SHARP PQ3DZ53U

Low Power-Loss Voltage Regulators
PQ05DZ51/11 Series / PQ3DZ53/13
PQ05DZ51/11 Series / PQ3DZ53/13
0.5A/1.0A Output, General Purpose, Surface Mount Type Low Power-Loss Voltage Regulator
■
■
Features
(Unit : mm)
Outline Dimensions
Low power-loss
(Dropout voltage : MAX. 0.5V)
● Surface mount package (equivalent to SC-63)
● Available 3.3V, 5V, 9V, 12V output type
● Output current (0.5A : PQ05DZ51 series/PQ3DZ53)
(1.0A : PQ05DZ11 series/PQ3DZ13)
● Output voltage precision : ±3.0%
● Built-in ON/OFF control function
● Low dissipation current at OFF-state (Iqs : MAX. 5µA)
● Built-in overcurrent protection, overheat protection
function, ASO protection function
● Available tape-packaged products
(ø330mm reel : 3 000 pcs., PQ05DZ5U/1U series,
PQ3DZ53U/13U)
●
■
2.3 ± 0.5
( 0.5 )
3
Epoxy resin
( 1.7 )
5.5 ± 0.5
05DZ11
2.5 MIN.
0.2
0.5± 0.1
( 0.5 )
4 – ( 1.27 )
1
Applications
Personal computers
CD-ROM drives
● Power supplies for various OA equipment
2
3
4
( 0.9 )
9.7 MAX.
6.6 MAX.
5.2 ± 0.5
5
●
●
■
Internal connection diagram
1
3
Specific IC
Model Line-ups
2
3.3V output
5.0V output
9.0V output
12.0V output
■
0.5A output
PQ3DZ53
PQ05DZ51
PQ09DZ51
PQ12DZ51
1.0A output
PQ3DZ13
PQ05DZ11
PQ09DZ11
PQ12DZ11
DC input(VIN)
ON/OFF control terminal(Vc)
DC output(Vo)
NC
GND
Heat sink is common to terminal 3 (Vo)
1
2
3
4
5
5
Absolute Maximum Ratings
(Ta=25˚C)
Rating
Parameter
Symbol
voltage
ON/OFF control terminal voltage
Output current
❇2 Power dissipation
❇3 Junction temperature
Operating temperature
Storage temperature
Soldering temperature
VIN
Vc
Io
PD
Tj
Topr
Tstg
Tsol
❇1 Input
❇1
PQ05DZ51 series
PQ3DZ53
PQ05DZ11 series
PQ3DZ13
24
24
0.5
1.0
8
150
-20 to + 80
-40 to +150
260 (for 10s)
Unit
V
V
A
W
˚C
˚C
˚C
˚C
❇1
All are open except GND and applicable terminals.
PD : With infinite heat sink
❇3 Overheat protection may operate at 125<=Tj<=150˚C
❇2
Notice
• Please refer to the chapter " Handling Precautions ".
In the absence of confirmation by device specification sheets,SHARP takes no responsibility for any defects that may occur in equipment using any SHARP
devices shown in catalogs,data books,etc.Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device.
Internet Internet address for Electronic Components Group http://sharp-world.com/ecg/
Low Power-Loss Voltage Regulators
■
PQ05DZ51/11 Series / PQ3DZ53/13
Electrical Characteristics
(Unless otherwise specified, conditions shall be Vc=2.7V, Io=0.3A[PQ05DZ51 series/PQ3DZ53], Io=0.5A[PQ05DZ11 series/PQ3DZ13]❇4, Ta=25˚C)
Symbol
Parameter
PQ3DZ53/PQ3DZ13
PQ05DZ51/PQ05DZ11
Output voltage
Vo
PQ09DZ51/PQ09DZ11
PQ12DZ51/PQ12DZ11
Load regulation PQ05DZ51 series
RegL
PQ05DZ11 series
RegI
Line regulation
Temperature coefficient of output voltage
TcVo
Ripple rejection
RR
PQ05DZ51 series/PQ3DZ53
Dropout voltage
Vi-o
PQ05DZ11 series/PQ3DZ13
❇7 ON-state voltage for control
Vc(ON)
Ic(ON)
ON-state current for control
Vc(OFF)
OFF-state voltage for control
Ic(OFF)
OFF-state current for control
Quiescent current
Iq
Output OFF-state consumption current
Iqs
❇4
❇5
❇6
Conditions
MIN.
3.201
4.85
8.73
11.64
❇4
Io=5mA to 0.5A, ❇4
Io=5mA to 1.0A, ❇4
❇5, Io=5mA
Tj=0 to 125˚C, Io=5mA, ❇4
Refer to Fig.2
❇6, Io=0.3A
❇6, Io=0.5A
TYP.
3.3
5.0
9.0
12.0
––
❇8
––
––
45
❇8
❇8
Io=0A, ❇4
VC=0.4V, Io=0A, ❇4
Io=0A, ❇4
Vc=0.4V, Io=0A, ❇4
0.2
0.2
––
––
––
––
❇8 4
––
2.0
––
––
––
––
––
❇4
Unit
0.1
❇9 ±0.01
60
––
❇4
MAX.
3.399
5.15
9.27
12.36
V
2.0
%
2.5
––
––
%
%/˚C
dB
0.5
V
––
200
0.8
2
10
5
V
µA
V
µA
mA
µA
PQ3DZ53/PQ3DZ13:VIN=5V, PQ05DZ51/11:VIN =7V, PQ09DZ51/11:VIN =11V, PQ12DZ51/11: VIN =14V
PQ3DZ53/13:VIN=4 to 10V, PQ05DZ51/11:VIN = 6 to 16V, PQ09DZ51/11:VIN =10 to 20V, PQ12DZ51/11: VIN =13 to 23V
❇7
Input voltage shall be the value when output voltage is 95% in comparison with the initial value. PQ3DZ53/13:VIN=3.7V
In case of opening control terminal 2 , output voltage turns off.
❇8
Applied only to PQ05DZ51/11 series.
❇9
PQ3DZ53/PQ3DZ13:±0.02
Fig. 1 Test Circuit
VIN
1
2
A
Vc
+
A
Iq
Vo
47µF
3
5
0.33µF
Fig. 2 Test Circuit of Ripple Rejection
Io
A
ei
RL
VIN
PD
50
80 100
Ambient temperature Ta (˚C)
150
Note) Oblique line portion : Overheat protection may operate in this area.
RL
f=120Hz(sine wave)
ei(rms)=0.5V
VIN=5V(PQ3DZ53/13)
7V(PQ05DZ51/11)
V eo
11V(PQ09DZ51/11)
14V(PQ12DZ51/11)
Io=0.3A
RR=20 log(ei(rms)/eo(rms))
Fig. 4 Overcurrent Protection Characteristics
(Typical Value) (PQ3DZ53)
PD:With infinite heat sink
5
0
–20 0
+
2.7V
Ic
Io
47µF
0.33µF
Output voltage Vo (V)
Power dissipation PD (W)
8
2
5
V
Fig. 3 Power Dissipation vs. Ambient
Temperature
10
+
3
1
12
11
10
9
8
7
6
5
4
3
2
1
Vi-O=0.5V
Vi-O=1V
Vi-O=2V
Vi-O=3V
Vi-O=5V
Vi-O=10V
0
0.5
1.0
1.5
Output current Io (A)
2.0
Low Power-Loss Voltage Regulators
12
11
10
9
8
7
6
5
4
3
2
1
Vi-O=1V
Vi-O=0.5V
Vi-O=2V
Vi-O=5V
Vi-O=3V
Vi-O=10V
0
0.5
1.0
1.5
Output current Io (A)
12
11
10
9
8
7
6
5
4
3
2
1
0
Output voltage Vo (V)
Vi-O=1V
Vi-O=2V
Vi-O=3V
Vi-O=5V
Vi-O=10V
0.5
1.0
1.5
Output current Io (A)
Vi-o=2V
Vi-o=3V
2.0
Vi-o=5V
1.0
0.5
1.0
1.5
Output current Io (A)
2.0
Vi-O=2V
Vi-O=3V
Vi-O=5V
Vi-O=10V
9.0
Vi-o=0.5V
Vi-o=10V
Vi-O=10V
0.5
1.0
1.5
Output current Io (A)
2.0
Fig.10 Overcurrent Protection Characteristics
(Typical Value)(PQ09DZ11)
Output voltage Vo (V)
Output voltage Vo (V)
3.0
Vi-O=3V
Vi-O=1V
Vi-o=10V
8.0
Vi-o=1V
Vi-O=1V
Vi-O=0.5V
0
5.0
4.0
Vi-O=2V
12
11
10
9
8
7
6
5
4
3
2
1
2.0
Fig. 9 Overcurrent Protection Characteristics
(Typical Value)(PQ05DZ11)
Vi-O=0.5V
Fig. 8 Overcurrent Protection Characteristics
(Typical Value) (PQ12DZ51)
Vi-O=0.5V
0
12
11
10
9
8
7
6 Vi-O=5V
5
4
3
2
1
2.0
Fig. 7 Overcurrent Protection Characteristics
(Typical Value) (PQ09DZ51)
Output voltage Vo (V)
Fig. 6 Overcurrent Protection Characteristics
(Typical Value) (PQ05DZ51)
Output voltage Vo (V)
Output voltage Vo (V)
Fig. 5 Overcurrent Protection Characteristics
(Typical Value) (PQ3DZ13)
PQ05DZ51/11 Series / PQ3DZ53/13
Vi-o=0.5V
7.0
Vi-o=5V
Vi-o=1V
6.0
5.0
4.0
3.0
Vi-o=2V
2.0
Vi-o=3V
1.0
0
0.5
1.0
1.5
Output current Io (A)
2.0
0
0.5
1.0
1.5
Output current Io (A)
2.0
Low Power-Loss Voltage Regulators
PQ05DZ51/11 Series / PQ3DZ53/13
Fig.11 Overcurrent Protection characteristics
(Typical Value)(PQ12DZ11)
Output voltage Vo (V)
12
11
10
9
8
7
6
5
4
3
2
1
Vi-o=10V
Vi-o=2V
Vi-o=3V
Vi-o=5V
Vi-o=1V
Vi-o=0.5V
0
0.5
1.0
1.5
2.0
Output current Io (A)
Fig.12 Power Dissipation vs. Ambient
Temperature (Typical Value)
3
PWB
Power dissipation PD (W)
PWB
Cu
2
Cu area 740mm
2
Material
: Glass-cloth epoxy resin
Size
: 50 x 50 x 1.6mm
Cu thickness : 35µm
Cu area 180mm2
1
Cu area 100mm2
Cu area 70mm2
Cu area 36mm2
0
–20
0
20
40
60
80
Ambient temperature Ta (˚C)
100
35
30
25
20
15
10
5
0
– 5
–10
–15
–20
–25
–30
–35
–40
–45
–50
–25
VIN=5V , Io=0.3A , Vc=2.7V
(PQ3DZ53)
VIN=5V , Io=0.5A , Vc=2.7V
(PQ3DZ13)
PQ3DZ13
PQ3DZ53
0
25
50
75
100
Junction temperature Tj (˚C)
Fig.14 Output Voltage Deviation vs. Junction
Temperature (PQ05DZ51/11)
Output voltage deviation ∆Vo (mV)
Output voltage deviation ∆Vo (mV)
Fig.13 Output Voltage Deviation vs. Junction
Temperature (PQ3DZ53/13)
125
35
30
25
20
15
10
5
0
– 5
–10
–15
–20
–25
–30
–35
–40
–45
–50
–25
VIN=7V , Io=0.3A , Vc=2.7V
(PQ05DZ51)
VIN=7V , Io=0.5A , Vc=2.7V
(PQ05DZ11)
PQ05DZ51
PQ05DZ11
25
50
75
100
0
Junction temperature Tj (˚C)
125
Low Power-Loss Voltage Regulators
VIN=11V , Io=0.3A , Vc=2.7V
(PQ09DZ51)
VIN=11V , Io=0.5A , Vc=2.7V
(PQ09DZ11)
70
60
50
40
30
20
10
0
–10
–20
–30
–40
–50
–60
–70
–80
–90
PQ09DZ11
PQ09DZ51
–25
0
25
50
75
100
Junction temperature Tj (˚C)
Fig.16 Output Voltage Deviation vs. Junction
Temperature (PQ12DZ51/11)
Output voltage deviation ∆Vo(mV)
Output voltage deviation ∆Vo (mV)
Fig.15 Output Voltage Deviation vs. Junction
Temperature (PQ09DZ51/11)
PQ05DZ51/11 Series / PQ3DZ53/13
125
Fig.17 Output Voltage vs. Input Voltage
(Typical Value) (PQ3DZ53)
VIN=14V , Io=0.3A , Vc=2.7V
(PQ12DZ51)
VIN=14V , Io=0.5A , Vc=2.7V
(PQ12DZ11)
70
60
50
40
30
20
10
0
–10
–20
–30
–40
–50
–60
–70
–80
–90
PQ12DZ11
PQ12DZ51
–25
0
25
50
75
100
Junction temperature Tj (˚C)
Fig.18 Output Voltage vs. Input Voltage
(Typical Value) (PQ05DZ51)
Vc=2.7V , Ci=0.33µF , Co=47µF
7
6
6
Output voltage Vo (V)
Output voltage Vo (V)
Vc=2.7V , Ci=0.33µF , Co=47µF
7
5
4
RL=∞
3
RL=11Ω
2
RL=6.6Ω
1
5
RL=∞
RL=16.7Ω
4
RL=10Ω
3
2
1
0
1
2
3
4
5
6
Input voltage VIN (V)
7
8
Fig.19 Output Voltage vs. Input Voltage
(Typical Value) (PQ09DZ51)
15
0
15
Vc=2.7V , Ci=0.33µF , Co=47µF
Tj=25˚C
10
RL=∞
RL=30Ω
RL=18Ω
5
0
10
5
Input voltage VIN (V)
15
1
2
3
4
5
6
Input voltage VIN (V)
7
8
Fig.20 Output Voltage vs. Input Voltage
(Typical Value) (PQ12DZ51)
Output voltage Vo (V)
Output voltage Vo (V)
125
Vc=2.7V , Ci=0.33µF , Co=47µF
Tj=25˚C
RL=∞
RL=40Ω
10
RL=24Ω
5
0
10
5
Input voltage VIN (V)
15
Low Power-Loss Voltage Regulators
Fig.21 Output Voltage vs. Input Voltage
(Typical Value) (PQ3DZ13)
8
Fig.22 Output Voltage vs. Input Voltage
(Typical Value) (PQ05DZ11)
8
Vc=2.7V , Ci=0.33µF , Co=47µF
Tj=25˚C
7
6
5
4
RL=∞
RL=6.6Ω
3
RL=3.3Ω
2
1
1
2
3
4
5
6
Input voltage VIN (V)
7
15
RL=∞
4
RL=10Ω
RL=5Ω
3
2
0
15
Vc=2.7V , Ci=0.33µF , Co=47µF
Tj=25˚C
10
RL=∞
RL=18Ω
RL=9Ω
5
10
5
Input voltage VIN (V)
0
10
RL=6.6Ω
RL=11Ω
RL=∞
8
RL=24Ω
10
RL=12Ω
5
10
5
Input voltage VIN (V)
15
Fig.26 Circuit Operating Current vs. Input
Voltage (PQ05DZ51)
20
Circuit operating current IBIAS (mA)
15
7
Vc=2.7V , Ci=0.33µF , Co=47µF
Tj=25˚C
0
Vc=2.7V, Ci=0.33µF, Co=47µF
2
3
4
5
6
Input voltage VIN (V)
RL=∞
15
Fig.25 Circuit Operating Current vs. Input
Voltage (PQ3DZ53)
5
1
Fig.24 Output Voltage vs. Input Voltage
(Typical Value) (PQ12DZ11)
Output voltage Vo (V)
Output voltage Vo (V)
5
8
Fig.23 Output Voltage vs. Input Voltage
(Typical Value) (PQ09DZ11)
Circuit operating current IBIAS (mA)
6
1
0
20
Vc=2.7V , Ci=0.33µF , Co=47µF
Tj=25˚C
7
Output voltage Vo (V)
Output voltage Vo (V)
PQ05DZ51/11 Series / PQ3DZ53/13
Vc=2.7V, Ci=0.33µF, Co=47µF
15
RL=10Ω
10
RL=16.7Ω
5
RL=∞
0
0
0
1
2
3
4
5
6
Input voltage VIN (V)
7
8
0
1
2
3
4
5
6
Input voltage VIN (V)
7
8
Low Power-Loss Voltage Regulators
Fig.27 Circuit Operating Current vs. Input
Voltage (PQ09DZ51)
Circuit operating current IBIAS (mA)
15
10
RL=18Ω
RL=30Ω
5
RL=∞
0
5
10
Input voltage VIN (V)
15
30
RL=3.3Ω
RL=6.6Ω
10
RL=∞
0
1
2
3
4
5
6
Input voltage VIN (V)
7
30
20
RL=9Ω
RL=18Ω
10
RL=∞
0
5
10
Input voltage VIN (V)
15
RL=24Ω
10
RL=40Ω
5
RL=∞
0
5
10
Input voltage VIN (V)
15
Vc=2.7V , Ci=0.33µF, Co=47µF
30
RL=5Ω
20
RL=10Ω
10
RL=∞
8
Fig.31 Circuit Operating Current vs. Input
Voltage (PQ09DZ11)
Vc=2.7V , Ci=0.33µF, Co=47µF
15
Fig.30 Circuit Operating Current vs. Input
Voltage (PQ05DZ11)
Circuit operating current IBIAS (mA)
Vc=2.7V , Ci=0.33µF, Co=47µF
20
Vc=2.7V, Ci=0.33µF, Co=47µF
0
Fig.29 Circuit Operating Current vs. Input
Voltage (PQ3DZ13)
Circuit operating current IBIAS (mA)
20
Vc=2.7V, Ci=0.33µF, Co=47µF
0
Circuit operating current IBIAS (mA)
Fig.28 Circuit Operating Current vs. Input
Voltage (PQ12DZ51)
0
1
2
3
4
5
6
Input voltage VIN (V)
7
8
Fig.32 Circuit Operating Current vs. Input
Voltage (PQ12DZ11)
Circuit operating current IBIAS (mA)
Circuit operating current IBIAS (mA)
20
PQ05DZ51/11 Series / PQ3DZ53/13
Vc=2.7V , Ci=0.33µF, Co=47µF
30
20
RL=12Ω
RL=24Ω
10
RL=∞
0
5
10
Input voltage VIN (V)
15
Low Power-Loss Voltage Regulators
Dropout voltage Vi–O (V)
0.20
PO05DZ51:VIN=4.75V, Io=0.3A, Vc=2.7V
0.19 PO09DZ51:VIN=8.55V, Io=0.3A, Vc=2.7V
0.18 PO12DZ51:VIN=11.4V, Io=0.3A, Vc=2.7V
PO3DZ53:VIN=3.135V, Io=0.3A, Vc=2.7V
0.17
PQ3DZ53
0.16
PQ05DZ51
PQ09DZ51
0.15
PQ12DZ51
0.14
0.13
0.12
Fig.34 Dropout Voltage vs. Junction
Temperature (PQ05DZ11series/PQ3DZ13)
0.18
Dropout voltage Vi–O (V)
Fig.33 Dropout Voltage vs. Junction
Temperature (PQ05DZ51series/PQ3DZ53)
PQ05DZ51/11 Series / PQ3DZ53/13
PO05DZ11:VIN=4.75V, Io=0.5A, Vc=2.7V
0.17 PO09DZ11:VIN=8.55V, Io=0.5A, Vc=2.7V
PO12DZ11:VIN=11.4V, Io=0.5A, Vc=2.7V
0.16 PO3DZ13:VIN=3.135V, Io=0.5A, Vc=2.7V
PQ12DZ11
PQ09DZ11
0.15
0.14
0.13
0.12
0.11
0.11
0.10
–20
0.10
0 20 40 60 80 100 120
Junction temperature Tj (˚C)
Fig.35 Quiescent Current vs. Junction
Temperature (PQ05DZ51series/PQ3DZ53)
5
–20
0 20 40 60 80 100 120
Junction temperature Tj (˚C)
Fig.36 Quiescent Current vs. Junction
Temperature (PQ05DZ11series/PQ3DZ13)
4.4
VIN=5V (PQ3DZ13)
VIN=7V (PQ05DZ11)
VIN=11V (PQ09DZ11)
VIN=14V (PQ12DZ11)
Io=0A
Vc=2.7V
PQ05DZ51
PQ3DZ53
4
3.5
3
2.5
–25
VIN=5V (PQ3DZ53)
VIN=7V (PQ05DZ51)
VIN=11V (PQ09DZ51)
VIN=14V (PQ12DZ51)
Io=0A
Vc=2.7V
PQ09DZ51
0
25
50
75
100
Junction temperature Tj (˚C)
80
Ripple rejection RR (dB)
4.2
PQ12DZ11
4.0
3.8
70
65
PQ09DZ51
VIN =5V (PQ3DZ53)
=7V (PQ05DZ51)
55
=11V (PQ09DZ51)
50
=14V (PQ12DZ51)
Io=0.3A, Tj=25˚C
45 ei(rms)=0.5V(sine wave)
PQ12DZ51
RR=20 log(ei(rms)/eo(rms))
40
0.1
1
10
100
Input ripple frequency f (kHz)
PQ3DZ13
0
25
50
75
100
Junction temperature Tj (˚C)
125
Fig.38 Ripple Rejection vs. Input Ripple
Frequency (PQ05DZ11series/PQ3DZ13)
80
PQ3DZ53
PQ05DZ51
PQ05DZ11
PQ09DZ11
3.6
3.4
–25
125
Fig.37 Ripple Rejection vs. Input Ripple
Frequency (PQ05DZ51series/PQ3DZ53)
60
Quiescent current Iq (mA)
4.5
75
Ripple rejection RR (dB)
Quiescent current Iq (mA)
PQ12DZ51
75
PQ3DZ13
PQ05DZ11
PQ3DZ13
PQ05DZ11
70
65
PQ09DZ11
60
VIN =5V (PQ3DZ13)
=7V (PQ05DZ11)
=11V (PQ09DZ11)
50
=14V (PQ12DZ11)
Io=0.3A, Tj=25˚C
45 ei(rms)=0.5V(sine wave)
PQ12DZ11
RR=20 log(ei(rms)/eo(rms))
40
0.1
1
10
Input ripple frequency f (kHz)
55
100
Low Power-Loss Voltage Regulators
Fig.39 Ripple Rejection vs. Output Current
(PQ05DZ51series/PQ3DZ53)
80
PQ05DZ51/11 Series / PQ3DZ53/13
Fig.40 Ripple Rejection vs. Output Current
(PQ05DZ11series/PQ3DZ13)
100
PQ3DZ53
90
60
50
40
Tj=25˚C
30 VIN =5V (PQ3DZ53)
=7V (PQ05DZ51)
20
=11V (PQ09DZ51)
=14V (PQ12DZ51)
10 ei(rms)=0.5V
f=120Hz (sine wave)
0
0
0.1
0.2
0.3
0.4
Output current Io (A)
70
60
PQ05DZ11
50
Tj=25˚C
VIN =5V (PQ3DZ13)
=7V (PQ05DZ11)
=11V (PQ09DZ11)
=14V (PQ12DZ11)
ei(rms)=0.5V
f=120Hz (sine wave)
40
30
20
10
0.5
0
PQ09DZ11
Vo
3
1
CIN
2
5
+
CO
ON/OFF signal
High : Output ON
Low or Open: Output OFF
■
Model Line-ups for Tape-packaged Products
Output current
0.5A output
1.0A output
Sleeve-packaged products
PQ3DZ53
PQ05DZ51
PQ09DZ51
PQ12DZ51
PQ3DZ13
PQ05DZ11
PQ09DZ11
PQ12DZ11
PQ12DZ11
0.5
Output current Io (A)
Typical Application
DC input
VIN
PQ3DZ13
80
Load
■
PQ05DZ51
PQ09DZ51
PQ12DZ51
Ripple rejection RR (dB)
Ripple rejection RR (dB)
70
Tape-packaged products
PQ3DZ53U
PQ05DZ5U
PQ09DZ5U
PQ12DZ5U
PQ3DZ13U
PQ05DZ1U
PQ09DZ1U
PQ12DZ1U
1.0
NOTICE
●
The circuit application examples in this publication are provided to explain representative applications of SHARP
devices and are not intended to guarantee any circuit design or license any intellectual property rights. SHARP takes
no responsibility for any problems related to any intellectual property right of a third party resulting from the use of
SHARP's devices.
●
Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device. SHARP
reserves the right to make changes in the specifications, characteristics, data, materials, structure, and other contents
described herein at any time without notice in order to improve design or reliability. Manufacturing locations are
also subject to change without notice.
●
Observe the following points when using any devices in this publication. SHARP takes no responsibility for damage
caused by improper use of the devices which does not meet the conditions and absolute maximum ratings to be used
specified in the relevant specification sheet nor meet the following conditions:
(i) The devices in this publication are designed for use in general electronic equipment designs such as:
- - - Personal computers
- -- Office automation equipment
- -- Telecommunication equipment [terminal]
- - - Test and measurement equipment
- - - Industrial control
- -- Audio visual equipment
- -- Consumer electronics
(ii) Measures such as fail-safe function and redundant design should be taken to ensure reliability and safety when
SHARP devices are used for or in connection with equipment that requires higher reliability such as:
- -- Transportation control and safety equipment (i.e., aircraft, trains, automobiles, etc.)
- - - Traffic signals
- - - Gas leakage sensor breakers
- - - Alarm equipment
- -- Various safety devices, etc.
(iii)SHARP devices shall not be used for or in connection with equipment that requires an extremely high level of
reliability and safety such as:
- - - Space applications
- -- Telecommunication equipment [trunk lines]
- -- Nuclear power control equipment
- -- Medical and other life support equipment (e.g., scuba).
●
Contact a SHARP representative in advance when intending to use SHARP devices for any "specific" applications
other than those recommended by SHARP or when it is unclear which category mentioned above controls the
intended use.
●
If the SHARP devices listed in this publication fall within the scope of strategic products described in the Foreign
Exchange and Foreign Trade Control Law of Japan, it is necessary to obtain approval to export such SHARP devices.
●
This publication is the proprietary product of SHARP and is copyrighted, with all rights reserved. Under the copyright
laws, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or
mechanical, for any purpose, in whole or in part, without the express written permission of SHARP. Express written
permission is also required before any use of this publication may be made by a third party.
●
Contact and consult with a SHARP representative if there are any questions about the contents of this publication.