ETC FM3104-S

Product Preview
FM3104/16/64/256
Integrated Processor Companion with Memory
Features
High Integration Device Replaces Multiple Parts
• Serial Nonvolatile Memory
• Real-time Clock (RTC)
• Low Voltage Reset
• Watchdog Timer
• Early Power-Fail Warning/NMI
• Two 16-bit Event Counters
• Serial Number with Write-lock for Security
Processor Companion
• Active-low Reset Output for VDD and Watchdog
• Programmable VDD Reset Trip Point
• Manual Reset Filtered and De-bounced
• Programmable Watchdog Timer
• Dual Battery-backed Event Counter Tracks
System Intrusions or other Events
• Comparator for Early Power-Fail Interrupt
• 64-bit Programmable Serial Number with Lock
Ferroelectric Nonvolatile RAM
• 4Kb, 16Kb, 64Kb, and 256Kb versions
• Unlimited Read/Write Endurance
• 10 year Data Retention
• NoDelay™ Writes
Fast Two-wire Serial Interface
• Up to 1 MHz Maximum Bus Frequency
• Supports Legacy Timing for 100 kHz & 400 kHz
• Device Select Pins for up to 4 Memory Devices
• RTC, Supervisor Controlled via 2-wire Interface
Real-time Clock/Calendar
• Backup Current under 1 µA
• Seconds through Centuries in BCD format
• Tracks Leap Years through 2099
• Uses Standard 32.768 kHz Crystal (6pF)
• Software Calibration
• Supports Battery or Capacitor Backup
Easy to Use Configurations
• Operates from 2.7 to 5.5V
• Small Footprint 14-pin SOIC
• Low Operating Current
• -40°C to +85°C Operation
Description
The processor companion includes commonly needed
CPU support functions. Supervisory functions
include a reset output signal controlled by either a
low VDD condition or a watchdog timeout. /RST
goes active when VDD drops below a programmable
threshold and remains active for 100 ms after VDD
rises above the trip point. A programmable watchdog
timer runs from 100 ms to 3 seconds. The watchdog
timer is optional, but if enabled it will assert the reset
signal for 100 ms if not restarted by the host before
the timeout. A flag-bit indicates the source of the
reset.
The FM31xxx is a family of integrated devices that
includes the most commonly needed functions for
processor-based systems. Major features include
nonvolatile memory available in various sizes, realtime clock, low-VDD reset, watchdog timer,
nonvolatile event counter, lockable 64-bit serial
number area, and general purpose comparator that
can be used for an early power-fail (NMI) interrupt or
other purpose. The family operates from 2.7 to 5.5V.
Each FM31xxx provides nonvolatile RAM available
in sizes including 4Kb, 16Kb, 64Kb, and 256Kb
versions. Fast write speed and unlimited endurance
allow the memory to serve as extra RAM or
conventional nonvolatile storage. This memory is
truly nonvolatile rather than battery backed.
The real-time clock (RTC) provides time and date
information in BCD format. It can be permanently
powered from external backup voltage source, either
a battery or a capacitor. The timekeeper uses a
common external 32.768 kHz crystal and provides a
calibration mode that allows software adjustment of
timekeeping accuracy.
This is a product in development. Characteristic data
and other specifications are subject to change without notice.
Rev 0.2
May 2003
A general-purpose comparator compares an external
input pin to the onboard 1.2V reference. This is
useful for generating a power-fail interrupt (NMI) but
can be used for any purpose. The family also includes
a programmable 64-bit serial number that can be
locked making it unalterable. Additionally it offers a
dual battery-backed event counter that tracks the
number of rising or falling edges detected on
dedicated input pins.
Ramtron International Corporation
1850 Ramtron Drive, Colorado Springs, CO 80921
(800) 545-FRAM, (719) 481-7000
www.ramtron.com
Page 1 of 22
FM3104/16/64/256
Pin Configuration
CNT1
1
14
VDD
CNT2
2
13
SCL
A0
3
12
SDA
A1
4
11
X2
5
10
X1
RST
6
9
PFI
VSS
7
8
VBAK
CAL/PFO
Pin Name
CNT1, CNT2
A0, A1
CAL/PFO
/RST
PFI
X1, X2
SDA
SCL
VBAK
VDD
VSS
Function
Event Counter Inputs
Device Select inputs
Clock Calibration and Early
Power-fail Output
Reset Input/Output
Early Power-fail Input
Crystal Connections
Serial Data
Serial Clock
Battery-Backup Supply
Supply Voltage
Ground
Ordering Information
Base Configuration
FM31256
FM3164
FM3116
FM3104
Memory Size
256Kb
64Kb
16Kb
4Kb
Operating Voltage
2.7-5.5V
2.7-5.5V
2.7-5.5V
2.7-5.5V
Reset Threshold
2.6V, 2.9, 3.9, 4.4V
2.6V, 2.9, 3.9, 4.4V
2.6V, 2.9, 3.9, 4.4V
2.6V, 2.9, 3.9, 4.4V
Ordering Part Number
FM31256-S
FM3164-S
FM3116-S
FM3104-S
Other memory configurations may be available. Please contact the factory for more information.
Rev 0.2
May 2003
Page 2 of 22
FM3104/16/64/256
SCL
2-Wire
Interface
SDA
LockOut
A1, A0
FRAM
Array
LockOut
RST
Watchdog
Special
Function
Registers
LV Detect
S/N
RTC Registers
X1
RTC Cal.
PFI
RTC
+
-
CAL/PFO
1.2V
512Hz
-
2.5V
X2
Event
Counters
+
VDD
CNT1
CNT2
Switched Power
VBAK
Nonvolatile
Battery Backed
Figure 1. Block Diagram
Pin Descriptions
Pin Name
A0, A1
Type
Input
CNT1, CNT2
Input
CAL/PFO
Output
X1, X2
I/O
/RST
SDA
I/O
I/O
SCL
Input
PFI
Input
VBAK
Supply
VDD
VSS
Supply
Supply
Rev 0.2
May 2003
Pin Description
Device select inputs are used to address multiple memories on a serial bus. To select
the device the address value on the two pins must match the corresponding bits
contained in the device address. The device select pins are pulled down internally.
Event Counter Inputs: These battery-backed inputs increment counters when an edge is
detected on the corresponding CNT pin. The polarity is programmable.
In calibration mode, this pin supplies a 512 Hz square-wave output for clock
calibration. In normal operation, this is the early power-fail output.
32.768 kHz crystal connection. When using an external oscillator, apply the clock to
X2 and leave X1 floating.
Active low reset output with weak pull-up. Also input for manual reset.
Serial Data & Address: This is a bi-directional line for the two-wire interface. It is
open-drain and is intended to be wire-OR’d with other devices on the two-wire bus.
The input buffer incorporates a Schmitt trigger for noise immunity and the output
driver includes slope control for falling edges. A pull-up resistor is required.
Serial Clock: The serial clock line for the two-wire interface. Data is clocked out of the
part on the falling edge, and in on the rising edge. The SCL input also incorporates a
Schmitt trigger input for noise immunity.
Early Power-fail Input: Typically connected to an unregulated power supply to detect
an early power failure. This pin should not be left floating.
Backup supply voltage: A 3V battery or a large value capacitor. If VDD<3.6V and no
backup supply is used, this pin should be tied to VDD. If VDD>3.6V and no backup
supply is used, this pin should be left floating and the VBC bit should be set.
Supply Voltage.
Ground
Page 3 of 22
FM3104/16/64/256
Overview
The FM31xxx family combines a serial nonvolatile
RAM with a real-time clock (RTC) and a processor
companion. The companion is a highly integrated
peripheral including a processor supervisor, a
comparator used for early power-fail warning,
nonvolatile event counters, and a 64-bit serial
number.
The
FM31xxx
integrates
these
complementary but distinct functions that share a
common interface in a single package. Although
monolithic, the product is organized as two logical
devices,
the
FRAM
memory
and
the
RTC/companion. From the system perspective they
appear to be two separate devices with unique IDs on
the serial bus.
The memory is organized as a stand-alone 2-wire
nonvolatile memory with a standard device ID value.
The real-time clock and supervisor functions are
accessed with a separate 2-wire device ID. This
allows clock/calendar data to be read while
maintaining the most recently used memory address.
The clock and supervisor functions are controlled by
25 special function registers. The RTC and event
counter circuits are maintained by the power source
on the VBAK pin, allowing them to operate from
battery or backup capacitor power when VDD drops
below an internally set threshold. Each functional
block is described below.
Memory Operation
The FM31xxx is a family of products available in
different memory sizes including 4Kb, 16Kb, 64Kb,
and 256Kb. The family is software compatible, all
versions use consistent two-byte addressing for the
memory device. This makes the lowest density
device different from its stand-alone memory
counterparts but makes them compatible within the
entire family.
Memory is organized in bytes, for example the 4Kb
memory is 512 x 8 and the 256Kb memory is 32,768
x 8. The memory is based on FRAM technology.
Therefore it can be treated as RAM and is read or
written at the speed of the two-wire bus with no
delays for write operations. It also offers effectively
unlimited write endurance unlike other nonvolatile
memory technologies. The 2-wire interface protocol
is described further on page 13.
The memory array can be write-protected by
software. Two bits in the processor companion area
(WP0, WP1 in register 0Bh) control the protection
setting as shown in the following table. Based on the
setting, the protected addresses cannot be written and
the 2-wire interface will not acknowledge any data to
protected addresses. The special function registers
containing these bits are described in detail below.
Rev 0.2
May 2003
Write protect addresses
None
Bottom 1/4
Bottom 1/2
Full array
WP1
0
0
1
1
WP0
0
1
0
1
Processor Companion
In addition to nonvolatile RAM, the FM31xxx family
incorporates a highly integrated processor
companion. It includes a low voltage reset, a
programmable watchdog timer, battery-backed event
counters, a comparator for early power-fail detection
or other purposes, and a 64-bit serial number.
Processor Supervisor
Supervisors provide a host processor two basic
functions: detection of power supply fault conditions
and a watchdog timer to escape a software lockup
condition. All FM31xxx devices have a reset pin
(/RST) to drive the processor reset input during
power faults (and power-up) and software lockups. It
is an open drain output with a weak internal pull-up
to VDD. This allows other reset sources to be wireOR’d to the /RST pin. When VDD is above the
programmed trip point, /RST output is pulled weakly
to VDD. If VDD drops below the reset trip point
voltage level (VTP) the /RST pin will be driven low. It
will remain low until VDD falls too low for circuit
operation which is the VRST level. When VDD rises
again above VTP, /RST will continue to drive low for
at least 100 ms (tRPU) to ensure a robust system reset
at a reliable VDD level. After tRPU has been met, the
/RST pin will return to the weak high state. While
/RST is asserted, serial bus activity is locked out even
if a transaction occurred as VDD dropped below VTP.
A memory operation started while VDD is above VTP
will be completed internally.
The bits VTP1 and VTP0 control the trip point of the
low voltage detect circuit. They are located in register
0Bh, bits 1 and 0. The figure below illustrates the
reset operation in response to the VDD voltage.
VTP
2.6V
2.9V
3.9V
4.4V
VTP1
0
0
1
1
VTP0
0
1
0
1
VDD
tRPU
VTP
RST
Figure 2. Low Voltage Reset
Page 4 of 22
FM3104/16/64/256
The watchdog timer can also be used to assert the
reset signal (/RST). The watchdog is a free running
programmable timer. The period can be software
programmed from 100 ms to 3 seconds in 100 ms
increments via a 5-bit nonvolatile register. All
programmed settings are minimum values and vary
with temperature according to the operating
specifications. The watchdog has two additional
controls associated with its operation, a watchdog
enable bit (WDE) and timer restart bits (WR). Both
the enable bit must be set and the watchdog must
timeout in order to drive /RST active. If a reset event
occurs, the timer will automatically restart on the
rising edge of the reset pulse. If not enabled, the
watchdog timer runs but has no effect on /RST. Note
that setting the maximum timeout setting (11111b)
disables the counter to save power. The second
control is a nibble that restarts the timer preventing a
reset. The timer should be restarted after changing the
timeout value.
The watchdog timeout value is located in register
0Ah, bits 4-0, and the watchdog enable is bit 7. The
watchdog is restarted by writing the pattern 1010b to
the lower nibble of register 09h. Writing this pattern
will also cause the timer to load new timeout values.
Writing other patterns to this address will not affect
its operation. Note the watchdog timer is freerunning. Prior to enabling it, users should restart the
timer as described above. This assures that the full
timeout period will be set immediately after enabling.
The watchdog is disabled when VDD is below VTP.
The following table summarizes the watchdog bits. A
block diagram follows.
Watchdog timeout
Watchdog enable
Watchdog restart
100 ms
clock
Timebase
WDT4-0
WDE
WR3-0
0Ah, bits 4-0
0Ah, bit 7
09h, bits 3-0
WR3-0 = 1010b to restart
Counter
Watchdog
timeout
/RST
MCU
RST
FM31xxx
Reset
Switch
Switch
Behavior
RST
FM31xxx
drives
100 ms
Figure 4. Manual Reset
Note that an internal weak pull-up on /RST
eliminates the need for additional external
components.
Reset Flags
In case of a reset condition, a flag will be set to
indicate the source of the reset. A low VDD reset is
indicated by the POR flag, register 09h bit 6. A
watchdog reset is indicated by the WTR flag, register
09h bit 7. A manual reset will result in no flag being
set, so the absence of a flag is a manual reset. Note
that the flags are internally set in response to reset
sources, but they must be cleared by the user. When
the register is read, it is possible that both flags are
set if both have occurred since the user last cleared
them.
Early Power Fail Comparator
An early power fail warning can be provided to the
processor well before VDD drops out of spec. The
comparator is used to create a power fail interrupt
(NMI). This can be accomplished by connecting the
PFI pin to the unregulated power supply via a resistor
divider. An application circuit is shown below. The
voltage on the PFI input pin is compared to an
onboard 1.2V reference. When the PFI input voltage
drops below this threshold, the comparator will drive
the CAL/PFO pin to a low state. The comparator has
300 mV (nominal) of hysteresis to reduce noise
sensitivity.
Regulator
VDD
WDE
Figure 3. Watchdog Timer
Manual Reset
The /RST pin is bi-directional and allows the
FM31xxx to filter and de-bounce a manual reset
switch. The /RST input detects an external low
condition and responds by driving the /RST signal
low for 100 ms.
FM31xxx
PFI
To MCU CAL/PFO
NMI input
+
-
1.2V ref
Figure 5. Comparator as Early Power-Fail Warning
Rev 0.2
May 2003
Page 5 of 22
FM3104/16/64/256
The comparator is a general purpose device and its
application is not limited to the NMI function.
The comparator is not integrated into the special
function registers except as it shares its output pin
with the CAL output. When the RTC calibration
mode is invoked by setting the CAL bit (register 00h,
bit 2), the CAL/PFO output pin will be driven with a
512 Hz square wave and the comparator will be
ignored. Since most users only invoke the calibration
mode during production, this should have no impact
on system operations using the comparator.
Note: The maximum voltage on the comparator input PFI
is limited to 3.75V under normal operating conditions.
Event Counter
The FM31xxx offers the user two battery-backed
event counters. Input pins CNT1 and CNT2 are
programmable edge detectors. Each clocks a 16-bit
counter. When an edge occurs, the counters will
increment their respective registers. Counter 1 is
located in registers 0Dh and 0Eh, Counter 2 is
located in registers 0Fh and 10h. These register
values can be read anytime VDD is above VTP, and
they will be incremented as long as a valid VBAK
power source is provided. To read, set the RC bit
register 0Ch bit 3 to 1. This takes a snapshot of all
four counter bytes allowing a stable value even if a
count occurs during the read. The registers can be
written by software allowing the counters to be
cleared or initialized by the system. Counts are
blocked during a write operation. The two counters
can be cascaded to create a single 32-bit counter by
setting the CC control bit (register 0Ch). When
cascaded, the CNT1 input will cause the counter to
increment. CNT2 is not used in this mode.
The control bits for event counting are located in
register 0Ch. Counter 1 Polarity is bit C1P, bit 0;
Counter 2 Polarity is C2P, bit 1; the Cascade Control
is CC, bit 2; and the Read Counter bit is RC bit 3.
C1P
16-bit Counter
CNT1
C2P
CNT2
16-bit Counter
CC
Figure 6. Event Counter
Serial Number
A memory location to write a 64-bit serial number is
provided. It is a writeable nonvolatile memory block
Rev 0.2
May 2003
that can be locked by the user once the serial number
is set. The 8 bytes of data and the lock bit are all
accessed via the device ID for the processor
companion. Therefore the serial number area is
separate and distinct from the memory array. The
serial number registers can be written an unlimited
number of times, so these locations are general
purpose memory. However once the lock bit is set the
values cannot be altered and the lock cannot be
removed. Once locked the serial number registers can
still be read by the system.
The serial number is located in registers 11h to 18h.
The lock bit is SNL, register 0Bh bit 7. Setting the
SNL bit to a 1 disables writes to the serial number
registers, and the SNL bit cannot be cleared.
Real-Time Clock Operation
The real-time clock (RTC) is a timekeeping device
that can be battery or capacitor backed for
permanently-powered operation. It offers a software
calibration feature that allows high accuracy.
The RTC consists of an oscillator, clock divider, and
a register system for user access. It divides down the
32.768 kHz time-base and provides a minimum
resolution of seconds (1Hz). Static registers provide
the user with read/write access to the time values. It
includes registers for seconds, minutes, hours, dayof-the-week, date, months, and years. A block
diagram (Figure 7) illustrates the RTC function.
The user registers are synchronized with the
timekeeper core using R and W bits in register 00h
described below. Changing the R bit from 0 to 1
transfers timekeeping information from the core into
holding registers that can be read by the user. If a
timekeeper update is pending when R is set, then the
core will be updated prior to loading the user
registers. The registers are frozen and will not be
updated again until the R bit is cleared to 0. R is used
for reading the time.
Setting the W bit to 1 locks the user registers.
Clearing it to 0 causes the values in the user registers
to be loaded into the timekeeper core. W is used for
writing new time values. Users should be certain not
to load invalid values, such as FFh, to the
timekeeping registers. Updates to the timekeeping
core occur continuously except when locked.
Backup Power
The real-time clock/calendar is intended to be
permanently powered. When the primary system
power fails, the voltage on the VDD pin will drop.
When VDD is less 2.5V the RTC (and event
counters) will switch to the backup power supply on
VBAK. The clock operates at extremely low current
in order to maximize battery or capacitor life.
Page 6 of 22
FM3104/16/64/256
However, an advantage of combining a clock
function with FRAM memory is that data is not lost
regardless of the backup power source.
will source approximately 4 µA until VBAK reaches
VDD or 3.75V whichever is less. In 3V systems, this
charges the capacitor to VDD without an external
diode and resistor charger. In 5V systems, it provides
the same convenience and also prevents the user from
exceeding
the
VBAK
maximum
voltage
specification.
When a battery is used as a backup source, VDD must
be applied prior to inserting the battery to prevent
battery drain. Once VDD is applied and a battery is
inserted, the current drain on the battery is
guaranteed to be less than IBAK(max).
! Note: systems using lithium batteries should clear
the VBC bit to 0 to prevent battery charging. The
VBAK circuitry includes an internal 1 KΩ series
resistor as a safety element.
Trickle Charger
To facilitate capacitor backup the VBAK pin can
optionally provide a trickle charge current. When the
VBC bit, register 0Bh bit 2, is set to 1 the VBAK pin
512 Hz
32.768 kHz
crystal
CF
Years
8 bits
Months
5 bits
Clock
Divider
Oscillator
Date
6 bits
Hours
6 bits
1 Hz
Minutes
7 bits
W
Update
Logic
Seconds
7 bits
Days
3 bits
R
User Interface Registers
Figure 7. Real-Time Clock Core Block Diagram
Calibration
When the CAL bit in a register 00h is set to 1, the
clock enters calibration mode. In calibration mode,
the CAL/PFO output pin is dedicated to the
calibration function and the power fail output is
temporarily unavailable. Calibration operates by
applying a digital correction to the counter based on
the frequency error. In this mode, the CAL/PFO pin
is driven with a 512 Hz (nominal) square wave. Any
measured deviation from 512 Hz translates into a
timekeeping error. The user converts the measured
error in ppm and writes the appropriate correction
value to the calibration register. The correction
factors are listed in the table below. Positive ppm
errors require a negative adjustment that removes
pulses. Negative ppm errors require a positive
correction that adds pulses. Positive ppm adjustments
have the CALS (sign) bit set to 1, where as negative
ppm adjustments have CALS = 0. After calibration,
the clock will have a maximum error of ± 2.17 ppm
or ± 0.09 minutes per month at the calibrated
temperature.
The calibration setting is stored in FRAM so is not
lost should the backup source fail. It is accessed with
bits CAL.4-0 in register 01h. This value only can be
written when the CAL bit is set to a 1. To exit the
calibration mode, the user must clear the CAL bit to a
0. When the CAL bit is 0, the CAL/PFO pin will
revert to the power fail output function.
Calibration Adjustments
0
1
2
3
4
5
6
Rev 0.2
May 2003
Positive Calibration for slow clocks: Calibration will achieve +/- 2.17 PPM after calibration
Measured Frequency Range
Error Range (PPM)
Min
Max
Min
Max
Program Calibration Register to:
512.0000
511.9989
0
2.17
000000
511.9989
511.9967
2.18
6.51
100001
511.9967
511.9944
6.52
10.85
100010
511.9944
511.9922
10.86
15.19
100011
511.9922
511.9900
15.20
19.53
100100
511.9900
511.9878
19.54
23.87
100101
511.9878
511.9856
23.88
28.21
100110
Page 7 of 22
FM3104/16/64/256
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
511.9856
511.9833
511.9811
511.9789
511.9767
511.9744
511.9722
511.9700
511.9678
511.9656
511.9633
511.9611
511.9589
511.9567
511.9544
511.9522
511.9500
511.9478
511.9456
511.9433
511.9411
511.9389
511.9367
511.9344
511.9322
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
Negative Calibration for fast clocks: Calibration will achieve +/- 2.17 PPM after calibration
Measured Frequency Range
Error Range (PPM)
Min
Max
Min
Max
Program Calibration Register to:
512.0000
512.0011
0
2.17
000000
512.0011
512.0033
2.18
6.51
000001
512.0033
512.0056
6.52
10.85
000010
512.0056
512.0078
10.86
15.19
000011
512.0078
512.0100
15.20
19.53
000100
512.0100
512.0122
19.54
23.87
000101
512.0122
512.0144
23.88
28.21
000110
512.0144
512.0167
28.22
32.55
000111
512.0167
512.0189
32.56
36.89
001000
512.0189
512.0211
36.90
41.23
001001
512.0211
512.0233
41.24
45.57
001010
512.0233
512.0256
45.58
49.91
001011
512.0256
512.0278
49.92
54.25
001100
512.0278
512.0300
54.26
58.59
001101
512.0300
512.0322
58.60
62.93
001110
512.0322
512.0344
62.94
67.27
001111
512.0344
512.0367
67.28
71.61
010000
512.0367
512.0389
71.62
75.95
010001
512.0389
512.0411
75.96
80.29
010010
512.0411
512.0433
80.30
84.63
010011
512.0433
512.0456
84.64
88.97
010100
512.0456
512.0478
88.98
93.31
010101
512.0478
512.0500
93.32
97.65
010110
512.0500
512.0522
97.66
101.99
010111
512.0522
512.0544
102.00
106.33
011000
512.0544
512.0567
106.34
110.67
011001
512.0567
512.0589
110.68
115.01
011010
512.0589
512.0611
115.02
119.35
011011
512.0611
512.0633
119.36
123.69
011100
512.0633
512.0656
123.70
128.03
011101
512.0656
512.0678
128.04
132.37
011110
512.0678
512.0700
132.38
136.71
011111
Rev 0.2
May 2003
511.9833
511.9811
511.9789
511.9767
511.9744
511.9722
511.9700
511.9678
511.9656
511.9633
511.9611
511.9589
511.9567
511.9544
511.9522
511.9500
511.9478
511.9456
511.9433
511.9411
511.9389
511.9367
511.9344
511.9322
511.9300
28.22
32.56
36.90
41.24
45.58
49.92
54.26
58.60
62.94
67.28
71.62
75.96
80.30
84.64
88.98
93.32
97.66
102.00
106.34
110.68
115.02
119.36
123.70
128.04
132.38
32.55
36.89
41.23
45.57
49.91
54.25
58.59
62.93
67.27
71.61
75.95
80.29
84.63
88.97
93.31
97.65
101.99
106.33
110.67
115.01
119.35
123.69
128.03
132.37
136.71
100111
101000
101001
101010
101011
101100
101101
101110
101111
110000
110001
110010
110011
110100
110101
110110
110111
111000
111001
111010
111011
111100
111101
111110
111111
Page 8 of 22
FM3104/16/64/256
Register Map
The RTC and processor companion functions are accessed via 25 special function registers mapped to a separate 2wire device ID. The interface protocol is described below. The registers contain timekeeping data, control bits, or
information flags. A description of each register follows the summary table below.
Register Map Summary Table
Nonvolatile =
Battery-backed =
Address
18h
17h
16h
15h
14h
13h
12h
11h
10h
0Fh
0Eh
0Dh
0Ch
0Bh
0Ah
09h
08h
07h
06h
05h
04h
03h
02h
01h
00h
Rev 0.2
May 2003
D7
SNL
WDE
WTR
0
0
0
0
0
0
/OSCEN
reserved
Data
D5
D4
D3
Serial Number Byte 7
Serial Number Byte 6
Serial Number Byte 5
Serial Number Byte 4
Serial Number Byte 3
Serial Number Byte 2
Serial Number Byte 1
Serial Number Byte 0
Counter 2 MSB
Counter 2 LSB
Counter 1 MSB
Counter 1 LSB
RC
WP1
WP0
WDT4
WDT3
POR
LB
WR3
10 years
0
0
10 mo
0
10 date
0
0
0
0
0
10 hours
10 minutes
10 seconds
reserved
CALS
CAL4
CAL3
CF
reserved reserved reserved
D6
D2
D1
CC
C2P
VBC
VTP1
WDT2
WDT1
WR2
WR1
years
months
date
day
hours
minutes
seconds
CAL2
CAL1
CAL
W
D0
C1P
VTP0
WDT0
WR0
CAL0
R
Function
Serial Number 7
Serial Number 6
Serial Number 5
Serial Number 4
Serial Number 3
Serial Number 2
Serial Number 1
Serial Number 0
Event Counter 2 MSB
Event Counter 2 LSB
Event Counter 1 MSB
Event Counter 1 LSB
Event Count Control
Companion Control
Watchdog Control
Watchdog Restart/Flags
Years
Month
Date
Day
Hours
Minutes
Seconds
CAL/Control
RTC Control
Range
FFh
FFh
FFh
FFh
FFh
FFh
FFh
FFh
FFh
FFh
FFh
FFh
00-99
1-12
1-31
1-7
0-23
0-59
0-59
Page 9 of 22
FM3104/16/64/256
Register Description
Address Description
18h
Serial Number Byte 7
D7
D6
D5
D4
D3
D2
D1
D0
SN.63
SN.62
SN.61
SN.60
SN.59
SN.58
SN.57
SN.56
Upper byte of the serial number. Read/write when SNL=0, read-only when SNL=1. Nonvolatile.
17h
Serial Number Byte 6
D7
D6
D5
D4
D3
D2
D1
D0
SN.55
SN.54
SN.53
SN.52
SN.51
SN.50
SN.49
SN.48
Byte 6 of the serial number. Read/write when SNL=0, read-only when SNL=1. Nonvolatile.
16h
Serial Number Byte 5
D7
D6
D5
D4
D3
D2
D1
D0
SN.47
SN.46
SN.45
SN.44
SN.43
SN.42
SN.41
SN.40
Byte 5 of the serial number. Read/write when SNL=0, read-only when SNL=1. Nonvolatile.
15h
Serial Number Byte 4
D7
D6
D5
D4
D3
D2
D1
D0
SN.39
SN.38
SN.37
SN.36
SN.35
SN.34
SN.33
SN.32
Byte 4 of the serial number. Read/write when SNL=0, read-only when SNL=1. Nonvolatile.
14h
Serial Number Byte 3
D7
D6
D5
D4
D3
D2
D1
D0
SN.31
SN.30
SN.29
SN.28
SN.27
SN.26
SN.25
SN.24
Byte 3 of the serial number. Read/write when SNL=0, read-only when SNL=1. Nonvolatile.
13h
Serial Number Byte 2
D7
D6
D5
D4
D3
D2
D1
D0
SN.23
SN.22
SN.21
SN.20
SN.19
SN.18
SN.17
SN.16
Byte 2 of the serial number. Read/write when SNL=0, read-only when SNL=1. Nonvolatile.
12h
Serial Number Byte 1
D7
D6
D5
D4
D3
D2
D1
D0
SN.15
SN.14
SN.13
SN.12
SN.11
SN.10
SN.9
SN.8
Byte 1 of the serial number. Read/write when SNL=0, read-only when SNL=1. Nonvolatile.
11h
Serial Number Byte 0
D7
D6
D5
D4
D3
D2
D1
D0
SN.7
SN.6
SN.5
SN.4
SN.3
SN.2
SN.1
SN.0
LSB of the serial number. Read/write when SNL=0, read-only when SNL=1. Nonvolatile.
10h
Counter 2 MSB
D7
D6
D5
D4
D3
D2
D1
D0
C2.15
C2.14
C2.13
C2.12
C2.11
C2.10
C2.9
C2.8
Event Counter 2 MSB. Increments on overflows from Counter 2 LSB. Battery-backed, read/write.
0Fh
Counter 2 LSB
D7
D6
D5
D4
D3
D2
D1
D0
C2.7
C2.6
C2.5
C2.4
C2.3
C2.2
C2.1
C2.0
Event Counter 2 LSB. Increments on programmed edge event on CNT2 input or overflows from Counter 1 MSB
when CC=1. Battery-backed, read/write .
0Eh
Counter 1 MSB
D7
D6
D5
D4
D3
D2
D1
D0
C1.15
C1.14
C1.13
C1.12
C1.11
C1.10
C1.9
C1.8
Event Counter 1 MSB. Increments on overflows from Counter 1 LSB. Battery-backed, read/write.
0Dh
Counter 1 LSB
D7
D6
D5
D4
D3
D2
D1
D0
C1.7
C1.6
C1.5
C1.4
C1.3
C1.2
C1.1
C1.0
Event Counter 1 LSB. Increments on programmed edge event on CNT1 input. Battery-backed, read/write.
Rev 0.2
May 2003
Page 10 of 22
FM3104/16/64/256
0Ch
RC
Event Counter Control
D7
D6
D5
D4
D3
D2
D1
D0
-
-
-
-
RC
CC
C2P
C1P
C1P
Read Counter. Setting this bit to 1 takes a snapshot of the four counters bytes allowing the system to read the
values without missing count events. The RC bit will be automatically cleared.
Counter Cascade. When CC=0, the event counters operate independently according to the edge programmed by
C1P and C2P respectively. When CC=1, the counters are cascaded to create one 32-bit counter. The registers of
Counter 2 represent the most significant 16-bits of the counter and CNT1 is the controlling input. Bit C2P has no
effect when CC=1. Battery-backed, read/write.
CNT2 detects falling edges when C2P = 0, rising edges when C2P = 1. C2P has no effect when CC=1. Batterybacked, read/write.
CNT1 detects falling edges when C1P = 0, rising edges when C1P = 1. Battery-backed, read/write.
0Bh
Companion Control
CC
C2P
SNL
WP1-0
D7
D6
D5
D4
D3
D2
D1
D0
SNL
-
-
WP1
WP0
VBC
VTP1
VTP0
Serial Number Lock. Setting to a 1 makes registers 11h to 18h and SNL permanently read-only. SNL cannot be
cleared once set to 1. Nonvolatile, read/write.
Write Protect. These bits control the write protection of the memory array. Nonvolatile, read/write.
Write protect addresses
None
Bottom 1/4
Bottom 1/2
Full array
VBC
VTP1-0
WDE
WDT4-0
VTP1
0
0
1
1
VTP0
0
1
0
1
Watchdog Control
D7
D6
D5
D4
D3
D2
D1
D0
WDE
-
-
WDT4
WDT3
WDT2
WDT1
WDT0
Watchdog Enable. When WDE=1 the watchdog timer can cause the /RST signal to go active. When WDE = 0 the
timer runs but has no effect on /RST. Note as the timer is free-running, users should restart the timer using WR3-0
prior to setting WDE=1. This assures a full watchdog timeout interval occurs. Nonvolatile, read/write.
Watchdog Timeout. Indicates the minimum watchdog timeout interval with 100 ms resolution. New watchdog
timeouts are loaded when the timer is restarted by writing the 1010b pattern to WR3-0. Nonvolatile, read/write.
Watchdog timeout
Invalid – default 100 ms
100 ms
200 ms
300 ms
.
.
.
2000 ms
2100 ms
2200 ms
.
.
.
2900 ms
3000 ms
Disable counter
Rev 0.2
May 2003
WP0
0
1
0
1
VBAK Charger Control. Setting VBC to 1 causes a 4 µA trickle charge current to be supplied on VBAK. Clearing
VBC to 0 disables the charge current. Nonvolatile, read/write.
VTP select. These bits control the reset trip point for the low VDD reset function. Nonvolatile, read/write.
VTP
2.6V
2.9V
3.9V
4.4V
0Ah
WP1
0
0
1
1
WDT4 WDT3 WDT2 WDT1 WDT0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
0
1
1
1
1
1
0
0
0
1
1
1
0
0
1
0
1
0
1
1
1
1
1
1
1
1
1
0
1
1
1
0
1
Page 11 of 22
FM3104/16/64/256
09h
WTR
POR
LB
WR3-0
08h
Watchdog Restart & Flags
D7
D6
D5
D4
D3
D2
D1
D0
WTR
POR
LB
-
WR3
WR2
WR1
WR0
Watchdog Timer Reset Flag: When the /RST signal is activated by the watchdog the WTR bit will be set to 1. It
must be cleared by the user. Note that both WTR and POR could be set if both reset sources have occurred since
the flags were cleared by the user. Battery-backed. Read/Write (internally set, user can only clear this bit).
Power-on Reset Flag: When the /RST signal is activated by VDD < VTP, the POR bit will be set to 1. It must be
cleared by the user. Note that both WTR and POR could be set if both reset sources have occurred since the flags
were cleared by the user. Battery-backed. Read/Write (internally set, user can only clear this bit).
Low Backup Flag: On power up, if the VBAK source is below the minimum voltage to operate the RTC and event
counters, this bit will be set to 1. The user should clear it to 0 when initializing the system. Battery-backed.
Read/Write (internally set, user can only clear this bit).
Watchdog Restart: Writing a pattern 1010b to WR3-0 restarts the watchdog timer. The upper nibble contents do
not affect this operation. Writing any pattern other than 1010b to WR3-0 has no effect on the timer. This allows
users to set or clear the WTR and POR flags without affecting the watchdog timer. Write-only.
Timekeeping – Years
D7
D6
D5
D4
D3
D2
D1
D0
10 year.3
10 year.2
10 year.1
10 year.0
Year.3
Year.2
Year.1
Year.0
Contains the lower two BCD digits of the year. Lower nibble contains the value for years; upper nibble contains
the value for 10s of years. Each nibble operates from 0 to 9. The range for the register is 0-99. Battery-backed,
read/write.
07h
Timekeeping – Months
D7
D6
D5
D4
D3
D2
D1
D0
0
0
0
10 Month
Month.3
Month.2
Month.1
Month.0
Contains the BCD digits for the month. Lower nibble contains the lower digit and operates from 0 to 9; upper
nibble (one bit) contains the upper digit and operates from 0 to 1. The range for the register is 1-12. Batterybacked, read/write.
06h
Timekeeping – Date of the month
D7
D6
D5
D4
D3
D2
D1
D0
0
0
10 date.1
10 date.0
Date.3
Date.2
Date.1
Date.0
Contains the BCD digits for the date of the month. Lower nibble contains the lower digit and operates from 0 to 9;
upper nibble contains the upper digit and operates from 0 to 3. The range for the register is 1-31. Battery-backed,
read/write.
05h
Timekeeping – Day of the week
D7
D6
D5
D4
D3
D2
D1
D0
0
0
0
0
0
Day.2
Day.1
Day.0
Lower nibble contains a value that correlates to day of the week. Day of the week is a ring counter that counts
from 1 to 7 then returns to 1. The user must assign meaning to the day value, as the day is not integrated with the
date. Battery-backed, read/write.
04h
Timekeeping – Hours
D7
D6
D5
D4
D3
D2
D1
D0
0
0
10 hours.1
10 hours.0
Hours.3
Hours2
Hours.1
Hours.0
Contains the BCD value of hours in 24-hour format. Lower nibble contains the lower digit and operates from 0 to
9; upper nibble (two bits) contains the upper digit and operates from 0 to 2. The range for the register is 0-23.
Battery-backed, read/write.
03h
Timekeeping – Minutes
D7
D6
D5
D4
D3
D2
D1
D0
0
10 min.2
10 min.1
10 min.0
Min.3
Min.2
Min.1
Min.0
Contains the BCD value of minutes. Lower nibble contains the lower digit and operates from 0 to 9; upper nibble
contains the upper minutes digit and operates from 0 to 5. The range for the register is 0-59. Battery-backed,
read/write.
02h
Timekeeping – Seconds
D7
D6
D5
D4
D3
D2
D1
D0
0
10 sec.2
10 sec.1
10 sec.0
Seconds.3
Seconds.2
Seconds.1
Seconds.0
Contains the BCD value of seconds. Lower nibble contains the lower digit and operates from 0 to 9; upper nibble
contains the upper digit and operates from 0 to 5. The range for the register is 0-59. Battery-backed, read/write.
Rev 0.2
May 2003
Page 12 of 22
FM3104/16/64/256
01h
/OSCEN
CAL/Control
D7
D6
D5
D4
D3
D2
D1
D0
OSCEN
Reserved
CALS
CAL.4
CAL.3
CAL.2
CAL.1
CAL.0
CAL.4-0
/Oscillator Enable. When set to 1, the oscillator is halted. When set to 0, the oscillator runs. Disabling the
oscillator can save battery power during storage. On a power-up without battery, this bit is set to 1. Batterybacked, read/write.
Reserved bits. Do not use. Should remain set to 0.
Calibration sign. Determines if the calibration adjustment is applied as an addition to or as a subtraction from
the time-base. Calibration is explained on page 7. Nonvolatile, read/write.
These five bits control the calibration of the clock. Nonvolatile, read/write.
00h
Flags/Control
Reserved
CALS
CF
CAL
W
R
Reserved
D7
D6
D5
D4
D3
D2
D1
D0
Reserved
CF
Reserved
Reserved
Reserved
CAL
W
R
Century Overflow Flag. This bit is set to a 1 when the values in the years register overflows from 99 to 00. This
indicates a new century, such as going from 1999 to 2000 or 2099 to 2100. The user should record the new
century information as needed. This bit is cleared to 0 when the Flag register is read. It is read-only for the user.
Battery-backed, read/write.
Calibration Mode. When set to 1, the clock enters calibration mode. When CAL is set to 0, the clock operates
normally, and the CAL/PFO pin is controlled by the power fail comparator. Read/write.
Write Time. Setting the W bit to 1 freezes updates of the user timekeeping registers. The user can then write
them with updated values. Setting the W bit to 0 causes the contents of the time registers to be transferred to the
timekeeping counters. Read/write.
Read Time. Setting the R bit to 1 copies a static image of the timekeeping core and place it into the user
registers. The user can then read them without concerns over changing values causing system errors. The R bit
going from 0 to 1 causes the timekeeping capture, so the bit must be returned to 0 prior to reading again.
Read/write.
Reserved bits. Do not use. Should remain set to 0.
By convention, any device that is sending data onto
the bus is the transmitter while the target device for
this data is the receiver. The device that is
controlling the bus is the master. The master is
responsible for generating the clock signal for all
operations. Any device on the bus that is being
controlled is a slave. The FM31xxx is always a slave
device.
Two-wire Interface
The FM31xxx employs an industry standard twowire bus that is familiar to many users. This product
is unique since it incorporates two logical devices in
one chip. Each logical device can be accessed
individually. Although monolithic, it appears to the
system software to be two separate products. One is
a memory device. It has a Slave Address (Slave ID =
1010b) that operates the same as a stand-alone
memory device. The second device is a real-time
clock and processor companion which have a unique
Slave Address (Slave ID = 1101b).
The bus protocol is controlled by transition states in
the SDA and SCL signals. There are four conditions:
Start, Stop, Data bit, and Acknowledge. The figure
below illustrates the signal conditions that specify
the four states. Detailed timing diagrams are shown
in the Electrical Specifications section.
SCL
7
SDA
Stop
(Master)
Rev 0.2
May 2003
6
0
Start
Data bits
Data bit Acknowledge
(Master)
(Transmitter)
(Transmitter) (Receiver)
Figure 8. Data Transfer Protocol
Page 13 of 22
FM3104/16/64/256
Start Condition
A Start condition is indicated when the bus master
drives SDA from high to low while the SCL signal is
high. All read and write transactions begin with a
Start condition. An operation in progress can be
aborted by asserting a Start condition at any time.
Aborting an operation using the Start condition will
ready the FM31xxx for a new operation.
If the power supply drops below the specified VTP
during operation, any 2-wire transaction in progress
will be aborted and the system must issue a Start
condition prior to performing another operation.
Stop Condition
A Stop condition is indicated when the bus master
drives SDA from low to high while the SCL signal is
high. All operations must end with a Stop condition.
If an operation is pending when a stop is asserted,
the operation will be aborted. The master must have
control of SDA (not a memory read) in order to
assert a Stop condition.
Data/Address Transfer
All data transfers (including addresses) take place
while the SCL signal is high. Except under the two
conditions described above, the SDA signal should
not change while SCL is high.
Acknowledge
The Acknowledge (ACK) takes place after the 8th
data bit has been transferred in any transaction.
During this state the transmitter must release the
SDA bus to allow the receiver to drive it. The
receiver drives the SDA signal low to acknowledge
receipt of the byte. If the receiver does not drive
SDA low, the condition is a No-Acknowledge
(NACK) and the operation is aborted.
The receiver might NACK for two distinct reasons.
First is that a byte transfer fails. In this case, the
NACK ends the current operation so that the part can
be addressed again. This allows the last byte to be
recovered in the event of a communication error.
Second and most common, the receiver does not
send an ACK to deliberately terminate an operation.
For example, during a read operation, the FM31xxx
will continue to place data onto the bus as long as the
receiver sends ACKs (and clocks). When a read
operation is complete and no more data is needed,
the receiver must NACK the last byte. If the receiver
ACKs the last byte, this will cause the FM31xxx to
attempt to drive the bus on the next clock while the
master is sending a new command such as a Stop.
Rev 0.2
May 2003
Slave Address
The first byte that the FM31xxx expects after a Start
condition is the slave address. As shown in figures
below, the slave address contains the Slave ID,
Device Select address, and a bit that specifies if the
transaction is a read or a write.
The FM31xxx has two Slave Addresses (Slave IDs)
associated with two logical devices. To access the
memory device, bits 7-4 should be set to 1010b. The
other logical device within the FM31xxx is the realtime clock and companion. To access this device,
bits 7-4 of the slave address should be set to 1101b.
A bus transaction with this slave address will not
affect the memory in any way. The figures below
illustrate the two Slave Addresses.
The Device Select bits allow multiple devices of the
same type to reside on the 2-wire bus. The device
select bits (bits 2-1) select one of four parts on a twowire bus. They must match the corresponding value
on the external address pins in order to select the
device. Bit 0 is the read/write bit. A “1” indicates a
read operation, and a “0” indicates a write operation.
Device
Select
Slave ID
1
7
0
1
0
X
A1
A0
R/W
6
5
4
3
2
1
0
Figure 9. Slave Address - Memory
Device
Select
Slave ID
1
7
1
0
1
X
A1
A0
R/W
6
5
4
3
2
1
0
Figure 10. Slave Address – Companion
Addressing Overview – Memory
After the FM31xxx acknowledges the Slave
Address, the master can place the memory address
on the bus for a write operation. The address requires
two bytes. This is true for all members of the family.
Therefore the 4Kb and 16Kb configurations will be
addressed differently from stand alone serial
memories but the entire family will be upwardly
compatible with no software changes.
The first is the MSB (upper byte). For a given
density unused address bits are don’t cares, but
should be set to 0 to maintain upward compatibility.
Page 14 of 22
FM3104/16/64/256
Following the MSB is the LSB (lower byte) which
contains the remaining eight address bits. The
address is latched internally. Each access causes the
latched address to be incremented automatically. The
current address is the value that is held in the latch,
either a newly written value or the address following
the last access. The current address will be held as
long as VDD > VTP or until a new value is written.
Accesses to the clock do not affect the current
memory address. Reads always use the current
address. A random read address can be loaded by
beginning a write operation as explained below.
Data Transfer
After the address information has been transmitted,
data transfer between the bus master and the
FM31xxx begins. For a read, the FM31xxx will
place 8 data bits on the bus then wait for an ACK
from the master. If the ACK occurs, the FM31xxx
will transfer the next byte. If the ACK is not sent, the
FM31xxx will end the read operation. For a write
operation, the FM31xxx will accept 8 data bits from
the master then send an Acknowledge. All data
transfer occurs MSB (most significant bit) first.
Memory Write Operation
All memory writes begin with a Slave Address, then
a memory address. The bus master indicates a write
operation by setting the slave address LSB to a 0.
After addressing, the bus master sends each byte of
data to the memory and the memory generates an
Acknowledge condition. Any number of sequential
bytes may be written. If the end of the address range
is reached internally, the address counter will wrap
to 0000h. Internally, the actual memory write occurs
after the 8th data bit is transferred. It will be complete
before the Acknowledge is sent. Therefore, if the
user desires to abort a write without altering the
memory contents, this should be done using a Start
or Stop condition prior to the 8th data bit. The figures
below illustrate a single- and multiple-writes to
memory.
After transmission of each data byte, just prior to the
Acknowledge, the FM31xxx increments the internal
address. This allows the next sequential byte to be
accessed with no additional addressing externally.
After the last address is reached, the address latch
will roll over to 0000h. There is no limit to the
number of bytes that can be accessed with a single
read or write operation.
Addressing Overview – RTC & Companion
The RTC and Processor Companion operate in a
similar manner to the memory, except that it uses
only one byte of address. Addresses 00h to 18h
correspond to special function registers. Attempting
to load addresses above 18h is an illegal condition;
the FM31xxx will return a NACK and abort the 2wire transaction.
Start
By Master
S
Stop
Address & Data
Slave Address
0 A
Address MSB
A
Address LSB
A
Data Byte
A
P
By FM31xxx
Acknowledge
Figure 11. Single Byte Memory Write
Start
Stop
Address & Data
By Master
S
Slave Address
0 A
Address MSB
A
Address LSB
A
Data Byte
A
Data Byte
A
P
By FM31xxx
Acknowledge
Figure 12. Multiple Byte Memory Write
Rev 0.2
May 2003
Page 15 of 22
FM3104/16/64/256
Memory Read Operation
There are two types of memory read operations. They
are current address read and selective address read. In
a current address read, the FM31xxx uses the internal
address latch to supply the address. In a selective
read, the user performs a procedure to first set the
address to a specific value.
Current Address & Sequential Read
As mentioned above the FM31xxx uses an internal
latch to supply the address for a read operation. A
current address read uses the existing value in the
address latch as a starting place for the read
operation. The system reads from the address
immediately following that of the last operation.
To perform a current address read, the bus master
supplies a slave address with the LSB set to 1. This
indicates that a read operation is requested. After
receiving the complete device address, the FM31xxx
will begin shifting data out from the current address
on the next clock. The current address is the value
held in the internal address latch.
Beginning with the current address, the bus master
can read any number of bytes. Thus, a sequential read
is simply a current address read with multiple byte
transfers. After each byte the internal address counter
will be incremented.
Each time the bus master acknowledges a byte,
this indicates that the FM31xxx should read out
the next sequential byte.
There are four ways to terminate a read operation.
Failing to properly terminate the read will most likely
create a bus contention as the FM31xxx attempts to
read out additional data onto the bus. The four valid
methods follow.
1.
2.
3.
4.
The bus master issues a NACK in the 9th clock
cycle and a Stop in the 10th clock cycle. This is
illustrated in the diagrams below and is
preferred.
The bus master issues a NACK in the 9th clock
cycle and a Start in the 10th.
The bus master issues a Stop in the 9th clock
cycle.
The bus master issues a Start in the 9th clock
cycle.
If the internal address reaches the top of memory, it
will wrap around to 0000h on the next read cycle.
Rev 0.2
May 2003
The figures below show the proper operation for
current address reads.
Selective (Random) Read
There is a simple technique that allows a user to
select a random address location as the starting point
for a read operation. This involves using the first
three bytes of a write operation to set the internal
address followed by subsequent read operations.
To perform a selective read, the bus master sends out
the slave address with the LSB set to 0. This specifies
a write operation. According to the write protocol,
the bus master then sends the address bytes that are
loaded into the internal address latch. After the
FM31xxx acknowledges the address, the bus master
issues a Start condition. This simultaneously aborts
the write operation and allows the read command to
be issued with the slave address LSB set to a 1. The
operation is now a read from the current address.
Read operations are illustrated below.
RTC/Companion Write Operation
All RTC and Companion writes operate in a similar
manner to memory writes. The distinction is that a
different device ID is used and only one byte address
is needed instead of two. Figure 16 illustrates a single
byte write to this device.
RTC/Companion Read Operation
As with writes, a read operation begins with the
Slave Address. To perform a register read, the bus
master supplies a Slave Address with the LSB set to
1. This indicates that a read operation is requested.
After receiving the complete Slave Address, the
FM31xxx will begin shifting data out from the
current register address on the next clock. Autoincrement operates for the special function registers
as with the memory address. A current address read
for the registers look exactly like the memory except
that the device ID is different.
The FM31xxx contains two separate address
registers, one for the memory address and the other
for the register address. This allows the contents of
one address register to be modified without affecting
the current address of the other register. For example,
this would allow an interrupted read to the memory
while still providing fast access to an RTC register. A
subsequent memory read will then continue from the
memory address where it previously left off, without
requiring the load of a new memory address.
However, a write sequence always requires an
address to be supplied.
Page 16 of 22
FM3104/16/64/256
By Master
Start
No
Acknowledge
Address
Stop
S
Slave Address
By FM31xxx
1 A
Data Byte
Acknowledge
1
P
Data
Figure 13. Current Address Memory Read
By Master
Start
No
Acknowledge
Acknowledge
Address
Stop
S
Slave Address
By FM31xxx
1 A
Data Byte
A
Acknowledge
Data Byte
1 P
Data
Figure 14. Sequential Memory Read
Start
Address
By Master
Start
No
Acknowledge
Address
Stop
S
Slave Address
0 A
Address MSB
A
Address LSB
A
S
Slave Address
By FM31xxx
1 A
Data Byte
1 P
Data
Acknowledge
Figure 15. Selective (Random) Memory Read
By Master
S
By FM31xxx
Address & Data
Start
Slave Address
0 A 0 0 0
Address
Stop
A
Data Byte
A
P
Acknowledge
Figure 16. Byte Register Write
* Although not required, it is recommended that A5-A7 in the Register Address byte are
zeros in order to preserve compatibility with future devices.
Rev 0.2
May 2003
Page 17 of 22
FM3104/16/64/256
Electrical Specifications
Absolute Maximum Ratings
Symbol
Description
VDD
Power Supply Voltage with respect to VSS
VIN
Voltage on any signal pin with respect to VSS
VBAK
TSTG
TLEAD
Backup Supply Voltage
Storage Temperature
Lead Temperature (Soldering, 10 seconds)
Ratings
-1.0V to +7.0V
-1.0V to +7.0V and
VIN ≤ VDD+1.0V except SCL, SDA
-1.0V to +4.5V
-55°C to + 125°C
300° C
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating
only, and the functional operation of the device at these or any other conditions above those listed in the operational section of this
specification is not implied. Exposure to absolute maximum ratings conditions for extended periods may affect device reliability.
DC Operating Conditions (TA = -40° C to + 85° C, VDD = 2.7V to 5.5V unless otherwise specified)
Symbol
Parameter
Min
Typ
Max
VDD
Main Power Supply
2.7
5.5
IDD
VDD Supply Current
500
@ SCL = 100 kHz
900
@ SCL = 400 kHz
1500
@ SCL = 1 MHz
ISB
Standby Current
150
VBAK
RTC Backup Supply Voltage
2.0
3.0
3.75
IBAK
RTC Backup Supply Current
1
IBAKTC
Trickle Charge Current
4.0
8.0
VTPT
Tolerance on VDD trip point voltage
-50
+50
VRST
VDD for valid /RST @ IOL = 80 µA at VOL
0
VBAK > VBAK min
1.6
VBAK < VBAK min
ILI
Input Leakage Current
1
ILO
Output Leakage Current
1
VIL
Input Low Voltage
0.3 VDD
-0.3
All inputs except as listed
-0.3
CNT1-2 battery backed (VDD < 2.5V)
0.5
-0.3
CNT1-2 (VDD > 2.5V)
0.8
VIH
Input High Voltage
VDD + 0.5
0.7 VDD
All inputs except as listed
PFI (power fail input)
VBAK
CNT1-2 battery backed (VDD < 2.5V)
VBAK – 0.5
VBAK + 0.5
CNT1-2 VDD > 2.5V
TBD
VDD + 0.5
VOL
Output Low Voltage (IOL = 3 mA)
0.4
VOH
Output High Voltage (IOH = -2 mA)
2.4
RRST
Pull-up resistance for /RST inactive
50
400
RIN
Input Resistance
20
A1-A0 for VIN = VIL max
1
A1-A0 for VIN = VIH min
PFI input
1
VHYS
Power Fail Input (PFI) Hysteresis
100
400
Notes
1. SCL toggling between VDD-0.3V and VSS, other inputs VSS or VDD-0.3V
2. All inputs at VSS or VDD, static. Stop command issued.
3. VIN or VOUT = VSS to VDD. Does not apply to A0, A1, PFI, or /RST pins.
4. This parameter is characterized but not tested.
5. VBAK = 3.0V, VDD < 2.4V, oscillator running, CNT1-2 at VBAK.
6. /RST is asserted active when VDD < VTP.
Rev 0.2
May 2003
Units
V
µA
µA
µA
µA
V
µA
µA
mV
V
V
µA
µA
V
V
V
Notes
8
1
2
10
5
11
6
7
3
3
9
V
V
V
V
V
V
KΩ
KΩ
MΩ
MΩ
mV
4
Page 18 of 22
FM3104/16/64/256
7.
8.
9.
10.
11.
The minimum VDD to guarantee the level of /RST remains a valid VOL level.
Full complete operation. Supervisory circuits, RTC, etc operate to lower voltages as specified.
Includes /RST input detection of external reset condition to trigger driving of /RST signal by FM31xxx.
The VBAK trickle charger automatically regulates the maximum voltage on this pin for capacitor backup applications.
VBAK will source current when trickle charge is enabled (VBC bit=1), VDD > VBAK, and VBAK < VBAK max.
AC Parameters (TA = -40° C to + 85° C, VDD = 2.7V to 5.5V, CL = 100 pF unless otherwise specified)
Symbol Parameter
Min Max Min Max Min Max
fSCL
SCL Clock Frequency
0
100
0
400
0
1000
tLOW
Clock Low Period
4.7
1.3
0.6
tHIGH
Clock High Period
4.0
0.6
0.4
tAA
SCL Low to SDA Data Out Valid
3
0.9
0.55
tBUF
tHD:STA
tSU:STA
Bus Free Before New Transmission
4.7
1.3
0.5
Start Condition Hold Time
4.0
0.6
0.25
Start Condition Setup for Repeated
4.7
0.6
0.25
Start
tHD:DAT
Data In Hold Time
0
0
0
tSU:DAT
Data In Setup Time
250
100
100
tR
Input Rise Time
1000
300
300
tF
Input Fall Time
300
300
100
tSU:STO
Stop Condition Setup Time
4.0
0.6
0.25
tDH
Data Output Hold (from SCL @ VIL)
0
0
0
tSP
Noise Suppression Time Constant
50
50
50
on SCL, SDA
All SCL specifications as well as start and stop conditions apply to both read and write operations.
Supervisor Timing (TA = -40° C to + 85° C, VDD = 2.7V to 5.5V)
Symbol
Parameter
tRPU
Reset active after VDD>VTP
tRNR
VDD < VTP noise immunity
tVF
Fall time of VDD from VTP to 0V
tVR
Rise time of VDD from 0V to VTP
tWDP
Pulse Width of /RST for Watchdog Reset
tWDOG
Timeout of Watchdog
fCNT
Frequency of Event Counters
Data Retention (TA = -40° C to + 85° C, VDD = 2.7V to 5.5V)
Parameter
Min
Data Retention
10
Capacitance (TA = 25° C, f=1.0 MHz, VDD = 3.0V)
Symbol
Parameter
CIO
Input/output capacitance
CXTAL
X1, X2 Crystal pin capacitance
Notes
1
2
3
4
Max
8
12
Min
100
10
100
100
100
tDOG
0
Units
Years
Max
200
25
200
2*tDOG
10
Units
kHz
µs
µs
µs
Notes
µs
µs
µs
ns
ns
ns
ns
µs
ns
ns
Units
ms
µs
µs
µs
ms
ms
MHz
1
1
Notes
1
1,2
1,2
3
Notes
Units
pF
pF
Notes
1
1, 4
This parameter is characterized but not tested.
Slew rate for proper transition between the battery-backed and normal operation.
tDOG is the programmed time in register 0Ah, VDD > VTP and tRPU satisfied.
The crystal attached to the X1/X2 pins must be rated as 6pF.
Rev 0.2
May 2003
Page 19 of 22
FM3104/16/64/256
AC Test Conditions
Equivalent AC Load Circuit
5.5V
0.1 VDD to 0.9 VDD
10 ns
0.5 VDD
Input Pulse Levels
Input rise and fall times
Input and output timing levels
1700 Ω
Diagram Notes
All start and stop timing parameters apply to both read and write
cycles. Clock specifications are identical for read and write cycles.
Write timing parameters apply to slave address, word address, and
write data bits. Functional relationships are illustrated in the relevant
data sheet sections. These diagrams illustrate the timing parameters
only.
Output
100 pF
Read Bus Timing
tR
`
tF
tHIGH
tSP
tLOW
tSP
SCL
tSU:SDA
1/fSCL
tBUF
tHD:DAT
tSU:DAT
SDA
Start
tDH
tAA
Stop Start
Acknowledge
Write Bus Timing
tHD:DAT
SCL
tHD:STA
tSU:STO
tSU:DAT
tAA
SDA
Start
Stop Start
Acknowledge
/RST Timing
VDD
VTP
t VF
t VR
VRST
tRNR
tRPU
RST
Rev 0.2
May 2003
Page 20 of 22
FM3104/16/64/256
14-pin SOIC (JEDEC Standard MS-012 variation AA)
Index
Area
E
H
h
D
A1 A
B
.004 in.
.10 mm
e
Controlling dimensions in millimeters.
Conversions to inches are not exact.
Symbol Dim
Min
Nom.
A
mm
1.35
in.
0.053
A1
mm
0.10
in.
0.004
B
mm
0.33
in.
0.013
D
mm
8.53
in.
0.336
E
mm
5.80
in.
0.147
e
mm
1.27 BSC
in.
0.050 BSC
H
mm
5.80
in.
0.228
L
mm
0.51
in.
0.02
0°
α
Rev 0.2
May 2003
α
C
L
Max
1.75
0.069
0.25
0.010
0.51
0.020
8.74
0.344
6.20
0.153
6.20
0.244
0.76
0.030
8°
Page 21 of 22
FM3104/16/64/256
Revision History
Revision
0.1
0.2
Rev 0.2
May 2003
Date
2/28/03
5/22/03
Summary
Internal release.
Initial release.
Page 22 of 22