MELEXIS US168

US168 / US169
Low Noise & Low voltage
Single-Coil Fan/Motor Driver
Features and Benefits
Soft Switching for low noise
Low supply voltage: 1.8V to 6.5V
Full Bridge driver
High sensitivity integrated Hall sensor
Low power consumption
Reverse voltage protection
Locked rotor protection and auto-restart
Thermal protection and auto-restart
Tachometer output signal (US168) or
Alarm output signal (US169)
Applications Examples
3V / 5V Low Noise BLDC Cooling Fans
Low Voltage / Low Power BLDC Motors
Notebook DC Fans / Blowers
Automotive Low Noise Climate Control Fans
Micro-Motors
Ordering Information
Part No.
US168
US169
Temperature Code
E (-40°C to 85°C)
E (-40°C to 85°C)
1 Functional Diagram
Package Code
SE (TSOT-5L)
SE (TSOT-5L)
2 General Description
The US168/169 is a one-chip solution for driving
single-coil brushless DC fans and motors.
The use of Melexis Soft Switching concept lowers
the acoustic and electrical motor noise and
provides smoother operation.
The device includes reverse voltage protection,
locked rotor protection and thermal protection.
Therefore, the IC robustness perfectly suits for
consumer and automotive-on-board applications.
Tachometer (FG) or Alarm (RD) open-drain output
is available. It makes easier the connectivity with
external interface such as hardware monitoring or
Super I/O IC.
Delivered in a thin and reliable TSOT package, it
allows smaller and competitive single-coil fan or
motor design, avoiding the need of external
components.
390109027901
Rev 001
Page 1 of 13
Data Sheet
July/06
US168 / US169
Low Noise & Low voltage
Single-Coil Fan/Motor Driver
Table of Contents
1 Functional Diagram ........................................................................................................ 1
2 General Description........................................................................................................ 1
3 Glossary of Terms .......................................................................................................... 3
4 Absolute Maximum Ratings ........................................................................................... 3
5 Pin Definitions and Descriptions................................................................................... 3
6 General Electrical Specifications .................................................................................. 4
7 Magnetic Specifications ................................................................................................. 4
8 Outputs Behaviour vs. Magnetic Pole........................................................................... 4
9 Detailed General Description ......................................................................................... 5
10 Unique Features............................................................................................................ 6
11 Typical Performance Graphs ....................................................................................... 7
11.1 RON vs. TA ................................................................................................................................................7
11.2 RON vs. VDD ..............................................................................................................................................7
11.3 Magnetic Parameters vs. TA ....................................................................................................................7
11.4 Magnetic Parameters vs. VDD ..................................................................................................................7
11.5 Slope duration vs. TA ...............................................................................................................................7
11.6 Slope duration vs. VDD .............................................................................................................................7
11.7 IDD vs. VDD ................................................................................................................................................8
11.8 VOL vs. TA .................................................................................................................................................8
11.9 Power dissipation graph ..........................................................................................................................8
11.10 Recommended maximum continuous output current vs. VDD ...............................................................8
12 Test Circuits .................................................................................................................. 9
12.1 Supply Current.........................................................................................................................................9
12.2 Full Bridge ON Resistance ......................................................................................................................9
12.3 Output Switching Slope Duration.............................................................................................................9
12.4 Soft Switching Threshold Voltage............................................................................................................9
12.5 FG/RD Output Low Voltage .....................................................................................................................9
12.6 FG/RD Output Current Limit ....................................................................................................................9
12.7 FG/RD Output Leakage Current..............................................................................................................9
12.8 Thermal Protection ..................................................................................................................................9
13 Application Information.............................................................................................. 10
14 Application Comments ............................................................................................... 10
15 Standard information regarding manufacturability of Melexis products with
different soldering processes......................................................................................... 11
16 ESD Precautions ......................................................................................................... 11
17 Package Information................................................................................................... 12
18 Disclaimer.................................................................................................................... 13
390109027901
Rev 001
Page 2 of 13
Data Sheet
July/06
US168 / US169
Low Noise & Low voltage
Single-Coil Fan/Motor Driver
3 Glossary of Terms
Gauss, milliTesla (mT),
Single-coil motor
Full-Bridge (H-Bridge)
Peak output current
Continuous output current
Locked rotor
FG
RD
Units of magnetic flux density :
10 Gauss = 1mT
DC motor with only one coil driven by a Full-Bridge.
Two push-pull output drivers that can source or sink current.
The current flowing in the coil at start-up, only limited by the coil resistance
RCOIL and the output driver resistance RDSON.
Average absolute value of the output current when the fan is spinning
The state when the fan is not spinning due to mechanical blockage.
Frequency Generator
Rotation Detection
4 Absolute Maximum Ratings
Parameter
Supply Voltage
Voltage on FG (RD) pin
Peak Output Current
Continuous Output Current
Multi-layer (1S2P) PCB
Single-layer (1S0P) PCB
Operating Temperature Range
Junction Temperature
Storage Temperature Range
Magnetic Flux Density
ESD Sensitivity (Global) (1)
ESD Sensitivity on all pins except FG/RD (1)
Table 1: Absolute maximum ratings
Symbol
VDD
VFG (VRD)
IOUTp
IOUTc
IOUTc
TA
TJ
TS
B
-
Value
-7 to 7
-6 to 7
500
350
300
-40 to 85
125
-50 to 150
Unlimited
1500
5000
Units
V
V
mA
mA
mA
°C
°C
°C
mT
V
V
Note 1: Human Body Model according JESD22-A114 standard – 100pF capacitor discharged through 1.5kΩ resistor into each pin.
Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute-maximumrated conditions for extended periods may affect device reliability.
5 Pin Definitions and Descriptions
Pin Number Pin Name Function
1
OUT1
Coil Driver 1
2
GND
Ground pin
3
VDD
Power Supply pin
4
FG (RD)
Tachometer (Alarm) open drain output
5
OUT2
Coil Driver 2
Table 2: Pin description US168 (US169)
390109027901
Rev 001
Page 3 of 13
Data Sheet
July/06
US168 / US169
Low Noise & Low voltage
Single-Coil Fan/Motor Driver
6 General Electrical Specifications
o
Operating Parameters at TA = 25 C, VDD = 3V / 5V (unless otherwise specified)
Parameter
Supply Voltage
Supply Current
Symbol Test Conditions
VDD
Operating
IDD
No load on OUT1/OUT2
TA = 25°C
VDD = 5V
TA = 85°C
Output ON Resistance (Full Bridge) RON
TA = 25°C
VDD = 3V
TA = 85°C
FG / RD Output Low Voltage
VOL
IOL = 4mA
FG / RD Output Leakage Current
ILEAK
VDD = 6.5V
FG / RD Output Current Limit
IFGLIM
VDD = 5V
Soft Switching Threshold Voltage
VDDsw
Output Switching Slope Duration
TSW
VDD = 5V
Output Switching Slope Duration
TSW
VDD = 3V
Locked Rotor ON Time
TON
Locked Rotor OFF Time
TOFF
Thermal Protection Shutdown
TSD
Note 2
Thermal Protection Release
TREL
Note 2
Thermal Protection Hysteresis
THYST
Note 2
(3)
Sensing Propagation Delay
TSENSE
Multi-layer JEDEC test board
Package Thermal Resistance
RTH
1-layer JEDEC test board
`Table 3: Electrical specifications
Min
1.8
Typ
1.3
2.2
2.7
2.7
3.3
0.35
16
1.8
150
230
0.4
2.4
160
130
30
37
195
301
Max
6.5
2.5
3.8
4.7
4.7
5.9
0.5
10
2.5
Units
V
mA
Ω
Ω
Ω
Ω
V
µA
mA
V
µs
µs
s
s
°C
°C
°C
µs
°C/Watt
Note 2: Guarantied by design
Note 3: The sensing propagation delay represents the delay from the magnetic field change (B>BOP or B<BRP) to the beginning of
the output change.
7 Magnetic Specifications
o
DC Operating Parameters at TA = 25 C, VDD = 3V / 5V (unless otherwise specified)
Parameter
Symbol
Test Conditions
Operate point
BOP
Release point
BRP
Hysteresis
BHYST
Table 4: Magnetic specifications
Min
0
-5
2
Typ
3
-3
6
Max
5
0
10
Units
mT
mT
mT
8 Outputs Behaviour vs. Magnetic Pole
Parameter
Test conditions
OUT1
South pole
B > BOP
High
North pole
B < BRP
Low
Table 5: Outputs behaviour vs. magnetic pole
OUT2
Low
High
FG
Low
High
Note : The magnetic pole is applied facing the branded side of the package.
390109027901
Rev 001
Page 4 of 13
Data Sheet
July/06
US168 / US169
Low Noise & Low voltage
Single-Coil Fan/Motor Driver
9 Detailed General Description
The US168/169 is an efficient one-chip solution for driving Brushless DC fans and motors. The IC includes
Hall-effect sensor, chopping amplifier for offset cancellation, digital control circuitry and full bridge output
driver.
The US168 has an open-drain tachometer FG output that follows the Hall signal.
In the US169, the open-drain alarm output RD is active low during normal spinning of the motor. It goes
high when the magnetic flux switching frequency drops below nearly 1Hz (30RPM for 2 pole-pair fan).
Reverse voltage protection is integrated on the VDD pin.
The FG/RD open drain output has an internal current limit. It can be activated if a low-ohmic pull-up
resistor is used or if the FG/RD output is short connected to a supply voltage.
The built-in locked rotor protection automatically shuts off the coil current when the rotor is mechanically
blocked for more than 0.4 second. The fan tries to restart every 2.8 seconds until the rotor is released.
This on/off cycling reduces the average current by factor of 7. It is enough to prevent fans from
overheating or damage.
In case the junction temperature TJ exceeds TSD,
the thermal protection stops the current flowing
through the full bridge by setting the outputs
OUT1 and OUT2 low and setting the output FG
(RD) high.
The IC stays in this state until the junction
temperature decreases below TREL.
390109027901
Rev 001
Page 5 of 13
Data Sheet
July/06
US168 / US169
Low Noise & Low voltage
Single-Coil Fan/Motor Driver
10 Unique Features
The US168/169 provides an efficient solution for low noise applications.
The Soft Switching concept reduces the acoustic
and electrical motor noise with a smooth transition
of the coil current when VDD is greater than VDDsw,.
Soft Switching coil current compared to hard switching
The smooth current switching is realized by a precise control of the H-Bridge output voltages, as shown
on the figures below:
(A) VOUT1 > VOUT2 - the coil current flows from OUT1 to OUT2.
(B) VOUT1 decreases while VOUT2 increases, thus reducing smoothly the coil current.
At a certain moment, the coil current equals zero.
VOUT1 further decreases while VOUT2 increases, so the coil current starts flowing in the opposite direction.
(C) VOUT1 < VOUT2 – the coil current flows from OUT2 to OUT1.
Soft Switching Output Voltages
(A)
(B)
(C)
This technique used in a Full Bridge allows producing efficient motor with very low audible noise.
Moreover, Soft Switching approach versus traditional hard switching helps reducing the Electro Magnetic
Interference (EMI) generated by the coil.
390109027901
Rev 001
Page 6 of 13
Data Sheet
July/06
US168 / US169
Low Noise & Low voltage
Single-Coil Fan/Motor Driver
11 Typical Performance Graphs
11.1 RON vs. TA
11.2 RON vs. VDD
5
7
VDD = 3V
VDD = 5V
Ta = -40°C
6
Ta = 25°C
4
Ta = 85°C
3
Ron (ohms)
Ron (ohms)
5
2
Ta = 125°C
4
3
2
1
1
0
0
-40
-20
0
20
40
60
80
100
120
0
1
2
3
Ta (°C)
5
6
7
11.4 Magnetic Parameters vs. VDD
5
5
4
4
3
3
2
2
Magnetic field (mT)
Magnetic field (mT)
11.3 Magnetic Parameters vs. TA
1
0
4
VDD (Volts)
Bop, VDD=3V
Bop, VDD=5V
Brp, VDD=3V
Brp, VDD=5V
-1
1
0
Bop, Ta=85°C
Brp, Ta=25°C
Brp, Ta=85°C
-1
-2
-2
-3
-3
-4
-4
-5
Bop, Ta=25°C
-5
-40
-20
0
20
40
60
80
100
120
0
1
2
3
Ta (°C)
4
5
6
7
VDD (Volts)
11.5 Slope duration vs. TA
11.6 Slope duration vs. VDD
300
700
600
250
Output Slope (us)
Output Slope (us)
500
200
150
100
Ta = 25°C
Ta = 85°C
400
300
200
VDD = 3V
VDD = 5V
50
100
0
0
-40
-20
0
20
40
60
80
100
120
0
390109027901
Rev 001
1
2
3
4
5
6
VDD (Volts)
Ta (°C)
Page 7 of 13
Data Sheet
July/06
7
US168 / US169
Low Noise & Low voltage
Single-Coil Fan/Motor Driver
11.7 IDD vs. VDD
11.8 VOL vs. TA
0.5
FG/RD Output Saturation Voltage (Volts)
1.5
IDD (mA)
1
Ta = -40°C
0.5
Ta = 25°C
Ta = 85°C
Ta = 125°C
0.4
0.3
VDD=3V ; Iol=4mA
VDD=5V ; Iol=4mA
0.2
0.1
0
0
0
1
2
3
4
5
6
7
-40
-20
0
20
40
VDD (Volts)
11.9 Power dissipation graph
0.6
Mutli Layer PCB
Pmax = 512mW
60
80
100
120
Ta (°C)
11.10 Recommended maximum
continuous output current vs. VDD
TA = 25°C
400
350
0.4
Continuous Output Current (mA)
Allowable Power Dissipation (W)
0.5
RTH 1S2P = 195°C/W
Single Layer PCB
Pmax = 332mW
0.3
TA max = 85°C
0.2
RTH 1S = 301°C/W
0.1
Single Layer PCB, Ta=25°C
3V, 300mA
300
250
200
150
100
1.8V, 80mA
TJ max = 125°C
50
0
-40
-20
0
20
40
60
80
100
120
140
Ta (°C)
0
0
The thermal resistance and rated power dissipation are defined in
accordance with EIA/JESD51-3 standard for single layer 1S test
board and EIAJESD51-7 standard for multi layer 1S2P test board.
390109027901
Rev 001
Page 8 of 13
1
2
3
4
5
6
VDD (Volts)
Data Sheet
July/06
7
US168 / US169
Low Noise & Low voltage
Single-Coil Fan/Motor Driver
12 Test Circuits
General test principles illustrated in the figures below
DUT = Device Under Test
12.1 Supply Current
12.2 Full Bridge ON Resistance
12.3 Output Switching Slope Duration
12.4 Soft Switching Threshold Voltage
12.5 FG/RD Output Low Voltage
12.6 FG/RD Output Current Limit
12.7 FG/RD Output Leakage Current
12.8 Thermal Protection
A
ILEAK
FG/RD
OUT1
VDD
DUT
VDD
OUT2
GND
Note 1 - ILEAK is measured when the FG/RD driver is OFF
390109027901
Rev 001
Page 9 of 13
Data Sheet
July/06
US168 / US169
Low Noise & Low voltage
Single-Coil Fan/Motor Driver
13 Application Information
VDD - supply voltage
(3V / 5V)
100nF
Optional
3
2
VDD
GND
1
OUT1
Fan/Motor Coil
US168(US169)
VPU - pull-up voltage
(5V)
FG(RD)
10k
OUT2
4
5
FG(RD) Output
Typical 3V / 5V fan application
14 Application Comments
The device is designed to work without external components.
Application using FG/RD output signal requires a pull-up resistor. The pull-up voltage can be either
connected to the supply voltage VDD or to a separate supply voltage VPU.
A 100nF decoupling capacitor may be added between VDD and ground to increase stability or protect
against external noise and power surge.
The Soft Switching provides the best results when the fan PCB is optimized as well. The location of the
Hall sensor with respect to the fan stator slots is important to make an efficient motor with high torque, low
power consumption and low noise. Therefore, it is recommended to adapt the fan PCB when using soft
switching instead of replacing existing hard switching solution without any PCB redesign.
Hall sensor magnetic field
TINPUT
The different IC delays are illustrated
on the left figure.
Bop
In order to determine the optimum
Hall sensor position for a given
rotation speed, it is recommended to
use the parameters TCROSS (output
voltages cross point delay) and the
delays related to the motor itself.
TSENSE
“Control Logic” block output
Output Voltages
VOUT1
Cross point
TCROSS is the sum of the sensing
propagation delay TSENSE and 54% of
the output slope duration TSLOPE.
VOUT2
54% TSLOPE
TCROSS = TSENSE + 54% TSLOPE
390109027901
Rev 001
Page 10 of 13
The delays from the motor are TINPUT
(delay from zero to magnetic
threshold depending on rotor
maximum magnetic field) and the
motor coil time constant.
Data Sheet
July/06
US168 / US169
Low Noise & Low voltage
Single-Coil Fan/Motor Driver
15 Standard information regarding manufacturability of Melexis
products with different soldering processes
Our products are classified and qualified regarding soldering technology, solderability and moisture
sensitivity level according to following test methods:
Reflow Soldering SMD’s (Surface Mount Devices)
•
•
IPC/JEDEC J-STD-020
Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices
(classification reflow profiles according to table 5-2)
EIA/JEDEC JESD22-A113
Preconditioning of Nonhermetic Surface Mount Devices Prior to Reliability Testing
(reflow profiles according to table 2)
Wave Soldering SMD’s (Surface Mount Devices) and THD’s (Through Hole Devices)
•
•
EN60749-20
Resistance of plastic- encapsulated SMD’s to combined effect of moisture and soldering heat
EIA/JEDEC JESD22-B106 and EN60749-15
Resistance to soldering temperature for through-hole mounted devices
Iron Soldering THD’s (Through Hole Devices)
•
EN60749-15
Resistance to soldering temperature for through-hole mounted devices
Solderability SMD’s (Surface Mount Devices) and THD’s (Through Hole Devices)
•
EIA/JEDEC JESD22-B102 and EN60749-21
Solderability
For all soldering technologies deviating from above mentioned standard conditions (regarding peak
temperature, temperature gradient, temperature profile etc) additional classification and qualification tests
have to be agreed upon with Melexis.
The application of Wave Soldering for SMD’s is allowed only after consulting Melexis regarding assurance
of adhesive strength between device and board.
Melexis is contributing to global environmental conservation by promoting lead free solutions. For more
information on qualifications of RoHS compliant products (RoHS = European directive on the Restriction
Of the use of certain Hazardous Substances) please visit the quality page on our website:
http://www.melexis.com/quality.aspx
16 ESD Precautions
Electronic semiconductor products are sensitive to Electro Static Discharge (ESD).
Always observe Electro Static Discharge control procedures whenever handling semiconductor products.
390109027901
Rev 001
Page 11 of 13
Data Sheet
July/06
US168 / US169
Low Noise & Low voltage
Single-Coil Fan/Motor Driver
0.127 +0.023
- 0.007
0.15
0.20
0.95 BSC
0.30
0.45
see note 3
1.90 BSC
2.90+/-0.20
17 Package Information
390109027901
Rev 001
Page 12 of 13
Data Sheet
July/06
US168 / US169
Low Noise & Low voltage
Single-Coil Fan/Motor Driver
18 Disclaimer
Devices sold by Melexis are covered by the warranty and patent indemnification provisions appearing in
its Term of Sale. Melexis makes no warranty, express, statutory, implied, or by description regarding the
information set forth herein or regarding the freedom of the described devices from patent infringement.
Melexis reserves the right to change specifications and prices at any time and without notice. Therefore,
prior to designing this product into a system, it is necessary to check with Melexis for current information.
This product is intended for use in normal commercial applications. Applications requiring extended
temperature range, unusual environmental requirements, or high reliability applications, such as military,
medical life-support or life-sustaining equipment are specifically not recommended without additional
processing by Melexis for each application.
The information furnished by Melexis is believed to be correct and accurate. However, Melexis shall not
be liable to recipient or any third party for any damages, including but not limited to personal injury,
property damage, loss of profits, loss of use, interrupt of business or indirect, special incidental or
consequential damages, of any kind, in connection with or arising out of the furnishing, performance or
use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow
out of Melexis’ rendering of technical or other services.
© 2005 Melexis NV. All rights reserved.
For the latest version of this document, go to our website at
www.melexis.com
Or for additional information contact Melexis Direct:
Europe and Japan:
All other locations:
Phone: +32 1367 0495
E-mail: [email protected]
Phone: +1 603 223 2362
E-mail: [email protected]
ISO/TS 16949 and ISO14001 Certified
390109027901
Rev 001
Page 13 of 13
Data Sheet
July/06