SANKEN SPI

1-1-3 Multi-Output Type Regulator ICs
SPI-8001TW/SPI-8002TW/SPI-8003TW 2-Output, Step-down Switching Mode Regulator ICs
■Features
■Absolute Maximum Ratings*1
• 2 regulators combined in one package
Ratings
Parameter
• Output current: 1.5A × 2 (HSOP 16 Pin
Surface mount package)
Input Voltage
• High efficiency: TYP80% (SPI-8001TW),
TYP78% (SPI-8002TW)
Power Dissipation*2, *3
• Variable output voltage: 1.0 to 16V (SPI8001TW), 1.0 to 24V (SPI-8002TW)
• Built-in reference oscillator (250kHz): Enables
to downsize a choke-coil
• Low circuit current consumption: ≤ 1µA (at
output OFF)
• High accuracy reference voltage: ±1%
Symbol
Unit
SPI-8001TW
SPI-8002TW
SPI-8003TW
VIN
21
40
40
V
VCC
21
40
40
V
VC/E
21
40
40
PD
V
3.0
W
°C
Junction Temperature
Tj
+135
+150
Storage Temperature
Tstg
–40 to +135
–40 to +150
Thermal Resistance (junction to case)*2
θ j-c
9.0
°C/W
Thermal Resistance (junction to ambient air)*2
θ j-a
35.8
°C/W
°C
*1: Absolute maximum ratings show the destructive limit. No parameter should exceed the ratings in transient or normal
operations.
*2: When mounted on glass-epoxy board 70cm2 (copper laminate area 30.8cm2).
*3: Limited by thermal protection.
• Built-in foldback-overcurrent and thermal
protection circuits
• Built-in ON/OFF circuit (soft start available) –
per output
■Applications
• Onboard local power supplies
• OA equipment
• For stabilization of the secondary-side output voltage of switching power supplies
■Recommended Operating Conditions*1
Ratings
Parameter
Symbol
SPI-8001TW
Min
Input Voltage Range
SPI-8002TW
Max
Min
SPI-8003TW
Max
Min
Unit
Max
VIN
VO+3
20
VO+3
38
VO+3
38
V
VCC
4.5
20
4.5
38
4.5
38
V
38
V
24
V
VC/E
Output Voltage Range
VO
Output Current Range
IO
20
1
16
38
1
1.5
24
1
1.5
1.5
A
Operating Junction Temperature Range
Tjop
–30
+135
–30
+135
–30
+125
°C
Operating Temperature Range
Top
–30
+135
–30
+135
–30
+85
°C
*1: Recommended operating conditions show the operating conditions required for the normal circuit function described in the electrical characteristics.
These conditions must be followed in actual use.
96
ICs
SPI-8001TW/SPI-8002TW/SPI-8003TW
■Electrical Characteristics*1
(Ta=25°C)
Ratings
Parameter
Reference Voltage
Temperature Coefficient
of Reference Voltage
typ.
0.996
1.006
Conditions
∆VREF/∆T
Quiescent Circuit Current 1
Quiescent Circuit Current 2
Quiescent Circuit Current 3
Quiescent Circuit Current 4
Quiescent Circuit Current 5
Quiescent Circuit Current 6
High Level Voltage
Low Level Voltage
Inflow Current
at High
Low Level Voltage
Inflow Current
at Low
1.016
0.996
1.006
1.016
0.966
±0.1
10
Conditions
215
250
60
40
1.6
285
30
60
10
40
200
ICC
30
10
Conditions
IIN (off)
A
4
8.5
mA
VCC=14V, IO=0A
1
1
1
1
1
VIN=14V, VC/E=0V or Open
IIN (ssov)
—
4
Conditions
—
VC/EH
2
2
IC/EH
VIN=VCC=15V
VSSL
ISSL
0.5
VIN=VCC=15V
80
VSSL=0V, VIN=VCC=15V
V
95
µA
VC/E=20V
0.5
60
0.8
VIN=VCC=14V
95
VC/E=20V
Conditions
V
VIN=VCC=14V
0.8
95
Conditions
Conditions
2
0.8
Conditions
mA
VCC=14V, IO=0V, SS1=SS2=0V
VIN=VCC=15V
VC/EL
mA
8.5
—
Conditions
µA
VIN=14V, VCC=5V, IO=0A, SS1=SS2=0V
—
Conditions
µA
VIN=14V, VC/E=0V or Open
VCC=15V, VC/E=0V or Open
ICC (ssov)
mA
VIN=14V, VCC=5V, IO=0A, VO≤12V
8.5
VIN=15V, VC/E=0V or Open
ICC (off)
mV
VIN=VCC=14V
1
Conditions
mV
40
1.6
VCC=15V, IO=0A
Conditions
kHz
60
VIN=VCC=14V, VO=5V, IO=0.2 to 1.5A
4
8.5
400
VIN=VCC=9 to 18V, VO=5V, IO=1A
VIN=15V, VCC=5V, IO=0V, VO≤12V
Conditions
%
VIN=14V, IO=0.1A, COSC=100pF
1.6
4
%
VIN=14V, VCC=5V, VO=5V, IO=0.5A, IIN : excluding ICC
VIN=VCC=15V
IIN
mV/ °C
81
VIN=VCC=15V, VO=5V, IO=0.2 to 1.5A
Conditions
V
VIN= VCC=14V, VO=5V, IO=0.5A, IIN : including ICC
81
VIN=VCC=10 to 20V, VO=5V, IO=1A
VLoad
1.016
78
VIN=VCC=15V, VO=5V, IO=0.5A
30
1.006
±0.1
78
250
max.
VIN=14V, IO=0.1A, Ta=–30 to +125°C
VIN=15V, VO=5V, IO=0.5A, VCC=5V, IIN: excluding ICC
fosc
Unit
typ.
VIN=14V, IO=0.1A
83
Conditions
IS
min.
VIN=VCC=15V, VO=5V, IO=0.5A, IIN: including ICC
Conditions
Overcurrent Protection
Starting Current
max.
80
VLine
Load Regulation
typ.
VIN=10V, VO=1V, IO=0.1A, Ta=–30 to +135°C
Conditions
Line Regulation
SPI-8003TW
min.
±0.1
Conditions
Eff2
Oscillation Frequency
SPI-8002TW
max.
VIN=10V, VO=1V, IO=0.1A
Conditions
Efficiency 2*2
SS
Terminal*3
VREF
SPI-8001TW
min.
Eff1
Efficiency 1*2
C/E
Terminal
Symbol
0.5
V
VIN=VCC=14V
60
80
60
80
µA
VSSL=0V, VIN=VCC=14V
*1: Electrical characteristics show the characteristic ratings guaranteed when operating the ICs under the measurement conditions described in the above table.
*2: Efficiency is calculated from the following formula.
η (%) = VO·IO × 100
VIN·IIN
*3: Pin 6 and pin 11 are the SS pins. Soft start at power on can be performed with capacitors connected to these pins. The outputs can also be turned ON/OFF with these pins. The
outputs are stopped by setting the voltages of these pins to VSSL or lower. SS-pin voltages can be changed with open-collector drive circuits of transistors.
When using both the soft-start and ON/OFF functions together, the discharge currents from C4 and C5 flow into the ON/OFF control transistors respectively. Therefore, limit the
currents securely to protect the transistors if C4 and C5 capacitances are large. The SS pins are pulled up to the power supply in the ICs, so applying the external voltages are
prohibited.
ICs
97
1-1-3 Multi-Output Type Regulator ICs
■External Dimensions (HSOP16)
(Unit : mm)
1.35±–0.2
1+0.1/–0.05
(Between the root of leads and
back side)
(Heatsink thickness)
10.5±0.2
16
9
0 to 0.1
Control
Number
0.9±0.3
Lot Number
10.5±0.3
SK
2.0+0.2/–0.08
Part Number
0 to 8°
8
2.5±0.2
2.75MAX
1
Enlarged View of A
A
0.25+0.15/–0.05
S
0.10
S
12.2±–0.2
(Gate remains: Not included in dimensions)
(11)
(4.5)
7.5±0.2
(2)
Pin Assignment
q AGND
w VIN1
e VCC
r SWout1
t DGND1
y SS1
u VREF1
i N.C
16
9
1.27±0.25
o
!0
!1
!2
!3
!4
!5
!6
Pin Assignment (SPI-8003TW)
q AGND
o AGND
!0 ROSC
w VIN1
e VCC
!1 VREF2
r SWout1
!2 SS2
t DGND1
!3 DGND2
y SS1
!4 SWout2
!5 C/E
u VREF1
i COSC
!6 VIN2
AGND
VREF2
SS2
DGND2
SWout2
C/E
VIN2
N.C
0.4+0.15/–0.05
Product Mass : Approx.0.86g
■Block Diagram
VIN
VIN
+
3
VCC
VC/E
C1
SPI-8001TW/SPI-8002TW
+
3
VCC
C6
3V
14
Start
C/E
VREF
PReg
OSC
fdown
TSD
UVLO
15
VC/E
3V
C/E
Start
10
VIN1
6
SS1
7
VREF1
PWM
Logic
C4
–
–
Buffer-Amp
f down
cut
Amp
UVLO
DGND1
VIN2
AGND
L1
4
5
VO1
C2
C7
6
SS1
7
VREF1
+
–
–
+
Buffer-Amp
C5
15
f down
cut
R1
2
SWOUT1
4
DGND1
5
Drive
+
–
–
Amp
VIN1
OCP
3V
PWM
Logic
R5
+
Di1
OCP
3V
f down
cut
C9
SWOUT1
PWM
Rosc
Cosc
R7
Drive
+
–
–
+
TSD
8
2
OCP
3V
+
fdown
C4
1V
1V
R5
OSC
RESET
PReg
VREF
RESET
f down
cut
C1
SPI-8003TW
PWM
VIN2
AGND
L1
11
10
SS2
VREF2
PWM
Logic
+
–
C5
Buffer-Amp
AGND
+
–
–
+
–
Amp
SWOUT2
13
DGND2
12
PWM
L2
VO2
C3
R3
R4
98
ICs
R6
11
SS2
VREF2
+
Di2
AGND
1, 9
R2
12
Drive
C7
R1
R2
R6
C2
16
OCP
3V
VO1
+
Di1
PWM
Logic
+
–
C8
C6
Buffer-Amp
AGND
+
–
–
–
+
Amp
Drive
SWOUT2
14
DGND2
13
PWM
L2
VO2
+
Di2
C3
AGND
1, 9
R3
R4
C8
SPI-8001TW/SPI-8002TW/SPI-8003TW
■Typical Connection Diagram
VIN
VC/E
VCC
2
6
5
SWout1
VCC
L1
4
2
V01
Ch1
SS1
7
Di1
R1
6
+
C2
IREF1
DGND1
C4
15
C1
VIN2
5
R2
C4
V02
7
R6
12
SS2
Ch2
VREF2
10
Di2
12
R6
C8
R4
AGND
C5
+
C2
C7
R2
VIN2
SWout2
14
VC2
L2
R3
C3
IREF2
R1
SPI-8003TW
16
C1
+
DGND2
Di1
IREF1
L2
11
L1
VC1
Ch1
DGND1
+
13
4
SWout1
SS1
C5
SWout2
C/E
VIN1
VREF1
R5
C7
SPI-8000TW
+
C6
C/E
VIN1
15
3
VREF1
R5
VC/F
VIN
14
3
C6
1, 9
13
SS2
VREF2
11
R3
+
C3
IREF2
DGND2
AGND
1, 9
GND
Ch2
Di2
CORC
8
C8
R4
RCSC
10
GND
C9
C1
C2, C3
C4, C5
C6, C7, C8
: 220 µF/50V
: 470 µF/25V
: 1 µF
: 0.1 µF
R5, R6
L1, L2
Di1, Di2
(Sanken)
: 1kΩ
: 47 µH
: SJPB-H6
R7
GND
GND
C1
C2, C3
C4
C5, C6
C7, C8
: 220 µF/50V
: 470 µF/25V
: 1 µF/50V
: 1 µF/10V
: 0.1 µF/50V
C9
L1, L2
R2, R4
R5, R6
Di1, Di2
: 100pF/10V
: 47 µH
: 1kΩ
: 1kΩ
: SJPB-H6 (Sanken)
Diodes Di1, Di2
• Be sure to use Schottky-barrier diodes for Di1 and Di2.
If other diodes like fast recovery diodes are used, IC may be destroyed because of the reverse voltage generated by the recovery voltage or ON voltage.
Choke coils L1, L2
• If the winding resistance of the choke coil is too high, the efficiency may drop below the rated value.
• As the overcurrent protection starting current is about 2.0A, take care concerning heat radiation from the choke coil caused by magnetic saturation due to
overload or short-circuited load.
• Use a closed-magnetic-path coil to prevent interference between the channels SWout1 and SWout2.
Capacitors C1, C2, C3
• As large ripple currents flow through C1, C2 and C3, use high-frequency and low-impedance capacitors suitable for switching mode power supplies.
Especially when the impedance of C2 and C3 are high, the switching waveforms may become abnormal at low temperatures. For C2 and C3, do not use
capacitors with extremely low equivalent series resistance (ESR) such as OS capacitors or tantalum capacitors, which may cause abnormal oscillation.
Resistors R1, R2, R3, R4
• R1, R2, R3 and R4 are resistors for setting output voltages. Set the resistors so that IREF is approx. 1 mA. For example, R1 and R2 can be calculated as
shown below.
R1=
(VO1–VREF1)
(VO1–V)
VREF1
1
.=
=
(Ω), R2=
=
1(KΩ)
1×10–3
IREF1 1×10–3 .
IREF1
To create the optimum operating conditions, place the components as close as possible to each other.
■Ta-PD Characteristics
3.5
θ j-a (Copper Laminate Area)
35.8°C/W (30.8 cm2)
Power Dissipation PD (W)
3.0
38.2°C/W (15.6 cm2)
PD = VO·IO
42.6°C/W (8.64 cm2)
2.5
100
VO
–1 – VF·IO 1–
ηχ
VIN
52.3°C/W (3.34 cm2)
2.0
VO :
VIN :
IO :
ηχ :
VF :
69.2°C/W (0.84 cm2)
1.5
1.0
0.5
0.0
–25
0
25
50
75
100
Output Voltage
Input Voltage
Output Current
Efficiency (%)
D1 Forward Voltage
SJPB-H6···0.45V (IO=1A)
125 135 150
Ambient Temperature Ta (°C)
Note 1: The efficiency depends on the input voltage and the output current. Therefore, obtain the value from the efficiency graph and substitute the percentage in the formula above.
Note 2: Thermal design for D1 must be considered separately.
ICs
99