AKM AK5388

[AK5388]
= Preliminary =
AK5388
120dB 24-bit 192kHz 4-Channel ADC
GENERAL DESCRIPTION
The AK5388 is a 24bit, 216kHz sampling 4-channel A/D converter for high-end audio systems. The
modulator in the AK5388 uses AKM’s Enhanced Dual Bit architecture, enabling the AK5388 realizes to
realize high accuracy and low cost. The AK5388 achieves 120dB dynamic range and –105dB THD+N,
and an optional mono mode extends dynamic range to 121dB. The AK5388’s digital filter features a
modified FIR architecture that minimizes group delay while maintaining excellent linear phase response.
So the device is suitable for professional audio applications including recording, sound reinforcement,
effects processing, sound cards, and high-end A/V receivers. The AK5388 is available in 44pin LQFP
package.
FEATURES
‡ Sampling Rate: 8kHz ~ 216kHz
‡ Full Differential Inputs
‡ S/(N+D): 105dB
‡ DR, S/N: 120dB(Mono Mode: 123dB)
‡ Short Delay Digital Filter (GD=12.6/fs)
• Passband: 0~21.648kHz (@fs=48kHz)
• Ripple: 0.01dB
• Stopband: 80dB
‡ Digital HPF
‡ Power Supply: 4.75 ~ 5.25V(Analog), 3.0 ~ 3.6V(Digital)
‡ Output format: 24bit MSB justified, I2S or TDM
‡ Cascade TDM I/F: 8ch/48kHz, 4ch/96kHz, 4ch/192kHz
‡ Master & Slave Mode
‡ Overflow Flag
‡ Power Dissipation: TBD mW (@fs=48kHz)
‡ Package: 44pin LQFP
AVDD1 AVSS1 AVDD2 AVSS2 DVDD1 DVSS1
LIN1+
LIN1RIN1+
RIN1LIN2+
LIN2-
ΔΣ
Modulator
Decimation
Filter
ΔΣ
Modulator
Decimation
Filter
ΔΣ
Modulator
Decimation
Filter
DVDD2 DVSS2 BVSS
LRCK
BICK
SDTO1
SDTO2
Audio
Interface
TDMIN
M/S
DIF
TDM0
RIN2+
RIN2-
ΔΣ
Modulator
Decimation
Filter
TDM1
HPF
MONO
VCOM1
VCOM2
Voltage Reference
Clock Divider
VRP1 VRL1 VRP2 VRL2
OVF
Rev. 0.3
PDN
MCLK
CKS0 CKS2 CKS2
2007/10
-1-
[AK5388]
■ Ordering Guide
AK5388EQ
AKD5388
–10 ~ +70°C
44pin LQFP (0.8mm pitch)
Evaluation Board for AK5388
RIN2+
RIN2-
VSS6
AVDD2
TEST2
VSS5
VSS4
DVDD
HPFE
MONO
DIF
33
32
31
30
29
28
27
26
25
24
23
■ Pin Layout
34
22
TDM1
VREFL2
35
21
TDM0
VCOM2
36
20
TDMIN
LIN2+
37
19
OVF
18
SDTO2
17
SDTO1
16
VSS3
VREFP2
LIN2-
38
TEST3
39
RIN1-
40
AK5388EQ
Top View
10
11
9
CKS2
PDN
8
CKS1
Rev. 0.3
M/SN
7
CKS0
MCLK
6
12
5
44
VSS2
VREFP1
TEST1
BICK
4
13
AVDD1
43
3
VREFL1
2
LRCK
LIN1-
DVDD
14
VSS1
15
1
41
42
LIN1+
RIN1+
VCOM1
2007/10
-2-
[AK5388]
PIN / FUNCTION
No.
1
2
3
4
5
6
7
8
9
Pin Name
LIN1+
LIN1−
VSS1
AVDD1
TEST1
VSS2
CKS0
CKS1
CKS2
I/O
I
I
I
10
PDN
I
11
M/SN
I
12
MCLK
I
13
BICK
I/O
14
LRCK
I/O
15
16
DVDD
VSS3
-
17
SDTO1
O
18
SDTO2
O
19
OVF
O
20
TDMIN
I
21
TDM0
I
22
TDM1
I
23
DIF
I
24
MONO
I
25
HPFE
I
26
27
28
DVDD
VSS4
VSS5
-
I
I
I
Function
ADC1 Lch Positive Analog Input Pin
ADC1 Lch Negative Analog Input Pin
Ground Pin
Analog Power Supply Pin, 4.75 ∼ 5.25V
Test Pin
(Connected to VSS)
Ground pin
Clock Mode Select #0 Pin
Clock Mode Select #1 Pin
Clock Mode Select #2 Pin
Power-Down Mode Pin
When “L”, the circuit is in power-down mode.
The AK5388should always be reset upon power-up.
Master/Slave mode Select Pin
“L”: Slave mode, “H”: Master mode
Master Clock Input Pin
Audio Serial Data Clock Pin
“L” Output in Master Mode at Power-down mode.
Output Channel Clock Pin
“L” Output in Master Mode at Power-down mode.
Digital Power Supply Pin, 3.0 ∼ 3.6V
Ground Pin
ADC1 Audio Serial Data Output Pin
“L” Output at Power-down mode.
ADC2 Audio Serial Data Output Pin
“L” Output at Power-down mode.
Analog Input Overflow Detect Pin
This pin goes to “H” if any analog inputs overflows.
“L” Output at Power-down mode.
TDM Data Input Pin
TDM I/F Format Enable Pin
“L” : Normal Mode, “H” : TDM Mode
TDM I/F BICK Frequency Select Pin
“L” : Normal Mode, “H” : TDM Mode
Audio Interface Format Pin
“L”: 24BitMSB justified, “H”: 24BitI2S Compatible
Stereo/Mono mode Select Pin
“L”: Stereo mode, “H”: Mono mode
HPF Enable Pin
“L”: Disable, “H” Enable
Digital Power Supply Pin, 3.0 ∼ 3.6V
Ground Pin
Ground pin
Rev. 0.3
2007/10
-3-
[AK5388]
No. Pin Name
29 TEST2
30 AVDD2
31 VSS6
32 RIN2−
33 RIN2+
34 VREFP2
35 VREFL2
I/O
I
I
I
I
I
36
VCOM2
O
37
38
39
40
41
LIN2+
LIN2−
TEST3
RIN1−
RIN1+
I
I
I
I
I
42
VCOM1
O
43
44
VREFL1
VREFP1
I
I
Function
Test Pin
(Connected to VSS)
Analog Power Supply Pin, 4.75 ∼ 5.25V
Ground Pin
ADC2 Rch Negative Analog Input Pin
ADC2 Rch Positive Analog Input Pin
ADC2 High Level Voltage Reference Input Pin
ADC2 Low Level Voltage Reference Input Pin
Common Voltage Output Pin, (AVDD2)/2
Normally connected to AVSS2 with a 0.1μF ceramic capacitor in parallel with an
electrolytic capacitor less than 2.2μF.
ADC2 Lch Positive Analog Input Pin
ADC2 Lch Negative Analog Input Pin
Test Pin
(Connected to VSS)
ADC1 Rch Negative Analog Input Pin
ADC1 Rch Positive Analog Input Pin
Common Voltage Output Pin, (AVDD1)/2
Normally connected to AVSS1 with a 0.1μF ceramic capacitor in parallel with an
electrolytic capacitor less than 2.2μF.
ADC1 Low Level Voltage Reference Input Pin
ADC1 High Level Voltage Reference Input Pin
Note: All digital input pins should not be left floating.
Rev. 0.3
2007/10
-4-
[AK5388]
■ Handling of Unused Pin
The unused I/O pins should be processed appropriately as below.
Classification
Analog
Digital
Pin Name
LIN+, LIN−
RIN+, RIN−
VREFLP1/2, VREFL1/2
OVF
TEST1/2/3
Setting
These pins should be connected to AVSS.
These pins should be connected to AVSS.
These pins should be connected to AVDD.
This pin should be open.
This pin should be connected to DVSS.
ABSOLUTE MAXIMUM RATINGS
(VSS1-6=0V; Note 1)
Parameter
Power
Supplies:
Analog
Digital
Digital Output Buffer
Symbol
min
max
Units
AVDD1/2
DVDD1
DVDD2
−0.3
−0.3
−0.3
6.0
6.0
6.0
V
V
V
IIN
VINA
VIND
Ta
Tstg
−
−0.3
−0.3
−10
−65
±10
AVDD+0.3
DVDD+0.3
70
150
mA
V
V
°C
°C
Input Current, Any Pin Except Supplies
Analog Input Voltage (Note 2)
Digital Input Voltage (Note 3)
Ambient Temperature (power applied)
Storage Temperature
Note 1. All voltages with respect to ground.
Note 2. VREFP1, VREFP2, VREFL1, VREFL2, AINL1/2+, AINL1/2-, AINR1/2+ and AINR1/2- pins
Note 3. PDN, CKS0, CKS1, CKS2, TDMIN, MCLK, BICK, LRCK, DIF, TDM0, TDM1, HPFE, MONO and TST1/2/3
pins
WARNING: Operation at or beyond these limits may result in permanent damage to the device.
Normal operation is not guaranteed at these extremes.
Rev. 0.3
2007/10
-5-
[AK5388]
RECOMMENDED OPERATING CONDITIONS
(VSS1-6=0V; Note 1)
Parameter
Power Supplies:
(Note 4)
Voltage Reference
(Note 7)
Analog
Digital
“H” voltage Reference (Note 5)
“L” voltage reference (Note 6)
(VREFP1/2) – (VREFL1/2)
Symbol
min
typ
max
Units
AVDD1/2
DVDD
VREFP1/2
VREFL1/2
ΔVREF
4.75
3.0
AVDD-0.5
VSS
AVDD-0.5
5.0
3.3
-
5.25
3.6
AVDD
AVDD
V
V
V
V
V
Note 1. All voltages with respect to ground.
Note 4. The power up sequence between AVDD and DVDD is not critical.
Note 5. VREFP1 pin, VREFP2 pin
Note 6. VREFL1 pin, VREFL2 pin
Note 7. VREFL– and VREFR– pins should be connected to AVSS pin.
Analog input voltage scales with voltage of {(VREFP) – (VREFL)}.
Vin (typ, @ 0dB) = ±2.9 x {(VREF+) – (VREF–)} / 5 [V].
WARNING: AKEMD assumes no responsibility for the usage beyond the conditions in this datasheet.
Rev. 0.3
2007/10
-6-
[AK5388]
ANALOG CHARACTERISTICS
(Ta = 25°C; AVDD1/2=5.0V; DVDD1/2=3.3V; VSS1-6=0V; VREFP1=VREFP2=AVDD, VREFL1 = VREFL2 = VSS;
fs=48kHz, 96kHz, 192kHz; BICK=64fs; Signal Frequency=1kHz; 24bit Data; Measurement frequency=10Hz ∼ 20kHz at
fs = 48kHz, 40Hz ∼ 40kHz at fs = 96kHz, 40Hz ∼ 40kHz at fs = 192kHz; unless otherwise specified)
Parameter
min
typ
max
Units
Analog Input Characteristics:
Resolution
24
Bits
Input Voltage
(Note 8)
±2.7
±2.9
±3.1
Vpp
−1dBFS
TBD
105
dB
S/(N+D)
fs=48kHz
−20dBFS
95
dB
BW=20kHz
−60dBFS
55
dB
−1dBFS
TBD
102
dB
fs=96kHz
−20dBFS
90
dB
BW=40kHz
−60dBFS
50
dB
−1dBFS
102
dB
fs=192kHz
−20dBFS
90
dB
BW=40kHz
−60dBFS
50
dB
Stereo Mode
Dynamic Range
TBD
120
dB
Mono Mode
(−60dBFS with A-weighted)
123
Stereo Mode
S/N
TBD
120
dB
Mono Mode
(A-weighted)
123
Input Resistance
TBD
4.7
kΩ
Interchannel Isolation
TBD
120
dB
Interchannel Gain Mismatch
0.1
TBD
dB
Power Supply Rejection
(Note 9)
50
dB
Power Supplies
Power Supply Current
Normal Operation (PDN pin = “H”)
mA
TBD
88
AVDD1/2
mA
TBD
13
DVDD
(fs=48kHz)
mA
TBD
23
DVDD
(fs=96kHz)
mA
TBD
20
DVDD
(fs=192kHz)
Power down mode (PDN pin = “L”)
(Note 10)
μA
TBD
10
AVDD+DVDD
Note 8. This value is (LIN+)−(LIN−) and (RIN+)−(RIN−). Input voltage is proportional to VREF voltage.
Vin = 0.58 x VREF1/2 (Vpp).
Note 9. PSR is applied to AVDD1/2 and DVDD with 1kHz, 20mVpp. The VREFP1 and VREFP2 pins held a constant
voltage.
Note 10. All digital input pins are held DVDD or VSS3/4.
Rev. 0.3
2007/10
-7-
[AK5388]
FILTER CHARACTERISTICS (fs=48kHz)
(Ta=25°C; AVDD1/2=4.75 ∼ 5.25V; DVDD=3.0 ∼ 3.6V; DFS1 = “L”, DFS0 = “L”)
Parameter
Symbol
min
typ
ADC Digital Filter (Decimation LPF):
Passband
(Note 11) −0.01dB
PB
0
−0.1dB
22.0
−3.0dB
23.8
−6.0dB
24.4
Stopband
SB
27.9
Passband Ripple
PR
Stopband Attenuation
SA
80
Group Delay
(Note 12)
GD
12.6
Group Delay Distortion
ΔGD
±0.01
ADC Digital Filter (HPF):
Frequency Response (Note 11) −3dB
FR
1.0
−0.1dB
6.5
max
Units
21.6
-
kHz
kHz
kHz
kHz
kHz
dB
dB
1/fs
μs
±0.01
Hz
Hz
FILTER CHARACTERISTICS (fs=96kHz)
(Ta=25°C; AVDD1/2=4.75 ∼ 5.25V; DVDD=3.0 ∼ 3.6V; DFS1 = “L”, DFS0 = “H”)
Parameter
Symbol
min
typ
max
Units
ADC Digital Filter (Decimation LPF):
Passband
(Note 11) −0.01dB
PB
0
43.3
kHz
−0.1dB
44.2
kHz
−3.0dB
47.6
kHz
−6.0dB
48.9
kHz
Stopband
SB
55.9
kHz
Passband Ripple
PR
±0.01
dB
Stopband Attenuation
SA
80
dB
Group Delay
(Note 12)
GD
12.6
1/fs
Group Delay Distortion
ΔGD
±0.013
μs
ADC Digital Filter (HPF):
Frequency Response (Note 11) −3dB
FR
1.0
Hz
−0.1dB
6.5
Hz
Note 11. The passband and stopband frequencies scale with fs. The reference frequency of these responses is 1kHz.
Note 12. The calculated delay time induced by digital filtering. This time is from the input of an analog signal to the
setting of 24bit data both channels to the ADC output register for ADC.
Rev. 0.3
2007/10
-8-
[AK5388]
FILTER CHARACTERISTICS (fs=192kHz)
(Ta=25°C; AVDD1/2=4.75 ∼ 5.25V; DVDD=3.0 ∼ 3.6V; DFS1 = “H”, DFS0 = “L”)
Parameter
Symbol
min
typ
ADC Digital Filter (Decimation LPF):
Passband
(Note 11) −0.01dB
PB
−0.1dB
83.4
−3.0dB
99.9
−6.0dB
106.5
Stopband
SB
141.1
Passband Ripple
PR
Stopband Attenuation
SA
80
Group Delay
(Note 12)
GD
9.8
Group Delay Distortion
ΔGD
0
ADC Digital Filter (HPF):
Frequency Response (Note 11) −3dB
FR
1.0
−0.1dB
6.5
max
Units
-
kHz
kHz
kHz
kHz
kHz
dB
dB
1/fs
μs
±0.08
Hz
Hz
Note 12. The passband and stopband frequencies scale with fs. The reference frequency of these responses is 1kHz.
Note 13. The calculated delay time induced by digital filtering. This time is from the input of an analog signal to the
setting of 24bit data both channels to the ADC output register for ADC.
DC CHARACTERISTICS
(Ta=25°C; AVDD1/2=4.75 ∼ 5.25V; DVDD=3.0 ∼ 3.6V)
Parameter
Symbol
min
High-Level Input Voltage
VIH
70%DVDD
Low-Level Input Voltage
VIL
High-Level Output Voltage
(Iout=−400μA)
VOH
DVDD−0.4
Low-Level Output Voltage
(Iout=400μA)
VOL
Input Leakage Current
Iin
-
Rev. 0.3
typ
-
Max
30%DVDD
0.4
±10
Units
V
V
V
V
μA
2007/10
-9-
[AK5388]
SWITCHING CHARACTERISTICS
(Ta=25°C; AVDD1/2=4.75 ∼ 5.25V; DVDD=3.0 ∼ 3.6V; CL=20pF)
Parameter
Symbol
min
Master Clock Timing
2.048
fCLK
Master Clock
256fs:
0.4fCLK
tCLKL
Pulse Width Low
0.4fCLK
tCLKH
Pulse Width High
3.072
fCLK
384fs:
0.4fCLK
tCLKL
Pulse Width Low
0.4fCLK
tCLKH
Pulse Width High
4.096
fCLK
512fs:
0.4fCLK
tCLKL
Pulse Width Low
0.4fCLK
tCLKH
Pulse Width High
6.144
fCLK
768fs:
0.4fCLK
tCLKL
Pulse Width Low
0.4fCLK
tCLKH
Pulse Width High
LRCK Timing (Slave Mode)
Normal mode (TDM1=“L”, TDM0=“L”)
LRCK Frequency
fs
8
Duty Cycle
Duty
45
TDM256 MODE (TDM1=“L”, TDM0=“H”)
LRCK Frequency
fs
8
“H” time
tLRH
1/256fs
“L” time
tLRL
1/256fs
TDM128 MODE (TDM1=“H”, TDM0=“H”)
LRCK Frequency
fs
8
“H” time
tLRH
1/128fs
“L” time
tLRL
1/128fs
LRCK Timing (Master Mode)
Normal mode (TDM1=“L”, TDM0=“L”)
LRCK Frequency
fs
8
Duty Cycle
Duty
TDM256 MODE (TDM1=“L”, TDM0=“H”)
LRCK Frequency
fs
8
“H” time
(Note 13)
tLRH
TDM128 MODE (TDM1=“H”, TDM0=“H”)
fs
8
LRCK Frequency
tLRH
“H” time
(Note 13)
typ
max
Units
12.288
27.648
18.432
36.864
24.576
27.648
36.864
36.864
MHz
ns
ns
MHz
ns
ns
MHz
ns
ns
MHz
ns
ns
216
55
kHz
%
54
kHz
ns
ns
216
kHz
ns
ns
216
kHz
%
54
kHz
ns
216
kHz
ns
50
1/8fs
1/4fs
Note 13. “L” time at I2S format
Rev. 0.3
2007/10
- 10 -
[AK5388]
Parameter
Audio Interface Timing (Slave mode)
Normal mode (TDM1=“L”, TDM0=“L”)
BICK Period
Normal Speed Mode
Double , Quad Speed Mode
BICK Pulse Width Low
Pulse Width High
LRCK Edge to BICK “↑”
(Note 14)
BICK “↑” to LRCK Edge
(Note 14)
LRCK to SDTO1/2 (MSB) (Except I2S mode)
BICK “↓” to SDTO1/2
TDM256 mode (TDM1=“L”, TDM0=“H”)
BICK Period
BICK Pulse Width Low
Pulse Width High
LRCK Edge to BICK “↑”
(Note 14)
BICK “↑” to LRCK Edge
(Note 14)
BICK “↓” to SDTO1/2
TDM128 mode (TDM1=“H”, TDM0=“H”)
BICK Period
BICK Pulse Width Low
Pulse Width High
LRCK Edge to BICK “↑”
(Note 14)
BICK “↑” to LRCK Edge
(Note 14)
BICK “↓” to SDTO1
(Note 15)
Audio Interface Timing (Master mode)
Normal mode (TDM1=“L”, TDM0=“L”)
BICK Frequency
BICK Duty
BICK “↓” to LRCK
BICK “↓” to SDTO1/2
TDM256 mode (TDM1=“L”, TDM0=“H”)
BICK Frequency
BICK Duty
(Note 16)
BICK “↓” to LRCK
BICK “↓” to SDTO1/2
TDM128 mode (TDM1=“H”, TDM0=“H”)
BICK Frequency
BICK Duty
BICK “↓” to LRCK
BICK “↓” to SDTO1
(Note 15)
Power-Down & Reset Timing
PDN Pulse Width
(Note 17)
PDN “↑” to SDTO1/2 valid
(Note 18)
Symbol
min
TBCK
TBCK
tBCKL
tBCKH
tLRB
tBLR
tLRS
tBSD
1/128fs
1/64fs
32
32
20
20
tBCK
tBCKL
tBCKH
tLRB
tBLR
tBSD
1/256fs
16
16
16
16
tBCK
tBCKL
tBCKH
tLRB
tBLR
tBSD
1/128fs
TBD
TBD
TBD
TBD
fBCK
dBCK
tMBLR
tBSD
fBCK
dBCK
tMBLR
tBSD
fBCK
dBCK
tMBLR
tBSD
tPD
tPDV
Rev. 0.3
typ
max
Units
20
20
ns
ns
ns
ns
ns
ns
ns
ns
10
ns
ns
ns
ns
ns
ns
TBD
ns
ns
ns
ns
ns
ns
20
20
Hz
%
ns
ns
12
20
Hz
%
ns
ns
TBD
TBD
Hz
%
ns
ns
64fs
50
−20
−20
256fs
50
−12
−20
128fs
50
−TBD
−TBD
150
516
ns
1/fs
2007/10
- 11 -
[AK5388]
Note 14. BICK rising edge must not occur at the same time as LRCK edge.
Note 15. SDTO2 output is fixed to “L”.
Note 16. This value is MCLK=512fs. Duty cycle is not guaranteed when MCLK=256fs/384fs.
Note 17. The AK5388 can be reset by bringing the PDN pin = “L”.
Note 18. This cycle is the number of LRCK rising edges from the PDN pin = “H”.
■ Timing Diagram
1/fCLK
VIH
MCLK
VIL
tCLKH
tCLKL
1/fs
VIH
LRCK
VIL
tBCK
VIH
BICK
VIL
tBCKH
tBCKL
Figure 1. Clock Timing (TDM0 pin = “L”)
1/fCLK
VIH
MCLK
VIL
tCLKH
tCLKL
1/fs
VIH
LRCK
VIL
tLRH
tLRL
tBCK
VIH
BICK
VIL
tBCKH
tBCKL
Figure 2. Clock Timing (TDM0 pin = “H”)
Rev. 0.3
2007/10
- 12 -
[AK5388]
VIH
LRCK
VIL
tBLR
tLRB
VIH
BICK
VIL
tLRS
tBSD
SDTO
50%DVDD
Figure 3. Audio Interface Timing (Slave mode, TDM0 pin = “L”)
Note: SDTO shows SDTO1 and SDTO2.
VIH
LRCK
VIL
tBLR
tLRB
VIH
BICK
VIL
tBSD
SDTO1
50%DVDD
tTDMS
VIH
TDMIN
VIL
Figure 4. Audio Interface Timing (Slave mode, TDM0 pin = “H”)
Rev. 0.3
2007/10
- 13 -
[AK5388]
VIH
LRCK
VIL
tBLR
tLRB
VIH
BICK
VIL
tBSD
SDTO1
50%DVDD
Figure 5. Audio Interface Timing (Slave mode, TDM0 pin = “H” ,TDM1 pin = “H” ,8KHz ≤ fs < 108KHz)
VIH
LRCK
VIL
tBLR
tLRB
VIH
BICK
VIL
tBSS
SDTO1
tBSH
DATA
50%DVDD
Figure 6. Audio Interface Timing (Slave mode, TDM0 pin = “H”,TDM1 pin = “H” ,108KHz < fs ≤ 216KHz)
Rev. 0.3
2007/10
- 14 -
[AK5388]
50%DVDD
LRCK
tMBLR
dBCK
BICK
50%DVDD
tBSD
SDTO
50%DVDD
Figure 7. Audio Interface Timing (Master mode)
VIH
PDN
VIL
tPDV
tPD
SDTO
50%DVDD
Figure 8. Power Down & Reset Timing
Note: SDTO shows SDTO1 and SDTO2.
Rev. 0.3
2007/10
- 15 -
[AK5388]
OPERATION OVERVIEW
■ System Clock
MCLK (256fs/384fs/512fs), BICK (48fs∼) and LRCK (fs) clocks are required in slave mode. The LRCK clock input must
be synchronized with MCLK, however the phase is not critical. Table 1 shows the relationship of typical sampling
frequency and the system clock frequency. MCLK frequency is selected by CKS1-0 pins as shown in Table 2.
Since the AK5388 includes a phase detection circuit for LRCK, the AK5388 is reset automatically when the
synchronization is out of phase after changing the clock frequencies.
All external clocks (MCLK, BICK and LRCK) must be present unless the PDN pin = “L”. If these clocks are not
provided, the AK5388 may draw excess current due to its use of internal dynamically refreshed logic. If the external
clocks are not present, place the AK5388 in power-down mode (PDN pin = “L”). In master mode, the master clock
(MCLK) must be provided unless PDN pin = “L”.
fs
32kHz
48kHz
96kHz
192kHz
128fs
N/A
N/A
N/A
24.576MHz
192fs
N/A
N/A
N/A
36.864MHz
MCLK
256fs
384fs
8.192MHz
12.288MHz
12.288MHz
18.432MHz
24.576MHz
N/A
N/A
N/A
512fs
768fs
16.384MHz
24.576MHz
24.576MHz
36.864MHz
N/A
N/A
N/A
N/A
(N/A: Not available)
Table 1. System Clock Example (Slave Mode)
fs
32kHz
48kHz
96kHz
192kHz
128fs
N/A
N/A
N/A
24.576MHz
192fs
N/A
N/A
N/A
36.864MHz
MCLK
256fs
384fs
8.192MHz
12.288MHz
12.288MHz
18.432MHz
24.576MHz
36.864MHz
N/A
N/A
512fs
768fs
16.384MHz
24.576MHz
24.576MHz
36.864MHz
N/A
N/A
N/A
N/A
(N/A: Not available)
Table 2. System Clock Example (Master Mode)
fs
32kHz
48kHz
96kHz
192kHz
128fs
N/A
N/A
N/A
24.576MHz
192fs
N/A
N/A
N/A
36.864MHz
MCLK
256fs
384fs
N/A
N/A
N/A
N/A
24.576MHz
36.864MHz
N/A
N/A
512fs
768fs
16.384MHz
24.576MHz
24.576MHz
36.864MHz
N/A
N/A
N/A
N/A
(N/A: Not available)
Table 3. System Clock Example (Auto Mode)
Rev. 0.3
2007/10
- 16 -
[AK5388]
M/S Pin
L
H
CKS2 pin
L
L
L
L
H
H
H
H
L
L
L
L
H
H
H
H
CKS0 pin
L
L
H
H
L
L
H
H
L
L
H
H
L
L
H
H
CKS0 pin
L
H
L
H
L
H
L
H
L
H
L
H
L
H
L
H
MCLK Frequency
128fs (108KHz < fs ≤ 216KHz)
192fs (108KHz < fs ≤ 216KHz)
256fs (8KHz ≤ fs ≤ 54KHz)
256fs (54KHz < fs ≤ 108KHz)
Auto (8KHz ≤ fs ≤ 216KHz)
384fs (8KHz ≤ fs ≤ 54KHz)
512fs (8KHz < fs ≤ 54KHz)
768fs (8KHz ≤ fs ≤ 54KHz)
128fs (108KHz < fs ≤ 216KHz)
192fs (108KHz < fs ≤ 216KHz)
256fs (8KHz ≤ fs ≤ 54KHz)
256fs (54KHz < fs ≤ 108KHz)
384fs (54KHz ≤ fs ≤ 108KHz)
384fs (8KHz ≤ fs ≤ 54KHz)
512fs (8KHz < fs ≤ 54KHz)
768fs (8KHz ≤ fs ≤ 54KHz)
Table 4. MCLK Frequency
When changing MCLK frequency in master/slave mode, the AK5388 should reset by PDN pin = “L”. (ex.
12.288MHz(@fs=48kHz) at CKS1 pin = CKS0 pin = “L”.
■ Audio Interface Format
12 different audio data interface formats can be selected using the TDM1-0, M/S and DIF pins as shown in Table 5. The
audio data format can be selected by the DIF pin. In all formats the serial data is MSB-first, 2's compliment format. The
SDTO1/2 is clocked out on the falling edge of BICK.
In normal mode, Mode 0-1 are the slave mode, and BICK is available up to 128fs at fs=48kHz. BICK outputs 64fs clock
in Mode 2-3.
In TDM256 mode, all of the ADC’s serial data (four channels) is output from the SDTO1 pins. The SDTO2 output is
fixed to “L”. BICK should be fixed to 256fs. In slave mode, “H” time and “L” time of LRCK should be at least 1/256fs. In
master mode, “H” time (“L” time at I2S mode) of LRCK is 1/8fs typical. TDM256 mode does not support 96kHz
sampling.
In TDM128 mode, all of the ADC’s serial data (four channels) is output from the SDTO1 pin. The SDTO2 output is fixed
to “L”. BICK should be fixed to 128fs. In the slave mode, “H” time and “L” time of LRCK should be at least 1/128fs. In
master mode, “H” time (“L” time at I2S mode) of LRCK is 1/4fs typical. TDM128 mode supports up to 192kHz sampling.
Rev. 0.3
2007/10
- 17 -
[AK5388]
Mode
0
1
2
3
4
5
6
7
8
9
10
11
12
LRCK
I/O
L
24bit, MSB justified
H/L
I
L
2
H
24bit, I S Compatible
L/H
I
L
L
24bit, MSB justified
H/L
O
H
H
24bit, I2S Compatible
L/H
O
L
24bit, MSB justified
I
↑
L
H
24bit, I2S Compatible
I
↓
H
L
24bit, MSB justified
O
↑
H
O
H
24bit, I2S Compatible
↓
L
24bit, MSB justified
I
↑
L
2
H
24bit, I S Compatible
I
↓
H
L
24bit, MSB justified
O
↑
H
O
H
24bit, I2S Compatible
↓
L
N/A
N/A
N/A
N/A
N/A
Table 5. Audio Interface Formats (N/A: Not available)
TDM1
Normal
L
TDM256
L
TDM128
H
N/A
H
TDM0
M/S
DIF
BICK
SDTO
I/O
I
I
O
O
I
I
O
O
I
I
O
O
N/A
48-128fs
48-128fs
64fs
64fs
256fs
256fs
256fs
256fs
128fs
128fs
128fs
128fs
N/A
LRCK
0
1
2
12
13
14
24
25
31
0
1
2
12
13
14
24
25
31
0
1
BICK(64fs)
SDTO1/2(o)
23 22
12 11 10
23:MSB, 0:LSB
0
23 22
12
11 10
Lch Data
0
23
Rch Data
Figure 9. Mode 0, 2 Timing (Normal mode, MSB justified)
LRCK
0
1
2
3
23
24
25
26
29
30
31
0
1
2
3
23
24
25
26
29
30
31
0
1
BICK(64fs)
SDTO1/2(o)
23 22
2
1
23:MSB, 0:LSB
0
23 22
Lch Data
2
1
0
Rch Data
Figure 10. Mode 1, 3 Timing (Normal mode, I2S Compatible)
256 BICK
LRCK (Mode 6)
LRCK (Mode 4)
BICK (256fs)
SDTO1
23 22
0
23 22
0
23 22
0
23 22
0
L1
R1
L2
R2
32 BICK
32 BICK
32 BICK
32 BICK
23 22
Figure 11. Mode 4, 6 Timing (TDM256 mode, MSB justified)
Rev. 0.3
2007/10
- 18 -
[AK5388]
256 BICK
LRCK (Mode 7)
LRCK (Mode5)
BICK (256fs)
SDTO1
23
0
23
0
23
0
23
0
L1
R1
L2
R2
32 BICK
32 BICK
32 BICK
32 BICK
23
Figure 12. Mode 5, 7 Timing (TDM256 mode, I2S Compatible)
128 BICK
LRCK (Mode 10)
LRCK (Mode 8)
BICK (128fs)
SDTO1
23 22
0
23 22
0
23 22
0
23 22
0
L1
R1
L2
R2
32 BICK
32 BICK
32 BICK
32 BICK
23 22
Figure 13. Mode 8, 10 Timing (TDM128 mode, MSB justified)
128 BICK
LRCK (Mode 11)
LRCK (Mode 9)
BICK (128fs)
SDTO1
23 22
0
23 22
0
23 22
0
L1
R1
L2
32 BICK
32 BICK
32 BICK
23 22
0
23
R2
32 BICK
2
Figure 14. Mode 9, 11 Timing (TDM128 mode, I S Compatible)
Rev. 0.3
2007/10
- 19 -
[AK5388]
■ Digital High Pass Filter (HPF)
The ADC has a digital high pass filter for DC offset cancellation. The cut-off frequency of the HPF is 1.0Hz
(@fs=48kHz).
The HPF is controlled by the HPFE pin. If the HPF setting (ON/OFF) is changed during operation, a click noise occurs
due to the change in DC offset. The HPF setting should only be changed when the PDN pin = “L”.
■ Overflow Detection
The AK5388 has an overflow detect function for the analog input. The OVF pin goes to “H” if either channel overflows
(more than −0.3dBFS). OVF output for overflowed analog input has the same group delay as the ADC
(GD=13/fs=0.27ms@fs=48kHz). OVF is “L” for 516/fs (=10.75ms@fs=48kHz) after the PDN pin = “↑”, and then
overflow detection is enabled.
■ Power Down and Reset
The AK5388 is placed in the power-down mode by bringing PDN pin “L” and the digital filter is also reset at the same
time. This reset should always be done after power-up. In the power-down mode, the VCOM is AGND level. An analog
initialization cycle starts after exiting the power-down mode. The output data SDTO is valid after 516 cycles of LRCK
clock in master mode (517 cycles in slave mode). During initialization, the ADC digital data outputs of both channels are
forced to “0”. The ADC outputs settle to data correspondent to the input signals after the end of initialization (Settling
takes approximately the group delay time).
The AK5388 should be reset once by bringing the PDN pin “L” after power-up. The internal timing starts clocking by the
rising edge (falling edge at Mode 1) of LRCK after exiting from reset and power down state by MCLK.
(1)
PDN
Internal
State
Normal Operation
Power-down
Initialize
Normal Operation
GD (2)
GD
A/D In
(Analog)
A/D Out
(Digital)
Clock In
MCLK,LRCK,SCLK
(3)
“0”data
Idle Noise
“0”data
Idle Noise
(4)
Notes:
(1) 517/fs in slave mode and 516/fs in master mode.
(2) Digital output corresponding to analog input has group delay (GD).
(3) A/D output is “0” data in power-down state.
(4) When the external clocks (MCLK, SCLK, LRCK) are stopped, the AK5388 should be in the power-down state.
Figure 3. Power-down/up sequence example
Rev. 0.3
2007/10
- 20 -
ASAHI KASEI
[AK5388]
■ Cascade TDM Mode
The AK5388 supports cascading of up to two devices in a daisy chain configuration in TDM256 mode. In this mode,
SDTO2 pin of device #1 is connected to TDMIN pin of device #2. The SDTO1 pin of device #2 can output 8-chnnels of
TDM data multiplexed with 4-chnnel of TDM data from device #1 and 4-channel of TDM data from device #2. Figure 15
shows a connection example of a daisy chain.
AK5388 #1
MCLK
256fs or 512fs
LRCK
48kHz
BICK
256fs
TDMIN
GND
SDTO1
SDTO2
MCLK
AK5388 #2
LRCK
BICK
TDMIN
8ch TDM
SDTO1
SDTO2
Figure 15. Cascade TDM Connection Diagram
256 BICK
LRCK
BICK(256fs)
#1 SDTO1(o)
#1 SDTO2(o)
#2 TDMIN(i)
#2 SDTO1(o)
23 22
0
23 22
0
23 22
0
23 22
0
L1
R1
L2
R2
32 BICK
32 BICK
32 BICK
32 BICK
23 22
0
23 22
0
23 22
0
23 22
0
L1
R1
L2
R2
32 BICK
32 BICK
32 BICK
32 BICK
23 22
0
23 22
0
23 22
0
23 22
0
L1
R1
L2
R2
32 BICK
32 BICK
32 BICK
32 BICK
23 22
0
23 22
0
23 22
0
23 22
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
L1
R1
L2
R2
L1-#1
R1-#1
L2-#1
R2-#1
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
23 22
Figure 16. Cascade TDM Timing
Rev. 0.3
2007/10
- 21 -
ASAHI KASEI
[AK5388]
■ Mono mode
When the MONO pin is set to “H”, the AK5388 is in MONO mode. In the Mono mode, dynamic range and S/N can be
improved by approximately 3dB when the same analog signal is inputted to left and right channels. The output data
format is to be determined.
MONO pin
SDTO1/2 Output Data
L
Stereo Mode
H
Mono Mode
Table 6. Setup of MONO mode
Rev. 0.3
2007/10
- 22 -
ASAHI KASEI
[AK5388]
SYSTEM DESIGN
Figure 17 and Figure 18 show the system connection diagram. The evaluation board demonstrates application circuits, the
optimum layout, power supply arrangements and measurement results.
TBD
Note:
- AVSS, BVSS and DVSS of the AK5388 should be distributed separately from the ground of external digital
devices (MPU, DSP etc.).
- All input pins except pull-down (CKS0, CKS1 and TEST pin) pin should not be left floating.
Figure 17. Typical Connection Diagram
TBD
Figure 18. Ground Layout
Note:
- AVSS BVSS, and DVSS must be connected to the same analog ground plane.
Rev. 0.3
2007/10
- 23 -
ASAHI KASEI
[AK5388]
1. Grounding and Power Supply Decoupling
The AK5388 requires careful attention to power supply and grounding arrangements. Alternatively if AVDD and DVDD
are supplied separately, the power up sequence is not critical. AVSS, BVSS and DVSS of the AK5388 must be
connected to the analog ground plane. System analog ground and digital ground should be connected together near to
where the supplies are brought onto the printed circuit board. Decoupling capacitors should be as near to the AK5388 as
possible, with the small value ceramic capacitor being the nearest.
2. Voltage Reference Inputs
The reference voltage for A/D converter is supplied from VREFL/R pins at AVSS reference. AVSS pin is connected to
analog ground and an electrolytic capacitor over 10μF parallel with a 0.1μF ceramic capacitor between the VREFL/R pins
and the AVSS pin eliminate the effects of high frequency noise. It is important that a ceramic capacitor should be as near
to the pins as possible. All digital signals, especially clocks, should be kept away from the VREFL/R pins in order to
avoid unwanted coupling into the AK5388. No load current may be taken from the VREFL/R pins.
VCOM is a signal ground for this device. An electrolytic capacitor (0.22µF typical) attached to the VCOM pin eliminates
the effects of high frequency noise. No load current may be drawn from the VCOM pin. All signals, especially clocks,
should be kept away from the VCOM pin in order to avoid unwanted coupling into the AK5388.
3. Analog Inputs
The Analog input signal is differentially supplied into the modulator via the LIN+ (RIN+) and the LIN− (RIN−) pins. The
input voltage is the difference between the LIN+ (RIN+) and LIN− (RIN−) pins. The full scale signal on each pin is
nominally ±2.9Vpp(typ). The AK5388 can accept input voltages from AVSS to AVDD. The ADC output data format is
two’s complement. The internal HPF removes DC offset.
The AK5388 samples the analog inputs at 128fs (6.144MHz@fs=48kHz, Normal Speed Mode). The digital filter rejects
noise above the stop band except for multiples of 128fs. The AK5388 includes an anti-aliasing filter (RC filter) to
attenuate a noise around 128fs.
The AK5388 requires a +5V analog supply voltage. Any voltage which exceeds the upper limit of AVDD+0.3V and
lower limit of AVSS−0.3V and any current beyond 10mA for the analog input pins (LIN+/−, RIN+/−) should be avoided.
Excessive currents to the input pins may damage the device. Hence input pins must be protected from signals at or beyond
these limits. Use caution especially when using ±15V for other analog circuits in the system.
Rev. 0.3
2007/10
- 24 -
ASAHI KASEI
[AK5388]
4. External Analog Circuit Examples
Figure 19 shows an input buffer circuit example 1. (1st order HPF; fc=0.70Hz, 2nd order LPF; fc=320kHz, gain=-14.5dB).
The analog signal is able to input through XLR or BNC connectors. (short JP1 and JP2 for BNC input, open JP1 and JP2
for XLR input). The input level of this circuit is +/-TBDVpp (AK5388: +/-2.9Vpp Typ.). When using this circuit, analog
characteristics at fs=48kHz is DR=120dB, S/(N+D)=TBDdB.
4.7k
4.7k
Analog In
620
JP1
VP+
+
TBDVp
1n
Vin+ 68µ
3.3k
Bias
VP-
91
+
2.9Vpp
AK5388 AIN+
NJM5534
NJM5534
XLR
2.2n
VA+
620
10k
JP2
Bias
+
10k
10µ
68µ
Vin-
1n
3.3k
-
91
AK5388 AIN-
+
0.1µ
NJM5534
Bias
VA=+5V
2.9Vpp
VP=±15V
Figure 19.Input Buffer example1
fin
1Hz
10Hz
Frequency Response
−1.56dB
−0.02dB
Table 7. Frequency Response of HPF
fin
20kHz
40kHz
Frequency Response
−0.005dB
−0.02dB
Table 8. Frequency Response of LPF
Rev. 0.3
6.144MHz
−15.6dB
2007/10
- 25 -
ASAHI KASEI
[AK5388]
PACKAGE
44pin LQFP (Unit: mm)
1.70max
12.80±0.30
0∼0.2
10.00
23
33
0.80
12.80±0.30
22
10.00
34
12
44
1
11
0.37±0.10
0.17±0.05
0°∼10°
0.60±0.20
0.15
■ Material & Lead finish
Package molding compound:
Lead frame material:
Lead frame surface treatment:
Epoxy
Cu
Solder (Pb free) plate
Rev. 0.3
2007/10
- 26 -
ASAHI KASEI
[AK5388]
MARKING
AK5388EQ
XXXXXXX
AKM
1
1) Pin #1 indication
2) Audio 4 pro Logo
3) Date Code: XXXXXXX(7 digits)
4) Marking Code: AK5388
5) AKM Logo
IMPORTANT NOTICE
z These products and their specifications are subject to change without notice.
When you consider any use or application of these products, please make inquiries the sales office of Asahi Kasei
EMD Corporation (AKEMD) or authorized distributors as to current status of the products.
z AKEMD assumes no liability for infringement of any patent, intellectual property, or other rights in the application or
use of any information contained herein.
z Any export of these products, or devices or systems containing them, may require an export license or other official
approval under the law and regulations of the country of export pertaining to customs and tariffs, currency exchange,
or strategic materials.
z AKEMD products are neither intended nor authorized for use as critical componentsNote1) in any safety, life support, or
other hazard related device or systemNote2), and AKEMD assumes no responsibility for such use, except for the use
approved with the express written consent by Representative Director of AKEMD. As used here:
Note1) A critical component is one whose failure to function or perform may reasonably be expected to result,
whether directly or indirectly, in the loss of the safety or effectiveness of the device or system containing it, and
which must therefore meet very high standards of performance and reliability.
Note2) A hazard related device or system is one designed or intended for life support or maintenance of safety or
for applications in medicine, aerospace, nuclear energy, or other fields, in which its failure to function or perform
may reasonably be expected to result in loss of life or in significant injury or damage to person or property.
z It is the responsibility of the buyer or distributor of AKEMD products, who distributes, disposes of, or otherwise
places the product with a third party, to notify such third party in advance of the above content and conditions, and the
buyer or distributor agrees to assume any and all responsibility and liability for and hold AKEMD harmless from any
and all claims arising from the use of said product in the absence of such notification.
Rev. 0.3
2007/10
- 27 -