.2
Package Marking ............................................................................................................................................62
A
Revision History .......................................................................................................................... 65
Doc. No. MV-S102809-00 Rev. G
Page 6
Copyright © 2008 Marvell
Document Classification: Proprietary
April 14, 2008, 2.00
List of Figures
List of Figures
Product Overview ....................................................................................................................................... 3
Figure 1:
1
Typical High Efficiency 5.0V to 0.8V/2.0A Step-Down Regulator with 3.3V LDO Regulator ..............3
Signal Description ........................................................................................................................... 13
Figure 2:
12-Pin DFN Pin Diagram—MVPG30x Top View ..............................................................................13
Figure 3:
12-Pin DFN Pin Diagram—MVPG31 Top View ................................................................................14
2
Electrical Specifications ................................................................................................................. 17
3
Functional Description.................................................................................................................... 23
Figure 4:
4
MVPG30x/MVPG31 Block Diagram .................................................................................................23
Figure 5:
Output Voltage Window ....................................................................................................................24
Figure 6:
Inductor Current Steps at Startup .....................................................................................................25
Figure 7:
Soft Startup (0.8V, 1.2V, 1.8V, 2.5V, 3.3V) ......................................................................................25
Figure 8:
Soft Startup.......................................................................................................................................25
Figure 9:
Startup Sequence ............................................................................................................................27
Figure 10:
VSET = 2.5V and PSET = -5% ............................................................................................................27
Figure 11:
Maximum Output Current for the FDS642P P-Channel MOSFET....................................................29
Figure 12:
UVLO and OVP Waveforms .............................................................................................................30
Figure 13:
Adaptive Transient Response ..........................................................................................................31
Functional Characteristics.............................................................................................................. 33
Figure 14:
Startup Using the Shutdown Pin ......................................................................................................33
Figure 15:
Turn Off Using the Shutdown Pin .....................................................................................................33
Figure 16:
Enable Threshold at VIN = 3.5V ........................................................................................................33
Figure 17:
Enable Threshold at VIN = 5.0V ........................................................................................................33
Figure 18:
Input Voltage Soft Start.....................................................................................................................34
Figure 19:
Input Voltage Hot Plug ......................................................................................................................34
Figure 20:
Step-Down Output Rise Time ...........................................................................................................34
Figure 21:
Soft Start Current Limit Steps ...........................................................................................................34
Figure 22:
UVLO and OVP Thresholds..............................................................................................................35
Figure 23:
Switching Waveforms— PWM Mode ...............................................................................................36
Figure 24:
Switching Waveforms— DCM Mode.................................................................................................36
Figure 25:
PWM Output Ripple Voltage .............................................................................................................36
Figure 26:
Switching Waveforms— DCM Mode-Zoom ......................................................................................36
Figure 27:
Load Transient Response ................................................................................................................37
Figure 28:
Double-Pulsed Load Response ........................................................................................................37
Figure 29:
Load Transient Response ................................................................................................................37
Figure 30:
Double-Pulsed Load Response ........................................................................................................37
Figure 31:
Load Transient Response ................................................................................................................38
Figure 32:
Double-Pulsed Load Response ........................................................................................................38
Copyright © 2008 Marvell
April 14, 2008, 2.00
Doc. No. MV-S102809-00 Rev. G
Document Classification: Proprietary
Page 7
MVPG15x/MVPG16
Datasheet
Figure 33:
5
6
Typical Characteristics ................................................................................................................... 39
Figure 34:
Efficiency Graphs..............................................................................................................................39
Figure 35:
Load Regulation................................................................................................................................40
Figure 36:
Dropout Voltage ................................................................................................................................40
Figure 37:
RDS (ON) Resistance.......................................................................................................................41
Figure 38:
IC Case and Inductor Temperature ..................................................................................................42
Figure 39:
Supply Current vs. Input Voltage ......................................................................................................43
Figure 40:
Output Voltage vs. Input Voltage ......................................................................................................43
Figure 41:
Efficiency vs. Input Voltage...............................................................................................................43
Figure 42:
Load Regulation vs. Input Voltage ....................................................................................................44
Figure 43:
Frequency vs. Input Voltage .............................................................................................................44
Figure 44:
Average Output Current Limit vs. Input Voltage ...............................................................................44
Figure 45:
Output Voltage vs. Input Voltage ......................................................................................................45
Figure 46:
LDO Load Regulation vs. Input Voltage ...........................................................................................45
Figure 47:
Average Output Current Limit vs. Input Voltage ...............................................................................45
Figure 48:
Supply Current vs. Temperature.......................................................................................................46
Figure 49:
UVLO vs. Temperature .....................................................................................................................46
Figure 50:
Output Voltage vs. Temperature.......................................................................................................46
Figure 51:
Efficiency vs. Temperature ...............................................................................................................46
Figure 52:
Load Regulation vs. Temperature ....................................................................................................47
Figure 53:
Line Regulation vs. Temperature......................................................................................................47
Figure 54:
Average Output Current Limit vs. Temperature ................................................................................47
Figure 55:
Frequency vs. Temperature..............................................................................................................47
Figure 56:
Output Voltage vs. Temperature.......................................................................................................48
Figure 57:
Load Regulation vs. Temperature ....................................................................................................48
Figure 58:
Line Regulation vs. Temperature......................................................................................................48
Figure 59:
Average Output Current Limit vs. Temperature ................................................................................48
Applications Information ................................................................................................................ 49
Figure 60:
7
8
Load Transient Response ................................................................................................................38
MVPG30x PCB Layout Schematic ...................................................................................................50
Figure 61:
MVPG31 PCB Layout Schematic .....................................................................................................50
Figure 62:
Top Silk-Screen (Not to scale)—MVPG30x ......................................................................................51
Figure 63:
Top Silk-Screen (Not to scale)—MVPG31........................................................................................51
Figure 64:
Top Traces, Vias, and Copper (Not to scale)—MVPG30x................................................................52
Figure 65:
Top Traces, Vias, and Copper (Not to scale)—MVPG31 .................................................................52
Figure 66:
Bottom Silk Screen, Bottom Trace, Vias, and Bottom Copper (Not to scale)—MVPG30x ...............53
Figure 67:
Bottom Silk Screen, Bottom Trace, Vias, and Bottom Copper (Not to scale)—MVPG31 .................53
Mechanical Drawing ........................................................................................................................ 57
Figure 68:
Mechanical Drawing .........................................................................................................................57
Figure 69:
Recommended Solder Pad Layout ...................................................................................................59
Part Order Numbering/Package Marking....................................................................................... 61
Doc. No. MV-S102809-00 Rev. G
Page 8
Copyright © 2008 Marvell
Document Classification: Proprietary
April 14, 2008, 2.00
List of Figures
A
Figure 70:
Sample Part Order Number ..............................................................................................................61
Figure 71:
MVPG30x Package Marking.............................................................................................................62
Figure 72:
MVPG31 Package Marking ..............................................................................................................63
Revision History ............................................................................................................................... 65
Copyright © 2008 Marvell
April 14, 2008, 2.00
Doc. No. MV-S102809-00 Rev. G
Document Classification: Proprietary
Page 9
MVPG15x/MVPG16
Datasheet
THIS PAGE INTENTIONALLY LEFT BLANK
Doc. No. MV-S102809-00 Rev. G
Page 10
Copyright © 2008 Marvell
Document Classification: Proprietary
April 14, 2008, 2.00
List of Tables
List of Tables
1
2
3
Signal Description ............................................................................................................................ 13
Table 1:
Pin Type Definitions ..........................................................................................................................15
Table 2:
Pin Description..................................................................................................................................15
Electrical Specifications .................................................................................................................. 17
Table 3:
Absolute Maximum Ratings ..............................................................................................................17
Table 4:
Recommended Operating Conditions...............................................................................................18
Table 5:
Electrical Characteristics ..................................................................................................................19
Table 6:
Switching Step-down Regulator........................................................................................................20
Table 7:
LDO Regulator Controller .................................................................................................................21
Functional Description..................................................................................................................... 23
Table 8:
AnyVoltage™ Programming Table for 1% Resistors .......................................................................26
Table 9:
Output Voltage Option Steps ............................................................................................................27
Table 10:
P-Channel MOSFET Selection .........................................................................................................28
4
Functional Characteristics............................................................................................................... 33
5
Typical Characteristics .................................................................................................................... 39
6
Applications Information ................................................................................................................. 49
7
Table 11:
MVPG30x BOM ................................................................................................................................54
Table 12:
MVPG31 BOM ..................................................................................................................................55
Mechanical Drawing ......................................................................................................................... 57
Table 13:
8
Part Order Numbering/Package Marking........................................................................................ 61
Table 14:
A
Dimensions .......................................................................................................................................58
Part Order Options............................................................................................................................61
Revision History ............................................................................................................................... 65
Table 15:
Revision History ................................................................................................................................65
Copyright © 2008 Marvell
April 14, 2008, 2.00
Doc. No. MV-S102809-00 Rev. G
Document Classification: Proprietary
Page 11
MVPG15x/MVPG16
Datasheet
THIS PAGE INTENTIONALLY LEFT BLANK
Doc. No. MV-S102809-00 Rev. G
Page 12
Copyright © 2008 Marvell
Document Classification: Proprietary
April 14, 2008, 2.00
Signal Description
Pin Configuration
1
Signal Description
1.1
Pin Configuration
Figure 2: 12-Pin DFN Pin Diagram—MVPG15x Top View
LFB
1
12
PSET
ILIM
2
11
VSET
LDR
3
10
SHDN
MVPG15x
SGND
4
SFB
5
PGND
SW
6
Copyright © 2008 Marvell
April 14, 2008, 2.00
9
NC
8
SVIN
7
PVIN
Doc. No. MV-S102809-00 Rev. G
Document Classification: Proprietary
Page 13
MVPG15x/MVPG16
Datasheet
Figure 3: 12-Pin DFN Pin Diagram—MVPG16 Top View
NC
1
12
PSET
NC
2
11
VSET
NC
3
10
SHDN
MVPG16
SGND
4
SFB
5
PGND
SW
6
Doc. No. MV-S102809-00 Rev. G
Page 14
9
NC
8
SVIN
7
PVIN
Copyright © 2008 Marvell
Document Classification: Proprietary
April 14, 2008, 2.00
Signal Description
Pin Type Definitions
1.2
Table 1:
Pin Type Definitions
Pin Type Definitions
Pi n Typ e
Defi ni ti o ns
I
Input only
O
Output only
S
Supply
NC
Not Connected
GND
Ground
1.3
Pin Description
Table 2 provides pin descriptions for the MVPG15x/MVPG16.
Table 2:
Pin Description
MVPG15x
Pi n #
MVPG16
Pi n #
P in N a m e
P i n Ty p e
Pi n F u nc t io n
1
--
LFB
I
LDO Regulator Controller Feedback
Senses the output voltage of the LDO regulator. Connect to
the drain of the P-channel MOSFET. When the LDO
controller is not used, float the LDR pin. Connect the LFB to
SGND, and connect ILIM to SVIN.
2
--
ILIM
I
Current-Limit Sense Pin for the LDO Regulator
A built-in offset of 50 mV (typical) between VIN and ILIM in
conjunction with the sense resistor is used to set the
current-limit threshold for the LDO regulator controller.
Connecting this pin to VIN disables the internal current limit
circuitry. When the LDO controller is not used, float the LDR
pin. Connect the LFB to SGND, and connect ILIM to SVIN.
3
--
LDR
O
LDO Regulator Controller Driver
Connect to the gate of an external P-channel MOSFET. The
external P-Channel MOSFET needs to have a threshold of
-2.5V or lower and input capacitance (Ciss) of less than
1000 pF. When the LDO controller is not used, float the LDR
pin. Connect the LFB to SGND, and connect ILIM to SVIN.
4
4
SGND
O
Signal Ground
This pin must connect to the power ground.
5
5
SFB
I
Switching Regulator Feedback
Senses the output voltage of the switching regulator.
6
6
SW
O
Switch Node
Internal power MOSFET drain. This pin must connect to an
external inductor.
Copyright © 2008 Marvell
April 14, 2008, 2.00
Doc. No. MV-S102809-00 Rev. G
Document Classification: Proprietary
Page 15
MVPG15x/MVPG16
Datasheet
Table 2:
Pin Description (Continued)
MVPG15x
Pi n #
MVPG16
Pi n #
P in N a m e
P i n Ty p e
Pi n F u nc t io n
7
7
PVIN
I
Power Input Voltage
Internal power MOSFET source. Connect the decoupling
10 µF capacitors between PVIN and PGND and position it as
close as possible to the IC.
8
8
SVIN
I
Signal Input Voltage
Input voltage is 3.0V to 5.5V for internal circuitry.
Connect a 0.1 µF decoupling capacitor between SVIN and
SGND and position it as close as possible to the IC.
9
1, 2, 3, 9
NC
O
No Connect
This pin is left floating. Do not connect this pin.
10
10
SHDN
I
Shutdown
Logic low (≤0.8V) enables the step-down switching regulator
and the LDO regulator controller. Logic high (≥2.0V) disables
the step-down switching regulator and the LDO regulator
controller. The high signal duration has to be at least 20 µs to
disable both regulators.
11
12
VSET
I
Voltage Set
1. Connect an external resistor to ground to set the output
voltage of the step-down switching regulator. See
Table 5, Electrical Characteristics, on page 19 for resistor
values and output voltage options.
2. The total capacitance across this pin and SGND should
not be greater than 25 pF. Shorting this pin to signal
ground, floating this pin, or using 619 kΩ< RVSET or
RVSET<7.68 kΩ disables the step-down switching
regulator and sets the SFB pin to high impedance. Use
resistor value with tolerance better than 2%.
12
12
PSET
I
Percent Set
1. Connect an external resistor to ground to set the output
voltage of the step-down switching regulator. See
Table 5, Electrical Characteristics, on page 19 for resistor
values and output voltage options.
2. The total capacitance across this pin and SGND should
not be greater than 25 pF. Shorting this pin to signal
ground, floating this pin, or using 619 kΩ< RPSET or
RPSET<7.68 kΩ does not affect the set voltage. Use
resistor value with tolerance better than 2%. Although
this pin can be left floating when it is not used, it is
recommended to connect this pin to ground.
Exposed
Pad
Exposed
Pad
PGND
GND
Power Ground
The power ground must connect to the negative terminal of
the input and output capacitors.
Doc. No. MV-S102809-00 Rev. G
Page 16
Copyright © 2008 Marvell
Document Classification: Proprietary
April 14, 2008, 2.00
Electrical Specifications
Absolute Maximum Ratings
2
Electrical Specifications
2.1
Absolute Maximum Ratings
Table 3:
Absolute Maximum Ratings1
NOTE: Stresses above those listed in Absolute Maximum Ratings may cause permanent device failure. Functionality at or
above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device
reliability.
Parameter
Min
Ty p
Max
U n i ts
PVIN to PGND
-0.3
--
6.0
V
PVIN to SVIN
-0.3
--
+0.3
V
PGND to SGND
-0.3
--
+0.3
V
VSW to PGND2
-0.3
--
(PVIN +0.3)
V
VSFB to SGND
-0.3
--
(SVIN +0.3)
V
VVSET, VPSET to SGND
-0.3
--
(SVIN +0.3)
V
VILIM, VLDR, VLFB to SGND
-0.3
--
(SVIN +0.3)
V
VSHDN to SGND
-0.3
--
(SVIN +0.3)
V
Operating Ambient Temperature Range3
-40
--
85
°C
Maximum Junction Temperature
--
--
150
°C
Storage Temperature Range
-65
--
150
°C
Lead Temperature (soldering, 10s)
--
300
--
°C
ESD Rating4
--
2.0
--
kV
1. Exceeding the absolute maximum rating may damage the device.
2. Capable of -1.0V for less than 50 ns.
3. Specifications over the -40°C to 85°C operating temperature ranges are assured by design, characterization and
correlation with statistical process controls.
4. Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5 kΩ, in series with
100 pF.
Copyright © 2008 Marvell
April 14, 2008, 2.00
Doc. No. MV-S102809-00 Rev. G
Document Classification: Proprietary
Page 17
MVPG15x/MVPG16
Datasheet
2.2
Table 4:
Recommended Operating Conditions
Recommended Operating Conditions1
Sy m b o l
P a r a m e te r
Min
Ty p
Max
U n i ts
SVIN
Signal Input Voltage
3.0
--
5.5
V
PVIN
Power Input Voltage
3.0
--
5.5
V
θJA
Package Thermal Resistance2
--
48.1
--
°C/W
--
4.4
--
°C/W
--
--
125
°C
θJC
TJMAX
Maximum Operating Junction Temperature
1. This device is not guaranteed to function outside the specified operating range.
2. Tested on 4-layer (JESD51-7) and vias (JESD51-5) boards.
Doc. No. MV-S102809-00 Rev. G
Page 18
Copyright © 2008 Marvell
Document Classification: Proprietary
April 14, 2008, 2.00
Electrical Specifications
Electrical Characteristics
2.3
Table 5:
Electrical Characteristics
Electrical Characteristics
NOTE: The following applies unless otherwise noted: SVIN = PVIN = 5.0V, VSHDN = SGND = PGND, L(BUCK) = 4.7 µH,
COUT(BUCK) = 10 µF (Ceramic), PFET = FDC642P, COUT(LDO) = 10 µF (Ceramic), TA = 25°C. Bold values indicate
-40°C < TA < 85°C.
Sy m b o l
P a r a m e te r
C o nd i ti on s
Min
Ty p e
Max
U n its
SVIN
Input Voltage Range
SVIN = PVIN
3.0
--
5.5
V
Total Quiescent Current
No load, VOUT = TBD
--
1.3
--
mA
ISVIN
Shutdown Supply Current
VSHDN = SVIN = 5.5V
--
1.0
10
μA
VUVLO
Under Voltage Lockout
High threshold, SVIN
increasing, ILOAD =
10mA
--
2.65
2.85
V
Low threshold, SVIN
decreasing, ILOAD =
10mA
2.35
2.50
--
V
High threshold, SVIN
increasing, ILOAD =
10mA
--
5.7
TBD
V
Low threshold, SVIN
decreasing, ILOAD =
10mA
TBD
5.6
--
V
Enable regulators
--
--
0.8
V
Disable regulators
2.0
--
--
VOVP
VSHDN
Over Voltage Protection
Shutdown Input Voltage Logic
ISHDN
Shutdown Input Current
VSHDN = SGND =
PGND or 5.5V
--
--
±1.0
µA
TOTS
Over-temperature Thermal
Shutdown
TJ increasing (Disable
regulators)
--
150
--
°C
TJ decreasing (Enable
regulators)
--
120
--
°C
Copyright © 2008 Marvell
April 14, 2008, 2.00
Doc. No. MV-S102809-00 Rev. G
Document Classification: Proprietary
Page 19
MVPG15x/MVPG16
Datasheet
2.4
Table 6:
Switching Step-down Regulator
Switching Step-down Regulator
NOTE: The following applies unless otherwise noted: SVIN = PVIN = 5.0V, VPSET = VSHDN = SGND = PGND, RVSET = 11 kΩ,
L = 4.7 µH, COUT = 10 µF (Ceramic), TA = 25 °C. Bold values indicate -40°C < TA < 85°C.
Sy m b o l
P a r a m e te r
Conditions
M in
Ty p
Max
U ni ts
Output Voltage
RVSET = 11K, PWM mode
--
0.8
--
V
RVSET = 18.7K, PWM mode
--
1.0
--
RVSET = 31.6K, PWM mode
--
1.2
--
RVSET = 53.6K, PWM mode
--
1.5
--
RVSET = 97.6K, PWM mode
--
1.8
--
RVSET = 165K, PWM mode
--
2.5
--
RVSET = 280K, PWM mode
--
3.0
--
RVSET = 475K, PWM mode
--
3.3
--
RPSET = 11K
--
-10
--
RPSET = 18.7K
--
-7.5
--
RPSET = 31.6K
--
-5.0
--
RPSET = 53.6K
--
-2.5
--
RPSET = 97.6K
--
2.5
--
RPSET = 165K
--
5.0
--
RPSET = 280K
--
7.5
--
RPSET = 475K
--
10
--
Percentage Set
%
VLNREG
Output Voltage Line
Regulation
SVIN = PVIN = 3.0V to 5.0V
VOUT = 1.5V
ILOAD = 250 mA
--
0.08
--
%
VLDREG
Output Voltage Load
Regulation
SVIN = PVIN = 5.0V
VOUT = 1.5V
ILOAD = 250 mA to 1.0A
--
0.05
--
%
fSW
Switching Frequency
PWM mode
--
1.0
--
MHz
RPFET
RDS(ON) = of
P-Channel FET
SVIN = 3.0V, ISW = 100 mA
--
150
--
mΩ
SVIN = 5.0V, ISW = 100 mA
--
120
--
SVIN = 3.0V, ISW = 100 mA
--
90
--
SVIN = 5.0V, ISW = 100 mA
--
70
--
--
1.5
--
RNFET
ILIM
RDS(ON) = of
N-Channel FET
Minimum Peak Switch
Current Limit
Doc. No. MV-S102809-00 Rev. G
Page 20
mΩ
A
Copyright © 2008 Marvell
Document Classification: Proprietary
April 14, 2008, 2.00
Electrical Specifications
LDO Regulator Controller
Table 6:
Switching Step-down Regulator (Continued)
NOTE: The following applies unless otherwise noted: SVIN = PVIN = 5.0V, VPSET = VSHDN = SGND = PGND, RVSET = 11 kΩ,
L = 4.7 µH, COUT = 10 µF (Ceramic), TA = 25 °C. Bold values indicate -40°C < TA < 85°C.
Sy m b o l
P a r a m e te r
Conditions
M in
Ty p
Max
U ni ts
ILSW
Switch Leakage
Current
SVIN = PVIN = VSHDN = 5.5V
VSW = PGND or 5.5V
--
±1
±50
μA
2.5
Table 7:
LDO Regulator Controller
LDO Regulator Controller
NOTE: The following applies unless otherwise noted: SVIN = PVIN = 5.0V, VSHDN = SGND = PGND, PFET= FDC642P, COUT
= 10 µF, TA = 25 °C. Bold values indicate -40°C < TA < 85°C.
Sy m b o l
P a r a m e te r
C o nd i ti on s
M in
Ty pe
Max
U ni ts
Output Voltage Accuracy
Room Temp,
ILOAD = 10 mA
--
±1
--
%
Over Temp,
ILOAD = 10 mA
--
±2
--
VLNREG
Line Regulation
SVIN = PVIN = 3.5V
to 5.0V, VOUT = 3.3V,
ILOAD = 10 mA
--
0.08
--
%
VLDREG
Load Regulation
SVIN = PVIN = 5.0V,
VOUT = 3.3V, ILOAD =
10 mA to 800 mA
--
0.05
--
%
VILTH
Current-Limit Threshold
SVIN-VILIM
--
50
--
mV
Copyright © 2008 Marvell
April 14, 2008, 2.00
Doc. No. MV-S102809-00 Rev. G
Document Classification: Proprietary
Page 21
MVPG15x/MVPG16
Datasheet
THIS PAGE INTENTIONALLY LEFT BLANK
Doc. No. MV-S102809-00 Rev. G
Page 22
Copyright © 2008 Marvell
Document Classification: Proprietary
April 14, 2008, 2.00
Functional Description
3
Functional Description
Figure 4: MVPG15x/MVPG16 Block Diagram
Q1
V
+3.0V - 5.5V
IN
R1
C2
PVIN
OSCILLATOR
SVIN
RSENSE
C1
ILIM
OUT1
V
OUT2
LDR
INTERNAL
CIRCUITRY
POWER
SUPPLY
CURRENT LIMIT
V
C3
LDO
CONTROLLER
LFB
ENABLE_LDO
ANALOGDIGITAL
CONVERTER
L1
PWM
CONTROL
DSP
DRIVER
SW
PGND
FAULT
RESISTOR
NETWORK
ENABLE_LDO
UVLO_LDO
UNDERVOLTAGE
LOCK-OUT
C4
SFB
BAND-GAPVOLTAGE
REFERENCE
FAULT
RESISTOR SENSING
CIRCUITRY
THERMAL
SHUT-DOWN
SHDN
SGND
OFF
VSET
PSET
R2
R3
ON
Copyright © 2008 Marvell
April 14, 2008, 2.00
Doc. No. MV-S102809-00 Rev. G
Document Classification: Proprietary
Page 23
MVPG15x/MVPG16
Datasheet
3.1
Regulation and Startup
The step-down switching regulator uses Pulse Width Modulation (PWM) and Pulse Frequency
Modulation (PFM) modes to regulate the output voltage using digital control. The mode of operation
depends on the level of output current and the output voltage.
In steady states, the step-down switching regulator monitors the current flowing through the inductor
to determine if the regulator is handling heavy or light load applications. For heavy load applications,
the step-down regulator operates in the PWM mode (B and C) to minimize the ripple current for
optimum efficiency and to minimize the ripple output voltage. The step-down regulator operates in
the PFM and Discontinuous Conduction Mode (DCM) (A and D) to limit the switching actions for
optimum efficiency in light load applications. In this mode, the average output voltage is slightly
higher than the average output voltage for heavy transient load applications.
Figure 5: Output Voltage Window
A
B
C
D
Typical VOUT
3.1.1
PFM Mode
PWM Mode
PFM Mode
Digital Soft Start
During startup, the MVPG15x/MVPG16 provides a soft start function. Soft start reduces surge
currents from the input voltage and provides well-controlled output voltage rise characteristics. The
rate of the output voltage startup is limited by the value of the output capacitor and the internal
current limit circuitry. This combination forces the output voltage to ramp up slowly, providing a soft
start characteristic.
During soft start, the MVPG15x/MVPG16 feeds a constant current to the output capacitor in several
steps. Figure 6 shows the inductor current waveform during startup. The current limit is ramped up in
seven steps beginning at approximately 40% of the current limit rating and ending at 100% at 25 µs
per step. The buck regulator behaves like a current source during this time as the output ramps up
slowly.
Figure 7 shows that the rise time for a MVPG15x/MVPG16 increases from 20 µs at for a 0.8V output
to 70 µs for a 3.3V output with a 20 mA load. From Figure 8, the rise time can be estimated by
assuming an average charging current of 0.75A. Rise time with a 3.3V output is calculated using the
following equation.
Cout • Vout
RiseTime = -----------------------------I
22μF • 3.3V
= ------------------------------- = 96.8μs
0.75A
Doc. No. MV-S102809-00 Rev. G
Page 24
Copyright © 2008 Marvell
Document Classification: Proprietary
April 14, 2008, 2.00
Functional Description
Regulation and Startup
Figure 6: Inductor Current Steps at
Startup
Figure 7: Soft Startup (0.8V, 1.2V,
1.8V, 2.5V, 3.3V)
1V/DIV
500 mV/DIV
VBUCK
VBUCK
IIND
500 mA/DIV
50 μs/DIV
10 μs/DIV
COUT = 22 μF
ILOAD = 20 mA
Figure 8: Soft Startup
VOUT
1V/DIV
IOUT
1A/DIV
50 μs/DIV
VOUT = 3.3V
ILOAD = 3.3Ω
Copyright © 2008 Marvell
April 14, 2008, 2.00
Doc. No. MV-S102809-00 Rev. G
Document Classification: Proprietary
Page 25
MVPG15x/MVPG16
Datasheet
3.2
Output Voltage—AnyVoltage™ Technology
The output voltage of the step-down switching regulator is programmed by using Table 8 to select
resistor values for VSET and PSET pin. The VSET pin sets the output voltage and the PSET pin
trims the set voltage to a percentage value. For example, to program 2.25V output, a 165 kΩ resistor
is selected for the VSET pin, and an 11 kΩ resistor is selected for the PSET pin. The 165 kΩ resistor
sets the output voltage to 2.5V and the 11 kΩ resistor trims the set voltage by -10%.
Using the VSET resistor’s value greater than 619 kΩ or less than 7.68 kΩ disables the step-down
switching regulator and sets the SW pin to high impedance. If the VSET resistor’s value is outside
the 2% tolerance, the output can be either higher or lower than the set voltage.
Using resistor values greater than 619 kΩ or less than 7.68 kΩ for the PSET pin does not affect the
set voltage. When the PSET pin is not used, it must be connected to ground. Like the VSET resistor,
the percent value can be either higher or lower if the PSET resistor’s value is outside the 2%
tolerance.
Table 8:
AnyVoltage™ Programming Table for 1% Resistors
VS E T
P SE T
- 1 0 .0 %
– 7 .5 %
–5.0%
– 2 .5 %
0%
2.5%
5. 0 %
7 .5 %
1 0 . 0%
11 k
1 8 .7 k
31.6k
5 3 .6 k
GND
97.6k
16 5 k
280k
475k
GND
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
11 k
0.720
0.740
0.760
0.780
0.800
0.820
0.840
0.860
0.880
1 8 .7 k
0.900
0.925
0.950
0.975
1.000
1.025
1.050
1.075
1.100
3 1 .6 k
1.080
1.110
1.140
1.170
1.200
1.230
1.260
1.290
1.320
5 3 .6 k
1.350
1.388
1.425
1.463
1.500
1.538
1.575
1.613
1.650
9 7 .6 k
1.620
1.665
1.710
1.755
1.800
1.845
1.890
1.935
1.980
165k
2.250
2.313
2.375
2.438
2.500
2.563
2.625
2.688
2.750
280k
2.700
2.775
2.850
2.925
3.000
3.075
3.150
3.225
3.300
475k
2.970
3.053
3.135
3.218
3.300
3.383
3.465
3.548
3.630
Open
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
The VSET and PSET resistors are read once during startup before the output voltage is turned on.
The output voltage cannot be changed on-the-fly. To configure the output to a different voltage,
power has to recycle or the MVPG15x/MVPG16 has to turn OFF and back ON using the shutdown
pin.
Figure 9 shows the startup waveforms of the MVPG15x/MVPG16. Once the input voltage (VIN) is
above the Under Voltage Lockout (UVLO) Upper Threshold (UTH), the VSET and PSET pin become
active. Current is first sourced out of PSET pin and then the VSET pin, in exponentially increasing
steps. After each step there is a blanking time before the VSET voltage is compared to an internal
1.2V reference. If the VSET voltage is below internal reference voltage, the current source proceeds
to the next step. Once the VSET voltage is above the internal reference voltage the sequence stops
and the output voltage (VOUT) is allowed to turn on. Figure 10 shows the VSET waveform for VSET
= 2.5V and PSET = –5% output. The MVPG15x/MVPG16 keeps track of how many steps are
Doc. No. MV-S102809-00 Rev. G
Page 26
Copyright © 2008 Marvell
Document Classification: Proprietary
April 14, 2008, 2.00
Functional Description
Output Voltage—AnyVoltage™ Technology
required to determine the appropriate output voltage. Table 9 provides the number of steps
necessary for each output voltage option. Using a VSET resistor of 165 kΩ requires the current
source to step four times, and a PSET resistor of 31.6 kΩ requires seven steps.
Figure 9: Startup Sequence
Figure 10: VSET = 2.5V and PSET = -5%
VIN
2V/DIV
VSET
500mV/DIV
VOUT
1V/DIV
VSET
1V/DIV
20m
500mV/DIV
500
PSET
PSET
1V/DIV
200 μs/DIV
2.0 ms/DIV
Table 9:
Output Voltage Option Steps
Ste p
VOUT
(V )
R VSET
(k Ω)
St ep
P SE T
(%)
R PSET
(k Ω)
1
0
0
1
0
0
2
3.3
475
2
+10
475
3
3.0
280
3
+7.5
280
4
2.5
165
4
+5.0
165
5
1.8
97.6
5
+2.5
97.6
6
1.5
53.6
6
-2.5
53.6
7
1.2
31.6
7
-5.0
31.6
8
1.0
18.7
8
-7.5
18.7
9
0.8
11
9
-10
11
The MVPG15x/MVPG16 provides an innovative technique to set the output voltage. During startup it
reads the value of external resistors, which are located outside the regulator’s feedback loop to
program the output voltage. By placing the output voltage programming resistor outside the
regulator’s feedback loop, its tolerance does not affect the accuracy of the output voltage. Normally,
adjustable regulators use 1% resistors to set the output voltage. However, these resistors are
located inside the feedback loop, introducing as much as 2% of initial accuracy error to the output
voltage, resulting in an overall initial accuracy of 3%. Whereas, the MVPG15x/MVPG16 initial
accuracy is 2% for any of the eight output voltages.
The VSET and PSET pins are sensitive to excessive leakage currents and stray capacitance. The
output voltage can potentially be programmed to the lower output voltage if there is contamination,
which introduces excessive leakage current on the VSET and PSET pin, especially for the 3.3V
output or +10%. The parasitic resistance on these nodes must be greater than 3 MΩ and the stray
capacitance must be less than 25 pF; otherwise, a 3.3V output can potentially end up at 3V.
Copyright © 2008 Marvell
April 14, 2008, 2.00
Doc. No. MV-S102809-00 Rev. G
Document Classification: Proprietary
Page 27
MVPG15x/MVPG16
Datasheet
3.3
Programmable Current Limit for the LDO Regulator
Controller
A sense resistor is placed between SVIN and ILIM pin to program the current limit of the LDO
regulator controller. The following equation is used to determine the value of the sense resistor.
50mV ( Typical )
I LIM = ---------------------------------------R SENSE ( mΩ )
When the LDO regulator controller is in current limit, the internal current-limit circuitry turns off the
LDO regulator controller and holds the LDO regulator controller in the off state for 3 ms (typical hold
time). After the hold-time is expired, the LDO regulator controller is enabled. The current-limit
circuitry continues to disable and enable the regulator until the current limit is removed.
The LDO regulator P-channel MOSFET can be selected from the following list based on the required
current and ambient temperature.
Table 10: P-Channel MOSFET Selection
P ac k a g e
Vi sh a y
F a ir c h i ld
Super SOT-6
FDC642P
FDC634P
Super SOT-3 / micro 3
FDN340P
FDN302P
SO-8
Si4433DY
FDS9431A
SC75-6 FLMP
FDJ127P
TO-263AB (D2-Pack)
FDP4020P
TSOP-6
Si3443DV
SC70-6
FDG330P
SOT-23
Si2333DS
1206-8 Chip FET
Si5473DC
SC-89 (6-lead)
Si1039X
SC75A/SC-89 (3-lead)
Si1012R/X
Doc. No. MV-S102809-00 Rev. G
Page 28
Copyright © 2008 Marvell
Document Classification: Proprietary
April 14, 2008, 2.00
Functional Description
Under Voltage Lockout
3.3.1
Maximum LDO Output Current
The FDS642P is design to provide up to 800 mA of continuous output current. However, the tiny
Super SOT-6 package can dissipate up to 0.7W. If the input and output voltage are close, then the
full 800 mA is achieved (see Figure 11). As the input voltage increases, the IC dissipates more
power, limiting the maximum output current. The output current has to decrease in order to keep the
power dissipation under its 0.7W limit.
Figure 11: Maximum Output Current for the FDS642P P-Channel MOSFET
Load Current (A)
Maximum LDO Output Current vs. Input Voltage
1.0
0.8
0.6
0.4
0.2
0.0
3
3.5
4
4.5
5
Input Voltage (V)
3.4
Under Voltage Lockout
At startup, the MVPG15x/MVPG16 incorporates Under Voltage Lockout (UVLO) circuitry to enable
the step-down switching regulator and the LDO controller when the input voltage is above 2.60V
(typical). After the MVPG15x/MVPG16 is enabled and the input voltage is lowered, the highest value
of the minimum input voltage for both regulators to remain enabled is 2.50V (typical).
3.5
Over Voltage Protection
The MVPG15x/MVPG16 incorporates an Over Voltage Protection (OVP) circuitry to disable the
step-down switching regulator and LDO controller when the input voltage is above 5.7V (typical).
The step-down switching regulator and LDO controller are enabled when the input voltage is below
5.6V (typical).
Copyright © 2008 Marvell
April 14, 2008, 2.00
Doc. No. MV-S102809-00 Rev. G
Document Classification: Proprietary
Page 29
MVPG15x/MVPG16
Datasheet
Figure 12: UVLO and OVP Waveforms
VOVP_HTH
VOVP-LTH
VUVLO-HTH
VUVLO-LTH
VIN
BUCK Output
Enable
Undefined
BUCK Output
Disable
LDO Output
Enable
Undefined
LDO Output
Disable
3.6
Thermal Shutdown
When the junction temperature of the MVPG15x/MVPG16 exceeds 150°C (typical), the thermal
shutdown circuitry disables the step-down regulator. The step-down switching regulator is enabled
when the junction temperature is decreased to 120°C (typical).
Doc. No. MV-S102809-00 Rev. G
Page 30
Copyright © 2008 Marvell
Document Classification: Proprietary
April 14, 2008, 2.00
Functional Description
Adaptive Transient Response
3.7
Adaptive Transient Response
The MVPG15x/MVPG16 device’s Smart Technology allows the step-down switching regulator to
quickly respond to the multiple step loads and maintain stability over a wide range of applications.
Figure 13shows an example of a second step-load applied while the output voltage of the step-down
switching regulator increased due to the inductive kick from the first step-load.
Condition: VIN = 5.0V, RSVIN = 10Ω, CSVIN = 0.1 µF, CPVIN = 10 µF, L = 4.7 µH, COUT(BUCK) = 10 µF,
ILOAD = 200 mA to 1.0A.
Figure 13: Adaptive Transient
Response
100mV/DIV
VBUCK
1A/DIV
ILOAD
20 µs/DIV
The overshoot (VSOAR) during a full-load to light-load transient due to stored inductor energy
(Figure 13) can be calculated as:
2
V SOAR
ΔI LOAD ( MAX ) • L
= --------------------------------------------2 • C OUT • V OUT
Although the VSOAR cannot be eliminated, its amplitude can be controlled based on the COUT
capacitor value. The appropriate COUT value can easily be calculated for the acceptable VSOAR level
for each specific application.
2
C OUT
ΔI LOAD ( MAX ) • L
= --------------------------------------------2 • V SOAR • V OUT
Copyright © 2008 Marvell
April 14, 2008, 2.00
Doc. No. MV-S102809-00 Rev. G
Document Classification: Proprietary
Page 31
MVPG15x/MVPG16
Datasheet
THIS PAGE INTENTIONALLY LEFT BLANK
Doc. No. MV-S102809-00 Rev. G
Page 32
Copyright © 2008 Marvell
Document Classification: Proprietary
April 14, 2008, 2.00
Functional Characteristics
Startup Waveforms
4
Functional Characteristics
The following applies unless otherwise noted: TA = 25°C, RSVIN = 10Ω, CSVIN = 0.1 µF, CPVIN =
10 µF, L = 4.7 µH, COUT (BUCK) = 10 µF, PFET = FDC642P, COUT (LDO) = 10 µF.
4.1
Startup Waveforms
NOTE: There is a delay (3.5 ms typ.) before the output voltage turns on.
Figure 14: Startup Using the
Shutdown Pin
Figure 15: Turn Off Using the
Shutdown Pin
VLDO
2V/DIV
VLDO
2V/DIV
VBUCK
VBUCK
500 mV/DIV
VSHDN
500 mV/DIV
VSHDN
2V/DIV
2V/DIV
1.0 ms/DIV
1.0 ms/DIV
VIN = 5.0V
ILOAD = No Load
VIN = 5.0V
VLDO= 3.3V
tDLY~ 3.5 ms
VLDO= 3.3V
VBUCK= 1.2V
ILOAD = No Load
VBUCK= 1.2V
Figure 16: Enable Threshold at VIN =
3.5V
Figure 17: Enable Threshold at VIN
= 5.0V
2V/DIV
2V/DIV
VLDO
VLDO
1V/DIV
VBUCK
VSHDN
1V/DIV
VBUCK
VSHDN
1V/DIV
1V/DIV
100 ms/DIV
100 ms/DIV
VIN = 5.0V
ILOAD = 10 mA
VIN = 5.0V
ILOAD = 10 mA
VLDO= 3.3V
VTH = 0.96V (Note)
VLDO= 3.3V
VTH = 1.12V (Note)
VBUCK= 1.2V
VBUCK= 1.2V
Copyright © 2008 Marvell
April 14, 2008, 2.00
Doc. No. MV-S102809-00 Rev. G
Document Classification: Proprietary
Page 33
MVPG15x/MVPG16
Datasheet
Figure 18: Input Voltage Soft Start
VIN
Figure 19: Input Voltage Hot Plug
5V/DIV
VLDO
VIN
5V/DIV
VLDO
2V/DIV
1V/DIV
VBUCK
2V/DIV
1V/DIV
VBUCK
2.0 ms/DIV
1.0 ms/DIV
VIN = 5.0V
VBUCK= 1.2V
VIN = 5.0V
VBUCK= 1.2V
VLDO= 3.3V
ILOAD = No Load
VLDO= 3.3V
ILOAD = No Load
Figure 20: Step-Down Output Rise
Time
VBUCK
Figure 21: Soft Start Current Limit
Steps
500 mV/DIV
IIND
500 mA/DIV
500 mA/DIV
IIND
10 µs/DIV
VIN = 5.0V
VBUCK= 1.2V
ILOAD = 500 mA
50 µs/DIV
VIN = 5.0V
VBUCK= 3.3V
Doc. No. MV-S102809-00 Rev. G
Page 34
Copyright © 2008 Marvell
Document Classification: Proprietary
April 14, 2008, 2.00
Functional Characteristics
Startup Waveforms
Figure 22: UVLO and OVP
Thresholds
2V/DIV
VIN
VLDO
2V/DIV
VBUCK
2V/DIV
100 ms/DIV
VIN = 0 to 6.0V
VUVLO(HTH) = 2.60V
VLDO = 3.3V
VUVLO(LTH) = 2.50V
VBUCK = 1.5V
VOVP(HTH) = 5.8V
ILOAD(BUCK) = 50Ω
VOVP(LTH) = 5.7V
Copyright © 2008 Marvell
April 14, 2008, 2.00
Doc. No. MV-S102809-00 Rev. G
Document Classification: Proprietary
Page 35
MVPG15x/MVPG16
Datasheet
4.2
Switching Waveforms
NOTE: For repeatability of measuring output ripple (VBUCK (P-P)) for the BUCK regulator, the standard test
procedure limits the scope bandwidth to 20 MHz and uses a coax cable with very short leads
terminated into 50Ω. The coax leads must be routed away from the switching node as much as
possible.
Figure 23: Switching Waveforms—
PWM Mode
Figure 24: Switching Waveforms—
DCM Mode
VSW
5V/DIV
5V/DIV
VSW
IIND
200 mA/DIV
VBUCK
10 mV/DIV
VBUCK
5 mV/DIV
IIND
VIN
500 mV/DIV
100 mV/DIV
500 ns/DIV
1.0 µs/DIV
VIN = 5.0V
VIN(P-P) = 200 mV
VIN = 5.0V
IIND(PK) = 248 mA
Freq = 313 kHz
VBUCK = 1.2V
IIND(P-P) = 231 mA
VBUCK = 1.2V
IOUT = 1.0A
IIND(PK) = 1.1A
IOUT = 50 mA
VOUT(P-P) = 4.9 mV (Note)
Freq = 910 kHz
VOUT(P-P) = 13 mV (Note)
Figure 25: PWM Output Ripple
Voltage
Figure 26: Switching Waveforms—
DCM Mode-Zoom
VSW
VBUCK
5V/DIV
10 mV/DIV
10 mV/DIV
VBUCK
200 mA/DIV
IIND
100 ms/DIV
500 ns/DIV
VIN = 5.0V
IOUT = 1.0A
VIN = 5.0V
IOUT = 24 mA
VBUCK = 1.2V
VOUT(P-P) = 8.6 mV (Note)
VBUCK = 1.2V
Ringing Freq = 6.0 MHz
Doc. No. MV-S102809-00 Rev. G
Page 36
Copyright © 2008 Marvell
Document Classification: Proprietary
April 14, 2008, 2.00
Functional Characteristics
Load Transient Waveforms
4.3
Load Transient Waveforms
4.3.1 Step-Down Regulator
Figure 27: Load Transient Response
Figure 28: Double-Pulsed Load
Response
VBUCK
100 mV/DIV
1A/DIV
ILOAD
VBUCK
100 mV/DIV
1A/DIV
ILOAD
20 µs/DIV
20 µs/DIV
VIN = 5.0V
ILOAD = 200 mA to 1.0A
VBUCK = 1.2V
COUT = 10 µF
VIN = 5.0V
ILOAD = 200 mA to 1.0A
tRISE = 7.0A/µs
VBUCK = 1.2V
tRISE = 7.0A/µs
tFALL = 74A/µs
COUT = 10 µF
tFALL = 74A/µs
Figure 29: Load Transient Response
Figure 30: Double-Pulsed Load
Response
VBUCK
100 mV/DIV
VBUCK
100 mV/DIV
1A/DIV
ILOAD
1A/DIV
ILOAD
20 µs/DIV
20 µs/DIV
VIN = 5.0V
IOUT = 200 mA to 1.0A
VIN = 5.0V
IOUT = 200 mA to 1.0A
VBUCK = 1.2V
tRISE = 7.0A/µs
VBUCK = 1.2V
tRISE = 7.0A/µs
COUT = 2x10 µF
tFALL = 74A/µs
COUT = 2x10 µF
tFALL = 74A/µs
Copyright © 2008 Marvell
April 14, 2008, 2.00
Doc. No. MV-S102809-00 Rev. G
Document Classification: Proprietary
Page 37
MVPG15x/MVPG16
Datasheet
Figure 31: Load Transient Response
Figure 32: Double-Pulsed Load
Response
VBUCK
100 mV/DIV
VBUCK
100 mV/DIV
1A/DIV
ILOAD
1A/DIV
ILOAD
20 µs/DIV
20 µs/DIV
VIN = 5.0V
ILOAD = 200 mA to 1.0A
VIN = 5.0V
ILOAD = 200 mA to 1.0A
VBUCK = 1.2V
tRISE = 7.0A/µs
VBUCK = 1.2V
tRISE = 7.0A/µs
COUT = 4x10 µF
tFALL = 74A/µs
COUT = 4x10 µF
tFALL = 74A/µs
4.3.2
LDO Regulator
Figure 33: Load Transient Response
VLDO
50 mV/DIV
ILOAD
1A/DIV
20 µs/DIV
VIN = 5.0V
COUT = 10 µF
VLDO = 3.3V
ILOAD = 0.2 mA to 0.8A
Doc. No. MV-S102809-00 Rev. G
Page 38
Copyright © 2008 Marvell
Document Classification: Proprietary
April 14, 2008, 2.00
Typical Characteristics
Efficiency Graphs
5
Typical Characteristics
5.1
Efficiency Graphs
Figure 34: Efficiency Graphs
Efficiency vs. Output Current
Vin = 5.0V
Efficiency vs. Output Current
Vin = 5.0V
90
90
Efficiency (%)
100
Efficiency (% )
100
80
3.3V
2.5V
1.8V
1.2V
1.0V
0.8V
70
60
0.2
0.4
0.6
Output Current (A)
70
0.8
50
0.01
1
100
100
90
90
80
3.3V
2.5V
1.8V
1.2V
1.0V
0.8V
60
0.2
0.4
0.6
Output Current (A)
80
2.5V
1.8V
70
1.2V
1.0V
0.8V
0.8
1
50
0.01
Copyright © 2008 Marvell
April 14, 2008, 2.00
1
60
50
0
0.1
Output Current (A)
Efficiency vs. Output Current
Vin = 3.3V
Efficiency (%)
Efficiency (%)
Efficiency vs. Output Current
Vin = 3.3V
70
3.3V
2.5V
1.8V
1.2V
1.0V
0.8V
60
50
0
80
0.1
Output Current (A)
1
Doc. No. MV-S102809-00 Rev. G
Document Classification: Proprietary
Page 39
MVPG15x/MVPG16
Datasheet
5.2
Load Regulation
Figure 35: Load Regulation
Step-Down
Step-Down Regulator
Regulator
Output
Volatgevs.
Output
Voltage
vs. Output
OutputCurrent
Current
Vout = 1.5V
Vout
= 1.5V
Output
Output Voltage
Volatge (V)(V)
1.60
1.55
1.50
1.45
3.3V
5.0V
1.40
0
5.3
0.2
0.4
0.6
Output Current (A)
0.8
1
Dropout Voltage
Figure 36: Dropout Voltage
LDO Regulator
Dropout vs. Load Current
Vin = 3.3V, Vout = 3.3V
Step-Down Regulator
Dropout vs. Load Current
Vin = 3.2V, Vout = 3.3V
0.20
TA=85C
TA=25C
TA=-40C
0.2
TA=85C
TA=25C
TA=-40C
0.15
Dropout (V)
Dropout (V)
0.3
0.1
0.10
0.05
0.00
0.0
0
0.2
0.4
0.6
Output Current (A)
0.8
1
0
0.2
Doc. No. MV-S102809-00 Rev. G
Page 40
0.4
Output Current (A)
0.6
0.8
Copyright © 2008 Marvell
Document Classification: Proprietary
April 14, 2008, 2.00
Typical Characteristics
RDS (ON) Resistance
5.4
RDS (ON) Resistance
Figure 37: RDS (ON) Resistance
Bottom FET
Rds_On vs. Temperature
0.20
0.12
0.15
0.10
Rds_On (Ω)
Rds_On (Ω)
Top FET
Rds_On vs. Temperature
0.10
3V
4V
5V
0.05
0.08
3V
4V
5V
0.06
0.00
0.04
-40
-20
0
20
40
60
-40
80
-20
0
Temperature (°C)
Top FET
Rds_On vs. Input Voltage
40
60
0.20
0.12
0.15
0.10
0.10
0.05
0.08
0.06
TA = 25°C
TA = 25°C
0.00
0.04
3.0
3.5
4.0
4.5
5.0
3.0
Input Voltage (V)
3.5
4.0
4.5
5.0
Input Voltage(V)
Copyright © 2008 Marvell
April 14, 2008, 2.00
80
Bottom FET
Rds_On vs. Input Voltage
Rds_On (Ω)
Rds_On (Ω)
20
Temperature (°C)
Doc. No. MV-S102809-00 Rev. G
Document Classification: Proprietary
Page 41
MVPG15x/MVPG16
Datasheet
5.5
IC Case and Inductor Temperature
The following data was taken using a 0.625 square inch and L = 4.7 µH. Actual results depend upon
the size of the PCB proximity to other heat emitting components.
Figure 38: IC Case and Inductor Temperature
Input Current vs. Output Current
Vin = 5V, TA = 25°C
Input Current vs. Output Current
Vin = 3.3V, TA = 25°C
1.00
3.3V
3.0V
2.5V
1.8V
1.5V
1.2V
1.0V
0.8V
0.75
0.50
Input Current (A)
Input Current (A)
1.00
0.25
0.00
2.5V
1.8V
1.5V
1.2V
1.0V
0.8V
0.75
0.50
0.25
0.00
0
0.2
0.4
0.6
Output Current (A)
0.8
1
0
0.2
3.3V
3.0V
2.5V
1.8V
1.5V
1.2V
1.0V
0.8V
36
32
IC Temperature (°C)
IC Temperature (°C)
1
0.8
1
40
40
28
24
0
0.2
0.4
0.6
Output Current (A)
0.8
2.5V
1.8V
1.5V
1.2V
1.0V
0.8V
36
32
28
24
1
0
Inductor Temperature vs. Output Current
Vin = 5V, TA = 25°C
0.2
0.4
0.6
Output Current (A)
Inductor Temperature vs. Output Current
Vin = 3.3V, TA = 25°C
36
36
32
L Temperature (°C)
L Temperature (°C)
0.8
IC Case Temperature vs. Output Current
Vin = 3.3V, TA = 25°C
IC Case Temperature vs. Output Current
Vin = 5V, TA = 25°C
3.3V
3.0V
2.5V
1.8V
1.5V
1.2V
1.0V
0.8V
28
24
20
32
2.5V
1.8V
1.5V
1.2V
1.0V
0.8V
28
24
20
0
0.2
0.4
0.6
Output Current (A)
0.8
1
0
0.2
Doc. No. MV-S102809-00 Rev. G
Page 42
0.4
0.6
Output Current (A)
0.4
0.6
Output Current (A)
0.8
1
Copyright © 2008 Marvell
Document Classification: Proprietary
April 14, 2008, 2.00
Typical Characteristics
Input Voltage Graph
5.6
Input Voltage Graph
Figure 39: Supply Current vs. Input Voltage
Supply Current vs. Input Voltage
Supply Current (mA)
4.0
3.0
2.0
1.0
0.0
3.0
3.5
4.0
4.5
Input Voltage (V)
5.0
5.5
Load = No Load
5.6.1
Step-Down Regulator
Figure 40: Output Voltage vs. Input Voltage
Figure 41: Efficiency vs. Input Voltage
Efficiency vs. Input Voltage
100%
1.55
95%
Efficiency (%)
Output Voltage (V)
Output Voltage vs. Input Voltage
1.60
1.50
90%
85%
1.45
80%
1.40
3.0
3.5
IOUT(BUCK) = 250 mA
4.0
4.5
Input Voltage (V)
5.0
5.5
3.0
3.5
VIN = 5.0V
4.0
4.5
Input Voltage (V)
5.0
5.5
IOUT(BUCK) = 500 mA
VOUT(BUCK) = 1.5V
Copyright © 2008 Marvell
April 14, 2008, 2.00
Doc. No. MV-S102809-00 Rev. G
Document Classification: Proprietary
Page 43
MVPG15x/MVPG16
Datasheet
Figure 42: Load Regulation vs. Input Voltage
Figure 43: Frequency vs. Input Voltage
Frequency vs. Input Voltage
2000
0.10%
1500
Frequency (kHz)
Load Regulation (%)
Load Regulation vs. Input Voltage
0.20%
0.00%
-0.10%
1000
500
0
-0.20%
3.0
3.5
4.0
4.5
Input Voltage (V)
VIN = 5.0V
5.0
5.5
IOUT(BUCK) = 250 mA to 1.0A
3.0
3.5
4.0
4.5
Input Voltage (V)
5.0
5.5
IOUT(BUCK) = 500 mA
VOUT(BUCK) = 1.5V
Figure 44: Average Output Current Limit vs. Input Voltage
Anerage Output
Output Current
vs.vs.
Input
Voltage
Average
CurrentLimit
Limit
Input
Voltage
Current Limit (A)
4.0
3.0
2.0
1.0
0.0
3.0
3.5
4.0
4.5
Input Voltage (V)
Doc. No. MV-S102809-00 Rev. G
Page 44
5.0
5.5
Copyright © 2008 Marvell
Document Classification: Proprietary
April 14, 2008, 2.00
Typical Characteristics
Input Voltage Graph
5.6.2
LDO Regulator
Figure 45: Output Voltage vs. Input Voltage
Figure 46: LDO Load Regulation vs. Input
Voltage
Output Voltage vs. Input Voltage
LDO Load Regulation vs. Input Voltage
3.60
3.40
Load Regulation (%)
Output Voltage (V)
0.40%
3.20
3.00
0.30%
0.20%
0.10%
2.80
3.5
4.0
4.5
Input Voltage (V)
5.0
5.5
0.00%
4.0
IOUT(LDO) = 10 mA
4.5
VOUT(LDO) = 3.3V
5.0
Input Voltage (V)
5.5
IOUT(LDO) = 10 mA to 800 mA
Figure 47: Average Output Current Limit vs. Input Voltage
Average Output Current Limit vs. Input Voltage
Current Limit (A)
2.0
1.5
1.0
0.5
0.0
3.5
4.0
4.5
Input Voltage (V)
5.0
Copyright © 2008 Marvell
April 14, 2008, 2.00
5.5
Doc. No. MV-S102809-00 Rev. G
Document Classification: Proprietary
Page 45
MVPG15x/MVPG16
Datasheet
5.7
Temperature Graphs
Figure 48: Supply Current vs. Temperature
Figure 49: UVLO vs. Temperature
UVLO vs. Temperature
3.0
3.0
2.9
UVLO (V)
Supply Current (mA)
Supply Current vs. Temperature
4.0
2.0
2.8
2.7
1.0
2.6
0.0
-40
-20
0
20
40
Temperature (°C)
IOUT(BUCK) = No Load
5.7.1
60
-40
80
IOUT(LDO) = No Load
-20
0
40
60
80
IOUT(BUCK) = 10 mA
Step-Down Regulator
Figure 50: Output Voltage vs. Temperature
Figure 51: Efficiency vs. Temperature
Output Voltage vs. Temperature
Efficiency vs. Temperature
1.60
100%
1.55
95%
Efficiency (%)
Output Voltage (V)
20
Temperature (°C)
1.50
1.45
90%
85%
1.40
80%
-40
-20
0
20
40
Temperature (°C)
VIN = 5.0V
60
80
IOUT(BUCK) = 250 mA
-40
-20
VIN = 5.0V
0
20
40
Temperature (°C)
60
80
IOUT(BUCK) = 500 mA
VOUT(BUCK) = 1.5V
Doc. No. MV-S102809-00 Rev. G
Page 46
Copyright © 2008 Marvell
Document Classification: Proprietary
April 14, 2008, 2.00
Typical Characteristics
Temperature Graphs
Figure 52: Load Regulation vs. Temperature
Figure 53: Line Regulation vs. Temperature
Line Regulation vs. Temperature
See Test Conditions
Load Regulation vs. Temperature
See Test Conditions
0.60%
0.20%
0.50%
0.10%
0.40%
0.30%
0.00%
0.20%
-0.10%
0.10%
0.00%
-40
-20
0
20
40
60
-0.20%
-40
80
Temperature (°C)
-20
0
20
40
60
80
Temperature (°C)
VIN = 5.0V
IOUT(BUCK) = 250 mA to 1.0A
VIN = 3.0V to 5.0V
VOUT(BUCK) = 1.5V
IOUT(BUCK) = 250 mA
VOUT(BUCK) = 1.5V
Figure 54: Average Output Current Limit vs.
Temperature
Figure 55: Frequency vs. Temperature
Frequency vs. Temperature
Average Output Current Limit vs. Temperature
2000
3
Frequency (kHz)
Current Limit (A)
1500
2
1000
1
500
0
-40
0
-40
-20
0
20
40
Temperature (°C)
60
-20
0
20
40
Temperature (°C)
60
80
80
VIN = 5.0V
IOUT(BUCK) = 500 mA
VOUT(BUCK) = 1.5V
Copyright © 2008 Marvell
April 14, 2008, 2.00
Doc. No. MV-S102809-00 Rev. G
Document Classification: Proprietary
Page 47
MVPG15x/MVPG16
Datasheet
5.7.2
LDO Regulator
Figure 56: Output Voltage vs. Temperature
Figure 57: Load Regulation vs. Temperature
Load Regulation vs. Temperature
Output Voltage vs. Temperature
0.20%
Load Regulation (%)
Output Voltage (V)
3.40
3.35
3.30
3.25
3.20
0.15%
0.10%
0.05%
0.00%
-40
-20
0
20
40
Temperature (°C)
VIN = 5.0V
60
80
-40
IOUT(LDO) = 10 mA
-20
0
VIN = 5.0V
20
40
Temperature (°C)
60
80
IOUT(LDO) = 10 mA to 800 mA
VOUT(LDO) = 3.3V
Figure 58: Line Regulation vs. Temperature
Figure 59: Average Output Current Limit vs.
Temperature
Line Regulation vs. Temperature
See Test Conditions
Average Ouput Current Limit vs. Temperature
2.0
0.20%
Current Limit (A)
0.10%
0.00%
-0.10%
-0.20%
-40
-20
0
20
40
60
1.5
1.0
0.5
80
Temperature (°C)
0.0
-40
VIN = 3.5V to 5.0V
IOUT(LDO) = 10 mA
-20
0
20
40
Temperature (°C)
60
80
VIN = 5.0V
VOUT(LDO) = 3.3V
Doc. No. MV-S102809-00 Rev. G
Page 48
Copyright © 2008 Marvell
Document Classification: Proprietary
April 14, 2008, 2.00
Applications Information
PC Board Layout Considerations and Guidelines
6
Applications Information
6.1
PC Board Layout Considerations and Guidelines
To avoid noise and abnormal operating behavior, follow these layout recommendations.
Warning
1.
2.
This is a 2-layer board with one ground plane and one routing layer.
Copy the routing layer in Figure 64 or Figure 65 as much as possible and place it on the top
layer. The ground plane in Figure 66 or Figure 67 can be placed on any other layer. Use the
recommend BOM in Table 11 or Table 12. Contact the factory where substitutions are made.
3. Review the recommended solder pad layout and notes in Section 7.3, Typical Pad Layout
Dimensions, on page 59.
4. Do not replace the Ceramic input capacitor with any other type of capacitor. Any type of
capacitor can be placed in parallel with the input capacitor as long as the Ceramic input
capacitor in placed next to the IC. If Tantalum input capacitor is used, it must be rated for
switching regulator applications and the operating voltage be derated by 50%.
5. Use either X7R or X5R type ceramic capacitors. If Y5V or Z5U type capacitor are used, then
you must double the recommended capacitance value.
6. Any type of capacitor can be placed in parallel with the output capacitor.
7. Low-ESR capacitors like the POSCAP from Sanyo can replace the Ceramic output capacitors
as long as the capacitor value is the same or greater. Note that the Ceramic capacitors provide
the lowest noise and smallest foot print solution.
8. Use planes for the ground, input and outputs power to maintain good voltage filtering and to
keep power losses low.
9. If there is not enough space for a power plane for the input supply, then the input supply trace
must be at least 3/8 inch wide.
10. If there is not enough space for a power plane for the output supplies, then place the output as
close to the load as possible with a trace of at least 3/8 inch wide.
11. Do not lay out the inductor first. The input capacitor placement is the most critical for proper
operation. The AC current circulating through the input capacitor and loop 1 (LP1) are square
wave with rise and fall times of 8 ns and slew rates as high as 300 A/µs (see Figure 60). At
these fast slew rates, stray PCB inductance can generate a voltage spike as high as 3.0V per
inch of PCB trace, VIND = L * di/dt. Therefore, the Ceramic input capacitor must be place as
close as possible to the PVIN and PGND pins with as short and wide trace as possible. Also,
the PVIN and PGND traces must be placed on the top layer. This will isolate the fast AC
currents from interfering with the analog ground plane.
12. The MVPG15x/MVPG16 has two internal grounds, analog (SGND) and power (PGND). The
analog ground ties to all the noise sensitive signals (PSET, VSET, and SVIN) while the power
ground ties to the higher current power paths. Noise on an analog ground can cause problems
with the IC’s internal control and bias signals. For this reason, separate analog and power
ground traces are recommended. The signal ground is connected to the power ground at one
point, which is the (-) terminal of the output capacitor.
Copyright © 2008 Marvell
April 14, 2008, 2.00
Doc. No. MV-S102809-00 Rev. G
Document Classification: Proprietary
Page 49
MVPG15x/MVPG16
Datasheet
13. Keep loop 2 (LP2) as small as possible and connect the (-) terminal of the output capacitor as
close to the (-) terminal of the input capacitor. A back-to-back placing of bypass capacitors, as
shown in Figure 60 or Figure 61, is recommended for best results.
14. Keep the switching node (SW) away from the SFB pin and all sensitive signal nodes, minimizing
capacitive coupling effects. If the SFB trace must cross the SW node, cross it at a right angle.
15. Try not to route analog or digital lines in close proximity to the power supply especially the VSW
node. If this can’t be avoided, shield these lines with a power plane placed between the VSW
node and the signal lines.
16. The type of solder paste recommended for QFN packages is “No clean”, due to the difficulty of
cleaning flux residues from beneath the QFN package.
Figure 60: MVPG15x PCB Layout Schematic
VIN
MVPG15
1
2
3
FDC642P
5
2
6
1
ILIM
VSET
MVPG15 SHDN
SGND
3
5
PSET
LDR
4
4
LFB
SFB
6
SW
SVIN
PVIN
R2
12
R4
11
10
9
C4
0.1uF
8
7
R3
10ohm
EP
U1
L1
4.7uH
U2
NC
PGND
R1
47mohm
LP1
C2
10uF/6.3V
C1
10uF/6.3V
10uF/6.3V
VIN
BUCK_OUT
LDO_OUT
C3
Figure 61: MVPG16 PCB Layout Schematic
U1
2
3
4
5
6
NC
VSET
NC
MVPG16 SHDN
SGND
SFB
SW
NC
SVIN
PVIN
LP1
C2
12
11
R3
10
9
C3
0.1uF
8
7
R1
10 ohm
10uF/6.3V
C1
10uF/6.3V
Doc. No. MV-S102809-00 Rev. G
Page 50
R2
VIN
BUCK__OUT
PSET
EP
L1
4.7uH
MVPG16
NC
PGND
1
Copyright © 2008 Marvell
Document Classification: Proprietary
April 14, 2008, 2.00
Applications Information
PC Board Layout Considerations and Guidelines
6.1.1
PC Board Layout Examples for MVPG15x/MVPG16
For the MVPG15x:
„
„
„
Actual board size = 565 mil x 945 mil; Area = 0.534 Sq. Inches.
Total copper layers = 2 (Top and Bottom)
All the components are on the top layer
For the MVPG16:
„
„
„
Actual board size = 420 mil x 725 mil; Area = 0.305 Sq. Inches.
Total copper layers = 2 (Top and Bottom)
All the components are on the top layer
Figure 62: Top Silk-Screen (Not to scale)—MVPG15x
Figure 63: Top Silk-Screen (Not to scale)—MVPG16
Copyright © 2008 Marvell
April 14, 2008, 2.00
Doc. No. MV-S102809-00 Rev. G
Document Classification: Proprietary
Page 51
MVPG15x/MVPG16
Datasheet
Figure 64: Top Traces, Vias, and Copper (Not to scale)—MVPG15x
Connect the
input voltage
plane to this
point.
Connect the
LDO regulator
output voltage
at this point.
Connect the
ground plane of
the board to
this point.
Connect the
Buck regulator
output voltage
at this point.
Connect the
ground plane of
the board to
this point.
Figure 65: Top Traces, Vias, and Copper (Not to scale)—MVPG16
Do not connect this signal
ground to the board
ground on the top layer.
Do not connect
this signal
ground to the
board ground
on the top layer.
Connect BUCK_OUT
trace at this point.
Connect the ground
plane of the board
to this point.
Connect VIN
trace at this
point.
Doc. No. MV-S102809-00 Rev. G
Page 52
Copyright © 2008 Marvell
Document Classification: Proprietary
April 14, 2008, 2.00
Applications Information
PC Board Layout Considerations and Guidelines
Figure 66: Bottom Silk Screen, Bottom Trace, Vias, and Bottom Copper (Not to scale)—MVPG15x
Connect to the ground
plane of the board.
Connect to the
ground plane of
the board.
Connect to the
ground plane of
the board.
Connect to the ground
plane of the board.
Figure 67: Bottom Silk Screen, Bottom Trace, Vias, and Bottom Copper (Not to scale)—MVPG16
Connect to the ground
plane of the board.
Connect to the
ground plane of
the board.
Connect to the
ground plane of
the board.
Connect to the ground
plane of the board.
Copyright © 2008 Marvell
April 14, 2008, 2.00
Doc. No. MV-S102809-00 Rev. G
Document Classification: Proprietary
Page 53
MVPG15x/MVPG16
Datasheet
6.2
Bill of Materials
The following tables list the components used with the MVPG15x/MVPG16.
Table 11: MVPG15x BOM
It e m
Qty
Ref
Manufacturer Part
No.
Manufacturer
D e s c r ip t i o n
1
1
U1
MVPG15B
Marvell
Semiconductor
1 MHz, 1.5A Peak Current-Limit Step-Down
Regulator with LDO regulator controller
2
1
U2
FDC642P
Fairchild
P-FET, 2.5V, SuperSOT-6 package
3
1
C1
CE JMK212 BJ106MG-T
Taiyo-Yuden
10 µF, ± 20%, X5R, 6.3V, 0805 Case Size,
Ceramic
C2012X5R0J106MT
TDK
10 µF, ± 20%, X5R, 6.3V, 0805 Case Size,
Ceramic
CE JMK212 BJ106MG-T
Taiyo-Yuden
10 µF, ± 20%, X5R, 6.3V, 0805 Case Size,
Ceramic
C2012X5R0J106MT
TDK
10 µF, ± 20%, X5R, 6.3V, 0805 Case Size,
Ceramic
CE JMK212 BJ106MG-T
Taiyo-Yuden
10 µF, ± 20%, X5R, 6.3V, 0805 Case Size,
Ceramic
C2012X5R0J106MT
TDK
10 µF, ± 20%, X5R, 6.3V, 0805 Case Size,
Ceramic
RM LMK105 BJ104KV-F
Taiyo-Yuden
0.1 µF, ± 10%, X5R, 10V, 0402 Case Size,
Ceramic
C1005X5R1A104K
TDK
0.1 µF, ± 10%, X5R, 10V, 0402 Case Size,
Ceramic
4
5
1
C2
6
7
1
C3
8
9
1
C4
10
11
1
L1
A918CY-4R7M=P3
Toko
4.7 µH, 1.59A (typ.), 55 mΩ (typ.), H = 2mm,
L = 6.2 mm, W = 6.3 mm
12
1
R1
RL1220T-R047-J
Susumu Co. Ltd.
0.047Ω, 1/4W, 5%, 0805 Case Size
13
1
R2
14
1
R3
15
1
R4
See Section 3.2, Output Voltage—AnyVoltage™
Technology, on page 26.
ERJ-2RKF10R0X
Panasonic-ECG
See Section 3.2, Output Voltage—AnyVoltage™
Technology, on page 26.
Doc. No. MV-S102809-00 Rev. G
Page 54
10Ω, 1/16W, 1%, 0402 Case Size
Copyright © 2008 Marvell
Document Classification: Proprietary
April 14, 2008, 2.00
Applications Information
Bill of Materials
Table 12: MVPG16 BOM
It e m
Qty
Ref
Manufacturer Part
No.
Manufacturer
D e s c r ip t i o n
1
1
U1
MVPG16
Marvell
Semiconductor
1 MHz, 1.5A Peak Current-Limit Step-Down
Regulator
2
1
C1
CE JMK212 BJ106MG-T
Taiyo-Yuden
10 µF, ± 20%, X5R, 6.3V, 0805 Case Size,
Ceramic
C2012X5R0J106MT
TDK
10 µF, ± 20%, X5R, 6.3V, 0805 Case Size,
Ceramic
CE JMK212 BJ106MG-T
Taiyo-Yuden
10 µF, ± 20%, X5R, 6.3V, 0805 Case Size,
Ceramic
C2012X5R0J106MT
TDK
10 µF, ± 20%, X5R, 6.3V, 0805 Case Size,
Ceramic
CE JMK212 BJ106MG-T
Taiyo-Yuden
10 µF, ± 20%, X5R, 6.3V, 0805 Case Size,
Ceramic
C2012X5R0J106MT
TDK
10 µF, ± 20%, X5R, 6.3V, 0805 Case Size,
Ceramic
RM LMK105 BJ104KV-F
Taiyo-Yuden
0.1 µF, ± 10%, X5R, 10V, 0402 Case Size,
Ceramic
C1005X5R1A104K
TDK
0.1 µF, ± 10%, X5R, 10V, 0402 Case Size,
Ceramic
3
4
1
C2
5
6
1
C3
7
8
1
C4
9
10
1
L1
A918CY-4R7M=P3
Toko
4.7 µH, 1.59A (typ.), 55 mΩ (typ.), H = 2mm,
L = 6.2 mm, W = 6.3 mm
11
1
R1
ERJ-2RKF10R0X
Panasonic-ECG
10Ω, 1/16W, 1%, 0402 Case Size
12
1
R2
See Section 3.2, Output Voltage—AnyVoltage™
Technology, on page 26.
13
1
R4
See Section 3.2, Output Voltage—AnyVoltage™
Technology, on page 26.
Copyright © 2008 Marvell
April 14, 2008, 2.00
Doc. No. MV-S102809-00 Rev. G
Document Classification: Proprietary
Page 55
MVPG15x/MVPG16
Datasheet
THIS PAGE INTENTIONALLY LEFT BLANK
Doc. No. MV-S102809-00 Rev. G
Page 56
Copyright © 2008 Marvell
Document Classification: Proprietary
April 14, 2008, 2.00
Mechanical Drawing
Mechanical Drawing
7
Mechanical Drawing
7.1
Mechanical Drawing
Figure 68: Mechanical Drawing
Copyright © 2008 Marvell
April 14, 2008, 2.00
Doc. No. MV-S102809-00 Rev. G
Document Classification: Proprietary
Page 57
MVPG15x/MVPG16
Datasheet
7.2
Dimensions
Table 13: Dimensions
Sy m b o l
D i m e n s io ns i n m m
D i m e n s io n s i n in c h
MIN
NOM
MAX
MIN
NOM
MAX
A
0.80
0.90
1.00
0.031
0.035
0.039
A1
0.00
0.02
0.05
0.000
0.001
0.002
A2
0.20 REF
0.008 REF
b1
0.18
0.23
0.28
0.007
0.009
0.011
b2
0.51
0.56
0.61
0.020
0.022
0.024
D
2.90
3.00
3.10
0.114
0.118
0.122
D1
1.60
1.70
1.80
0.063
0.067
0.071
E
3.90
4.00
4.10
0.153
0.157
0.161
E1
3.40
3.50
3.60
0.134
0.138
0.142
e
0.50 BSC
0.020 BSC
L
0.30
0.40
0.50
0.012
0.016
0.020
aaa
--
--
0.15
--
--
0.006
bbb
--
--
0.10
--
--
0.004
ccc
--
--
0.10
--
--
0.004
Doc. No. MV-S102809-00 Rev. G
Page 58
Copyright © 2008 Marvell
Document Classification: Proprietary
April 14, 2008, 2.00
Mechanical Drawing
Typical Pad Layout Dimensions
7.3
Typical Pad Layout Dimensions
7.3.1
Recommended Solder Pad Layout
Figure 69: Recommended Solder Pad Layout
Package
Outline
0.55
0.23
0.50
0.67
0.075
4.00
0.83
3.50
0.56
1.75
1.60
2.20
3.30
4x3 DFN-12
Land Pattern (mm)
0.50 mm
0.23 mm
0.27 mm
Pad
SM
Pad
SM
0.051 mm
Pad
0.168 mm
DFN Lead with
Non-Solder Mask Defined Terminal
„
„
Note
„
„
„
„
„
Top view
Drawing not to scale
Dimensions are in millimeters
Exposed pad shall be copper plated
Oversize solder mask by 0.102 mm (4 mils) over pad size (0.051 mm annular ring)
0.168 mm solder mask (sm) between pads
Tolerance ±0.05 mm
Copyright © 2008 Marvell
April 14, 2008, 2.00
Doc. No. MV-S102809-00 Rev. G
Document Classification: Proprietary
Page 59
MVPG15x/MVPG16
Datasheet
THIS PAGE INTENTIONALLY LEFT BLANK
Doc. No. MV-S102809-00 Rev. G
Page 60
Copyright © 2008 Marvell
Document Classification: Proprietary
April 14, 2008, 2.00
Part Order Numbering/Package Marking
Part Order Numbering
8
Part Order Numbering/Package Marking
8.1
Part Order Numbering
Figure 70 shows the part order numbering scheme for the MVPG15x/MVPG16. Refer to Marvell
Field Applications Engineers (FAEs) or representatives for further information when ordering parts.
Figure 70: Sample Part Order Number
MVPG1x x–xx–xxx1C000–xxxx
Part Numbers
MVPG15
MVPG16
Custom Code (optional)
Custom Code
LDO Output Voltage
Options
B = 3.3V
E = 2.5V
Temperature Code
C = Commercial
I = Industrial
Custom Code
Environmental Code
+ = RoHS 0/6
- = RoHS 5/6
1 = RoHS 6/6
Package Code
NAE = 12-pin DFN
Table 14: Part Order Options
P a c k a g e Ty p e
M a r k in g
LDO
Ambient
Te m p e r a t u r e
Range
Part Order Number
4 mm x 3 mm 12-pin DFN
B0
3.3V
-40°C to 85°C
MVPG15B-xx-NAE1C000
4 mm x 3 mm 12-pin DFN
E0
2.5V
-40°C to 85°C
MVPG15E-xx-NAE1C000
4 mm x 3 mm 12-pin DFN
00
--
-40°C to 85°C
MVPG16-xx-NAE1C000
Copyright © 2008 Marvell
April 14, 2008, 2.00
Doc. No. MV-S102809-00 Rev. G
Document Classification: Proprietary
Page 61
MVPG15x/MVPG16
Datasheet
8.2
Package Marking
This section show the sample package markings and pin 1 location.
Figure 71: MVPG15x Package Marking
Marvell logo
G15
B0A2R
YWWAA
Pin 1
Part number, LDO options, custom code, assembly
house code
G15 = Part number
B0 = LDO output voltage options (B or E)
A2 = Custom code
R = Assembly house code
Date code, traceability lot code
YWW = Date code (Y = year, WW = Work Week)
AA = Traceability lot code
Note: The above drawing is not drawn to scale. Location of markings is approximate.
Doc. No. MV-S102809-00 Rev. G
Page 62
Copyright © 2008 Marvell
Document Classification: Proprietary
April 14, 2008, 2.00
Part Order Numbering/Package Marking
Package Marking
Figure 72: MVPG16 Package Marking
Marvell logo
G16
00A2R
YWWAA
Pin 1
Part number, LDO option, custom code, assembly
house code
G16 = Part number
00 = No LDO output voltage option
A2 = Custom code
R = Assembly house code
Date code, traceability lot code
YWW = Date code (Y = year, WW = Work Week)
AA = Traceability lot code
Note: The above drawing is not drawn to scale. Location of markings is approximate.
Copyright © 2008 Marvell
April 14, 2008, 2.00
Doc. No. MV-S102809-00 Rev. G
Document Classification: Proprietary
Page 63
MVPG15x/MVPG16
Datasheet
THIS PAGE INTENTIONALLY LEFT BLANK
Doc. No. MV-S102809-00 Rev. G
Page 64
Copyright © 2008 Marvell
Document Classification: Proprietary
April 14, 2008, 2.00
A
Revision History
Table 15: Revision History
D o c um en t Ty p e
D o c u m e n t R e v i s io n
Release
Rev.G
Electrical Specifications
Updated VUVLO values in Table 5, Electrical Characteristics, on page 19
Copyright © 2008 Marvell
April 14, 2008, 2.00
Doc. No. MV-S102809-00 Rev. G
Document Classification: Proprietary
Page 65
Back Cover
Marvell Semiconductor, Inc.
5488 Marvell Lane
Santa Clara, CA 95054, USA
Tel: 1.408.222.2500
Fax: 1.408.752.9028
www.marvell.com
Marvell. Moving Forward Faster