EXAR XR19L222IL64

XR19L222
TWO CHANNEL INTEGRATED UART AND RS-232 TRANSCEIVER
MAY 2007
REV. 1.0.0
GENERAL DESCRIPTION
APPLICATIONS
The XR19L222 (L222) is a highly integrated device that
combines a full-featured two channel Universal
Asynchronous Receiver and Transmitter (UART) and RS232 transceivers. The L222 is designed to operate with a
single 3.3V or 5V power supply. The L222 is fully compliant
with EIA/TIA-232-F Standards from a +3.3V to +5.5V power
supply. The device operates at 1 Mbps data rate with worst
case 3K ohms load. Both RS-232 driver outputs and
receiver inputs can operate in harsh electrical environments
of +/-15V without damage and can survive multiple +/-15kV
ESD on the RS-232 lines, while maintaining RS-232 output
levels.
The L222 operates in four different modes: Active, Partial
Sleep, Full Sleep and Power-Save. Each mode can be
invoked via hardware or software. Upon power-up, the
L222 is in the Active mode where the UART and RS-232
transceiver function normally. In the Partial Sleep mode, the
internal crystal oscillator of the UART or charge pump of the
RS-232 transceiver is turned off. In Full Sleep mode, both
the crystal oscillator and the charge pump are turned off.
While the UART is in the Sleep mode, the Power-Save
mode isolates the core logic from the control signals (chip
select, read/write strobes, address and data bus lines) to
minimize the power consumption. The RS-232 receivers
remain active in any of these four modes.
• Battery-Powered Equipment
• Handheld and Mobile Devices
• Handheld Terminals
• Industrial Peripheral Interfaces
• Point-of-Sale (POS) Systems
FEATURES
• Meets true EIA/TIA-232-F Standards from +3.3V to +5.5V
operation
• Up to 1 Mbps data transmission rate
• 45us sleep mode exit (charge pump to full power)
• ESD protection for RS-232 I/O pins at
■
■
■
+/-15kV - Human Body Model
+/-15kV - 61000-4-2, Air-Gap Discharge
+/- 8kV - 61000-4-2, Contact Discharge
• Software compatible with industry standard 16550 UART
• Intel/Motorola bus select
• Complete modem interface
• Sleep and Power-save modes to conserve battery power
• Wake-up interrupt upon exiting low power modes
IOW# (R/W#)
CSA# (CS#)
CSB#
Crystal
Osc/Buffer
UART Registers
IOR#
Intel or Motorola Bus Interface
D7:D0
C1-
C1+
C2-
C2+
FAST
ACP
R_EN
VCC
(3.3 to 5.5V)
GND
VREF+
*5 V Tolerant
Inputs
PwrSave
A2:A0
XTAL2
XTAL1
FIGURE 1. BLOCK DIAGRAM
BRG
64 Byte
TX & RX
FIFO
Charge Pump
VREFTXDA
RXDA
TXA
RXA
5K
RTSA#
Modem
I/Os
DTRA#
CTSA#
5K
DSRA#
5K
RIA#
5K
CDA#
INTA (IRQ#)
Channel A
5K
RTSA
DTRA
CTSA
DSRA
RIA
CDA
Ch A Transceiver
CDB#
RIB#
DSRB#
CTSB#
DTRB#
RTSB#
TXB
RXB
INTB
RESET (RESET#)
Channel B
I/M#
Channel B
Transceiver
(See Figure 6)
RXBSEL
UART
CDB
RIB
DSRB
CTSB
DTRB
RTSB
TXDB
TXB
RXDB
RXB
RS-232 Transceiver
XR19L222
Exar Corporation 48720 Kato Road, Fremont CA, 94538 • (510) 668-7000 • FAX (510) 668-7017 • www.exar.com
XR19L222
TWO CHANNEL INTEGRATED UART AND RS-232 TRANSCEIVER
REV. 1.0.0
51 C1-
50 NC
49 NC
53 VREF+
52 C1+
55 C3A
54 VCC
57 D0
56 C3B
58 D1
59 D2
61 CDA
60 RIA
62 CDB
64 D4
63 D3
FIGURE 2. PIN OUT OF THE DEVICE
CTSA
GND
1
2
48
47
CTSB
RTSB
D5
D6
D7
3
46
4
5
6
7
45
44
RXBSEL
RXB
TXB
CSA#
CSB#
DTRB
8
9
43
42
XR19L222
64-pin QFN
Intel Bus Mode
10
11
12
13
41
40
39
38
37
36
35
34
PWRSAVE 14
RIB 15
DSRB 16
C2TXDA
INTA
INTB
DTRA
DSRA
A0
A1
A2
RXDA
GND
NC
NC
RXDB 32
I/M# 30
RTSA 31
NC 28
TXDB 29
VREF- 27
NC 26
R_EN 24
ACP 25
GND 22
IOR# 23
FAST 21
XTAL2 19
IOW# 20
GND 17
XTAL1 18
33
VCC
RESET
C2+
51 C1-
50 NC
49 NC
53 VREF+
52 C1+
55 C3A
54 VCC
57 D0
56 C3B
58 D1
59 D2
61 CDA
60 RIA
62 CDB
64 D4
63 D3
VCC
CTSA
GND
1
2
48
47
CTSB
RTSB
3
46
4
5
6
45
44
D5
D6
D7
7
43
42
XR19L222
64-pin QFN
Motorola Bus Mode
RXBSEL 8
RXB 9
TXB 10
CS# 11
A3 12
DTRB 13
PWRSAVE 14
41
40
39
VCC
RESET#
C2+
C2TXDA
IRQ#
NC
DTRA
DSRA
A0
38
37
36
35
34
RIB 15
DSRB 16
NC
NC
RXDB 32
I/M# 30
RTSA 31
NC 28
TXDB 29
NC 26
VREF- 27
R_EN 24
ACP 25
NC 23
GND 22
FAST 21
XTAL2 19
R/W# 20
GND 17
XTAL1 18
33
A1
A2
RXDA
GND
GND
ORDERING INFORMATION
PART NUMBER
PACKAGE
OPERATING TEMPERATURE RANGE
DEVICE STATUS
XR19L222IL64
64-pin QFN
-40°C to +85°C
Active
2
XR19L222
TWO CHANNEL INTEGRATED UART AND RS-232 TRANSCEIVER
REV. 1.0.0
PIN DESCRIPTIONS
Pin Descriptions
NAME
64-QFN
PIN#
TYPE
DESCRIPTION
DATA BUS INTERFACE (CMOS/TTL Voltage Levels)
A2
A1
A0
37
38
39
I
D7
D6
D5
D4
D3
D2
D1
D0
7
6
5
64
63
59
58
57
I/O
IOR#
(NC)
23
I
When I/M# pin is HIGH, the Intel bus interface is selected and this input becomes read
strobe (active LOW). The falling edge instigates an internal read cycle and retrieves the
data byte from an internal register pointed by the address lines [A2:A0], puts the data byte
on the data bus to allow the host processor to read it on the rising edge.
When I/M# pin is LOW, the Motorola bus interface is selected and this input is not used.
IOW#
(R/W#)
20
I
When I/M# pin is HIGH, it selects Intel bus interface and this input becomes write strobe
(active LOW). The falling edge instigates the internal write cycle and the rising edge transfers the data byte on the data bus to an internal register pointed by the address lines.
When I/M# pin is LOW, the Motorola bus interface is selected and this input becomes read
(HIGH) and write (LOW) signal.
CSA#
(CS#)
11
I
When I/M# pin is HIGH, this input is chip select A (active low) to enable channel A in the
device.
When I/M# pin is LOW, this input becomes the chip select (active low) for the Motorola bus
interface.
CSB#
(A3)
12
I
When I/M# pin is HIGH, this input is chip select B (active low) to enable channel B in the
device.
When I/M# pin is LOW, this input becomes address line A3 which is used for channel selection in the Motorola bus interface. Input logic 0 selects channel A and logic 1 selects channel B.
INTA
(IRQ#)
43
O When I/M# pin is HIGH, it selects Intel bus interface and this output become the active
(OD) HIGH device interrupt output for channel A. This output is enabled through the software setting of MCR[3]: set to the active mode when MCR[3] is set to a logic 1, and set to the three
state mode when MCR[3] is set to a logic 0. See MCR[3].
When I/M# pin is LOW, it selects Motorola bus interface and this output becomes the active
LOW, open-drain interrupt output for both channels. An external pull-up resistor is required
for proper operation. MCR[3] must be set to a logic 0 for proper operation of the interrupt.
INTB
(NC)
42
O When I/M# pin is HIGH, it selects Intel bus interface and this output become the active
(OD) HIGH device interrupt output for channel B. This output is enabled through the software setting of MCR[3]: set to the active mode when MCR[3] is set to a logic 1, and set to the three
state mode when MCR[3] is set to a logic 0. See MCR[3].
When I/M# pin is LOW, it selects Motorola bus interface and this output is not used and can
be left unconnected.
Address bus lines [2:0]. These 3 address lines select one of the internal registers in the
UART during a data bus transaction.
Data bus lines [7:0] (bidirectional).
3
XR19L222
TWO CHANNEL INTEGRATED UART AND RS-232 TRANSCEIVER
REV. 1.0.0
Pin Descriptions
NAME
64-QFN
PIN#
DESCRIPTION
TYPE
MODEM OR SERIAL I/O INTERFACE (EIA-232/RS-232 Voltage Levels)
TXDA
44
O
UART Channel A Transmit Data. The TX signal will be LOW (< 1.5V) during reset or idle (no
data).
RXDA
36
I
UART Channel A Receive Data. The RX data input must idle LOW (< 1.5V). This input has
an internal pull-down resistor and can be left unconnected when not used.
RTSA
31
O
UART Channel A Request-to-Send or general purpose outputs. These outputs must be
asserted prior to using auto RTS flow control, see EFR[6], MCR[1] and IER[6].
CTSA
1
I
UART Channel A Clear-to-Send or general purpose inputs. It can be used for auto CTS
flow control, see EFR[7], MSR[4] and IER[7]. This input has an internal pull-down resistor
and can be left unconnected when not used.
DTRA
41
O
UART Channel A Data-Terminal-Ready or general purpose outputs.
DSRA
40
I
UART Channel A Data-Set-Ready or general purpose inputs. This input has an internal pulldown resistor and can be left unconnected when not used.
CDA
61
I
UART Channel A Carrier-Detect or general purpose inputs. This input has an internal pulldown resistor and can be left unconnected when not used.
RIA
60
I
UART Channel A Ring-Indicator or general purpose inputs. This input has an internal pulldown resistor and can be left unconnected when not used.
TXDB
29
O
UART Channel B Transmit Data. The TX signal will be LOW (< 1.5V) during reset or idle (no
data).
RXDB
32
I
UART Channel B Receive Data. RXDB will be the input signal to the internal UART when
RXBSEL is LOW. If RXB is used, then RXBSEL should be HIGH. The RX data input must
idle LOW (< 1.5V). This input has an internal pull-down resistor and can be left unconnected when not used.
RTSB
4
O
UART Channel B Request-to-Send or general purpose outputs. These outputs must be
asserted prior to using auto RTS flow control, see EFR[6], MCR[1] and IER[6].
CTSB
3
I
UARTChannel B Clear-to-Send or general purpose inputs. It can be used for auto CTS
flow control, see EFR[7], MSR[4] and IER[7]. This input has an internal pull-down resistor
and can be left unconnected when not used.
DTRB
13
O
UART Channel B Data-Terminal-Ready or general purpose outputs.
DSRB
16
I
UART Channel B Data-Set-Ready or general purpose inputs. This input has an internal pulldown resistor and can be left unconnected when not used.
CDB
62
I
UART Channel B Carrier-Detect or general purpose inputs. This input has an internal pulldown resistor and can be left unconnected when not used.
RIB
15
I
UART Channel B Ring-Indicator or general purpose inputs. This input has an internal pulldown resistor and can be left unconnected when not used.
SERIAL I/O INTERFACE (CMOS/TTL Voltage Levels)
TXB
10
O
UART Channel B Transmit data. This is the TXB output signal from the UART. This pin can
be used to communicate with an external Infrared or RS-422 transceiver if TXDB is unused.
RXB
9
I
UART Channel B Receive data. This is the RXB input signal to the UART. If RXDB is not
used (RXBSEL is HIGH), then this pin can be used to communicate with an external Infrared or RS-422 transceiver. If RXDB is used (RXBSEL is LOW), this pin should be left open.
4
XR19L222
TWO CHANNEL INTEGRATED UART AND RS-232 TRANSCEIVER
REV. 1.0.0
Pin Descriptions
NAME
64-QFN
PIN#
DESCRIPTION
TYPE
ANCILLARY SIGNALS (CMOS/TTL Voltage Levels)
XTAL1
18
I
Crystal or external clock input. This input is not 5V tolerant.
XTAL2
19
O
Crystal or buffered clock output. This output may be use to drive a clock buffer which can
drive other device(s).
PwrSave
14
I
Power-Save (active high). This feature isolates the L222’s data bus interface from the host
preventing other bus activities that cause higher power drain during sleep mode. See Sleep
Mode with Auto Wake-up and Power-Save Feature section for details.
ACP
25
I
Autosleep for Charge Pump (active HIGH). When this pin is HIGH, the charge pump is shut
off if the L222 is already in partial sleep mode, i.e. the crystal oscillator is stopped. See
”Section 2.18, Sleep Modes and Power-Save Feature with Wake-Up Interrupt” on page 20.
I/M#
30
I
Intel or Motorola Bus Select.
When I/M# pin is HIGH, 16 or Intel Mode, the device will operate in the Intel bus type of
interface.
When I/M# pin is LOW, 68 or Motorola mode, the device will operate in the Motorola bus
type of interface.
RESET
(RESET#)
47
I
When I/M# pin is HIGH for Intel bus interface, this input becomes RESET (active high).
When I/M# pin is LOW for Motorola bus interface, this input becomes RESET# (active low).
A 40 ns minimum active pulse on this pin will reset the internal registers and all outputs of
the UART. The UART transmitter output will be held HIGH, the receiver input will be ignored
and outputs are reset during reset period (see Table 16).
C2+
C2-
46
45
-
Charge pump capacitors. As shown in Figure 1, a 0.1 uF capacitor should be placed
between these 2 pins.
C1+
C1-
52
51
-
Charge pump capacitors. As shown in Figure 1, a 0.1 uF capacitor should be placed
between these 2 pins.
VREF+
53
Pwr +5.0V generated by the charge pump.
VREF-
27
Pwr -5.0V generated by the charge pump.
R_EN
24
I
When the supply voltage is < 3.6V, connect R_EN to GND.
When the supply voltage is > 3.6V, connect R_EN to VCC.
C3A
C3B
55
56
I
When the supply voltage is 3.3 V, C3A and C3B should be connected to VCC.
When the supply voltage is 5 V, C3A should be connected to C3B with a 1 uF capacitor to
GND.
RXBSEL
8
I
When RXBSEL is HIGH, RXB is the input to the receiver of the UART.
When RXBSEL is LOW, RXDB is the input to the receiver of the UART.
FAST
21
I
When FAST is HIGH, the maximum serial data rate is 1 Mbps.
When FAST is LOW, the maximum serial data rate is 250 Kbps.
VCC
48, 54
GND
Pwr 3.3V to 5.5V power supply. All CMOS/TTL input pins, except XTAL1, are 5V tolerant.
2, 17, 22, Pwr Power supply common, ground.
35
5
XR19L222
TWO CHANNEL INTEGRATED UART AND RS-232 TRANSCEIVER
REV. 1.0.0
Pin Descriptions
NAME
64-QFN
PIN#
-
PAD
NC
26, 28, 33,
34, 49, 50
DESCRIPTION
TYPE
Pwr The center pad on the backside of the 64-QFN package is metallic and is not electrically
connected to anything inside the device. It must be soldered on to the PCB and may be
optionally connected to GND on the PCB. The thermal pad size on the PCB should be the
approximate size of this center pad and should be solder mask defined. The solder mask
opening should be at least 0.0025" inwards from the edge of the PCB thermal pad.
-
No Connect. Note that in Motorola mode, the IOR# pin also becomes an NC pin.
NOTE: Pin type: I=Input, O=Output, I/O= Input/output, OD=Output Open Drain. For CMOS/TTL Voltage levels, ’LOW’
indicates a voltage in the range 0V to VIL and ’HIGH" indicates a voltage in the range VIH to VCC. For RS-232
Voltage levels, ’LOW’ is any voltage < 1.5V and ’HIGH’ is any voltage > 3V.
6
XR19L222
REV. 1.0.0
TWO CHANNEL INTEGRATED UART AND RS-232 TRANSCEIVER
1.0 PRODUCT DESCRIPTION
The XR19L222 consists of a two-channel UART and RS-232 transceivers. It operates from a single +3V to
5.5V supply with data rates up to 1Mbps, while meeting all EIA RS-232F specifications. Its feature set is fully
compatible to the XR16V2751 device. Unlike the XR16V2751, most of the modem signals are not CMOS/TTL
level, but conform to EIA/TIA 232 or RS-232 voltage levels. The only two signals that are CMOS/TTL level are
the TXB and RXB signals. They can be used with an external IR or RS-422 transceiver when their
corresponding RS-232 signals, TXDB and RXDB, are not used. The configuration register set is 16550 UART
compatible for control, status and data transfer. Also, the L222 has 64-bytes of transmit and receive FIFOs,
automatic RTS/CTS hardware flow control, automatic Xon/Xoff and special character software flow control,
transmit and receive FIFO trigger levels, and a programmable fractional baud rate generator with a prescaler
of divide by 1 or 4. Additionally, the L222 includes the ACP pin which the user can shut down the charge pump
for the RS-232 drivers. In the UART portion, the Power-Save feature isolates the databus interface to further
reduce power consumption in the Sleep mode. The L222 is fabricated using an advanced CMOS process.
Enhanced Features
The L222 UART provides a solution that supports 64 bytes of transmit and receive FIFO. Increased
performance is realized in the L222 by the transmit and receive FIFOs, FIFO trigger level controls and
automatic flow control mechanism. This allows the external processor to handle more networking tasks within
a given time. This increases the service interval giving the external CPU additional time for other applications
and reducing the overall UART interrupt servicing time. In addition, the L222 provides the ACP and PowerSave modes that drastically reduces the power consumption when the device is not used. The combination of
the above greatly reduces the CPU’s bandwidth requirement, increases performance, and reduces power
consumption.
Intel or Motorola Data Bus Interface
The L222 provides a host interface that supports Intel or Motorola microprocessor (CPU) data bus interface.
The Intel bus compatible interface allows direct interconnect to Intel compatible type of CPUs using IOR#,
IOW# and CS# inputs for data bus operation. The Motorola bus compatible interface instead uses the R/W#
and CS# signals for data bus transactions. See pin description section for details on all the control signals. The
Intel and Motorola bus interface selection is made through the pin, I/M#.
Data Rate
The L222 is capable of operation up to 1 Mbps data rate. The UART section can operate at much higher
speeds, but the speed of the RS-232 transceiver is limited to 1 Mbps. The device can operate either with a
crystal on pins XTAL1 and XTAL2, or external clock source on XTAL1 pin.
Internal Enhanced Register Sets
The L222 UART has a set of enhanced registers providing control and monitoring functions. Interrupt enable/
disable and status, FIFO enable/disable, selectable TX and RX FIFO trigger levels, automatic hardware/
software flow control enable/disable, programmable baud rates, modem interface controls and status, sleep
mode and infrared mode are all standard features. Following a power on reset or an external reset (and
operating in 16 or Intel Mode), the registers defaults to the reset condition and is compatible with the
XR16V2751.
RS-232 Interface
The L222 includes RS-232 drivers/receivers for the entire modem interface. This feature eliminates the need
for an external RS-232 transceiver. The charge pump provides output voltages of +5V and -5V for its drivers
over the 3.3V to 5.5V VCC supply voltage. The serial outputs TXD, RTS and DTR swing between -5V (inactive)
and 5V (active) RS-232 voltage levels. The serial inputs RXD, CTS, DSR, CD and RI are RS-232 receivers and
can take any voltage swing from -15V to +15V. The receivers are always active, even in Full Sleep and PowerSave modes. The RS-232 drivers guarantee a data rate of 1 Mbps even when fully loaded with 3Kohm in
parallel with 1000pF load.
All RS-232 drivers and receivers are protected to ±15kV using the Human Body Model ground combination,
±8kV using IEC 61000-4-2 Contact Discharge, and ±15kV using IEC 61000-4-2 Air-Gap Discharge. For more
information, send an e-mail to [email protected].
7
XR19L222
TWO CHANNEL INTEGRATED UART AND RS-232 TRANSCEIVER
REV. 1.0.0
2.0 FUNCTIONAL DESCRIPTIONS
2.1
CPU Interface
The CPU interface is 8 data bits wide with 3 address lines and control signals to execute data bus read and
write transactions. The L222 data interface supports the Intel compatible types of CPUs and it is compatible to
the industry standard 16C550 UART. No clock (oscillator nor external clock) is required to operate a data bus
transaction. Each bus cycle is asynchronous using CS#, IOR# and IOW# or R/W# inputs. A typical data bus
interconnection for Intel and Motorola mode is shown in Figure 3.
FIGURE 3. XR19L222 TYPICAL INTEL/MOTOROLA DATA BUS INTERCONNECTIONS
D0
D1
D2
D3
D4
D5
D6
D7
D0
D1
D2
D3
D4
D5
D6
D7
A0
A0
A1
A1
A2
VCC
RXDA
UART
Channel A
IOR#
IOR#
IOW#
UART_CSA#
UART_CSB#
UART_INTA
CSA#
CSB#
INTA
INTB
UART_INTB
R_EN
ACP
TXDB
RXDB
UART
Channel B
FAST
UART_RESET
CTSB
DSRB
TXB
RXB
GND
PWRSAVE
FAST
DTRB
RTSB
Full RS-232 Interface
CDB
RIB
ACP
RXBSEL
PWRSAVE
Full RS-232 Interface
CTSA
DSRA
RIA
R_EN
RXBSEL
DTRA
RTSA
CDA
A2
IOW#
VCC
TXDA
RESET
External IR or RS-422
Transceiver
Intel Data Bus Interconnections
D0
D1
D2
D3
D4
D5
D6
D7
D0
D1
D2
D3
D4
D5
D6
D7
A0
A1
A2
A3
A0
A1
A2
VCC
VCC
TXDA
RXDA
UART
Channel A
DTRA
RTSA
CTSA
Full RS-232 Interface
DSRA
CDA
RIA
CSB#
VCC
IOR#
R/W#
IOW#
TXDB
UART_CS#
CSA#
RXDB
VCC
DTRB
RTSB
UART_IRQ#
(no connect)
INTA
INTB
UART
Channel B
CTSB
R_EN
R_EN
ACP
ACP
RXBSEL
RXBSEL
FAST
FAST
PWRSAVE
PWRSAVE
UART_RESET
RESET
Motorola Data Bus Interconnections
8
Full RS-232 Interface
DSRB
CDB
RIB
TXB
RXB
GND
External IR or RS-422
transceiver
XR19L222
TWO CHANNEL INTEGRATED UART AND RS-232 TRANSCEIVER
REV. 1.0.0
2.2
5-Volt Tolerant Inputs
The CMOS/TTL level inputs of the L222 can accept up to 5V inputs when operating at 3.3V. Note that the
XTAL1 pin is not 5V tolerant when an external clock supply is used.
2.3
Device Hardware Reset
The RESET or RESET# input resets the internal registers and the serial interface outputs in both channels to
their default state (see Table 16). An active pulse of longer than 40 ns duration will be required to activate the
reset function in the device.
2.4
Device Identification and Revision
The XR19L222 provides a Device Identification code and a Device Revision code to distinguish the part from
other devices and revisions. To read the identification code from the part, it is required to set the baud rate
generator registers DLL and DLM both to 0x00. Now reading the content of the DLM will provide 0x01 to
indicate functional compatibility with the XR16V2751 and reading the content of DLL will provide the revision of
the part; for example, a reading of 0x01 means revision A.
2.5
Channel A and B Selection
The XR19L222 provides the user with the capability to bi-directionally transfer information between an external
CPU and an external serial communication device. During Intel Bus Mode (I/M# pin connected to VCC), a
LOW on chip select pins, CSA# or CSB#, allows the user to select UART channel A or B to configure, send
transmit data and/or unload receive data to/from the UART. Selecting both UARTs can be useful during power
up initialization to write to the same internal registers, but do not attempt to read from both UARTs
simultaneously. Individual channel select functions are shown in Table 1.
TABLE 1: CHANNEL A AND B SELECT IN 16 MODE
CSA#
CSB#
FUNCTION
1
1
UART de-selected
0
1
Channel A selected
1
0
Channel B selected
0
0
Channel A and B selected
During Motorola Bus Mode (I/M# pin connected to GND), the package interface pins are configured for
connection with Motorola and other popular microprocessor bus types. In this mode the XR19L222 decodes an
additional address, A3, to select one of the UART ports. The A3 address decode function is used only when in
the Motorola Bus Mode. See Table 2.
TABLE 2: CHANNEL A AND B SELECT IN 68 MODE
2.6
CS#
A3
FUNCTION
1
N/A
UART de-selected
0
0
Channel A selected
0
1
Channel B selected
Channel A and B Internal Registers
Each UART channel in the L222 has a set of enhanced registers for control, monitoring and data loading and
unloading. The configuration register set is compatible to those already available in the standard single
16C550 and dual ST16C2550. These registers function as data holding registers (THR/RHR), interrupt status
and control registers (ISR/IER), a FIFO control register (FCR), receive line status and control registers (LSR/
LCR), modem status and control registers (MSR/MCR), programmable data rate (clock) divisor registers (DLL/
DLM), and an user accessible Scratchpad register (SPR).
9
XR19L222
TWO CHANNEL INTEGRATED UART AND RS-232 TRANSCEIVER
REV. 1.0.0
Beyond the general 16C2550 features and capabilities, the L222 offers enhanced feature registers just like the
XR16V2751, namely, EFR, Xon/Xoff 1, Xon/Xoff 2, FCTR, TRG, EMSR and FC that provide automatic RTS
and CTS hardware flow control, Xon/Xoff software flow control, FIFO trigger level control and FIFO level
counters. All the register functions are discussed in full detail later in “Section 3.0, UART INTERNAL
REGISTERS” on page 23.
2.7
DMA Mode
The DMA Mode (a legacy term) refers to data block transfer operation. The DMA mode affects the state of the
RXRDY# and TXRDY# output pins available in the original 16C550. These pins are not available in the
XR19L222. The DMA Enable bit (FCR bit-3) does not have any function in this device and can be a ’0’ or a ’1’.
2.8
INT (IRQ#) Output
The interrupt output changes according to the operating mode and enhanced features setup. Table 3 and
Table 4 below summarize the operating behavior for the transmitter and receiver in the Intel and Motorola
modes. Also see Figures 19 through 22.
TABLE 3: INT (IRQ#) PIN OPERATION FOR TRANSMITTER
FCR BIT-0 = 0 (FIFO DISABLED)
FCR BIT-0 = 1 (FIFO ENABLED)
INT Pin
(I/M# = 1)
0 = one byte in THR
1 = THR empty
0 = FIFO above trigger level
1 = FIFO below trigger level or FIFO empty
IRQ# Pin
(I/M# = 0)
1 = one byte in THR
0 = THR empty
1 = FIFO above trigger level
0 = FIFO below trigger level or FIFO empty
TABLE 4: INT (IRQ#) PIN OPERATION FOR RECEIVER
FCR BIT-0 = 0
(FIFO DISABLED)
2.9
FCR BIT-0 = 1
(FIFO ENABLED)
INT Pin
(I/M# = 1)
0 = no data
1 = 1 byte
0 = FIFO below trigger level
1 = FIFO above trigger level
IRQ# Pin
(I/M# = 0)
1 = no data
0 = 1 byte
1 = FIFO below trigger level
0 = FIFO above trigger level
Crystal or External Clock Input
The L222 includes an on-chip oscillator (XTAL1 and XTAL2) to generate a clock when a crystal is connected
between the XTAL1 and XTAL2 pins of the device. Alternatively, an external clock can be supplied through the
XTAL1 pin. The CPU data bus does not require this clock for bus operation. The crystal oscillator provides a
system clock to the Baud Rate Generators (BRG) section found in each of the UART. XTAL1 is the input to the
oscillator or external clock input and XTAL2 pin is the bufferred output which can be used as a clock signal for
other devices in the system. Please note that the input XTAL1 is not 5V tolerant and therefore, the maximum
10
XR19L222
REV. 1.0.0
TWO CHANNEL INTEGRATED UART AND RS-232 TRANSCEIVER
voltage at the pin should be 3.3V when an external clock is supplied. For programming details, see
“Programmable Baud Rate Generator.”
FIGURE 4. TYPICAL CRYSTAL CONNECTIONS
XTAL1
XTAL2
R2
500K - 1M
Y1
C1
22-47pF
R1
0-120
(Optional)
1.8432 MHz
to
24 MHz
C2
22-47pF
The on-chip oscillator is designed to use an industry standard microprocessor crystal (parallel resonant,
fundamental frequency with 10-22 pF capacitance load, ESR of 20-120 ohms and 100ppm frequency
tolerance) connected externally between the XTAL1 and XTAL2 pins. When VCC = 5V, the on-chip oscillator
can operate with a crystal whose frequency is not greater than 24 MHz. On the other hand, the L222 can
accept an external clock of up to 64 MHz at XTAL1 pin also. Although the L222 can accept an external clock of
up to 50MHz, the maximum data rate supported by the RS-232 drivers is 1Mbps. For further reading on the
oscillator circuit please see the Application Note DAN108 on the EXAR web site at http://www.exar.com.
2.10
Programmable Baud Rate Generator with Fractional Divisor
Each UART has its own Baud Rate Generator (BRG) with a prescaler for the transmitter and receiver. The
prescaler is controlled by a software bit in the MCR register. The MCR register bit-7 sets the prescaler to divide
the input crystal or external clock by 1 or 4. The output of the prescaler clocks to the BRG. The BRG further
divides this clock by a programmable divisor between 1 and (216 - 0.0625) in increments of 0.0625 (1/16) to
obtain a 16X or 8X sampling clock of the serial data rate. The sampling clock is used by the transmitter for data
bit shifting and receiver for data sampling. The BRG divisor (DLL, DLM and DLD registers) defaults to the value
of ’1’ (DLL = 0x01, DLM = 0x00 and DLD = 0x00) upon reset. Therefore, the BRG must be programmed during
initialization to the operating data rate. The DLL and DLM registers provide the integer part of the divisor and
the DLD register provides the fractional part of the dvisior. Only the four lower bits of the DLD are implemented
and they are used to select a value from 0 (for setting 0000) to 0.9375 or 15/16 (for setting 1111). Programming
the Baud Rate Generator Registers DLL, DLM and DLD provides the capability for selecting the operating data
rate. Table 5 shows the standard data rates available with a 24MHz crystal or external clock at 16X clock rate.
If the pre-scaler is used (MCR bit-7 = 1), the output data rate will be 4 times less than that shown in Table 5. At
8X sampling rate, these data rates would double. Also, when using 8X sampling mode, please note that the bittime will have a jitter (+/- 1/16) whenever the DLD is non-zero and is an odd number. When using a nonstandard data rate crystal or external clock, the divisor value can be calculated with the following equation(s):
Required Divisor (decimal) = (XTAL1 clock frequency / prescaler) / (serial data rate x 16), with 16X mode EMSR[7] = 1
Required Divisor (decimal) = (XTAL1 clock frequency / prescaler / (serial data rate x 8), with 8X mode EMSR[7] = 0
11
XR19L222
TWO CHANNEL INTEGRATED UART AND RS-232 TRANSCEIVER
REV. 1.0.0
The closest divisor that is obtainable in the L222 can be calculated using the following formula:
ROUND( (Required Divisor - TRUNC(Required Divisor) )*16)/16 + TRUNC(Required Divisor), where
DLM = TRUNC(Required Divisor) >> 8
DLL = TRUNC(Required Divisor) & 0xFF
DLD = ROUND( (Required Divisor-TRUNC(Required Divisor) )*16)
In the formulas above, please note that:
TRUNC (N) = Integer Part of N. For example, TRUNC (5.6) = 5.
ROUND (N) = N rounded towards the closest integer. For example, ROUND (7.3) = 7 and ROUND (9.9) = 10.
A >> B indicates right shifting the value ’A’ by ’B’ number of bits. For example, 0x78A3 >> 8 = 0x0078.
FIGURE 5. BAUD RATE GENERATOR
To Other
Channel
DLL, DLM and DLD
Registers
Prescaler
Divide by 1
XTAL1
XTAL2
Crystal
Osc/
Buffer
MCR Bit-7=0
(default)
Fractional Baud
Rate Generator
Logic
Prescaler
Divide by 4
12
MCR Bit-7=1
16X or 8X
Sampling
Rate Clock
to Transmitter
and Receiver
XR19L222
TWO CHANNEL INTEGRATED UART AND RS-232 TRANSCEIVER
REV. 1.0.0
TABLE 5: TYPICAL DATA RATES WITH A 24 MHZ CRYSTAL OR EXTERNAL CLOCK AT 16X SAMPLING
Required
Output Data
Rate
DIVISOR FOR 16x
Clock
(Decimal)
DIVISOR
OBTAINABLE IN
L222
DLM PROGRAM
VALUE (HEX)
DLL PROGRAM
VALUE (HEX)
DLD PROGRAM
VALUE (HEX)
DATA ERROR
RATE (%)
400
3750
3750
E
A6
0
0
2400
625
625
2
71
0
0
4800
312.5
312 8/16
1
38
8
0
9600
156.25
156 4/16
0
9C
4
0
10000
150
150
0
96
0
0
19200
78.125
78 2/16
0
4E
2
0
25000
60
60
0
3C
0
0
28800
52.0833
52 1/16
0
34
1
0.04
38400
39.0625
39 1/16
0
27
1
0
50000
30
30
0
1E
0
0
57600
26.0417
26 1/16
0
1A
1
0.08
75000
20
20
0
14
0
0
100000
15
15
0
F
0
0
115200
13.0208
13
0
D
0
0.16
153600
9.7656
9 12/16
0
9
C
0.16
200000
7.5
7 8/16
0
7
8
0
225000
6.6667
6 11/16
0
6
B
0.31
230400
6.5104
6 8/16
0
6
8
0.16
250000
6
6
0
6
0
0
300000
5
5
0
5
0
0
400000
3.75
3 12/16
0
3
C
0
460800
3.2552
3 4/16
0
3
4
0.16
500000
3
3
0
3
0
0
750000
2
2
0
2
0
0
921600
1.6276
1 10/16
0
1
A
0.16
1000000
1.5
1 8/16
0
1
8
0
13
XR19L222
TWO CHANNEL INTEGRATED UART AND RS-232 TRANSCEIVER
REV. 1.0.0
FIGURE 6. XR19L222 TRANSMITTER AND RECEIVER
UART
RS-232 Transceiver
TXDA
TXA
RXDA
RXA
5K
TXDB
TXB
RXDB
RXB
5K
TXB
RXBSEL
2.11
RXB
Transmitter
The transmitter section comprises of an 8-bit Transmit Shift Register (TSR) and 64 bytes of FIFO which
includes a byte-wide Transmit Holding Register (THR). TSR shifts out every data bit with the 16X/8X internal
clock. A bit time is 16 (8) clock periods (see EMSR bit-7). The transmitter sends the start-bit followed by the
number of data bits, inserts the proper parity-bit if enabled, and adds the stop-bit(s). The status of the FIFO and
TSR are reported in the Line Status Register (LSR bit-5 and bit-6).
2.11.1
Transmit Holding Register (THR) - Write Only
The transmit holding register is an 8-bit register providing a data interface to the host processor. The host
writes transmit data byte to the THR to be converted into a serial data stream including start-bit, data bits,
parity-bit and stop-bit(s). The least-significant-bit (Bit-0) becomes first data bit to go out. The THR is the input
register to the transmit FIFO of 64 bytes when FIFO operation is enabled by FCR bit-0. Every time a write
operation is made to the THR, the FIFO data pointer is automatically bumped to the next sequential data
location.
2.11.2
Transmitter Operation in non-FIFO Mode
The host loads transmit data to THR one character at a time. The THR empty flag (LSR bit-5) is set when the
data byte is transferred to TSR. THR flag can generate a transmit empty interrupt (ISR bit-1) when it is enabled
by IER bit-1. The TSR flag (LSR bit-6) is set when TSR becomes completely empty.
14
XR19L222
TWO CHANNEL INTEGRATED UART AND RS-232 TRANSCEIVER
REV. 1.0.0
FIGURE 7. TRANSMITTER OPERATION IN NON-FIFO MODE
Transmit
Holding
Register
(THR)
Data
Byte
16X or 8X
Clock
(EMSR Bit-7)
THR Interrupt (ISR bit-1)
Enabled by IER bit-1
Transmit Shift Register (TSR)
M
S
B
L
S
B
TXNOFIFO1
2.11.3
Transmitter Operation in FIFO Mode
The host may fill the transmit FIFO with up to 64 bytes of transmit data. The THR empty flag (LSR bit-5) is set
whenever the FIFO is empty. The THR empty flag can generate a transmit empty interrupt (ISR bit-1) when the
amount of data in the FIFO falls below its programmed trigger level. The transmit empty interrupt is enabled by
IER bit-1. The Transmitter Empty Flag (LSR bit-6) is set when both the TSR and the FIFO become empty.
FIGURE 8. TRANSMITTER OPERATION IN FIFO AND FLOW CONTROL MODE
Transm it
D ata B yte
Transm it
FIF O
TH R Interrupt (IS R bit-1) falls
below the program m ed Trigger
Level and then w hen becom es
em pty. F IFO is E nabled by FC R
bit-0=1
A uto C TS Flow C ontrol (C TS # pin)
Flow C ontrol C haracters
(X off1/2 and X on1/2 R eg.)
A uto S oftw are Flow C ontrol
16X or 8X C lock
(E M S R bit-7)
Transm it D ata S hift R egister
(TS R )
TX FIFO 1
2.12
RECEIVER
The receiver section contains an 8-bit Receive Shift Register (RSR) and 64 bytes of FIFO which includes a
byte-wide Receive Holding Register (RHR). The RSR uses the 16X/8X clock (EMSR bit-7) for timing. It verifies
and validates every bit on the incoming character in the middle of each data bit. On the falling edge of a start or
false start bit, an internal receiver counter starts counting at the 16X/8X clock rate. After 8 clocks (or 4 if 8X) the
start bit period should be at the center of the start bit. At this time the start bit is sampled and if it is still a logic
0 it is validated. Evaluating the start bit in this manner prevents the receiver from assembling a false character.
The rest of the data bits and stop bits are sampled and validated in this same manner to prevent false framing.
If there were any error(s), they are reported in the LSR register bits 2-4. Upon unloading the receive data byte
from RHR, the receive FIFO pointer is bumped and the error tags are immediately updated to reflect the status
of the data byte in RHR register. RHR can generate a receive data ready interrupt upon receiving a character
or delay until it reaches the FIFO trigger level. Furthermore, data delivery to the host is guaranteed by a
receive data ready time-out interrupt when data is not received for 4 word lengths as defined by LCR[1:0] plus
12 bits time. This is equivalent to 3.7-4.6 character times. The RHR interrupt is enabled by IER bit-0.
15
XR19L222
TWO CHANNEL INTEGRATED UART AND RS-232 TRANSCEIVER
2.12.1
REV. 1.0.0
Receive Holding Register (RHR) - Read-Only
The Receive Holding Register is an 8-bit register that holds a receive data byte from the Receive Shift
Register. It provides the receive data interface to the host processor. The RHR register is part of the receive
FIFO of 64 bytes by 11-bits wide, the 3 extra bits are for the 3 error tags to be reported in LSR register. When
the FIFO is enabled by FCR bit-0, the RHR contains the first data character received by the FIFO. After the
RHR is read, the next character byte is loaded into the RHR and the errors associated with the current data
byte are immediately updated in the LSR bits 2-4.
2.12.2
Selectable Input to RX of Channel B
There is an input (RXBSEL) that selects whether the signal going to the RXB input of the UART will be the
signal from the RS-232 transceiver or not. If RXBSEL is LOW, then the signal to the RXB input is the RXDB
signal from the RS-232 transceiver. When RXDB is used, the RXB input should be left floating. The signal
received at the UART can be probed at the RXB pin. If RXBSEL is HIGH, then the RXDB pin is tri-stated and
RXB can be used with an external Infrared transceiver or RS-422 transceiver. If RXB is selected but is unused,
RXB should be connected to VCC. See Figure 6 for a detailed drawing.
FIGURE 9. RECEIVER OPERATION IN NON-FIFO MODE
16X or 8X Clock
(EMSR bit-7)
Receive
Data Byte
and Errors
Receive Data Shift
Register (RSR)
Error
Tags in
LSR bits
4:2
Receive Data
Holding Register
(RHR)
Data Bit
Validation
Receive Data Characters
RHR Interrupt (ISR bit-2)
RXFIFO1
16
XR19L222
TWO CHANNEL INTEGRATED UART AND RS-232 TRANSCEIVER
REV. 1.0.0
FIGURE 10. RECEIVER OPERATION IN FIFO AND AUTO RTS FLOW CONTROL MODE
16X Clock
Receive Data Shift
Register (RSR)
Data Bit
Validation
Receive Data Characters
Example:
- RX FIFO trigger level selected at 16 bytes
(See Note below)
64 bytes by 11-bit
wide FIFO
Error Tags
(64-sets)
Data falls to 8
Receive
Data FIFO
FIFO Trigger=16
RTS# re-asserts when data falls below the flow
control trigger level to restart remote transmitter.
Enable by EFR bit-6=1, MCR bit-1.
RHR Interrupt (ISR bit-2) programmed for
desired FIFO trigger level.
FIFO is Enabled by FCR bit-0=1
Receive Data
Byte and Errors
Error Tags in
LSR bits 4:2
Data fills to 24 RTS# de-asserts when data fills above the flow
control trigger level to suspend remote transmitter.
Enable by EFR bit-6=1, MCR bit-1.
Receive
Data
RXFIFO1
NOTE: Table-B selected as Trigger Table for Figure 10 (Table 14).
2.13
Auto RTS (Hardware) Flow Control
Automatic RTS hardware flow control is used to prevent data overrun to the local receiver FIFO. The RTS
output is used to request remote unit to suspend/resume data transmission. The auto RTS flow control feature
is enabled to fit specific application requirement (see Figure 11):
• Enable auto RTS flow control using EFR bit-6.
• The auto RTS function must be started by asserting RTS output pin (MCR bit-1 to logic 1 after it is enabled).
If using the Auto RTS interrupt:
• Enable RTS interrupt through IER bit-6 (after setting EFR bit-4). The UART issues an interrupt when the RTS
pin makes a transition from low to high: ISR bit-5 will be set to logic 1.
2.14
Auto RTS Hysteresis
The L222 has a new feature that provides flow control trigger hysteresis while maintaining compatibility with
the XR16C850, ST16C650A and ST16C550 family of UARTs. With the Auto RTS function enabled, an interrupt
is generated when the receive FIFO reaches the programmed RX trigger level. The RTS pin will not be deasserted until the receive FIFO reaches the upper limit of the hysteresis level. The RTS pin will be re-asserted
after the RX FIFO is unloaded to the lower limit of the hysteresis level. Under the above described conditions,
the L222 will continue to accept data until the receive FIFO gets full. The Auto RTS function is initiated when
the RTS output pin is asserted. Table 13 shows the complete details for the Auto RTS Hysteresis levels.
Please note that this table is for programmable trigger levels only (Table D). The hysteresis values for Tables
A-C are the next higher and next lower trigger levels in the corresponding table.
17
XR19L222
TWO CHANNEL INTEGRATED UART AND RS-232 TRANSCEIVER
2.15
REV. 1.0.0
Auto CTS Flow Control
Automatic CTS flow control is used to prevent data overrun to the remote receiver FIFO. The CTS input is
monitored to suspend/restart the local transmitter. The auto CTS flow control feature is selected to fit specific
application requirement (see Figure 11):
• Enable auto CTS flow control using EFR bit-7.
If using the Auto CTS interrupt:
• Enable CTS interrupt through IER bit-7 (after setting EFR bit-4). The UART issues an interrupt when the CTS
pin is de-asserted: ISR bit-5 will be set to 1, and UART will suspend transmission as soon as the stop bit of
the character in process is shifted out. Transmission is resumed after the CTS input is re-asserted, indicating
more data may be sent.
FIGURE 11. AUTO RTS AND CTS FLOW CONTROL OPERATION
The signals shown in this figure are the signals at the UART and not at the RS-232 transceiver.
Local UART
UARTA
Remote UART
UARTB
RXA
Receiver FIFO
Trigger Reached
RTSA#
Auto RTS
Trigger Level
Receiver FIFO
Trigger Reached
RTSB#
Assert RTS# to Begin
Transmission
1
ON
Auto RTS
Trigger Level
10
OFF
ON
7
2
CTSB#
Auto CTS
Monitor
RXB
CTSA#
Auto CTS
Monitor
Transmitter
CTSB#
TXA
Transmitter
RTSA#
TXB
ON
3
8
OFF
6
Suspend
11
ON
TXB
Data Starts
4
Restart
9
RXA FIFO
INTA
(RXA FIFO
Interrupt)
Receive
RX FIFO
Data
Trigger Level
5
RTS High
Threshold
RTS Low
Threshold
12
RX FIFO
Trigger Level
RTSCTS1
The local UART (UARTA) starts data transfer by asserting RTSA# (1). RTSA# is normally connected to CTSB# (2) of
remote UART (UARTB). CTSB# allows its transmitter to send data (3). TXB data arrives and fills UARTA receive FIFO
(4). When RXA data fills up to its receive FIFO trigger level, UARTA activates its RXA data ready interrupt (5) and continues to receive and put data into its FIFO. If interrupt service latency is long and data is not being unloaded, UARTA
monitors its receive data fill level to match the upper threshold of RTS delay and de-assert RTSA# (6). CTSB# follows
(7) and request UARTB transmitter to suspend data transfer. UARTB stops or finishes sending the data bits in its transmit shift register (8). When receive FIFO data in UARTA is unloaded to match the lower threshold of RTS delay (9),
UARTA re-asserts RTSA# (10), CTSB# recognizes the change (11) and restarts its transmitter and data flow again until
next receive FIFO trigger (12). This same event applies to the reverse direction when UARTA sends data to UARTB
with RTSB# and CTSA# controlling the data flow.
18
XR19L222
TWO CHANNEL INTEGRATED UART AND RS-232 TRANSCEIVER
REV. 1.0.0
2.16
Auto Xon/Xoff (Software) Flow Control
When software flow control is enabled (See Table 15), the L222 compares one or two sequential receive data
characters with the programmed Xon or Xoff-1,2 character value(s). If receive character(s) (RX) match the
programmed values, the L222 will halt transmission (TX) as soon as the current character has completed
transmission. When a match occurs, the Xoff (if enabled via IER bit-5) flag will be set and the interrupt output
pin will be activated. Following a suspension due to a match of the Xoff character, the L222 will monitor the
receive data stream for a match to the Xon-1,2 character. If a match is found, the L222 will resume operation
and clear the flags (ISR bit-4).
Reset initially sets the contents of the Xon/Xoff 8-bit flow control registers to a logic 0. Following reset the user
can write any Xon/Xoff value desired for software flow control. Different conditions can be set to detect Xon/
Xoff characters (See Table 15) and suspend/resume transmissions. When double 8-bit Xon/Xoff characters
are selected, the L222 compares two consecutive receive characters with two software flow control 8-bit
values (Xon1, Xon2, Xoff1, Xoff2) and controls TX transmissions accordingly. Under the above described flow
control mechanisms, flow control characters are not placed (stacked) in the user accessible RX data buffer or
FIFO.
In the event that the receive buffer is overfilling and flow control needs to be executed, the L222 automatically
sends an Xoff message (when enabled) via the serial TX output to the remote modem. The L222 sends the
Xoff-1,2 characters two-character-times (= time taken to send two characters at the programmed baud rate)
after the receive FIFO crosses the programmed trigger level (for all trigger tables A-D). To clear this condition,
the L222 will transmit the programmed Xon-1,2 characters as soon as receive FIFO is less than one trigger
level below the programmed trigger level (for Trigger Tables A, B, and C) or when receive FIFO is less than the
trigger level minus the hysteresis value (for Trigger Table D). This hysteresis value is the same as the Auto
RTS Hysteresis value in Table 13. Table 6 below explains this when Trigger Table-B (See Table 14) is
selected.
TABLE 6: AUTO XON/XOFF (SOFTWARE) FLOW CONTROL
RX TRIGGER LEVEL
INT PIN ACTIVATION
XOFF CHARACTER(S) SENT
(CHARACTERS IN RX FIFO)
XON CHARACTER(S) SENT
(CHARACTERS IN RX FIFO)
8
8
8*
0
16
16
16*
8
24
24
24*
16
28
28
28*
24
* After the trigger level is reached, an xoff character is sent after a short span of time (= time required to send 2 characters);
for example, after 2.083ms has elapsed for 9600 baud and 8-bit word length, no parity and 1 stop bit setting.
2.17
Special Character Detect
A special character detect feature is provided to detect an 8-bit character when bit-5 is set in the Enhanced
Feature Register (EFR). When this character (Xoff2) is detected, it will be placed in the FIFO along with normal
incoming RX data.
The L222 compares each incoming receive character with the programmed Xoff-2 data. If a match exists, the
received data will be transferred to the RX FIFO and ISR bit-4 will be set to indicate detection of special
character. Although the Internal Register Table shows Xon, Xoff Registers with eight bits of character
information, the actual number of bits is dependent on the programmed word length. Line Control Register
(LCR) bits 0-1 define the number of character bits, i.e., either 5 bits, 6 bits, 7 bits, or 8 bits. The word length
selected by LCR bits 0-1 also determines the number of bits that will be used for the special character
comparison. Bit-0 in the Xon, Xoff Registers corresponds with the LSB bit for the receive character.
19
XR19L222
TWO CHANNEL INTEGRATED UART AND RS-232 TRANSCEIVER
2.18
REV. 1.0.0
Sleep Modes and Power-Save Feature with Wake-Up Interrupt
There are three levels of power management integrated in the L222. The device is low power with low
operational and standby supply currents. In the Partial Sleep mode, the internal oscillator of the UART or
charge pump of the RS-232 transceiver is turned off to reduce the power consumption. In the Full Sleep mode,
both the oscillator and the charge pump are turned off. The Power-save mode provides additional power
saving by isolating the UART address, data and control signals during Sleep mode to minimize the power
consumption.
2.18.1
Partial Sleep Mode
There are two different partial sleep modes. In the first mode, the UART is in sleep mode and the charge pump
is active. In the other mode, the UART is still active but the charge pump is turned off.
2.18.1.1
UART in sleep mode, RS-232 transceiver active
If the ACP pin is LOW, then the charge pump for the RS-232 transceiver will always be active. But the UART
portion in the L222 can still enter sleep mode if all of these conditions are satisfied:
■
■
■
■
■
no interrupts pending (ISR bit-0 = 1)
the 16-bit divisor programmed in DLM and DLL registers is a non-zero value
sleep mode is enabled (IER bit-4 = 1)
modem inputs are not toggling (MSR bits 0-3 = 0)
RXD input pin is idling LOW
The L222 stops its crystal oscillator to conserve power in this mode. The user can check the XTAL2 pin for no
clock output as an indication that the device has entered the partial sleep mode.
The UART portion in the L222 resumes normal operation or active mode by any of the following:
■
■
■
a receive data start bit transition on the RXD input (LOW to HIGH)
a data byte is loaded to the transmitter, THR or FIFO
a change of logic state on any of the modem or general purpose serial inputs: i.e., any of the MSR bits 03 shows a ’1’
If the sleep mode is enabled and the L222 is awakened by one of the conditions described above, an interrupt
is issued by the L222 to signal to the CPU that it is awake. The lower nibble of the interrupt source register
(ISR) will read a value of 0x1 for this interrupt and reading the ISR clears this interrupt. Since the same value
(0x1) is also used to indicate no pending interrupt, users should exercise caution while using the sleep mode.
The UART portion in the L222 will return to the sleep mode automatically after all interrupting conditions have
been serviced and cleared. If the UART portion of the L222 is awakened by the modem inputs, a read to the
MSR is required to reset the modem inputs. In any case, the sleep mode will not be entered while an interrupt
is pending. The UART portion of the L222 will stay in the sleep mode of operation until it is disabled by setting
IER bit-4 to a logic 0.
20
XR19L222
TWO CHANNEL INTEGRATED UART AND RS-232 TRANSCEIVER
REV. 1.0.0
2.18.1.2
UART active, charge pump of RS-232 transceiver shut down
If the ACP pin is HIGH and the UART portion of the L222 is not in sleep mode, then the charge pump will
automatically shut down to conserve power if the following conditions are true:
■
■
■
no activity on the TXD output signal
modem input signals (RX, CTS, DSR, CD, RI) are LOW
modem inputs have been idle for approximately 30 seconds
When these conditions are satisfied, the L222 shuts down the charge pump and tri-states the RS-232 drivers
to conserve power. In this mode, the RS-232 receivers are fully active and the internal registers of the L222
can be accessed. The time for the charge pump to resume normal operation after exiting the sleep mode is
typically 45µs. It will wake up by any of the following:
■
■
■
a receive data start bit transition on the RXD input (LOW to HIGH)
a data byte is loaded to the transmitter, THR or FIFO
a LOW to HIGH transition on any of the modem or general purpose serial inputs
Because the receivers are fully active when the charge pump is turned off, any data received will be transferred
to/from the UART without any issues.
2.18.2
Full Sleep Mode
In full sleep mode, the L222 shuts down the charge pump and the internal oscillator. The L222 enters the full
sleep mode if the following conditions are satisfied:
■
■
the UART portion of the L222 is already in sleep mode (no output on XTAL2)
the ACP (Autosleep for Charge Pump) pin is HIGH
When these conditions are satisfied, both the UART and the charge pump will be in the sleep mode. In this
mode, the RS-232 receivers are fully active and the internal registers of the L222 can be accessed. The L222
exits the full sleep mode if either the ACP pin becomes LOW or the internal oscillator starts up. The time for the
charge pump to resume normal operation after exiting the full sleep mode is typically 45µs.
2.18.3
Power-Save Feature
This mode is in addition to the sleep mode and in this mode, the core logic of the L222 is isolated from the CPU
interface. If the address lines, data bus lines, IOW#, IOR# and CS# remain steady when the L222 is in full
sleep mode, the maximum current will be in the microamp range as specified in the DC Electrical
Characteristics on page 42. However, if the input lines are floating or are toggling while the L222 is in sleep
mode, the current can be up to 100 times more. If not using the Power-Save feature, an external buffer would
be required to keep the address and data bus lines from toggling or floating to achieve the low current. But if
the Power-Save feature is enabled (PwrSave pin connected to VCC), this will eliminate the need for an
external buffer by internally isolating the address, data and control signals from other bus activities that could
cause wasteful power drain (see Figure 1). The L222 enters Power-Save mode when this pin is connected to
VCC, and the UART portion of the L222 is already in sleep mode.
Since Power-Save mode isolates the address, data and control signals, the device will wake-up only by:
■
■
a receive data start bit transition, or
a change of logic state on any of the modem or general purpose serial inputs: i.e., any of the MSR bits 03 shows a ’1’
The L222 will return to the Power-Save mode automatically after a read to the MSR (to reset the modem
inputs) and all interrupting conditions have been serviced and cleared. The L222 will stay in the Power-Save
mode of operation until it is disabled by setting IER bit-4 to a logic 0 and/or the Power-Save pin is connected to
GND.
If the L222 is awakened by any one of the above conditions, it issues an interrupt as soon as the oscillator
circuit is up and running and the device is ready to transmit/receive. This interrupt has the same encoding (bit0 of ISR register = 1) as "no interrupt pending" and will clear when the ISR register is read. This will show up in
the ISR register only if no other interrupts are enabled.
21
XR19L222
TWO CHANNEL INTEGRATED UART AND RS-232 TRANSCEIVER
2.19
REV. 1.0.0
Infrared Mode (UART Channel B Only)
The L222 includes an infrared encoder and decoder compatible to the IrDA (Infrared Data Association) version
1.0. The IrDA 1.0 standard that stipulates the infrared encoder sends out a 3/16 of a bit wide HIGH-pulse for
each “0” bit in the transmit data stream. This signal encoding reduces the on-time of the infrared LED, hence
reduces the power consumption. See Figure 12 below.
The infrared encoder and decoder are enabled by setting MCR register bit-6 to a ‘1’. When the infrared feature
is enabled, the transmit data output, TXB, idles at logic zero level. Likewise, the RX input assumes an idle level
of logic zero from a reset and power up, see Figure 12.
Typically, the wireless infrared decoder receives the input pulse from the infrared sensing diode on the RXB
pin. Each time it senses a light pulse, it returns a HIGH to the data bit stream. However, this is not true with
some infrared modules on the market which indicate a LOW by a light pulse. So the L222 has a provision to
invert the input polarity to accommodate this. In this case user can enable FCTR bit-2 to invert the input signal.
The Infrared Mode can only be used with channel B of the L222 using the TXB output and the RXB input pins..
FIGURE 12. INTERNAL LOOP BACK
VCC
TXA/
TXB
Transmit Shift Register
(THR/FIFO)
Receive Shift Register
(RHR/FIFO)
VCC
RXA/
RXB
RTSA#/
RTSB#
RTS
Modem / General Purpose Control Logic
Internal Data Bus Lines and Control Signals
MCR bit-4=1
CTS
VCC
CTSA#/
CTSB#
DTRA#/
DTRB#
DTR
DSR
OP1#
DSRA#/
DSRB#
RIA#/
RIB#
RI
OP2#
CD
22
CDA#/
CDB#
XR19L222
TWO CHANNEL INTEGRATED UART AND RS-232 TRANSCEIVER
REV. 1.0.0
3.0 UART INTERNAL REGISTERS
The L222 has a set of configuration registers selected by address lines A0, A1 and A2 with CS# asserted. The
complete register set is shown on Table 7 and Table 8.
TABLE 7: UART INTERNAL REGISTERS
ADDRESSES
A2 A1 A0
REGISTER
READ/WRITE
COMMENTS
LCR[7] = 0
16C550 COMPATIBLE REGISTERS
0
0 0
RHR - Receive Holding Register
THR - Transmit Holding Register
Read-only
Write-only
0
0 0
DLL - Divisor LSB
Read/Write
0
0 1
DLM - Divisor MSB
Read/Write
0
1 0
DLD - Divisor Fractional
Read/Write
LCR[7] = 1, LCR ≠ 0xBF,
EFR[4] = 1
0
0 0
DREV - Device Revision Code
Read-only
0
0 1
DVID - Device Identification Code
Read-only
DLL, DLM = 0x00,
LCR[7] = 1, LCR ≠ 0xBF
0
0 1
IER - Interrupt Enable Register
Read/Write
LCR[7] = 0
0
1 0
ISR - Interrupt Status Register
FCR - FIFO Control Register
Read-only
Write-only
LCR ≠ 0xBF
0
1 1
LCR - Line Control Register
Read/Write
1
0 0
MCR - Modem Control Register
Read/Write
1
0 1
LSR - Line Status Register
Read-only
1
1 0
MSR - Modem Status Register
Read-only
1
1 1
SPR - Scratch Pad Register
Read/Write
1
1 1
FLVL - RX/TX FIFO Level Counter Register
Read-only
1
1 1
EMSR - Enhanced Mode Select Register
Write-only
LCR[7] = 1, LCR ≠ 0xBF
LCR ≠ 0xBF
LCR ≠ 0xBF, FCTR[6] = 0
LCR ≠ 0xBF, FCTR[6] = 1
ENHANCED REGISTERS
0
0 0
TRG - RX/TX FIFO Trigger Level Register
FC - RX/TX FIFO Level Counter Register
Write-only
Read-only
0
0 1
FCTR - Feature Control Register
Read/Write
0
1 0
EFR - Enhanced Function Register
Read/Write
1
0 0
Xon-1 - Xon Character 1
Read/Write
1
0 1
Xon-2 - Xon Character 2
Read/Write
1
1 0
Xoff-1 - Xoff Character 1
Read/Write
1
1 1
Xoff-2 - Xoff Character 2
Read/Write
23
LCR = 0xBF
XR19L222
TWO CHANNEL INTEGRATED UART AND RS-232 TRANSCEIVER
REV. 1.0.0
.
TABLE 8: INTERNAL REGISTERS DESCRIPTION. SHADED BITS ARE ENABLED WHEN EFR BIT-4=1
ADDRESS
A2-A0
REG
NAME
READ/
WRITE
BIT-7
BIT-6
BIT-5
BIT-4
BIT-3
BIT-2
BIT-1
BIT-0
COMMENT
16C550 Compatible Registers
000
RHR
RD
Bit-7
Bit-6
Bit-5
Bit-4
Bit-3
Bit-2
Bit-1
Bit-0
000
THR
WR
Bit-7
Bit-6
Bit-5
Bit-4
Bit-3
Bit-2
Bit-1
Bit-0
001
IER
RD/WR
0/
0/
0/
0/
CTS Int. RTS Int.
Enable Enable
Xoff Int.
Enable
Sleep
Mode
Enable
FIFOs
FIFOs
Enabled Enabled
0/
0/
INT
Source
Bit-5
INT
Source
Bit-4
0/
0/
010
010
ISR
FCR
RD
WR
RX FIFO RX FIFO
Trigger Trigger
TX FIFO TX FIFO
Trigger Trigger
011
LCR
RD/WR
Divisor
Enable
Set TX
Break
Set Parity
100
MCR
RD/WR
0/
0/
0/
BRG
Prescaler
Even
Parity
Modem RX Line
TX
RX
Stat. Int.
Stat.
Empty
Data
Enable
Int.
Int
Int.
Enable Enable Enable
INT
Source
Bit-3
INT
INT
INT
Source Source Source
Bit-2
Bit-1
Bit-0
DMA
Mode
Enable
TX
FIFO
Reset
Parity
Enable
Stop
Bits
LCR ≠ 0xBF
RX
FIFO
Reset
FIFOs
Enable
Word
Word
Length Length
Bit-1
Bit-0
Internal OP2#/INT Rsrvd RTS# DTR#
Lopback Output (OP1#) Output Output
IR Mode XonAny Enable
Enable
Control Control
ENable
101
LSR
RD
RX FIFO
Global
Error
THR &
TSR
Empty
THR
Empty
RX
Break
RX Framing Error
RX
Parity
Error
RX
Overrun
Error
RX
Data
Ready
110
MSR
RD
CD#
Input
RI#
Input
DSR#
Input
CTS#
Input
Delta
CD#
Delta
RI#
Delta
DSR#
Delta
CTS#
111
SPR
RD/WR
Bit-7
Bit-6
Bit-5
Bit-4
Bit-3
Bit-2
Bit-1
Bit-0
111
EMSR
WR
16X
Sampling
Rate
Mode
LSR
Error
Interrupt.
Imd/Dly#
Auto
RTS
Hyst.
bit-3
Auto
RTS
Hyst.
bit-2
Rsrvd
Rsrvd
Rx/Tx
FIFO
Count
Rx/Tx
FIFO
Count
Bit-7
Bit-6
Bit-5
Bit-4
Bit-3
111
FLVL
RD
LCR[7]=0
24
LCR ≠ 0xBF
LCR ≠ 0xBF
FCTR[6]=0
LCR ≠ 0xBF
FCTR[6]=1
Bit-2
Bit-1
Bit-0
XR19L222
TWO CHANNEL INTEGRATED UART AND RS-232 TRANSCEIVER
REV. 1.0.0
TABLE 8: INTERNAL REGISTERS DESCRIPTION. SHADED BITS ARE ENABLED WHEN EFR BIT-4=1
ADDRESS
A2-A0
REG
NAME
READ/
WRITE
BIT-7
BIT-6
BIT-5
BIT-4
BIT-3
BIT-2
BIT-1
BIT-0
COMMENT
LCR[7]=1
LCR ≠ 0xBF
Baud Rate Generator Divisor
000
DLL
RD/WR
Bit-7
Bit-6
Bit-5
Bit-4
Bit-3
Bit-2
Bit-1
Bit-0
001
DLM
RD/WR
Bit-7
Bit-6
Bit-5
Bit-4
Bit-3
Bit-2
Bit-1
Bit-0
010
DLD
RD/WR
0
0
0
0
Bit-3
Bit-2
Bit-1
Bit-0
LCR[7]=1
LCR ≠ 0xBF
EFR[4] = 1
000
DREV
RD
Bit-7
Bit-6
Bit-5
Bit-4
Bit-3
Bit-2
Bit-1
Bit-0
001
DVID
RD
0
0
0
0
1
0
1
0
LCR[7]=1
LCR ≠ 0xBF
DLL=0x00
DLM=0x00
Enhanced Registers
000
TRG
WR
Bit-7
Bit-6
Bit-5
Bit-4
Bit-3
Bit-2
Bit-1
Bit-0
000
FC
RD
Bit-7
Bit-6
Bit-5
Bit-4
Bit-3
Bit-2
Bit-1
Bit-0
RX/TX
Mode
SCPAD
Swap
Trig
Table
Bit-1
Trig
Table
Bit-0
Rsrvd
RX IR
Input
Inv.
Auto
RTS
Hyst
Bit-1
Auto
RTS
Hyst
Bit-0
Auto
CTS
Enable
Auto
RTS
Enable
Special
Char
Select
Enable
Software
Flow
Cntl
Bit-2
Software
Flow
Cntl
Bit-1
Software
Flow
Cntl
Bit-0
DLD
Software
Flow
Cntl
Bit-3
001
010
FCTR RD/WR
EFR
RD/WR
IER [7:4],
ISR [5:4],
FCR[5:4],
MCR[7:5],
100
XON1 RD/WR
Bit-7
Bit-6
Bit-5
Bit-4
Bit-3
Bit-2
Bit-1
Bit-0
101
XON2 RD/WR
Bit-7
Bit-6
Bit-5
Bit-4
Bit-3
Bit-2
Bit-1
Bit-0
110
XOFF1 RD/WR
Bit-7
Bit-6
Bit-5
Bit-4
Bit-3
Bit-2
Bit-1
Bit-0
111
XOFF2 RD/WR
Bit-7
Bit-6
Bit-5
Bit-4
Bit-3
Bit-2
Bit-1
Bit-0
LCR=0XBF
4.0 INTERNAL REGISTER DESCRIPTIONS
4.1
Receive Holding Register (RHR) - Read- Only
SEE ”RECEIVER” ON PAGE 15.
4.2
Transmit Holding Register (THR) - Write-Only
SEE ”TRANSMITTER” ON PAGE 14.
4.3
Interrupt Enable Register (IER) - Read/Write
The Interrupt Enable Register (IER) masks the interrupts from receive data ready, transmit empty, line status
and modem status registers. These interrupts are reported in the Interrupt Status Register (ISR).
25
XR19L222
TWO CHANNEL INTEGRATED UART AND RS-232 TRANSCEIVER
4.3.1
REV. 1.0.0
IER versus Receive FIFO Interrupt Mode Operation
When the receive FIFO (FCR BIT-0 = 1) and receive interrupts (IER BIT-0 = 1) are enabled, the RHR interrupts
(see ISR bits 2 and 3) status will reflect the following:
A. The receive data available interrupts are issued to the host when the FIFO has reached the programmed
trigger level. It will be cleared when the FIFO drops below the programmed trigger level.
B. FIFO level will be reflected in the ISR register when the FIFO trigger level is reached. Both the ISR register
status bit and the interrupt will be cleared when the FIFO drops below the trigger level.
C. The receive data ready bit (LSR BIT-0) is set as soon as a character is transferred from the shift register to
the receive FIFO. It is reset when the FIFO is empty.
4.3.2
IER versus Receive/Transmit FIFO Polled Mode Operation
When FCR BIT-0 equals a logic 1 for FIFO enable; resetting IER bits 0-3 enables the XR16V2751 in the FIFO
polled mode of operation. Since the receiver and transmitter have separate bits in the LSR either or both can
be used in the polled mode by selecting respective transmit or receive control bit(s).
A. LSR BIT-0 indicates there is data in RHR or RX FIFO.
B. LSR BIT-1 indicates an overrun error has occurred and that data in the FIFO may not be valid.
C. LSR BIT 2-4 provides the type of receive data errors encountered for the data byte in RHR, if any.
D. LSR BIT-5 indicates THR is empty.
E. LSR BIT-6 indicates when both the transmit FIFO and TSR are empty.
F. LSR BIT-7 indicates a data error in at least one character in the RX FIFO.
IER[0]: RHR Interrupt Enable
The receive data ready interrupt will be issued when RHR has a data character in the non-FIFO mode or when
the receive FIFO has reached the programmed trigger level in the FIFO mode.
• Logic 0 = Disable the receive data ready interrupt (default).
• Logic 1 = Enable the receiver data ready interrupt.
IER[1]: THR Interrupt Enable
This bit enables the Transmit Ready interrupt which is issued whenever the THR becomes empty in the nonFIFO mode or when data in the FIFO falls below the programmed trigger level in the FIFO mode. If the THR is
empty when this bit is enabled, an interrupt will be generated.
• Logic 0 = Disable Transmit Ready interrupt (default).
• Logic 1 = Enable Transmit Ready interrupt.
IER[2]: Receive Line Status Interrupt Enable
If any of the LSR register bits 1, 2, 3 or 4 is a logic 1, it will generate an interrupt to inform the host controller
about the error status of the current data byte in FIFO. LSR bit-1 generates an interrupt immediately when the
character has been received. LSR bits 2-4 generate an interrupt when the character with errors is read out of
the FIFO (default). Instead, LSR bits 2-4 can be programmed to generate an interrupt immediately, by setting
EMSR bit-6 to a logic 1.
• Logic 0 = Disable the receiver line status interrupt (default).
• Logic 1 = Enable the receiver line status interrupt.
IER[3]: Modem Status Interrupt Enable
• Logic 0 = Disable the modem status register interrupt (default).
• Logic 1 = Enable the modem status register interrupt.
26
XR19L222
TWO CHANNEL INTEGRATED UART AND RS-232 TRANSCEIVER
REV. 1.0.0
IER[4]: Sleep Mode Enable (requires EFR bit-4 = 1)
• Logic 0 = Disable Sleep Mode (default).
• Logic 1 = Enable Sleep Mode. See Sleep Mode section for further details.
IER[5]: Xoff Interrupt Enable (requires EFR bit-4=1)
• Logic 0 = Disable the software flow control, receive Xoff interrupt (default).
• Logic 1 = Enable the software flow control, receive Xoff interrupt. See Software Flow Control section for
details.
IER[6]: RTS# Output Interrupt Enable (requires EFR bit-4=1)
• Logic 0 = Disable the RTS# interrupt (default).
• Logic 1 = Enable the RTS# interrupt. The UART issues an interrupt when the RTS# pin makes a transition
from low to high.
IER[7]: CTS# Input Interrupt Enable (requires EFR bit-4=1)
• Logic 0 = Disable the CTS# interrupt (default).
• Logic 1 = Enable the CTS# interrupt. The UART issues an interrupt when CTS# pin makes a transition from
low to high.
4.4
Interrupt Status Register (ISR) - Read-Only
The UART provides multiple levels of prioritized interrupts to minimize external software interaction. The
Interrupt Status Register (ISR) provides the user with six interrupt status bits. Performing a read cycle on the
ISR will give the user the current highest pending interrupt level to be serviced, others are queued up to be
serviced next. No other interrupts are acknowledged until the pending interrupt is serviced. The Interrupt
Source Table, Table 9, shows the data values (bit 0-5) for the interrupt priority levels and the interrupt sources
associated with each of these interrupt levels.
4.4.1
Interrupt Generation:
• LSR is by any of the LSR bits 1, 2, 3 and 4.
• RXRDY is by RX trigger level.
• RXRDY Time-out is by a 4-char plus 12 bits delay timer.
• TXRDY is by TX trigger level or TX FIFO empty (or transmitter empty in auto RS-485 control).
• MSR is by any of the MSR bits 0, 1, 2 and 3.
• Receive Xoff/Special character is by detection of a Xoff or Special character.
• CTS# is when its transmitter toggles the input pin (from LOW to HIGH) during auto CTS flow control.
• RTS# is when its receiver toggles the output pin (from LOW to HIGH) during auto RTS flow control.
• Wake-up Indicator is when the UART comes out of sleep mode.
27
XR19L222
TWO CHANNEL INTEGRATED UART AND RS-232 TRANSCEIVER
4.4.2
REV. 1.0.0
Interrupt Clearing:
• LSR interrupt is cleared by a read to the LSR register.
• RXRDY interrupt is cleared by reading data until FIFO falls below the trigger level.
• RXRDY Time-out interrupt is cleared by reading RHR.
• TXRDY interrupt is cleared by a read to the ISR register or writing to THR.
• MSR interrupt is cleared by a read to the MSR register.
• Xoff interrupt is cleared by a read to ISR or when Xon character(s) is received.
• Special character interrupt is cleared by a read to ISR or after the next character is received.
• RTS# and CTS# flow control interrupts are cleared by a read to the MSR register.
• Wake-up Indicator is cleared by a read to the ISR register.
]
TABLE 9: INTERRUPT SOURCE AND PRIORITY LEVEL
PRIORITY
ISR REGISTER STATUS BITS
SOURCE OF INTERRUPT
LEVEL
BIT-5
BIT-4
BIT-3
BIT-2
BIT-1
BIT-0
1
0
0
0
1
1
0
LSR (Receiver Line Status Register)
2
0
0
1
1
0
0
RXRDY (Receive Data Time-out)
3
0
0
0
1
0
0
RXRDY (Received Data Ready)
4
0
0
0
0
1
0
TXRDY (Transmit Ready)
5
0
0
0
0
0
0
MSR (Modem Status Register)
6
0
1
0
0
0
0
RXRDY (Received Xoff or Special character)
7
1
0
0
0
0
0
CTS#, RTS# change of state
-
0
0
0
0
0
1
None (default) or Wake-up Indicator
ISR[0]: Interrupt Status
• Logic 0 = An interrupt is pending and the ISR contents may be used as a pointer to the appropriate interrupt
service routine.
• Logic 1 = No interrupt pending (default condition) or the device has come out of sleep mode.
ISR[3:1]: Interrupt Status
These bits indicate the source for a pending interrupt at interrupt priority levels (See Interrupt Source Table 9).
ISR[4]: Xoff or Special Character Interrupt Status (requires EFR bit-4=1)
This bit is enabled when IER[5] = 1. ISR bit-4 indicates that the receiver detected a data match of the Xoff
character(s) or special character (XOFF2).
ISR[5]: RTS#/CTS# Interrupt Status (requires EFR bit-4=1)
This bit is enabled when IER[7] = 1 or IER[6] = 1. ISR bit-5 indicates that the CTS# or RTS# has been deasserted.
ISR[7:6]: FIFO Enable Status
These bits are set to a logic 0 when the FIFOs are disabled. They are set to a logic 1 when the FIFOs are
enabled.
4.5
FIFO Control Register (FCR) - Write-Only
28
XR19L222
REV. 1.0.0
TWO CHANNEL INTEGRATED UART AND RS-232 TRANSCEIVER
This register is used to enable the FIFOs, clear the FIFOs, set the transmit/receive FIFO trigger levels, and
select the DMA mode. The DMA, and FIFO modes are defined as follows:
FCR[0]: TX and RX FIFO Enable
• Logic 0 = Disable the transmit and receive FIFO (default).
• Logic 1 = Enable the transmit and receive FIFOs. This bit must be set to logic 1 when other FCR bits are
written or they will not be programmed.
FCR[1]: RX FIFO Reset
This bit is only active when FCR bit-0 is a ‘1’.
• Logic 0 = No receive FIFO reset (default)
• Logic 1 = Reset the receive FIFO pointers and FIFO level counter logic (the receive shift register is not
cleared or altered). This bit will return to a logic 0 after resetting the FIFO.
FCR[2]: TX FIFO Reset
This bit is only active when FCR bit-0 is a ‘1’.
• Logic 0 = No transmit FIFO reset (default).
• Logic 1 = Reset the transmit FIFO pointers and FIFO level counter logic (the transmit shift register is not
cleared or altered). This bit will return to a logic 0 after resetting the FIFO.
FCR[3]: DMA Mode Select
Controls the behavior of the TXRDY# and RXRDY# pins. See DMA operation section for details.
• Logic 0 = Normal Operation (default).
• Logic 1 = DMA Mode.
FCR[5:4]: Transmit FIFO Trigger Select (requires EFR bit-4=1)
(logic 0 = default, TX trigger level = 1)
These 2 bits set the trigger level for the transmit FIFO. The UART will issue a transmit interrupt when the
number of characters in the FIFO falls below the selected trigger level, or when it gets empty in case that the
FIFO did not get filled over the trigger level on last re-load. Table 10 below shows the selections. EFR bit-4
must be set to ‘1’ before these bits can be accessed. Note that the receiver and the transmitter cannot use
different trigger tables. Whichever selection is made last applies to both the RX and TX side.
FCR[7:6]: Receive FIFO Trigger Select
(logic 0 = default, RX trigger level =1)
The FCTR Bits 5-4 are associated with these 2 bits. These 2 bits are used to set the trigger level for the receive
FIFO. The UART will issue a receive interrupt when the number of the characters in the FIFO crosses the
trigger level. Table 10 shows the complete selections. Note that the receiver and the transmitter cannot use
different trigger tables. Whichever selection is made last applies to both the RX and TX side.
29
XR19L222
TWO CHANNEL INTEGRATED UART AND RS-232 TRANSCEIVER
REV. 1.0.0
TABLE 10: TRANSMIT AND RECEIVE FIFO TRIGGER TABLE AND LEVEL SELECTION
TRIGGER
TABLE
FCTR
BIT-5
FCTR
BIT-4
Table-A
0
0
FCR
BIT-7
FCR
BIT-6
0
0
1
1
Table-B
0
Table-D
4.6
1
1
1
0
0
X
X
COMPATIBILITY
16C550, 16C2550,
16C2552, 16C554,
16C580
16
8
24
30
16C650A
8
16
32
56
16C654
8
16
24
28
0
0
1
1
0
1
0
1
TRANSMIT
TRIGGER
LEVEL
1 (default)
0
1
0
1
0
1
0
1
0
0
1
1
RECEIVE
TRIGGER LEVEL
1 (default)
4
8
14
0
0
1
1
0
1
FCR
BIT-4
0
1
0
1
0
0
1
1
Table-C
FCR
BIT-5
0
1
0
1
8
16
56
60
X
X
Programmable Programmable 16L2752, 16C2850,
16C2852, 16C850,
via TRG
via TRG
16C854, 16C864
register.
register.
FCTR[7] = 0.
FCTR[7] = 1.
Line Control Register (LCR) - Read/Write
The Line Control Register is used to specify the asynchronous data communication format. The word or
character length, the number of stop bits, and the parity are selected by writing the appropriate bits in this
register.
LCR[1:0]: TX and RX Word Length Select
These two bits specify the word length to be transmitted or received.
BIT-1
BIT-0
WORD LENGTH
0
0
5 (default)
0
1
6
1
0
7
1
1
8
30
XR19L222
TWO CHANNEL INTEGRATED UART AND RS-232 TRANSCEIVER
REV. 1.0.0
LCR[2]: TX and RX Stop-bit Length Select
The length of stop bit is specified by this bit in conjunction with the programmed word length.
LENGTH
STOP BIT LENGTH
(BIT TIME(S))
0
5,6,7,8
1 (default)
1
5
1-1/2
1
6,7,8
2
BIT-2
WORD
LCR[3]: TX and RX Parity Select
Parity or no parity can be selected via this bit. The parity bit is a simple way used in communications for data
integrity check. See Table 11 for parity selection summary below.
• Logic 0 = No parity.
• Logic 1 = A parity bit is generated during the transmission while the receiver checks for parity error of the
data character received.
LCR[4]: TX and RX Parity Select
If the parity bit is enabled with LCR bit-3 set to a logic 1, LCR bit-4 selects the even or odd parity format.
• Logic 0 = ODD Parity is generated by forcing an odd number of logic 1’s in the transmitted character. The
receiver must be programmed to check the same format (default).
• Logic 1 = EVEN Parity is generated by forcing an even number of logic 1’s in the transmitted character. The
receiver must be programmed to check the same format.
LCR[5]: TX and RX Parity Select
If the parity bit is enabled, LCR BIT-5 selects the forced parity format.
• LCR BIT-5 = logic 0, parity is not forced (default).
• LCR BIT-5 = logic 1 and LCR BIT-4 = logic 0, parity bit is forced to a logical 1 for the transmit and receive
data.
• LCR BIT-5 = logic 1 and LCR BIT-4 = logic 1, parity bit is forced to a logical 0 for the transmit and receive
data.
TABLE 11: PARITY SELECTION
LCR BIT-5 LCR BIT-4 LCR BIT-3
PARITY SELECTION
X
X
0
No parity
0
0
1
Odd parity
0
1
1
Even parity
1
0
1
Force parity to mark, “1”
1
1
1
Forced parity to space, “0”
31
XR19L222
TWO CHANNEL INTEGRATED UART AND RS-232 TRANSCEIVER
REV. 1.0.0
LCR[6]: Transmit Break Enable
When enabled, the Break control bit causes a break condition to be transmitted (the TX output is forced to a
“space", LOW state). This condition remains, until disabled by setting LCR bit-6 to a logic 0.
• Logic 0 = No TX break condition (default).
• Logic 1 = Forces the transmitter output (TX) to a “space”, LOW, for alerting the remote receiver of a line
break condition.
LCR[7]: Baud Rate Divisors Enable
Baud rate generator divisor (DLL, DLM and DLD) enable.
• Logic 0 = Data registers are selected (default).
• Logic 1 = Divisor latch registers are selected.
4.7
Modem Control Register (MCR) or General Purpose Outputs Control - Read/Write
The MCR register is used for controlling the serial/modem interface signals or general purpose inputs/outputs.
MCR[0]: DTR# Output
The DTR# pin is a modem control output. If the modem interface is not used, this output may be used as a
general purpose output.
• Logic 0 = Force DTR# output HIGH (default).
• Logic 1 = Force DTR# output LOW.
MCR[1]: RTS# Output
The RTS# pin is a modem control output and may be used for automatic hardware flow control by enabled by
EFR bit-6. The RTS# pin can also be used for Auto RS485 Half-Duplex direction control enabled by FCTR bit3. If the modem interface is not used, this output may be used as a general purpose output.
• Logic 0 = Force RTS# HIGH (default).
• Logic 1 = Force RTS# LOW.
MCR[2]: Reserved
OP1# is not available as an output pin on the L222. But it is available for use during Internal Loopback Mode.
In the Loopback Mode, this bit is used to write the state of the modem RI# interface signal.
MCR[3]: OP2# Output / INT Output Enable
This bit enables or disables the operation of INT, interrupt output. If INT output is not used, OP2# can be used
as a general purpose output. Also, if 16/68# pin selects Motorola bus interface mode, this bit must be set to
logic 0.
• Logic 0 = INT (A-B) outputs disabled (three state mode) and OP2# output set HIGH(default).
• Logic 1 = INT (A-B) outputs enabled (active mode) and OP2# output set LOW.
MCR[4]: Internal Loopback Enable
• Logic 0 = Disable loopback mode (default).
• Logic 1 = Enable local loopback mode, see loopback section and Figure 12.
MCR[5]: Xon-Any Enable (requires EFR bit-4=1)
• Logic 0 = Disable Xon-Any function (default).
• Logic 1 = Enable Xon-Any function. In this mode, any RX character received will resume transmit operation.
The RX character will be loaded into the RX FIFO, unless the RX character is an Xon or Xoff character and
the L222 is programmed to use the Xon/Xoff flow control.
32
XR19L222
REV. 1.0.0
TWO CHANNEL INTEGRATED UART AND RS-232 TRANSCEIVER
MCR[6]: Infrared Encoder/Decoder Enable (requires EFR bit-4=1)
Infrared mode should be used on channel B only. This bit should remain a logic 0 for channel A.
• Logic 0 = Enable the standard modem receive and transmit input/output interface (default).
• Logic 1 = Enable infrared IrDA receive and transmit inputs/outputs. The TX/RX output/input are routed to the
infrared encoder/decoder. The data input and output levels conform to the IrDA infrared interface
requirement. While in this mode, the infrared TX output will be idling LOW. SEE ”INFRARED MODE (UART
CHANNEL B ONLY)” ON PAGE 22.
MCR[7]: Clock Prescaler Select (requires EFR bit-4=1)
• Logic 0 = Divide by one. The input clock from the crystal or external clock is fed directly to the Programmable
Baud Rate Generator without further modification, i.e., divide by one (default).
• Logic 1 = Divide by four. The prescaler divides the input clock from the crystal or external clock by four and
feeds it to the Programmable Baud Rate Generator, hence, data rates become one forth.
4.8
Line Status Register (LSR) - Read Only
This register provides the status of data transfers between the UART and the host.
LSR[0]: Receive Data Ready Indicator
• Logic 0 = No data in receive holding register or FIFO (default).
• Logic 1 = Data has been received and is saved in the receive holding register or FIFO.
LSR[1]: Receiver Overrun Error Flag
• Logic 0 = No overrun error (default).
• Logic 1 = Overrun error. A data overrun error condition occurred in the receive shift register. This happens
when additional data arrives while the FIFO is full. In this case the previous data in the receive shift register
is overwritten. Note that under this condition the data byte in the receive shift register is not transferred into
the FIFO, therefore the data in the FIFO is not corrupted by the error.
LSR[2]: Receive Data Parity Error Tag
• Logic 0 = No parity error (default).
• Logic 1 = Parity error. The receive character in RHR does not have correct parity information and is suspect.
This error is associated with the character available for reading in RHR.
LSR[3]: Receive Data Framing Error Tag
• Logic 0 = No framing error (default).
• Logic 1 = Framing error. The receive character did not have a valid stop bit(s). This error is associated with
the character available for reading in RHR.
LSR[4]: Receive Break Error Tag
• Logic 0 = No break condition (default).
• Logic 1 = The receiver received a break signal (RX was LOW for at least one character frame time). In the
FIFO mode, only one break character is loaded into the FIFO.
LSR[5]: Transmit Holding Register Empty Flag
This bit is the Transmit Holding Register Empty indicator. The THR bit is set to a logic 1 when the last data byte
is transferred from the transmit holding register to the transmit shift register. The bit is reset to logic 0
concurrently with the data loading to the transmit holding register by the host. In the FIFO mode this bit is set
when the transmit FIFO is empty, it is cleared when the transmit FIFO contains at least 1 byte.
33
XR19L222
TWO CHANNEL INTEGRATED UART AND RS-232 TRANSCEIVER
REV. 1.0.0
LSR[6]: THR and TSR Empty Flag
This bit is set to a logic 1 whenever the transmitter goes idle. It is set to logic 0 whenever either the THR or
TSR contains a data character. In the FIFO mode this bit is set to a logic 1 whenever the transmit FIFO and
transmit shift register are both empty.
LSR[7]: Receive FIFO Data Error Flag
• Logic 0 = No FIFO error (default).
• Logic 1 = A global indicator for the sum of all error bits in the RX FIFO. At least one parity error, framing error
or break indication is in the FIFO data. This bit clears when there is no more error(s) in any of the bytes in the
RX FIFO.
4.9
Modem Status Register (MSR) - Read Only
This register provides the current state of the modem interface input signals. Lower four bits of this register are
used to indicate the changed information. These bits are set to a logic 1 whenever a signal from the modem
changes state. These bits may be used for general purpose inputs when they are not used with modem
signals.
MSR[0]: Delta CTS# Input Flag
• Logic 0 = No change on CTS# input (default).
• Logic 1 = The CTS# input has changed state since the last time it was monitored. A modem status interrupt
will be generated if MSR interrupt is enabled (IER bit-3).
MSR[1]: Delta DSR# Input Flag
• Logic 0 = No change on DSR# input (default).
• Logic 1 = The DSR# input has changed state since the last time it was monitored. A modem status interrupt
will be generated if MSR interrupt is enabled (IER bit-3).
MSR[2]: Delta RI# Input Flag
• Logic 0 = No change on RI# input (default).
• Logic 1 = The RI# input has changed from a LOW to HIGH, ending of the ringing signal. A modem status
interrupt will be generated if MSR interrupt is enabled (IER bit-3).
MSR[3]: Delta CD# Input Flag
• Logic 0 = No change on CD# input (default).
• Logic 1 = Indicates that the CD# input has changed state since the last time it was monitored. A modem
status interrupt will be generated if MSR interrupt is enabled (IER bit-3).
MSR[4]: CTS Input Status
CTS# pin may function as automatic hardware flow control signal input if it is enabled and selected by Auto
CTS (EFR bit-7). Auto CTS flow control allows starting and stopping of local data transmissions based on the
modem CTS# signal. A HIGH on the CTS# pin will stop UART transmitter as soon as the current character has
finished transmission, and a LOW will resume data transmission. Normally MSR bit-4 bit is the complement of
the CTS# input. However in the loopback mode, this bit is equivalent to the RTS# bit in the MCR register. The
CTS# input may be used as a general purpose input when the modem interface is not used.
MSR[5]: DSR Input Status
Normally this bit is the complement of the DSR# input. In the loopback mode, this bit is equivalent to the DTR#
bit in the MCR register. The DSR# input may be used as a general purpose input when the modem interface is
not used.
34
XR19L222
TWO CHANNEL INTEGRATED UART AND RS-232 TRANSCEIVER
REV. 1.0.0
MSR[6]: RI Input Status
Normally this bit is the complement of the RI# input. In the loopback mode this bit is equivalent to bit-2 in the
MCR register. The RI# input may be used as a general purpose input when the modem interface is not used.
MSR[7]: CD Input Status
Normally this bit is the complement of the CD# input. In the loopback mode this bit is equivalent to bit-3 in the
MCR register. The CD# input may be used as a general purpose input when the modem interface is not used.
4.10
Scratch Pad Register (SPR) - Read/Write
This is a 8-bit general purpose register for the user to store temporary data. The content of this register is
preserved during sleep mode but becomes 0xFF (default) after a reset or a power off-on cycle.
4.11
Enhanced Mode Select Register (EMSR)
This register replaces SPR (during a Write) and is accessible only when FCTR[6] = 1.
EMSR[1:0]: Receive/Transmit FIFO Level Count (Write-Only)
When Scratchpad Swap (FCTR[6]) is asserted, EMSR bits 1-0 controls what mode the FIFO Level Counter is
operating in.
TABLE 12: SCRATCHPAD SWAP SELECTION
FCTR[6] EMSR[1]
EMSR[0] Scratchpad is
0
X
X
Scratchpad
1
X
0
RX FIFO Level Counter Mode
1
0
1
TX FIFO Level Counter Mode
1
1
1
Alternate RX/TX FIFO Counter Mode
During Alternate RX/TX FIFO Level Counter Mode, the first value read after EMSR bits 1-0 have been
asserted will always be the RX FIFO Level Counter. The second value read will correspond with the TX FIFO
Level Counter. The next value will be the RX FIFO Level Counter again, then the TX FIFO Level Counter and
so on and so forth.
EMSR[3:2]: Reserved
EMSR[5:4]: Extended RTS Hysteresis
TABLE 13: AUTO RTS HYSTERESIS
EMSR
BIT-5
EMSR
BIT-4
FCTR
BIT-1
FCTR
BIT-0
RTS#
HYSTERESIS
(CHARACTERS)
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
1
0
±4
±6
±8
0
0
0
0
1
1
1
1
0
0
1
1
0
1
0
1
±8
±16
±24
±32
35
XR19L222
TWO CHANNEL INTEGRATED UART AND RS-232 TRANSCEIVER
REV. 1.0.0
TABLE 13: AUTO RTS HYSTERESIS
EMSR
BIT-5
EMSR
BIT-4
FCTR
BIT-1
FCTR
BIT-0
RTS#
HYSTERESIS
(CHARACTERS)
1
1
1
1
0
0
0
0
0
0
1
1
0
1
0
1
±40
±44
±48
±52
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
±12
±20
±28
±36
EMSR[6]: LSR Interrupt Mode
• Logic 0 = LSR Interrupt Delayed (for 16C2550 compatibility, default). LSR bits 2, 3, and 4 will generate an
interrupt when the character with the error is in the RHR.
• Logic 1 = LSR Interrupt Immediate. LSR bits 2, 3, and 4 will generate an interrupt as soon as the character is
received into the FIFO.
EMSR[7]: 16X Sampling Rate Mode
Logic 0 = 8X Sampling Rate.
Logic 1 = 16X Sampling Rate (default).
4.12
FIFO Level Register (FLVL) - Read-Only
The FIFO Level Register replaces the Scratchpad Register (during a Read) when FCTR[6] = 1. Note that this is
not identical to the FIFO Data Count Register which can be accessed when LCR = 0xBF.
FLVL[7:0]: FIFO Level Register
This register provides the FIFO counter level for the RX FIFO or the TX FIFO or both depending on EMSR[1:0].
See Table 12 for details.
4.13
Baud Rate Generator Registers (DLL, DLM and DLD) - Read/Write
These registers make-up the value of the baud rate divisor. The concatenation of the contents of DLM and
DLL is a 16-bit value is then added to DLD/16 to achieve the fractional baud rate divisor. DLD must be enabled
via EFR bit-4 before it can be accessed. SEE ”PROGRAMMABLE BAUD RATE GENERATOR WITH
FRACTIONAL DIVISOR” ON PAGE 11.
4.14
Device Identification Register (DVID) - Read Only
This register contains the device ID (0x0A for XR16V2751). Prior to reading this register, DLL and DLM should
be set to 0x00 (DLD = 0xXX).
4.15
Device Revision Register (DREV) - Read Only
This register contains the device revision information. For example, 0x01 means revision A. Prior to reading
this register, DLL and DLM should be set to 0x00 (DLD = 0xXX).
4.16
Trigger Level Register (TRG) - Write-Only
User Programmable Transmit/Receive Trigger Level Register. If both the TX and RX trigger levels are used,
the TX trigger levels must be set before the RX trigger levels.
TRG[7:0]: Trigger Level Register
36
XR19L222
TWO CHANNEL INTEGRATED UART AND RS-232 TRANSCEIVER
REV. 1.0.0
These bits are used to program desired trigger levels when trigger Table-D is selected. FCTR bit-7 selects
between programming the RX Trigger Level (a logic 0) and the TX Trigger Level (a logic 1).
4.17
RX/TX FIFO Level Count Register (FC) - Read-Only
This register is accessible when LCR = 0xBF. Note that this register is not identical to the FIFO Level Count
Register which is located in the general register set when FCTR bit-6 = 1 (Scratchpad Register Swap). It is
suggested to read the FIFO Level Count Register at the Scratchpad Register location when FCTR bit-6 = 1.
See Table 12.
FC[7:0]: RX/TX FIFO Level Count
Receive/Transmit FIFO Level Count. Number of characters in Receiver FIFO (FCTR[7] = 0) or Transmitter
FIFO (FCTR[7] = 1) can be read via this register. Reading this register is not recommended when transmitting
or receiving data.
4.18
Feature Control Register (FCTR) - Read/Write
This register controls the XR16V2751 new functions that are not available in ST16C2450 or ST16C2550.
FCTR[1:0]: RTS Hysteresis
User selectable RTS# hysteresis levels for hardware flow control application. After reset, these bits are set to
“0” to select the next trigger level for hardware flow control. See Table 13 for more details.
FCTR[2]: IrDa RX Inversion
• Logic 0 = Select RX input as encoded IrDa data (Idle state will be LOW).
• Logic 1 = Select RX input as inverted encoded IrDa data (Idle state will be HIGH).
FCTR[3]: Reserved
For proper functionality, this bit should be a logic 0.
FCTR[5:4]: Transmit/Receive Trigger Table Select
See Table 10 for more details.
TABLE 14: TRIGGER TABLE SELECT
FCTR
BIT-5
FCTR
BIT-4
0
0
Table-A (TX/RX)
0
1
Table-B (TX/RX)
1
0
Table-C (TX/RX)
1
1
Table-D (TX/RX)
TABLE
FCTR[6]: Scratchpad Swap
• Logic 0 = Scratch Pad register is selected as general read and write register. ST16C550 compatible mode.
• Logic 1 = FIFO Level Count register (Read-Only), Enhanced Mode Select Register (Write-Only). Number of
characters in transmit or receive FIFO can be read via scratch pad register when this bit is set. Enhanced
Mode Select Register is selected when it is written into.
FCTR[7]: Programmable Trigger Register Select
If using both programmable TX and RX trigger levels, TX trigger levels must be set before RX trigger levels.
• Logic 0 = Registers TRG and FC selected for RX.
• Logic 1 = Registers TRG and FC selected for TX.
37
XR19L222
TWO CHANNEL INTEGRATED UART AND RS-232 TRANSCEIVER
4.19
REV. 1.0.0
Enhanced Feature Register (EFR)
Enhanced features are enabled or disabled using this register. Bit 0-3 provide single or dual consecutive
character software flow control selection (see Table 15). When the Xon1 and Xon2 and Xoff1 and Xoff2 modes
are selected, the double 8-bit words are concatenated into two sequential characters. Caution: note that
whenever changing the TX or RX flow control bits, always reset all bits back to logic 0 (disable) before
programming a new setting.
EFR[3:0]: Software Flow Control Select
Single character and dual sequential characters software flow control is supported. Combinations of software
flow control can be selected by programming these bits.
TABLE 15: SOFTWARE FLOW CONTROL FUNCTIONS
EFR BIT-3
CONT-3
EFR BIT-2
CONT-2
EFR BIT-1
CONT-1
EFR BIT-0
CONT-0
0
0
0
0
No TX and RX flow control (default and reset)
0
0
X
X
No transmit flow control
1
0
X
X
Transmit Xon1, Xoff1
0
1
X
X
Transmit Xon2, Xoff2
1
1
X
X
Transmit Xon1 and Xon2, Xoff1 and Xoff2
X
X
0
0
No receive flow control
X
X
1
0
Receiver compares Xon1, Xoff1
X
X
0
1
Receiver compares Xon2, Xoff2
1
0
1
1
Transmit Xon1, Xoff1
Receiver compares Xon1 or Xon2, Xoff1 or Xoff2
0
1
1
1
Transmit Xon2, Xoff2
Receiver compares Xon1 or Xon2, Xoff1 or Xoff2
1
1
1
1
Transmit Xon1 and Xon2, Xoff1 and Xoff2,
Receiver compares Xon1 and Xon2, Xoff1 and Xoff2
0
0
1
1
No transmit flow control,
Receiver compares Xon1 and Xon2, Xoff1 and Xoff2
TRANSMIT AND RECEIVE SOFTWARE FLOW CONTROL
EFR[4]: Enhanced Function Bits Enable
Enhanced function control bit. This bit enables IER bits 4-7, ISR bits 4-5, FCR bits 4-5, MCR bits 5-7, and DLD
to be modified. After modifying any enhanced bits, EFR bit-4 can be set to a logic 0 to latch the new values.
This feature prevents legacy software from altering or overwriting the enhanced functions once set. Normally, it
is recommended to leave it enabled, logic 1.
• Logic 0 = modification disable/latch enhanced features. IER bits 4-7, ISR bits 4-5, FCR bits 4-5, MCR bits 57, and DLD are saved to retain the user settings. After a reset, the IER bits 4-7, ISR bits 4-5, FCR bits 4-5,
MCR bits 5-7, and DLD are set to a logic 0 to be compatible with ST16C550 mode (default).
• Logic 1 = Enables the above-mentioned register bits to be modified by the user.
38
XR19L222
TWO CHANNEL INTEGRATED UART AND RS-232 TRANSCEIVER
REV. 1.0.0
EFR[5]: Special Character Detect Enable
• Logic 0 = Special Character Detect Disabled (default).
• Logic 1 = Special Character Detect Enabled. The UART compares each incoming receive character with
data in Xoff-2 register. If a match exists, the receive data will be transferred to FIFO and ISR bit-4 will be set
to indicate detection of the special character. Bit-0 corresponds with the LSB bit of the receive character. If
flow control is set for comparing Xon1, Xoff1 (EFR [1:0]= ‘10’) then flow control and special character work
normally. However, if flow control is set for comparing Xon2, Xoff2 (EFR[1:0]= ‘01’) then flow control works
normally, but Xoff2 will not go to the FIFO, and will generate an Xoff interrupt and a special character
interrupt, if enabled via IER bit-5.
EFR[6]: Auto RTS Flow Control Enable
RTS# output may be used for hardware flow control by setting EFR bit-6 to logic 1. When Auto RTS is
selected, an interrupt will be generated when the receive FIFO is filled to the programmed trigger level and
RTS de-asserts HIGH at the next upper trigger level or hysteresis level. RTS# will return LOW when FIFO data
falls below the next lower trigger level. The RTS# output must be asserted (LOW) before the auto RTS can
take effect. RTS# pin will function as a general purpose output when hardware flow control is disabled.
• Logic 0 = Automatic RTS flow control is disabled (default).
• Logic 1 = Enable Automatic RTS flow control.
EFR[7]: Auto CTS Flow Control Enable
Automatic CTS Flow Control.
• Logic 0 = Automatic CTS flow control is disabled (default).
• Logic 1 = Enable Automatic CTS flow control. Data transmission stops when CTS# input de-asserts HIGH.
Data transmission resumes when CTS# returns LOW.
4.19.1
Software Flow Control Registers (XOFF1, XOFF2, XON1, XON2) - Read/Write
These registers are used as the programmable software flow control characters xoff1, xoff2, xon1, and xon2.
For more details, see Table 7.
39
XR19L222
TWO CHANNEL INTEGRATED UART AND RS-232 TRANSCEIVER
TABLE 16: UART RESET CONDITIONS FOR CHANNEL A AND B
REGISTERS
RESET STATE
DLM, DLL
DLM = 0x00 and DLL = 0x01. Only resets to these values during a power up.
They do not reset when the Reset Pin is asserted.
DLD
Bits 7-0 = 0x00
RHR
Bits 7-0 = 0xXX
THR
Bits 7-0 = 0xXX
IER
Bits 7-0 = 0x00
FCR
Bits 7-0 = 0x00
ISR
Bits 7-0 = 0x01
LCR
Bits 7-0 = 0x00
MCR
Bits 7-0 = 0x00
LSR
Bits 7-0 = 0x60
MSR
Bits 3-0 = Logic 0
Bits 7-4 = Logic levels of the inputs inverted
SPR
Bits 7-0 = 0xFF
EMSR
Bits 7-0 = 0x80
FLVL
Bits 7-0 = 0x00
TRG
Bits 7-0 = 0x00
FC
Bits 7-0 = 0x00
FCTR
Bits 7-0 = 0x00
EFR
Bits 7-0 = 0x00
XON1
Bits 7-0 = 0x00
XON2
Bits 7-0 = 0x00
XOFF1
Bits 7-0 = 0x00
XOFF2
Bits 7-0 = 0x00
I/O SIGNALS
RESET STATE
TXDA/TXDB
RS-232 LOW or +5V
RTSA/RTSB
RS-232 LOW or +5V
DTRA/DTRB
RS-232 LOW or +5V
TXB
INT
(IRQ#)
CMOS/TTL HIGH (or VCC)
Three-State Condition (16 mode)
CMOS/TTL HIGH (68 mode)
40
REV. 1.0.0
XR19L222
REV. 1.0.0
TWO CHANNEL INTEGRATED UART AND RS-232 TRANSCEIVER
ABSOLUTE MAXIMUM RATINGS
Power Supply Range
5.5 Volts
Voltage at Any Pin
GND-0.3 V to 5.5 V
Operating Temperature
-40o to +85oC
Storage Temperature
-65o to +150oC
Package Dissipation
500 mW
TYPICAL PACKAGE THERMAL RESISTANCE DATA (MARGIN OF ERROR: ± 15%)
Thermal Resistance (64-QFN)
theta-ja = 40oC/W, theta-jc = 13oC/W
41
XR19L222
TWO CHANNEL INTEGRATED UART AND RS-232 TRANSCEIVER
REV. 1.0.0
ELECTRICAL CHARACTERISTICS
UNLESS OTHERWISE NOTED: TA= -40O TO +85OC (INDUSTRIAL GRADE), VCC= 3.3 - 5.5V
PARAMETER
SYMBOL
CONDITIONS
3.3V LIMITS
MIN MAX
5.0V LIMITS
MIN MAX
40
45
mA
40
50
uA
UNITS
DC CHARACTERISTICS
ICC
ISLP/IPWS
Supply Current, Normal Mode
VCC=3.3V to 5.5V, TA=+25C, no
load
Supply Current, Sleep Mode/PowerSave Mode
OSCILLATOR INPUT (X1)
VILCK
Clock Input Low Level
-0.3
0.6
-0.5
0.6
V
VIHCK
Clock Input High Level
2.4
VCC
3.0
VCC
V
LOGIC INPUTS/OUTPUTS (D[0:7], A[0:2], IOR#, IOW#/R/W#, CS#, INT/IRQ#, RST#/RST, I/M#, PWRSAVE, ACP, TXB,
RXB, RXBSEL, FAST, R_EN
VIL
Input Low Voltage
-0.3
0.7
-0.3
0.7
V
VIH
Input High Voltage
2.0
5.5
2.0
5.5
V
VOL
Output Low Voltage
0.4
V
VOH
Output High Voltage
0.4
2.0
2.0
V
IIL
Input Low Leakage Current
+/-10
+/-10
uA
IHL
Input High Leakage Current
+/-10
+/-10
uA
+/-15
+/-15
V
RS-232 INPUTS (RXD, CTS, DSR, RI, DCD)
Input Voltage Range
VIHR
Input Threshold Low
TA=+25C
VILR
Input Threshold High
TA=+25C
VHYS
Input Hysteresis
RTR
Input Transmition Resistance
0.6
TA=+25C
3
0.8
V
2.0
2.4
V
0.5
0.5
V
7
Kohm
7
3
RS-232 OUTPUTS (TXD, RTS, DTR)
Output Voltage Range
3Kohm load on all transmitter outputs
+/-5.0
+/-5.0
V
ROR
Output Resistance
Vcc=0V, transmitter output=+/-2V
300
300
ohm
IOS
Output Short-Circuit Current
ILKGR
Output Leakage Current
Vcc=0, transmitters disabled
+/-60
+/-60
mA
+/-25
+/-25
uA
RS-232 AC TIMING (TXD)
Maximum Data Rate (FAST = GND)
RL=3Kohm, CL=1000pF
250
250
Kbps
Transmitter Slew Rate (FAST = GND)
CL = 50pF to 2500pF, RL=3-7Kohm
30
30
V/us
Maximum Data Rate (FAST = VCC)
RL=3Kohm, CL=1000pF
1
1
Mbps
Transmitter Slew Rate (FAST = VCC)
CL = 50pF to 2500pF, RL=3-7Kohm
100
100
V/us
42
XR19L222
TWO CHANNEL INTEGRATED UART AND RS-232 TRANSCEIVER
REV. 1.0.0
AC ELECTRICAL CHARACTERISTICS
UNLESS OTHERWISE NOTED: TA=-40O TO +85OC, VCC=3.3 - 5.5V, 70 PF LOAD WHERE APPLICABLE
SYMBOL
LIMITS
3.3
PARAMETER
MIN
-
LIMITS
5.0
MAX
MIN
UNIT
MAX
Crystal Frequency
16
16
MHz
OSC
External Clock Frequency
16
16
MHz
CLK
External Clock Low/High Time
30
30
ns
TAS
Address Setup Time (16 Mode)
0
0
ns
TAH
Address Hold Time (16 Mode)
0
0
ns
TCS
Chip Select Width (16 Mode)
65
65
ns
TRD
IOR# Strobe Width (16 Mode)
65
65
ns
TDY
Read Cycle Delay (16 Mode)
65
65
ns
TRDV
Data Access Time (16 Mode)
TDD
Data Disable Time (16 Mode)
0
TWR
IOW# Strobe Width (16 Mode)
65
65
ns
TDY
Write Cycle Delay (16 Mode)
65
65
ns
TDS
Data Setup Time (16 Mode)
10
10
ns
TDH
Data Hold Time (16 Mode)
5
5
ns
TADS
Address Setup (68 Mode)
0
0
ns
TADH
Address Hold (68 Mode)
0
0
ns
TRWS
R/W# Setup to CS# (68 Mode)
0
0
ns
TRDA
Read Data Access (68 mode)
TRDH
Read Data Disable Time (68 mode)
0
TWDS
Write Data Setup (68 mode)
10
10
ns
TWDH
Write Data Hold (68 Mode)
5
5
ns
TRWH
CS# De-asserted to R/W# De-asserted (68 Mode)
5
5
ns
TCSL
CS# Width (68 Mode)
65
65
ns
TCSD
CS# Cycle Delay (68 Mode)
65
65
ns
TWDO
Delay From IOW# To Output
50
50
ns
TMOD
Delay To Set Interrupt From MODEM Input
50
50
ns
TRSI
Delay To Reset Interrupt From IOR#
50
50
ns
TSSI
Delay From Stop To Set Interrupt
1
1
Bclk
TRRI
Delay From IOR# To Reset Interrupt
50
50
ns
60
15
0
60
43
15
0
60
ns
15
ns
60
ns
15
ns
XR19L222
TWO CHANNEL INTEGRATED UART AND RS-232 TRANSCEIVER
REV. 1.0.0
AC ELECTRICAL CHARACTERISTICS
UNLESS OTHERWISE NOTED: TA=-40O TO +85OC, VCC=3.3 - 5.5V, 70 PF LOAD WHERE APPLICABLE
SYMBOL
LIMITS
3.3
PARAMETER
MIN
TSI
Delay From Stop To Interrupt
TINT
Delay From Initial INT Reset To Transmit Start
TWRI
Delay From IOW# To Reset Interrupt
TRST
Reset Pulse Width
40
N
Baud Rate Divisor
1
Bclk
LIMITS
5.0
MAX
50
8
24
8
50
Baud Clock
CLK
CLK
EXTERNAL
CLOCK
OSC
44
50
ns
24
Bclk
50
ns
40
216-1
1
ns
216-1
16X or 8X of data rate
FIGURE 13. CLOCK TIMING
UNIT
MAX
MIN
Hz
XR19L222
REV. 1.0.0
TWO CHANNEL INTEGRATED UART AND RS-232 TRANSCEIVER
FIGURE 14. MODEM INPUT/OUTPUT TIMING
IOW#
T WDO
RTS#
DTR#
Change of state
Change of state
CD#
CTS#
DSR#
Change of state
Change of state
T MOD
T MOD
Activ
e
INT
Activ
e
Activ
e
T RSI
Activ
e
IOR#
Activ
e
Activ
e
T MOD
Change of state
RI#
45
XR19L222
TWO CHANNEL INTEGRATED UART AND RS-232 TRANSCEIVER
REV. 1.0.0
FIGURE 15. 16 MODE (INTEL) DATA BUS READ TIMING
A0A2
Valid
Address
Valid
Address
TAS
TAS
TAH
TCS
TAH
TCS
CS#
TDY
TRD
TRD
IOR#
TDD
TRDV
TDD
TRDV
Valid
Data
D0-D7
Valid
Data
RDTm
FIGURE 16. 16 MODE (INTEL) DATA BUS WRITE TIMING
A0A2
Valid
Address
Valid
Address
TAS
TAS
TAH
TCS
TAH
TCS
CS#
TDY
TWR
TWR
IOW#
TDS
D0-D7
TDH
Valid
Data
TDS
TDH
Valid
Data
16Write
46
XR19L222
TWO CHANNEL INTEGRATED UART AND RS-232 TRANSCEIVER
REV. 1.0.0
FIGURE 17. 68 MODE (MOTOROLA) DATA BUS READ TIMING
A0-A2
Valid Address
TADS
TCSL
Valid Address
TADH
CS#
TCSD
TRWS
TRWH
R/W#
TRDH
TRDA
D0-D7
Valid Data
Valid Data
68Read
FIGURE 18. 68 MODE (MOTOROLA) DATA BUS WRITE TIMING
A0-A2
Valid Address
TADS
TCSL
Valid Address
TADH
CS#
TCSD
TRWS
TRWH
R/W#
TWDS
D0-D7
T WDH
Valid Data
Valid Data
68Write
47
XR19L222
TWO CHANNEL INTEGRATED UART AND RS-232 TRANSCEIVER
REV. 1.0.0
FIGURE 19. RECEIVE READY INTERRUPT TIMING [NON-FIFO MODE]
RX
Start
Bit
Stop
Bit
D0:D7
INT
D0:D7
D0:D7
TSSR
TSSR
TSSR
1 Byte
in RHR
1 Byte
in RHR
1 Byte
in RHR
TRR
TRR
TRR
IOR#
(Reading data
out of RHR)
RXNFM
FIGURE 20. TRANSMIT READY INTERRUPT TIMING [NON-FIFO MODE]
TX
(Unloading)
IER[1]
enabled
Start
Bit
Stop
Bit
D0:D7
ISR is read
D0:D7
D0:D7
ISR is read
ISR is read
INT*
TWRI
TWRI
TSRT
TWRI
TSRT
TSRT
IOW#
(Loading data
into THR)
TXNonFIFO
*INT is cleared when the ISR is read or when data is loaded into the THR.
48
XR19L222
TWO CHANNEL INTEGRATED UART AND RS-232 TRANSCEIVER
REV. 1.0.0
FIGURE 21. RECEIVE READY INTERRUPT TIMING [FIFO MODE]
Start
Bit
RX
S D0:D7
S D0:D7 T
D0:D7
Stop
Bit
S D0:D7 T
S D0:D7 T S D0:D7 T
S D0:D7 T
RX FIFO drops
below RX
Trigger Level
TSSI
INT
TSSR
RX FIFO fills up to RX
Trigger Level or RX Data
Timeout
TRRI
IOR#
(Reading data out
of RX FIFO)
RXINTDMA#
FIGURE 22. TRANSMIT READY INTERRUPT TIMING [FIFO MODE]
TX FIFO
Empty
TX
Start
Bit
Stop
Bit
S D0:D7 T
IER[1]
enabled
Last Data Byte
Transmitted
T S D0:D7 T S D0:D7 T
S D0:D7 T S D0:D7 T
TSI
ISR is read
S D0:D7 T
ISR is read
INT*
TX FIFO fills up
to trigger level
TWRI
TX FIFO drops
below trigger level
IOW#
(Loading data
into FIFO)
TX INT
*INT is cleared when the ISR is read or when TX FIFO fills up to the trigger level.
49
XR19L222
TWO CHANNEL INTEGRATED UART AND RS-232 TRANSCEIVER
REV. 1.0.0
PACKAGE DIMENSIONS (64 PIN QFN - 9 X 9 X 0.9 mm)
Note: the actual center pad is
metallic and the size (D2) is
device-dependent with a
typical tolerance of 0.3mm
Note: The control dimension is in millimeter.
INCHES
MILLIMETERS
SYMBOL
MIN
MAX
MIN
MAX
A
0.031
0.039
0.80
1.00
A1
0.000
0.002
0.00
0.05
A3
0.006
0.010
0.15
0.25
D
0.350
0.358
8.90
9.10
D2
0.295
0.307
7.50
7.80
b
0.007
0.012
0.18
0.30
e
0.0197 BSC
0.50 BSC
L
0.012
0.020
0.35
0.45
k
0.008
-
0.20
-
50
XR19L222
TWO CHANNEL INTEGRATED UART AND RS-232 TRANSCEIVER
REV. 1.0.0
DATE
REVISION
DESCRIPTION
June 2006
P1.0.0
Preliminary Datasheet
October 2006
P1.0.1
Updated Package Dimensions
January 2007
P1.0.2
Updated EIA/TIA-232-F compliant voltage range to +3.3V to +5.5V.
May 2007
1.0.0
Final Datasheet. Updated DC Electrical Characteristics. Updated QFN drawing.
NOTICE
EXAR Corporation reserves the right to make changes to the products contained in this publication in order to
improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any
circuits described herein, conveys no license under any patent or other right, and makes no representation that
the circuits are free of patent infringement. Charts and schedules contained here in are only for illustration
purposes and may vary depending upon a user’s specific application. While the information in this publication
has been carefully checked; no responsibility, however, is assumed for inaccuracies.
EXAR Corporation does not recommend the use of any of its products in life support applications where the
failure or malfunction of the product can reasonably be expected to cause failure of the life support system or
to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless
EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has
been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately
protected under the circumstances.
Copyright 2007 EXAR Corporation
Datasheet May 2007.
Send your UART technical inquiry with technical details to hotline: [email protected].
Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.
51
XR19L222
TWO CHANNEL INTEGRATED UART AND RS-232 TRANSCEIVER
REV. 1.0.0
TABLE OF CONTENTS
GENERAL DESCRIPTION ................................................................................................ 1
APPLICATIONS ............................................................................................................................................... 1
FEATURES .................................................................................................................................................... 1
FIGURE 1. BLOCK DIAGRAM ............................................................................................................................................................. 1
FIGURE 2. PIN OUT OF THE DEVICE .................................................................................................................................................. 2
ORDERING INFORMATION................................................................................................................................ 2
PIN DESCRIPTIONS ....................................................................................................... 3
1.0 PRODUCT DESCRIPTION....................................................................................................................... 7
2.0 FUNCTIONAL DESCRIPTIONS............................................................................................................... 8
2.1 CPU INTERFACE................................................................................................................................................. 8
FIGURE 3. XR19L222 TYPICAL INTEL/MOTOROLA DATA BUS INTERCONNECTIONS ............................................................................. 8
2.2 5-VOLT TOLERANT INPUTS ..............................................................................................................................
2.3 DEVICE HARDWARE RESET .............................................................................................................................
2.4 DEVICE IDENTIFICATION AND REVISION........................................................................................................
2.5 CHANNEL A AND B SELECTION.......................................................................................................................
9
9
9
9
TABLE 1: CHANNEL A AND B SELECT IN 16 MODE ............................................................................................................................ 9
TABLE 2: CHANNEL A AND B SELECT IN 68 MODE ............................................................................................................................ 9
2.6 CHANNEL A AND B INTERNAL REGISTERS ................................................................................................... 9
2.7 DMA MODE........................................................................................................................................................ 10
2.8 INT (IRQ#) OUTPUT .......................................................................................................................................... 10
TABLE 3: INT (IRQ#) PIN OPERATION FOR TRANSMITTER ............................................................................................................... 10
TABLE 4: INT (IRQ#) PIN OPERATION FOR RECEIVER .................................................................................................................... 10
2.9 CRYSTAL OR EXTERNAL CLOCK INPUT ...................................................................................................... 10
FIGURE 4. TYPICAL CRYSTAL CONNECTIONS................................................................................................................................... 11
2.10 PROGRAMMABLE BAUD RATE GENERATOR WITH FRACTIONAL DIVISOR.......................................... 11
FIGURE 5. BAUD RATE GENERATOR ............................................................................................................................................... 12
TABLE 5: TYPICAL DATA RATES WITH A 24 MHZ CRYSTAL OR EXTERNAL CLOCK AT 16X SAMPLING ................................................... 13
2.11 TRANSMITTER ................................................................................................................................................ 14
2.11.1 TRANSMIT HOLDING REGISTER (THR) - WRITE ONLY .........................................................................................
2.11.2 TRANSMITTER OPERATION IN NON-FIFO MODE ..................................................................................................
FIGURE 6. XR19L222 TRANSMITTER AND RECEIVER ......................................................................................................................
FIGURE 7. TRANSMITTER OPERATION IN NON-FIFO MODE ..............................................................................................................
2.11.3 TRANSMITTER OPERATION IN FIFO MODE ...........................................................................................................
FIGURE 8. TRANSMITTER OPERATION IN FIFO AND FLOW CONTROL MODE .....................................................................................
14
14
14
15
15
15
2.12 RECEIVER ....................................................................................................................................................... 15
2.12.1 RECEIVE HOLDING REGISTER (RHR) - READ-ONLY ............................................................................................
2.12.2 SELECTABLE INPUT TO RX OF CHANNEL B .........................................................................................................
FIGURE 9. RECEIVER OPERATION IN NON-FIFO MODE ....................................................................................................................
FIGURE 10. RECEIVER OPERATION IN FIFO AND AUTO RTS FLOW CONTROL MODE .......................................................................
16
16
16
17
2.13 AUTO RTS (HARDWARE) FLOW CONTROL ............................................................................................... 17
2.14 AUTO RTS HYSTERESIS............................................................................................................................... 17
2.15 AUTO CTS FLOW CONTROL ........................................................................................................................ 18
FIGURE 11. AUTO RTS AND CTS FLOW CONTROL OPERATION ....................................................................................................... 18
2.16 AUTO XON/XOFF (SOFTWARE) FLOW CONTROL..................................................................................... 19
TABLE 6: AUTO XON/XOFF (SOFTWARE) FLOW CONTROL ............................................................................................................... 19
2.17 SPECIAL CHARACTER DETECT .................................................................................................................. 19
2.18 SLEEP MODES AND POWER-SAVE FEATURE WITH WAKE-UP INTERRUPT ........................................ 20
2.18.1 PARTIAL SLEEP MODE.............................................................................................................................................
2.18.1.1 UART IN SLEEP MODE, RS-232 TRANSCEIVER ACTIVE .........................................................................................
2.18.1.2 UART ACTIVE, CHARGE PUMP OF RS-232 TRANSCEIVER SHUT DOWN ..................................................................
2.18.2 FULL SLEEP MODE ...................................................................................................................................................
2.18.3 POWER-SAVE FEATURE ..........................................................................................................................................
20
20
21
21
21
2.19 INFRARED MODE (UART CHANNEL B ONLY)............................................................................................. 22
FIGURE 12. INTERNAL LOOP BACK ................................................................................................................................................. 22
3.0 UART INTERNAL REGISTERS ............................................................................................................. 23
TABLE 7: UART INTERNAL REGISTERS .................................................................................................................................... 23
TABLE 8: INTERNAL REGISTERS DESCRIPTION. SHADED BITS ARE ENABLED WHEN EFR BIT-4=1 ......................................... 24
4.0 INTERNAL REGISTER DESCRIPTIONS............................................................................................... 25
4.1 RECEIVE HOLDING REGISTER (RHR) - READ- ONLY .................................................................................. 25
I
XR19L222
REV. 1.0.0
TWO CHANNEL INTEGRATED UART AND RS-232 TRANSCEIVER
4.2 TRANSMIT HOLDING REGISTER (THR) - WRITE-ONLY ............................................................................... 25
4.3 INTERRUPT ENABLE REGISTER (IER) - READ/WRITE ................................................................................ 25
4.3.1 IER VERSUS RECEIVE FIFO INTERRUPT MODE OPERATION ............................................................................... 26
4.3.2 IER VERSUS RECEIVE/TRANSMIT FIFO POLLED MODE OPERATION.................................................................. 26
4.4 INTERRUPT STATUS REGISTER (ISR) - READ-ONLY .................................................................................. 27
4.4.1 INTERRUPT GENERATION: ........................................................................................................................................ 27
4.4.2 INTERRUPT CLEARING: ............................................................................................................................................. 28
TABLE 9: INTERRUPT SOURCE AND PRIORITY LEVEL ....................................................................................................................... 28
4.5 FIFO CONTROL REGISTER (FCR) - WRITE-ONLY ........................................................................................ 28
TABLE 10: TRANSMIT AND RECEIVE FIFO TRIGGER TABLE AND LEVEL SELECTION .......................................................................... 30
4.6 LINE CONTROL REGISTER (LCR) - READ/WRITE ........................................................................................ 30
TABLE 11: PARITY SELECTION ........................................................................................................................................................ 31
4.7 MODEM CONTROL REGISTER (MCR) OR GENERAL PURPOSE OUTPUTS CONTROL - READ/WRITE .
4.8 LINE STATUS REGISTER (LSR) - READ ONLY..............................................................................................
4.9 MODEM STATUS REGISTER (MSR) - READ ONLY .......................................................................................
4.10 SCRATCH PAD REGISTER (SPR) - READ/WRITE .......................................................................................
4.11 ENHANCED MODE SELECT REGISTER (EMSR) .........................................................................................
32
33
34
35
35
TABLE 12: SCRATCHPAD SWAP SELECTION .................................................................................................................................... 35
TABLE 13: AUTO RTS HYSTERESIS ................................................................................................................................................ 35
4.12 FIFO LEVEL REGISTER (FLVL) - READ-ONLY ............................................................................................
4.13 BAUD RATE GENERATOR REGISTERS (DLL, DLM AND DLD) - READ/WRITE .......................................
4.14 DEVICE IDENTIFICATION REGISTER (DVID) - READ ONLY.......................................................................
4.15 DEVICE REVISION REGISTER (DREV) - READ ONLY.................................................................................
4.16 TRIGGER LEVEL REGISTER (TRG) - WRITE-ONLY ....................................................................................
4.17 RX/TX FIFO LEVEL COUNT REGISTER (FC) - READ-ONLY .......................................................................
4.18 FEATURE CONTROL REGISTER (FCTR) - READ/WRITE ..........................................................................
36
36
36
36
36
37
37
TABLE 14: TRIGGER TABLE SELECT ............................................................................................................................................... 37
4.19 ENHANCED FEATURE REGISTER (EFR) ..................................................................................................... 38
TABLE 15: SOFTWARE FLOW CONTROL FUNCTIONS ........................................................................................................................ 38
4.19.1 SOFTWARE FLOW CONTROL REGISTERS (XOFF1, XOFF2, XON1, XON2) - READ/WRITE .............................. 39
TABLE 16: UART RESET CONDITIONS FOR CHANNEL A AND B ............................................................................................ 40
ABSOLUTE MAXIMUM RATINGS ................................................................................. 41
TYPICAL PACKAGE THERMAL RESISTANCE DATA (MARGIN OF ERROR: ± 15%) 41
AC ELECTRICAL CHARACTERISTICS ............................................................................................................. 43
Unless otherwise noted: TA=-40o to +85oC, Vcc=3.3 - 5.5V, 70 pF load where applicable.................................... 43
FIGURE 13. CLOCK TIMING.............................................................................................................................................................
FIGURE 14. MODEM INPUT/OUTPUT TIMING ....................................................................................................................................
FIGURE 15. 16 MODE (INTEL) DATA BUS READ TIMING ...................................................................................................................
FIGURE 16. 16 MODE (INTEL) DATA BUS WRITE TIMING .................................................................................................................
FIGURE 17. 68 MODE (MOTOROLA) DATA BUS READ TIMING ..........................................................................................................
FIGURE 18. 68 MODE (MOTOROLA) DATA BUS WRITE TIMING .........................................................................................................
FIGURE 19. RECEIVE READY INTERRUPT TIMING [NON-FIFO MODE] ...............................................................................................
FIGURE 20. TRANSMIT READY INTERRUPT TIMING [NON-FIFO MODE] .............................................................................................
FIGURE 21. RECEIVE READY INTERRUPT TIMING [FIFO MODE] .......................................................................................................
FIGURE 22. TRANSMIT READY INTERRUPT TIMING [FIFO MODE] .....................................................................................................
44
45
46
46
47
47
48
48
49
49
PACKAGE DIMENSIONS (64 PIN QFN - 9 X 9 X 0.9 mm).............................................. 50
TABLE OF CONTENTS ..................................................................................................... I
II