SS6639 1-Cell, 3-Pin, Step-Up DC/DC Controller n n FEATURES GENERAL DESCRIPTION • • Guaranteed start-up from less than 0.9 V. High efficiency. • • • Low quiescent current. Fewer external components needed. Low ripple and low noise. three external components are required to deliver a Fixed output voltage: 2.7, 3.0V, 3.3V, and 5V. Driver for external transistor. Space-saving package: SOT-89 and TO-92. load. The Pulse Frequency Modulation scheme offers • • • The SS6639 is a high efficiency step-up DC/DC controller for applications using 1 to 4 battery cells. Only fixed output voltage of 2.7, 3.0V, 3.3V, or 5V. The SS6639 starts up from less than 0.9V input with a 1mA optimized performance for applications with light output loading and low input voltages. The output ripple and noise are lower than with circuits operating in PSM mode. n APPLICATIONS The PFM control circuit operating up to 100 KHz • • Pagers. Cameras. • • • Wireless Microphones. Pocket Organizers. Battery Backup Suppliers. • Portable Instruments. switching rate results in smaller passive components. The space-saving SOT-89 and TO-92 packages make the SS6639 an ideal choice of DC/DC controller for space-conscious applications, such as pagers, electronic cameras, and wireless microphones. Using an external transistor driver pin (EXT), the SS6639 is recommended for applications requiring currents from several tens to several hundreds of milliamperes. n TYPICAL APPLICATION CIRCUIT VIN D1 VOUT + C1 47µF L1 33µH R1 *Q1 2SD1803 300 GS SS14 SS6639-27 SS6639-30 EXT SS6639-33 SS6639-50 C2 10nF VOUT + C3 100µF GND *Q1: Sanyo 25D1803S-TC 60V/5A/20W 100mA Load Current Step-Up Converter Rev.2.01 6/26/2003 www.SiliconStandard.com 1 of 12 SS6639 n ORDERING INFORMATION SS6639-XXCXXX PIN CONFIGURATION PACKING TYPE TR: TAPE & REEL BG: BAG SOT-89 TOP VIEW 1: GND 2: VOUT 3: EXT PACKAGE TYPE X: SOT-89 Z: TO-92 1 OUTPUT VOLTAGE 27: 2.7V 30: 3.0V 33: 3.3V 50: 5.0V TO-92 TOP VIEW 1: GND 2: VOUT 3: EXT EX: SS6639-27CXTR à 2.7V Version, in SOT-89 Package in 2 3 1 2 3 Tape and Reel Packing n ABSOLUTE MAXIMUM RATINGS Supply Voltage (VOUT Pin) ……………….………………………………………………….12V EXT pin Voltage ……………………………………………………..……….-0.3V to Vout+0.3V EXT pin Current …………………………………………………..……………………….± 50mA Operating Temperature Range ………………………………..……………….-40°C to 85°C Storage Temperature Range ……………………………………..…………… -65°C to 150 °C Lead Temperature (Soldering 10 Sec.) ………………………..…………………………260°C n TEST CIRCUIT SS6639 2.5V VOUT EXT FOUT GND Oscillator Test Circuit Rev.2.01 6/26/2003 www.SiliconStandard.com 2 of 12 SS6639 n ELECTRICAL CHARACTERISTICS (TA=25°C, IO=10mA, unless otherwise specified) PARAMETER Output Voltage TEST CONDITIONS SS6639-27 SS6639-30 SS6639-33 SS6639-50 VIN=1.8V VIN=1.8V VIN=2.0V VIN=3.0V Input Voltage SYMBOL MIN. TYP. MAX. UNIT VOUT 2.633 2.925 3.218 4.875 2.700 3.000 3.300 5.000 2.767 3.075 3.382 5.125 V 8 V 0.9 V VIN Start-Up Voltage IOUT=1mA, VIN:0→2V VSTART Hold-on Voltage IOUT=1mA, VIN:2→0V VHOLD No-Load Input Current IOUT=0mA Supply Current 1 SS6639-27 SS6639-30 SS6639-33 SS6639-50 0.8 0.6 V IIN 18 µA IDD1 45 50 60 80 µA IDD2 7 7 7 7 µA EXT at no load, VIN=VOUT x 0.95 Supply Current 2 Measurement of the IC input current (VOUT Pin) SS6639-27 SS6639-30 SS6639-33 SS6639-50 EXT at no load, VIN=VOUT + 0.95 EXT “H” On-Resistance EXT “L” On-Resistance Rev.2.01 6/26/2003 Measurement of the IC input current (VOUT Pin) SS6639-27 SS6639-30 SS6639-33 SS6639-50 VEXT=VOUT – 0.4V SS6639-27 SS6639-30 SS6639-33 SS6639-50 VEXT= 0.4V REXTH REXTL www.SiliconStandard.com 300 200 185 130 110 80 70 60 Ω Ω 3 of 12 SS6639 n ELECTRICAL CHARACTERISTICS PARAMETER (Continued) TEST CONDITIONS SYMBOL MIN. TYP. MAX. UNIT DUTY 65 75 85 % FOSC 80 105 130 KHz VIN=VOUT x 0.95 Oscillator Duty Cycle Measurement of the EXT Pin Waveform VIN=VOUT x 0.95 Max. Oscillator Freq. Measurement of the EXT Pin Waveform η Efficiency 80 % n TYPICAL PERFORMANCE CHARACTERISTICS Capacitor (C1): 47µF (Tantalum Type) Diode Transistor (Q1): 2SD1803 (D1): 1N5819 Schottky Type 2.80 90 2.75 85 2.70 V I N = 2.0 V V I N = 1.8V 2.65 2.60 Efficiency (%) Output Voltage (V) Inductor (L1): 33µH (Pin Type) V I N = 1.5 V V IN = 1.2 V 2.55 2.50 V I N = 2.0V 80 75 V IN =1.8V 70 V I N = 1.5V V I N = 1.2V 65 60 V IN = 0.9V 2.45 V I N =0.9V 2.40 0 50 100 55 150 200 250 300 350 400 450 50 500 0 50 100 150 Fig. 1 SS6639-27 Load Regulation (L=33µH) 250 300 350 400 450 500 Fig. 2 SS6639-27 Efficiency (L=33uH) 3.1 90 3.0 85 VIN=2.0V VIN=2.0V 2.9 VIN=1.2V 2.8 VIN=1.5V Efficiency (%) Output Voltage (V) 200 Output Current (mA) Output Current (mA) VIN=1.8V 2.7 VIN=0.9V 80 VIN=1.8V 75 VIN=1.5V 70 2.6 VIN=1.2V 65 2.5 VIN=0.9V 2.4 60 0 50 100 150 200 250 300 350 400 Output Current (mA) Fig. 3 SS6639-30 Load Regulation (L=33µH) Rev.2.01 6/26/2003 450 0 50 100 150 200 250 300 350 400 450 Output Current (mA) Fig. 4 SS6639-30 Efficiency (L=33µH) www.SiliconStandard.com 4 of 12 SS6639 n TYPICAL PERFORMANCE CHARACTERISTICS (Continued) 90 3.4 85 VIN=2.0V VIN=1.5V Efficiency (%) Output Voltage (V) 3.2 3.0 2.8 VIN=1.2V 2.6 2.4 80 VIN=2.0V 75 70 VIN=1.5V 65 60 0 50 100 150 200 250 300 350 400 VIN=0.9V 0 90 5.00 85 100 150 200 250 300 80 4.75 VIN=3.0V VIN=2.0V 4.50 Efficiency (%) Output Voltage (V) 5.25 V IN =1.5V 4.25 4.00 3.75 50 VIN=0.9V 400 VIN=3.0V 75 VIN=1.5V 70 VIN=2.0V VIN=0.9V 65 VIN=1.2V 60 55 50 VIN=1.2V 3.50 350 Output Current (mA) Fig. 6 SS6639-33 Efficiency (L=33µH) Output Current (mA) Fig. 5 SS6639-33 Loading Regulation (L=33µH) 45 3.25 0 100 200 300 400 500 600 40 700 0 Output Current (mA) Fig. 7 SS6639-50 Load Regulation (L=33µH) 100 200 300 400 500 600 700 Output Current (mA) Fig. 8 SS6639-50 Efficiency (L=33µH) 1.2 2.0 1.8 1.0 Input Voltage (V) Output Voltage (V) 1.6 1.4 Start up 1.2 1.0 0.8 0.6 Hold on 0.4 Start up 0.8 0.6 Hold on 0.4 0.2 0.2 0.0 0 20 40 60 80 100 120 140 160 180 200 0.0 0 20 Output Current (mA) Fig. 9 SS6639-27 Start-up & Hold-on Voltage (L=33µH) Rev.2.01 6/26/2003 40 60 80 100 Output Current (mA) 120 140 160 Fig. 10 SS6639-30 Start-up & Hold-on Voltage (L=33µH) www.SiliconStandard.com 5 of 12 SS6639 n TYPICAL PERFORMANCE CHARACTERISTICS (Continued) 1.2 1.6 Start up 1.4 Start up 1.2 Input Voltage (V) Input Voltage (V) 1.0 0.8 0.6 Hold on 0.4 1.0 0.8 Hold on 0.6 0.4 0.2 0.2 0.0 0 20 40 60 80 100 120 140 0.0 160 0 20 40 60 80 100 120 140 160 Output Current (mA) Output Current (mA) Fig. 12 SS6639-50 Start-up & Hold-on Voltage (L=33uH) Fig. 11 SS6639-33 Start-up & Hold-on Voltage (L=33µH) 1.2 1.6 Start up 1.4 1.0 Start up Input Voltage (V) Input Voltage (V) 1.2 0.8 0.6 Hold on 0.4 1.0 0.8 Hold on 0.6 0.4 0.2 0.2 0.0 0 20 40 60 80 100 120 140 0.0 160 0 20 40 60 Fig. 13 SS6639-33 Start-up & Hold-on Voltage (L=33µH) 140 160 130 Switching Frequency (kHz) VOUT =5.0V Output Voltage (V) 120 135 5.5 5.0 4.5 V OUT = 3.3V V OUT = 3.0V V OUT = 2.7V 4.0 3.5 3.0 2.5 V OUT = 5.0V V OUT = 3.3V V OUT = 3.0V V OUT = 2.7V 125 120 115 110 105 100 95 90 -20 0 20 40 60 80 Output Current (mA) Fig. 15 SS6639 Output Voltage vs. Temperature Rev.2.01 6/26/2003 100 Fig. 14 SS6639-50 Start-up & Hold-on Voltage (L=33uH) 6.0 2.0 -40 80 Output Current (mA) Output Current (mA) 100 85 -40 -20 0 20 40 60 80 100 Output Current (mA) Fig. 16 SS6639 Switching Frequency vs.Temperature www.SiliconStandard.com 6 of 12 SS6639 n TYPICAL PERFORMANCE CHARACTERISTICS (Continued) 80 75 79 V OUT 2.7V V OUT 3.0V V OUT 78 77 76 Supply Current IDD1 (µA) Maximum Duty Cycle (%) 80 = = = 75 74 73 72 65 60 55 50 45 40 35 71 70 -40 -20 0 20 40 60 80 30 -40 100 Fig. 17 SS6639 Maximum Duty Cycle vs. Temperature 120 2.7V 3.0V 3.3V 5.0V 320 90 80 70 280 40 60 80 100 200 160 120 50 80 -20 0 20 40 60 80 100 Temperature (°C) Fig. 19 SS6639 EXT "L" On-Resistance VOUT = 2.7V VOUT = 3.0V VOUT = 3.3V VOUT = 5.0V 240 60 40 -40 20 360 VOUT = VOUT = VOUT = VOUT = Resistance (O) 100 0 400 130 110 -20 Temperature (°C) Fig. 18 SS6639 Supply Current vs. Temperature Output Current (mA) Resistance (O) V OUT = 5.0V V OUT = 3.3V V OUT = 3.0V V OUT = 2.7V 70 40 -40 -20 0 20 40 60 80 100 Temperature (°C) Fig. 20 SS6639 EXT "H" On-Resistance n BLOCK DIAGRAM 1.25V REF. VOUT 1M - EXT + Enable GND Rev.2.01 6/26/2003 OSC, 100KHz www.SiliconStandard.com 7 of 12 SS6639 n PIN DESCRIPTIONS Pin 1: GND: Ground. Must be low impedance; Pin 3: EXT: power. Switch. solder directly to ground plane. Pin 2: VOUT: Push-pull driver output for external IC supply pin. Connect Vout to the regular output. n APPLICATION INFORMATION General Description The SS6639 PFM (pulse frequency modulation) controller IC combines a switch mode regulator, a push-pull driver, a precision voltage reference, and a voltage detector in a single monolithic device. It offers extremely low quiescent current, high efficiency, and very low gate-threshold voltage to ensure start-up with low battery voltage (0.8V typ.). Designed to maximize battery life in portable products, it minimizes switching losses by only switching as needed to service the load. PFM controllers transfer a discrete amount of energy per cycle and regulate the output voltage by modulating the switching frequency with a constant turn-on time. Switching frequency depends on load, input voltage, and inductor value and can range up to 100 KHz. When the output voltage drops, the error comparator enables the 100 kHz oscillator which turns the MOSFET on for around 7.5us and off for 2.5µs. Turning on the MOSFET allows inductor current to ramp up, storing energy in the magnetic field. When the MOSFET turns off, the inductor forces current through the diode to the output capacitor and the load. As the stored energy is depleted, the current ramps down until the diode turns off. At this point, the inductor may ring due to residual energy and stray capacitance. The output capacitor stores charge when current flowing through the diode is high, and releases it when current is low, thereby maintaining a steady voltage across the load. Rev.2.01 6/26/2003 As the load increases, the output capacitor discharges faster and the error comparator initiates cycles sooner, increasing the switching frequency. The maximum duty cycle ensures adequate time for energy transfer to the output during the second half of each cycle. Depending on the circuit, PFM controllers can operate in either discontinuous mode or continuous conduction mode. The continuous conduction mode means that the inductor current does not ramp to zero during each cycle. VIN IIN ID IOUT SW + EXT Isw VOUT Ico Discontinuous Conduction Mode www.SiliconStandard.com 8 of 12 SS6639 At VEXT the boundary between continuous and discontinuous modes, the output current (IOB) is determined by IIN VIN 1 VIN IOB = * TON * (1 − x ) * * VOUT + VD 2 L IPK where VD is the diode drop, X = (RON + RS) ∗ ISW TON L RON= Switch turn on resistance, RS= Inductor DC resistance Charge Co. ID TON = Switch ON time IOUT In the discontinuous mode, the switching frequency TDIS VSW Discharge Co. (Fsw) is FSW = t VEXT VIN 2 * TON 2 * (1 + x ) In the continuous mode, the switching frequency is fsw = Discontinuous Conduction Mode 2(L) * (VOUT + VD − VIN) * (IOUT) (VOUT + VD − VIN ) 1 * TON (VOUT + VD − VSW ) x VIN − VSW * [1 + ( )] 2 VOUT + VD − VSW 1 VOUT + VD − VIN ≅ * TON VOUT + VD − VSW where Vsw = switch drop and is proportional to IIN output current. IPK ISW ID IOUT VSW t Continuous Conduction Mode Rev.2.01 6/26/2003 INDUCTOR SELECTION To operate as an efficient energy transfer element, the inductor must fulfill three requirements. First, the inductance must be low enough for the inductor to store adequate energy under the worst case condition of minimum input voltage and switch ON time. Second, the inductance must also be high enough so the maximum current rating of the SS6639 and the inductor are not exceeded at the other worst case condition of maximum input voltage and ON time. Lastly, the inductor must have sufficiently low DC resistance so excessive power is not lost as heat in the windings. Unfortunately this is inversely related to physical size. www.SiliconStandard.com 9 of 12 SS6639 Minimum and maximum input voltage, output voltage Power required from the inductor per cycle must be and output current must be established before an equal to, or greater than inductor can be selected. In discontinuous mode operation, at the end of the PL 1 = (VOUT + VD − VIN) * (IOUT) * ( ) fSW fsw switch ON time, peak current and energy in the in order for the converter to regulate the output. inductor build according to When the loading exceeds IOB, the PFM controller RON + RS VIN IPK = * TON) * 1 − exp(− L RON + RS x VIN ≅ * ( TON) * 1 − L 2 operates in continuous mode. Inductor peak current ≅ VIN * TON L can be derived from VOUT + VD − VSW x IPK = − VIN − VSW 2 x VIN − VSW * IOUT + * TON * 1 − 2L 2 (simple lossless equation), where X = (RON + RS) ∗ EL = TON L Valley current (Iv) is VOUT + VD − VSW x IV = − * IOUT VIN − VSW 2 x VIN − VDE * * T ON * 1 − 2L 2 1 L * IPK 2 2 Table 1 Indicates resistance and height for each coil. Power Inductor Type Inductance ( µH ) Resistance ( Ω ) Rated Current (A) height (mm) 47 0.25 0.7 100 0.50 0.5 47 0.25 0.7 100 0.50 0.5 Hold SMT Type PM75 33 0.11 1.2 5.0 Huan Feng PIN Type V0810 33 40m 2 10.0 Sumida SMT Type CD54 Hold SMT Type PM54 4.5 4.5 CAPACITOR SELECTION A poor choice for an output capacitor can result in poor efficiency and high output ripple. Ordinary aluminum electrolytic capacitors, while inexpensive, may have unacceptably poor ESR and ESL. There are low ESR aluminum capacitors for switch mode DC-DC converters which work much better than general-purpose components. Tantalum capacitors provide still better performance but are more expensive. OS-CON capacitors have extremely low ESR in a small size. If the capacitance is reduced, the Rev.2.01 6/26/2003 output ripple will increase. As most of the input supply is applied across the input bypass capacitor, the capacitor voltage rating should be at least 1.25 times greater than the maximum input voltage. DIODE SELECTION Speed, forward drop, and leakage current are three main considerations in selecting a rectifier diode. The best performance is obtained with a Schottky rectifier www.SiliconStandard.com 10 of 12 SS6639 diode such as the 1N5819. Motorola makes the MBR0530 for surface mount. For lower output power a 1N4148 can be used although efficiency and start-up voltage will suffer substantially. where POUT=VOUT * IOUT ; RS=Inductor DC R; VD = Diode drop. The power dissipated in switching losses is PDsw = COMPONENT POWER DISSIPATION 2 3 TON * * (RON ) * (IOUT ) * (POUT ) L Operating in discontinuous mode, the power loss in The power dissipated in the rectifier diode is the winding resistance of the inductor is approximately VD PDD = * (POUT ) VOUT equal to PDL = 2 TON VOUT + VD * * (RS ) * * (POUT ) 3 L VOUT Rev.2.01 6/26/2003 www.SiliconStandard.com 11 of 12 SS6639 n PHYSICAL DIMENSIONS • SOT-89 (unit: mm) A D D1 C H E L B e e1 l SYMBOL MIN MAX A 1.40 1.60 B 0.36 0.48 C 0.35 0.44 D 4.40 4.60 D1 1.62 1.83 E 2.29 2.60 e 1.50 (TYP.) e1 3.00 (TYP.) H 3.94 4.25 L 0.89 1.20 SYMBOL MIN MAX A 4.32 5.33 SOT-89 MARKING Part No. Marking SS6639-27 AU27 SS6639-30 AU30 SS6639-33 AU33 SS6639-50 AU50 • TO-92 (unit: mm) A E L C C e1 D 0.38 (TYP.) D 4.40 5.20 E 3.17 4.20 e1 L 1.27 (TYP.) 12.7 - Information furnished by Silicon Standard Corporation is believed to be accurate and reliable. However, Silicon Standard Corporation makes no guarantee or warranty, express or implied, as to the reliability, accuracy, timeliness or completeness of such information and assumes no responsibility for its use, or for infringement of any patent or other intellectual property rights of third parties that may result from its use. Silicon Standard reserves the right to make changes as it deems necessary to any products described herein for any reason, including without limitation enhancement in reliability, functionality or design. No license is granted, whether expressly or by implication, in relation to the use of any products described herein or to the use of any information provided herein, under any patent or other intellectual property rights of Silicon Standard Corporation or any third parties. Rev.2.01 6/26/2003 www.SiliconStandard.com 12 of 12