MIMIX 26TX0555

18.0-36.0 GHz GaAs MMIC
Transmitter
August 2005 - Rev 04-Aug-05
Features
Chip Device Layout
tio
n
Sub-harmonic Transmitter
Integrated Mixer, LO Doubler/Buffer & Output Amplifier
+25.0 dBm Output Third Order Intercept (OIP3)
35.0 dB Gain Control
2.0 dBm LO Drive Level
9.0 dB Conversion Gain
100% On-Wafer RF and DC Testing
100% Visual Inspection to MIL-STD-883 Method 2010
General Description
Absolute Maximum Ratings
uc
Supply Voltage (Vd)
Supply Current (Id1,2,3)
Gate Bias Voltage (Vg)
Input Power (IF Pin)
Storage Temperature (Tstg)
Operating Temperature (Ta)
Channel Temperature (Tch)
od
Mimix Broadband’s 18.0-36.0 GHz GaAs MMIC transmitter has a +25.0
dBm output third order intercept across the band. This device is a
balanced resistive pHEMT mixer followed by a distributed amplifier
and includes an integrated LO doubler and LO buffer amplifier. The use
of integrated LO doubler and LO buffer amplifier makes the provision
of the LO easier than for fundamental mixers at these frequencies. IF
and IF mixer inputs are provided through an external 180 degree
hybrid. This MMIC uses Mimix Broadband’s 0.15 µm GaAs PHEMT
device model technology, and is based upon electron beam
lithography to ensure high repeatability and uniformity. The chip has
surface passivation to protect and provide a rugged part with backside
via holes and gold metallization to allow either a conductive epoxy or
eutectic solder die attach process. This device is well suited for
Millimeter-wave Point-to-Point Radio, LMDS, SATCOM and VSAT
applications.
26TX0555
+6.0 VDC
320,190,110 mA
+0.3 VDC
0.0 dBm
-65 to +165 OC
-55 to MTTF Table 3
MTTF Table 3
(1) Measured using constant current.
(2) Measured using LO Input drive level of +2.0 dBm.
(3) Channel temperature affects a device's MTTF. It is
recommended to keep channel temperature as low as
possible for maximum life.
pr
Electrical Characteristics (Ambient Temperature T = 25o C)
Parameter
Pr
e-
Frequency Range (RF) Upper Side Band
Frequency Range (RF) Lower Side Band
Frequency Range (LO)
Frequency Range (IF)
Output Return Loss RF (S22)
Small Signal Conversion Gain IF/RF (S21) 2
LO Input Drive (PLO)
Isolation LO/RF @ LOx1
Isolation LO/RF @ LOx2
Output Third Order Intercept (OIP3)1,2
Drain Bias Voltage (Vd1,2,3)
Source Bias Voltage (Vss)
Gate Bias Voltage (Vg1,2)
Gate Bias Voltage (Vg3,4) Doubler, Mixer
Supply Current (Id1) (Vd1=5.0V, Vg=-0.2V Typical)
Supply Current (Id2) (Vd2=5.0V, Vg=-0.1V Typical)
Supply Current (Id3) (Vd3=5.0V, Vg=-0.5V Typical)
Supply Current (Iss) (Vss=-5.0V)
Units
GHz
GHz
GHz
GHz
dB
dB
dBm
dB
dB
dBm
VDC
VDC
VDC
VDC
mA
mA
mA
mA
Min.
18.0
18.0
8.0
DC
-1.2
-1.2
-
Mimix Broadband, Inc., 10795 Rockley Rd., Houston, Texas 77099
Tel: 281.988.4600 Fax: 281.988.4615 mimixbroadband.com
Typ.
14.0
9.0
+2.0
15.0
5.0
+25.0
+5.0
-5.0
-0.2
-0.5
230
140
75
50
Max.
36.0
36.0
19.5
3.0
+5.5
+0.1
+0.1
280
170
90
60
Page 1 of 9
Characteristic Data and Specifications are subject to change without notice. ©2005 Mimix Broadband, Inc.
Export of this item may require appropriate export licensing from the U.S. Government. In purchasing these parts, U.S. Domestic customers accept
their obligation to be compliant with U.S. Export Laws.
18.0-36.0 GHz GaAs MMIC
Transmitter
26TX0555
August 2005 - Rev 04-Aug-05
Transmitter Measurements
_0555_5samples: USB Conversion gain (dB) vs. RF USB (GHz)
IF1_ONLY = 1.84 GHz, -10dBm, LO = 0, 2 & 4 dBm
_0555_samples: LSB Conversion gain (dB) vs. RF LSB (GHz)
IF1_ONLY = 1.84 GHz, -10dBm, LO = 0, 2 & 4 dBm
20
20
18
18
16
16
, Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R6C11
12
, Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R7C11
, Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R7C13
10
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R5C10
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R5C13
8
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R6C11
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R7C11
6
, Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R5C10
tio
n
, Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R5C13
LSB Conversion gain (dB)
USB Conversion gain (dB)
, Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R5C10
14
14
, Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R5C13
, Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R6C11
12
, Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R7C11
, Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R7C13
10
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R5C10
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R5C13
8
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R6C11
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R7C11
6
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R7C13
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R7C13
, Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R5C10
, Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R5C10
4
4
, Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R5C13
, Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R5C13
, Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R6C11
, Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R6C11
2
2
, Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R7C11
, Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R7C11
, Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R7C13
, Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R7C13
0
0
19
20
21
22
23
24
25
26
27
28
29
30
19
31
20
21
22
23
24
25
26
27
28
29
30
31
RF LSB (GHz)
uc
RF USB (GHz)
_0555_5samples: LO to RF gain (dB) vs. LO freq (GHz)
IF1_ONLY = 1.84 GHz, -10dBm, LO = 0, 2 & 4 dBm
_0555_5samples: LOx2 to RF gain (dB) vs. LO freq (GHz)
IF1_ONLY = 1.84 GHz, -10dBm, LO = 0, 2 & 4 dBm
5
20
0
15
-5
10
, Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R5C10
od
, Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R5C13
-10
5
, Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R5C10
, Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R7C11
, Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R7C13
-15
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R5C10
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R5C13
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R6C11
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R7C11
-20
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R7C13
, Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R5C10
, Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R5C13
-25
, Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R6C11
LOx2 to RF gain (dB)
LO to RF gain (dB)
, Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R6C11
, Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R5C13
, Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R6C11
0
, Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R7C11
, Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R7C13
-5
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R5C10
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R5C13
-10
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R6C11
, Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R7C11
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R7C11
, Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R7C13
-15
-30
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R7C13
, Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R5C10
-20
pr
-35
-40
8
9
10
11
12
13
14
15
16
LO freq (GHz)
17
, Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R5C13
, Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R6C11
-25
, Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R7C11
, Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R7C13
-30
8
9
e-
OIP3 (dBm)
26
24
22
18
14
12
10
8
6
4
14
15
16
17
OIP3 (dBm)
28
26
, LO Power (dBm)=0, RC=R5C10
, LO Power (dBm)=0, RC=R5C10
24
, LO Power (dBm)=0, RC=R5C13
, LO Power (dBm)=0, RC=R5C13
, LO Power (dBm)=0, RC=R7C11
, LO Power (dBm)=0, RC=R7C11
22
, LO Power (dBm)=0, RC=R7C13
, LO Power (dBm)=0, RC=R7C13
, LO Power (dBm)=2, RC=R5C10
, LO Power (dBm)=2, RC=R5C10
, LO Power (dBm)=2, RC=R5C13
, LO Power (dBm)=2, RC=R7C11
, LO Power (dBm)=2, RC=R7C13
IIP3 (dBm)
16
13
30
Pr
OIP3 and IIP3 (dBm)
20
12
_0555_4samples: OIP3 and IIP3 (dBm) vs. RF LSB (GHz)
IF1_ONLY = -3dBm per Tone, 2 and 2.1 GHz, LO = 0, 2 & 4 dBm
, LO Power (dBm)=4, RC=R5C10
, LO Power (dBm)=4, RC=R5C13
, LO Power (dBm)=4, RC=R7C11
, LO Power (dBm)=4, RC=R7C13
, LO Power (dBm)=0, RC=R5C10
, LO Power (dBm)=0, RC=R5C13
20
OIP3 and IIP3 (dBm)
28
11
LO freq (GHz)
0555_4samples: OIP3 and IIP3 (dBm) vs. RF USB (GHz)
IF1_ONLY = -3dBm per Tone, 2 and 2.1 GHz, LO = 0, 2 & 4 dBm
30
10
, LO Power (dBm)=2, RC=R5C13
IIP3 (dBm)
, LO Power (dBm)=2, RC=R7C11
18
, LO Power (dBm)=2, RC=R7C13
, LO Power (dBm)=4, RC=R5C10
16
, LO Power (dBm)=4, RC=R5C13
, LO Power (dBm)=4, RC=R7C11
14
, LO Power (dBm)=4, RC=R7C13
, LO Power (dBm)=0, RC=R5C10
12
, LO Power (dBm)=0, RC=R5C13
, LO Power (dBm)=0, RC=R7C11
, LO Power (dBm)=0, RC=R7C11
10
, LO Power (dBm)=0, RC=R7C13
, LO Power (dBm)=0, RC=R7C13
, LO Power (dBm)=2, RC=R5C10
, LO Power (dBm)=2, RC=R5C10
8
, LO Power (dBm)=2, RC=R5C13
, LO Power (dBm)=2, RC=R7C11
, LO Power (dBm)=2, RC=R5C13
, LO Power (dBm)=2, RC=R7C11
6
, LO Power (dBm)=2, RC=R7C13
, LO Power (dBm)=2, RC=R7C13
, LO Power (dBm)=4, RC=R5C10
, LO Power (dBm)=4, RC=R5C10
4
, LO Power (dBm)=4, RC=R5C13
, LO Power (dBm)=4, RC=R7C11
2
, LO Power (dBm)=4, RC=R5C13
, LO Power (dBm)=4, RC=R7C11
2
, LO Power (dBm)=4, RC=R7C13
, LO Power (dBm)=4, RC=R7C13
0
0
19
20
21
22
23
24
25
RF USB (GHz)
26
27
28
29
30
31
19
20
21
22
23
24
25
26
27
28
29
30
31
RF LSB (GHz)
Mimix Broadband, Inc., 10795 Rockley Rd., Houston, Texas 77099
Tel: 281.988.4600 Fax: 281.988.4615 mimixbroadband.com
Page 2 of 8
Characteristic Data and Specifications are subject to change without notice. ©2005 Mimix Broadband, Inc.
Export of this item may require appropriate export licensing from the U.S. Government. In purchasing these parts, U.S. Domestic customers accept
their obligation to be compliant with U.S. Export Laws.
18.0-36.0 GHz GaAs MMIC
Transmitter
26TX0555
August 2005 - Rev 04-Aug-05
Transmitter Measurements (cont.)
_0555_5samples: USB Conversion gain (dB) vs. Vg1 (V)
IF1_ONLY = 1.84 GHz, -10dBm, LO = 0, 2 & 4 dBm
, LO
, LO
, LO
, LO
, LO
, LO
, LO
, LO
, LO
, LO
, LO
, LO
, LO
, LO
, LO
, LO
, LO
, LO
, LO
, LO
, LO
, LO
, LO
, LO
, LO
, LO
, LO
, LO
, LO
, LO
, LO
, LO
, LO
, LO
, LO
, LO
, LO
, LO
, LO
, LO
, LO
, LO
, LO
, LO
, LO
, LO
, LO
, LO
, LO
, LO
, LO
, LO
, LO
, LO
, LO
10
5
USB Conversion gain (dB)
0
-5
-10
-15
-20
-25
-30
-35
-1.2
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
15
350
10
300
5
250
0
200
-5
150
-10
100
-15
50
-20
0
-1
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1
Vg1 (V)
0555_5samples: LSB Conv Gain (dB) and IIP3 (dBm) vs. Vg1 (V)
IF1_ONLY = -3dBm per Tone, 2 and 2.1 GHz, LO = 2dBm
25
20
15
LSB Conv Gain (dB) and IIP3 (dBm)
400
, RF USB (GHz)=21, RC=R5C10
, RF USB (GHz)=21, RC=R5C12
, RF USB (GHz)=21, RC=R6C11
, RF USB (GHz)=21, RC=R7C11
, RF USB (GHz)=21, RC=R7C13
, RF USB (GHz)=23, RC=R5C10
, RF USB (GHz)=23, RC=R5C12
, RF USB (GHz)=23, RC=R6C11
, RF USB (GHz)=23, RC=R7C11
, RF USB (GHz)=23, RC=R7C13
, RF USB (GHz)=25, RC=R5C10
, RF USB (GHz)=25, RC=R5C12
, RF USB (GHz)=25, RC=R6C11
, RF USB (GHz)=25, RC=R7C11
, RF USB (GHz)=25, RC=R7C13
, RF USB (GHz)=27, RC=R5C10
, RF USB (GHz)=27, RC=R5C12
, RF USB (GHz)=27, RC=R6C11
, RF USB (GHz)=27, RC=R7C11
, RF USB (GHz)=27, RC=R7C13
, RF USB (GHz)=29, RC=R5C10
, RF USB (GHz)=29, RC=R5C12
, RF USB (GHz)=29, RC=R6C11
, RF USB (GHz)=29, RC=R7C11
, RF USB (GHz)=29, RC=R7C13
, RF USB (GHz)=21, RC=R5C10
, RF USB (GHz)=21, RC=R5C12
, RF USB (GHz)=21, RC=R6C11
, RF USB (GHz)=21, RC=R7C11
, RF USB (GHz)=21, RC=R7C13
, RF USB (GHz)=23, RC=R5C10
, RF USB (GHz)=23, RC=R5C12
, RF USB (GHz)=23, RC=R6C11
, RF USB (GHz)=23, RC=R7C11
, RF USB (GHz)=23, RC=R7C13
, RF USB (GHz)=25, RC=R5C10
, RF USB (GHz)=25, RC=R6C11
, RF USB (GHz)=25, RC=R7C11
, RF USB (GHz)=25, RC=R7C13
, RF USB (GHz)=27, RC=R5C10
, RF USB (GHz)=27, RC=R5C12
, RF USB (GHz)=27, RC=R6C11
, RF USB (GHz)=27, RC=R7C11
, RF USB (GHz)=27, RC=R7C13
, RF USB (GHz)=29, RC=R5C10
, RF USB (GHz)=29, RC=R5C12
, RF USB (GHz)=29, RC=R6C11
, RF USB (GHz)=29, RC=R7C11
, RF USB (GHz)=29, RC=R7C13
, RF USB (GHz)=21, RC=R5C10
, RF USB (GHz)=21, RC=R5C12
, RF USB (GHz)=21, RC=R6C11
, RF USB (GHz)=21, RC=R7C11
, RF USB (GHz)=21, RC=R7C13
, RF USB (GHz)=23, RC=R5C10
, RF USB (GHz)=23, RC=R5C12
, RF USB (GHz)=23, RC=R6C11
, RF USB (GHz)=23, RC=R7C11
, RF USB (GHz)=23, RC=R7C13
, RF USB (GHz)=25, RC=R5C10
, RF USB (GHz)=25, RC=R5C12
, RF USB (GHz)=25, RC=R6C11
, RF USB (GHz)=25, RC=R7C11
, RF USB (GHz)=25, RC=R7C13
, RF USB (GHz)=27, RC=R5C10
RF USB (GHz)=27 RC=R5C12
0
0.1
0.2
10
5
0
-5
-15
-20
-1
-0.9
-0.8
13
12
10
Pr
USB Conversion Gain (dB)
11
9
8
7
6
5
4
3
2
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1
0
0.1
0.2
_0555_4samples: LSB Conversion Gain (dB) vs. RF (GHz)
IF = -10 dBm per tone, LO Power = 2 and 4 dBm, Nominal Bias
15
14
13
12
11
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R5C10
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R6C11
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R7C11
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R7C13
, Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R5C10
, Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R6C11
, Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R7C11
, Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R7C13
LSB Conversion Gain (dB)
e-
14
-0.7
Vg1 (V)
_0555_4samples: USB Conversion Gain (dB) vs. RF (GHz)
IF = -10 dBm per tone, LO Power = 2 and 4 dBm, Nominal Bias
15
, RF LSB (GHz)=21, RC=R5C10
, RF LSB (GHz)=21, RC=R5C12
, RF LSB (GHz)=21, RC=R6C11
, RF LSB (GHz)=21, RC=R7C11
, RF LSB (GHz)=21, RC=R7C13
, RF LSB (GHz)=23, RC=R5C10
, RF LSB (GHz)=23, RC=R5C12
, RF LSB (GHz)=23, RC=R6C11
, RF LSB (GHz)=23, RC=R7C11
, RF LSB (GHz)=23, RC=R7C13
, RF LSB (GHz)=25, RC=R5C10
, RF LSB (GHz)=25, RC=R5C12
, RF LSB (GHz)=25, RC=R6C11
, RF LSB (GHz)=25, RC=R7C11
, RF LSB (GHz)=25, RC=R7C13
, RF LSB (GHz)=27, RC=R5C10
, RF LSB (GHz)=27, RC=R5C12
, RF LSB (GHz)=27, RC=R6C11
, RF LSB (GHz)=27, RC=R7C11
, RF LSB (GHz)=27, RC=R7C13
, RF LSB (GHz)=29, RC=R5C10
, RF LSB (GHz)=29, RC=R5C12
, RF LSB (GHz)=29, RC=R6C11
, RF LSB (GHz)=29, RC=R7C13
, RF LSB (GHz)=21, RC=R5C10
, RF LSB (GHz)=21, RC=R5C12
, RF LSB (GHz)=21, RC=R6C11
, RF LSB (GHz)=21, RC=R7C11
, RF LSB (GHz)=21, RC=R7C13
, RF LSB (GHz)=23, RC=R5C10
, RF LSB (GHz)=23, RC=R5C12
, RF LSB (GHz)=23, RC=R6C11
, RF LSB (GHz)=23, RC=R7C11
, RF LSB (GHz)=23, RC=R7C13
, RF LSB (GHz)=25, RC=R5C10
, RF LSB (GHz)=25, RC=R5C12
, RF LSB (GHz)=25, RC=R6C11
, RF LSB (GHz)=25, RC=R7C11
, RF LSB (GHz)=25, RC=R7C13
, RF LSB (GHz)=27, RC=R5C10
, RF LSB (GHz)=27, RC=R5C12
, RF LSB (GHz)=27, RC=R6C11
, RF LSB (GHz)=27, RC=R7C11
, RF LSB (GHz)=27, RC=R7C13
, RF LSB (GHz)=29, RC=R5C10
, RF LSB (GHz)=29, RC=R5C12
, RF LSB (GHz)=29, RC=R6C11
, RF LSB (GHz)=29, RC=R7C13
-10
pr
20
USB Conv Gain (dB) and IIP3 (dBm)
450
od
_0555_5samples: USB Conv Gain (dB), Id1 & IIP3 (dBm) vs. Vg1 (V)
IF1_ONLY = -3dBm per Tone, 2 and 2.1 GHz, LO = 2dBm
25
uc
Vg1 (V)
Power (dBm)=2, RF freq (GHz)=20, RC=R5C10
Power (dBm)=2, RF freq (GHz)=20, RC=R5C13
Power (dBm)=2, RF freq (GHz)=20, RC=R6C11
Power (dBm)=2, RF freq (GHz)=20, RC=R7C11
Power (dBm)=2, RF freq (GHz)=20, RC=R7C13
Power (dBm)=2, RF freq (GHz)=21, RC=R5C10
Power (dBm)=2, RF freq (GHz)=21, RC=R5C13
Power (dBm)=2, RF freq (GHz)=21, RC=R6C11
Power (dBm)=2, RF freq (GHz)=21, RC=R7C11
Power (dBm)=2, RF freq (GHz)=21, RC=R7C13
Power (dBm)=2, RF freq (GHz)=22, RC=R5C10
Power (dBm)=2, RF freq (GHz)=22, RC=R5C13
Power (dBm)=2, RF freq (GHz)=22, RC=R6C11
Power (dBm)=2, RF freq (GHz)=22, RC=R7C11
Power (dBm)=2, RF freq (GHz)=22, RC=R7C13
Power (dBm)=2, RF freq (GHz)=23, RC=R5C10
Power (dBm)=2, RF freq (GHz)=23, RC=R5C13
Power (dBm)=2, RF freq (GHz)=23, RC=R6C11
Power (dBm)=2, RF freq (GHz)=23, RC=R7C11
Power (dBm)=2, RF freq (GHz)=23, RC=R7C13
Power (dBm)=2, RF freq (GHz)=24, RC=R5C10
Power (dBm)=2, RF freq (GHz)=24, RC=R5C13
Power (dBm)=2, RF freq (GHz)=24, RC=R6C11
Power (dBm)=2, RF freq (GHz)=24, RC=R7C11
Power (dBm)=2, RF freq (GHz)=24, RC=R7C13
Power (dBm)=2, RF freq (GHz)=25, RC=R5C10
Power (dBm)=2, RF freq (GHz)=25, RC=R5C13
Power (dBm)=2, RF freq (GHz)=25, RC=R6C11
Power (dBm)=2, RF freq (GHz)=25, RC=R7C11
Power (dBm)=2, RF freq (GHz)=25, RC=R7C13
Power (dBm)=2, RF freq (GHz)=26, RC=R5C10
Power (dBm)=2, RF freq (GHz)=26, RC=R5C13
Power (dBm)=2, RF freq (GHz)=26, RC=R6C11
Power (dBm)=2, RF freq (GHz)=26, RC=R7C11
Power (dBm)=2, RF freq (GHz)=26, RC=R7C13
Power (dBm)=2, RF freq (GHz)=27, RC=R5C10
Power (dBm)=2, RF freq (GHz)=27, RC=R5C13
Power (dBm)=2, RF freq (GHz)=27, RC=R6C11
Power (dBm)=2, RF freq (GHz)=27, RC=R7C11
Power (dBm)=2, RF freq (GHz)=27, RC=R7C13
Power (dBm)=2, RF freq (GHz)=28, RC=R5C10
Power (dBm)=2, RF freq (GHz)=28, RC=R5C13
Power (dBm)=2, RF freq (GHz)=28, RC=R6C11
Power (dBm)=2, RF freq (GHz)=28, RC=R7C11
Power (dBm)=2, RF freq (GHz)=28, RC=R7C13
Power (dBm)=2, RF freq (GHz)=29, RC=R5C10
Power (dBm)=2, RF freq (GHz)=29, RC=R5C13
Power (dBm)=2, RF freq (GHz)=29, RC=R6C11
Power (dBm)=2, RF freq (GHz)=29, RC=R7C11
Power (dBm)=2, RF freq (GHz)=29, RC=R7C13
Power (dBm)=2, RF freq (GHz)=30, RC=R5C10
Power (dBm)=2, RF freq (GHz)=30, RC=R5C13
Power (dBm)=2, RF freq (GHz)=30, RC=R6C11
Power (dBm)=2, RF freq (GHz)=30, RC=R7C11
Power (dBm)=2, RF freq (GHz)=30, RC=R7C13
tio
n
15
10
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R5C10
9
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R6C11
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R7C11
8
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R7C13
7
, Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R5C10
, Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R6C11
6
, Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R7C11
, Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R7C13
5
4
3
2
1
1
0
0
12
14
16
18
20
22
24
26
28
RF USB (GHz)
30
32
34
36
38
40
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
RF LSB (GHz)
Mimix Broadband, Inc., 10795 Rockley Rd., Houston, Texas 77099
Tel: 281.988.4600 Fax: 281.988.4615 mimixbroadband.com
Page 3 of 9
Characteristic Data and Specifications are subject to change without notice. ©2005 Mimix Broadband, Inc.
Export of this item may require appropriate export licensing from the U.S. Government. In purchasing these parts, U.S. Domestic customers accept
their obligation to be compliant with U.S. Export Laws.
18.0-36.0 GHz GaAs MMIC
Transmitter
26TX0555
August 2005 - Rev 04-Aug-05
Transmitter Measurements (cont.)
_0555_4samples: USB IIP3 (dBm) vs. RF (GHz)
IF = -10 dBm per tone, LO Power = 2 and 4 dBm, Nominal Bias
_0555_4samples: LSB IIP3 (dBm) vs. RF (GHz)
IF = -10dBm per tone, LO Power = 2 and 4dBm, Nominal Bias
17
20
16
19
15
18
14
17
13
15
14
11
13
10
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R5C10
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R6C11
9
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R7C11
8
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R7C13
7
, Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R5C10
, Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R6C11
LSB IIP3 (dBm)
USB IIP3 (dBm)
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R5C10
tio
n
16
12
12
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R5C12
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R6C11
11
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R7C11
10
, Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R7C13
, Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R5C10
9
, Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R5C12
8
6
, Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R6C11
, Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R7C11
, Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R7C11
7
5
, Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R7C13
, Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R7C13
6
4
5
3
4
2
3
1
2
1
0
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
0
12
RF USB (GHz)
14
16
18
20
22
24
26
28
30
32
34
36
38
40
Pr
e-
pr
od
uc
RF LSB (GHz)
Mimix Broadband, Inc., 10795 Rockley Rd., Houston, Texas 77099
Tel: 281.988.4600 Fax: 281.988.4615 mimixbroadband.com
Page 4 of 9
Characteristic Data and Specifications are subject to change without notice. ©2005 Mimix Broadband, Inc.
Export of this item may require appropriate export licensing from the U.S. Government. In purchasing these parts, U.S. Domestic customers accept
their obligation to be compliant with U.S. Export Laws.
18.0-36.0 GHz GaAs MMIC
Transmitter
26TX0555
August 2005 - Rev 04-Aug-05
Mechanical Drawing
0.305
(0.012)
0.904
(0.036)
2
3
4
5
2.504
(0.099)
2.904
(0.114)
6
7
tio
n
2.000
(0.079)
1.904 2.104
(0.075) (0.083)
0.295
(0.012)
uc
8
1
12
11
0.504
(0.020)
0.904
(0.036)
10
0.0
0.0
0.996
(0.039)
9
2.305
(0.091)
2.704
(0.106)
3.200
(0.126)
od
(Note: Engineering designator is 26TX0555)
Bond Pad #1 (RF Out)
Bond Pad #2 (Vd1)
pr
Units: millimeters (inches) Bond pad dimensions are shown to center of bond pad.
Thickness: 0.110 +/- 0.010 (0.0043 +/- 0.0004), Backside is ground, Bond Pad/Backside Metallization: Gold
All DC/IF Bond Pads are 0.100 x 0.100 (0.004 x 0.004). All RF Bond Pads are 0.100 x 0.200 (0.004 x 0.008).
Bond pad centers are approximately 0.109 (0.004) from the edge of the chip.
Dicing tolerance: +/- 0.005 (+/- 0.0002). Approximate weight: 3.968 mg.
Bond Pad #3 (IF1)
Bond Pad #4 (Vg4)
Bias Arrangement
Bond Pad #5 (Vg3)
Bond Pad #6 (Vg2)
e-
IF1
4
5
Vg2
Vss
6
RF
Bond Pad #11 (IF2)
Bond Pad #12 (Vg1)
Bypass Capacitors - See App Note [2]
7
Pr
3
Bond Pad #9 (Vd3)
Bond Pad #10 (Vd2)
Vg3
Vd1 Vg4
2
Bond Pad #7 (Vss)
Bond Pad #8 (LO)
8
LO
1
12
11
10
9
IF2
Vd2
Vg1
Vd3
Mimix Broadband, Inc., 10795 Rockley Rd., Houston, Texas 77099
Tel: 281.988.4600 Fax: 281.988.4615 mimixbroadband.com
Page 5 of 9
Characteristic Data and Specifications are subject to change without notice. ©2005 Mimix Broadband, Inc.
Export of this item may require appropriate export licensing from the U.S. Government. In purchasing these parts, U.S. Domestic customers accept
their obligation to be compliant with U.S. Export Laws.
18.0-36.0 GHz GaAs MMIC
Transmitter
26TX0555
August 2005 - Rev 04-Aug-05
tio
n
App Note [1] Biasing - As shown in the bonding diagram, this device is operated by separately biasing Vd(1,2,3)=5.0V,
Vss=-5.0V, Id1=230mA, Id2=140mA, Id3=75mA and Iss=50mA. Additionally, a mixer and doubler bias are also required
with Vg3=Vg4=-0.5V. Adjusting Vg3 and Vg4 above or below this value can adversely affect conversion gain, LO/RF
isolation and intercept point performance. Gain control can be adjusted by varying Vg1 from 0.0 to -1.2 V with 0.0 V
providing minimum attenuation and -1.2 V providing maximum attenuation. It is also recommended to use active
biasing to keep the currents constant as the RF power and temperature vary; this gives the most reproducible results.
Depending on the supply voltage available and the power dissipation constraints, the bias circuit may be a single
transistor or a low power operational amplifier, with a low value resistor in series with the drain supply used to sense the
current. The gate of the pHEMT is controlled to maintain correct drain current and thus drain voltage. The typical gate
voltage needed to do this is -0.2V. Typically the gate is protected with Silicon diodes to limit the applied voltage. Also,
make sure to sequence the applied voltage to ensure negative gate bias is available before applying the positive drain
supply.
uc
App Note [2] Bias Arrangement For Parallel Stage Bias (Recommended for general applications) -- The same as Individual Stage Bias but all the drain or
gate pad DC bypass capacitors (~100-200 pF) can be combined. Additional DC bypass capacitance (~0.01 uF) is also
recommended to all DC or combination (if gate or drains are tied together) of DC bias pads.
od
For Individual Stage Bias -- Each DC pad (Vd1,2,3, Vss, and Vg1,2,3,4) needs to have DC bypass capacitance (~100-200 pF)
as close to the device as possible. Additional DC bypass capacitance (~0.01 uF) is also recommended.
MTTF Tables (TBD)
These numbers were calculated based on accelerated life test information and thermal model analysis received from the fabricating foundry.
55 deg Celsius
Rth
MTTF Hours
FITs
deg Celsius
C/W
E+
E+
deg Celsius
C/W
E+
E+
C/W
E+
E+
e-
75 deg Celsius
Channel
Temperature
pr
Backplate
Temperature
95 deg Celsius
deg Celsius
Pr
Bias Conditions: Vd1=Vd2=Vd3=5.0V, Vss=-5.0V, Id1=230mA, Id2=140mA, Id3=75mA, Iss=50mA
Mimix Broadband, Inc., 10795 Rockley Rd., Houston, Texas 77099
Tel: 281.988.4600 Fax: 281.988.4615 mimixbroadband.com
Page 6 of 9
Characteristic Data and Specifications are subject to change without notice. ©2005 Mimix Broadband, Inc.
Export of this item may require appropriate export licensing from the U.S. Government. In purchasing these parts, U.S. Domestic customers accept
their obligation to be compliant with U.S. Export Laws.
18.0-36.0 GHz GaAs MMIC
Transmitter
26TX0555
August 2005 - Rev 04-Aug-05
App Note [3] USB/LSB Selection -
LSB
USB
tio
n
For Upper Side Band operation (USB):
With IF1 and IF2 connected to the
direct port (0º) and coupled port (180º)
respectively as shown in the diagram,
the USB signal will reside on the
isolated port. The input port must be
loaded with 50 ohms.
uc
IF2
For Lower Side Band operation (LSB):
With IF1 and IF2 connected to the
direct port (0º) and coupled port (180º)
respectively as shown in the diagram,
the LSB signal will reside on the input
port. The isolated port must be loaded
with 50 ohms.
od
IF1
An alternate method of Selection of USB or LSB:
pr
USB
In Phase Combiner
e-
In Phase Combiner
LSB
-180º
Pr
-180º
IF2
IF1
IF2
IF1
Mimix Broadband, Inc., 10795 Rockley Rd., Houston, Texas 77099
Tel: 281.988.4600 Fax: 281.988.4615 mimixbroadband.com
Page 7 of 9
Characteristic Data and Specifications are subject to change without notice. ©2005 Mimix Broadband, Inc.
Export of this item may require appropriate export licensing from the U.S. Government. In purchasing these parts, U.S. Domestic customers accept
their obligation to be compliant with U.S. Export Laws.
18.0-36.0 GHz GaAs MMIC
Transmitter
26TX0555
August 2005 - Rev 04-Aug-05
Device Schematic
Block Diagram
RF Out
RF In
RF
Vg1
LO Out
Vg4
LO In
Vg2
LO Out
LO In
LO
Vg3
Pr
e-
pr
od
IF2
Doubler
LO Buffer
LO
Vss
tio
n
Mixer
Output Amp
RF Out
Vd3
Vd2
IF1
uc
Vd1
Mimix Broadband, Inc., 10795 Rockley Rd., Houston, Texas 77099
Tel: 281.988.4600 Fax: 281.988.4615 mimixbroadband.com
Page 8 of 9
Characteristic Data and Specifications are subject to change without notice. ©2005 Mimix Broadband, Inc.
Export of this item may require appropriate export licensing from the U.S. Government. In purchasing these parts, U.S. Domestic customers accept
their obligation to be compliant with U.S. Export Laws.
18.0-36.0 GHz GaAs MMIC
Transmitter
26TX0555
August 2005 - Rev 04-Aug-05
Handling and Assembly Information
CAUTION! - Mimix Broadband MMIC Products contain gallium arsenide (GaAs) which can be hazardous to the
human body and the environment. For safety, observe the following procedures:
tio
n
Do not ingest.
Do not alter the form of this product into a gas, powder, or liquid through burning, crushing, or chemical
processing as these by-products are dangerous to the human body if inhaled, ingested, or swallowed.
Observe government laws and company regulations when discarding this product. This product must be
discarded in accordance with methods specified by applicable hazardous waste procedures.
uc
Life Support Policy - Mimix Broadband's products are not authorized for use as critical components in life support
devices or systems without the express written approval of the President and General Counsel of Mimix
Broadband. As used herein: (1) Life support devices or systems are devices or systems which, (a) are intended for
surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in
accordance with instructions for use provided in the labeling, can be reasonably expected to result in a
significant injury to the user. (2) A critical component is any component of a life support device or system whose
failure to perform can be reasonably expected to cause the failure of the life support device or system, or to
affect its safety or effectiveness.
od
ESD - Gallium Arsenide (GaAs) devices are susceptible to electrostatic and mechanical damage. Die are supplied
in antistatic containers, which should be opened in cleanroom conditions at an appropriately grounded antistatic workstation. Devices need careful handling using correctly designed collets, vacuum pickups or, with care,
sharp tweezers.
Pr
e-
pr
Die Attachment - GaAs Products from Mimix Broadband are 0.100 mm (0.004") thick and have vias through to the
backside to enable grounding to the circuit. Microstrip substrates should be brought as close to the die as
possible. The mounting surface should be clean and flat. If using conductive epoxy, recommended epoxies are
Ablestick 84-1LMI or 84-1LMIT cured in a nitrogen atmosphere per manufacturer's cure schedule. Apply epoxy
sparingly to avoid getting any on to the top surface of the die. An epoxy fillet should be visible around the total
die periphery. If eutectic mounting is preferred, then a fluxless gold-tin (AuSn) preform, approximately 0.001 2
thick, placed between the die and the attachment surface should be used. A die bonder that utilizes a heated
collet and provides scrubbing action to ensure total wetting to prevent void formation in a nitrogen atmosphere
is recommended. The gold-tin eutectic (80% Au 20% Sn) has a melting point of approximately 280 C (Note: Gold
Germanium should be avoided). The work station temperature should be 310 C +- 10 C. Exposure to these
extreme temperatures should be kept to minimum. The collet should be heated, and the die pre-heated to avoid
excessive thermal shock. Avoidance of air bridges and force impact are critical during placement.
Wire Bonding - Windows in the surface passivation above the bond pads are provided to allow wire bonding to
the die's gold bond pads. The recommended wire bonding procedure uses 0.076 mm x 0.013 mm (0.003" x
0.0005") 99.99% pure gold ribbon with 0.5-2% elongation to minimize RF port bond inductance. Gold 0.025 mm
(0.001") diameter wedge or ball bonds are acceptable for DC Bias connections. Aluminum wire should be
avoided. Thermo-compression bonding is recommended though thermosonic bonding may be used providing
the ultrasonic content of the bond is minimized. Bond force, time and ultrasonics are all critical parameters.
Bonds should be made from the bond pads on the die to the package or substrate. All bonds should be as short
as possible.
Mimix Broadband, Inc., 10795 Rockley Rd., Houston, Texas 77099
Tel: 281.988.4600 Fax: 281.988.4615 mimixbroadband.com
Page 9 of 9
Characteristic Data and Specifications are subject to change without notice. ©2005 Mimix Broadband, Inc.
Export of this item may require appropriate export licensing from the U.S. Government. In purchasing these parts, U.S. Domestic customers accept
their obligation to be compliant with U.S. Export Laws.