18.0-36.0 GHz GaAs MMIC Transmitter July 2007 - Rev 27-Jul-07 Features Sub-harmonic Transmitter Integrated Mixer, LO Doubler/Buffer & Output Amplifier +25.0 dBm Output Third Order Intercept (OIP3) 35.0 dB Gain Control 2.0 dBm LO Drive Level 9.0 dB Conversion Gain 100% On-Wafer RF and DC Testing 100% Visual Inspection to MIL-STD-883 Method 2010 Chip Device Layout XU1009-BD General Description Mimix Broadband’s 18.0-36.0 GHz GaAs MMIC transmitter has a +25.0 dBm output third order intercept across the band. This device is a balanced resistive pHEMT mixer followed by a distributed amplifier and includes an integrated LO doubler and LO buffer amplifier. The use of integrated LO doubler and LO buffer amplifier makes the provision of the LO easier than for fundamental mixers at these frequencies. IF and IF mixer inputs are provided through an external 180 degree hybrid. This MMIC uses Mimix Broadband’s 0.15 µm GaAs PHEMT device model technology, and is based upon electron beam lithography to ensure high repeatability and uniformity. The chip has surface passivation to protect and provide a rugged part with backside via holes and gold metallization to allow either a conductive epoxy or eutectic solder die attach process. This device is well suited for Millimeter-wave Point-to-Point Radio, LMDS, SATCOM and VSAT applications. U1009-BD Absolute Maximum Ratings Supply Voltage (Vd) Supply Current (Id1,2,3) Gate Bias Voltage (Vg) Input Power (IF Pin) Storage Temperature (Tstg) Operating Temperature (Ta) Channel Temperature (Tch) +6.0 VDC 320,190,110 mA +0.3 VDC 0.0 dBm -65 to +165 OC -55 to MTTF Table 3 MTTF Table 3 (1) Measured using constant current. (2) Measured using LO Input drive level of +2.0 dBm. (3) Channel temperature affects a device's MTTF. It is recommended to keep channel temperature as low as possible for maximum life. Electrical Characteristics (Ambient Temperature T = 25o C) Parameter Frequency Range (RF) Upper Side Band Frequency Range (RF) Lower Side Band Frequency Range (LO) Frequency Range (IF) Output Return Loss RF (S22) Small Signal Conversion Gain IF/RF (S21) 2 LO Input Drive (PLO) Isolation LO/RF @ LOx1 Isolation LO/RF @ LOx2 Output Third Order Intercept (OIP3)1,2 Drain Bias Voltage (Vd1,2,3) Source Bias Voltage (Vss) Gate Bias Voltage (Vg1,2) Gate Bias Voltage (Vg3,4) Doubler, Mixer Supply Current (Id1) (Vd1=5.0V, Vg=-0.2V Typical) Supply Current (Id2) (Vd2=5.0V, Vg=-0.1V Typical) Supply Current (Id3) (Vd3=5.0V, Vg=-0.5V Typical) Supply Current (Iss) (Vss=-5.0V) Units GHz GHz GHz GHz dB dB dBm dB dB dBm VDC VDC VDC VDC mA mA mA mA Min. 18.0 18.0 8.0 DC -1.2 -1.2 - Mimix Broadband, Inc., 10795 Rockley Rd., Houston, Texas 77099 Tel: 281.988.4600 Fax: 281.988.4615 mimixbroadband.com Typ. 14.0 9.0 +2.0 15.0 5.0 +25.0 +5.0 -5.0 -0.2 -0.5 230 140 75 50 Max. 36.0 36.0 19.5 3.0 +5.5 +0.1 +0.1 280 170 90 60 Page 1 of 9 Characteristic Data and Specifications are subject to change without notice. ©2007 Mimix Broadband, Inc. Export of this item may require appropriate export licensing from the U.S. Government. In purchasing these parts, U.S. Domestic customers accept their obligation to be compliant with U.S. Export Laws. 18.0-36.0 GHz GaAs MMIC Transmitter U1009-BD July 2007 - Rev 27-Jul-07 Transmitter Measurements XU1009-BD_5samples: USB Conversion gain (dB) vs. RF USB (GHz) IF1_ONLY = 1.84 GHz, -10dBm, LO = 0, 2 & 4 dBm XU1009-BD_samp les: LSB Conversion gain (dB) vs. RF LSB (GHz) IF1_ONLY = 1.84 GHz, -10dBm, LO = 0, 2 & 4 dBm 20 20 18 18 16 16 , Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R5C10 , Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R5C13 , Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R6C11 12 , Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R7C11 , Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R7C13 10 , Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R5C10 , Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R5C13 8 , Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R6C11 , Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R7C11 6 , Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R5C10 14 LSB Conversion gain (dB) USB Conversion gain (dB) 14 , Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R5C13 , Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R6C11 12 , Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R7C11 , Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R7C13 10 , Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R5C10 , Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R5C13 8 , Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R6C11 , Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R7C11 6 , Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R7C13 , Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R7C13 , Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R5C10 , Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R5C10 4 4 , Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R5C13 , Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R5C13 , Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R6C11 , Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R6C11 2 2 , Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R7C11 , Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R7C11 , Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R7C13 , Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R7C13 0 0 19 20 21 22 23 24 25 26 27 28 29 30 19 31 20 21 22 23 24 25 26 27 28 29 30 31 RF LSB (GHz) RF USB (GHz) XU1009-BD_5samples: LO to RF gain (dB) vs. LO freq (GHz) IF1_ONLY = 1.84 GHz, -10dBm, LO = 0, 2 & 4 dBm XU1009-BD_5samples: LOx2 to RF gain (dB) vs. LO freq (GHz) IF1_ONLY = 1.84 GHz, -10dBm, LO = 0, 2 & 4 dBm 5 20 0 15 -5 10 , Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R5C10 , Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R5C13 -10 5 , Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R7C11 , Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R7C13 -15 , Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R5C10 , Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R5C13 , Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R6C11 , Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R7C11 -20 , Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R7C13 , Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R5C10 , Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R5C13 -25 , Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R6C11 , Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R7C11 LOx2 to RF gain (dB) LO to RF gain (dB) , Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R6C11 , Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R5C10 , Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R5C13 0 , Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R6C11 , Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R7C11 , Vg1 (V)=-0.2, LO Power (dBm)=0, RC=R7C13 -5 , Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R5C10 , Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R5C13 -10 , Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R6C11 , Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R7C11 , Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R7C13 -15 , Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R7C13 -30 , Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R5C10 -20 , Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R5C13 -35 , Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R6C11 -25 , Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R7C11 , Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R7C13 -40 8 9 10 11 12 13 14 15 16 -30 17 8 LO freq (GHz) 9 10 11 12 13 14 15 16 17 LO freq (GHz) XU1009-BD_4samples: OIP3 and IIP3 (dBm) vs. RF LSB (GHz) IF1_ONLY = -3dBm per Tone, 2 and 2.1 GHz, LO = 0, 2 & 4 dBm XU1009-BD _4samples: OIP3 and IIP3 (dBm) vs. RF USB (GHz) IF1_ONLY = -3dBm per Tone, 2 and 2.1 GHz, LO = 0, 2 & 4 dBm 30 30 28 OIP3 (dBm) 28 OIP3 (dBm) 26 26 , LO Power (dBm)=0, RC=R5C10 , LO Power (dBm)=0, RC=R5C10 24 24 , LO Power (dBm)=0, RC=R5C13 , LO Power (dBm)=0, RC=R5C13 , LO Power (dBm)=0, RC=R7C11 , LO Power (dBm)=0, RC=R7C11 22 22 , LO Power (dBm)=0, RC=R7C13 , LO Power (dBm)=0, RC=R7C13 , LO Power (dBm)=2, RC=R5C10 , LO Power (dBm)=2, RC=R5C10 20 , LO Power (dBm)=2, RC=R5C13 , LO Power (dBm)=2, RC=R7C11 18 , LO Power (dBm)=2, RC=R7C13 IIP3 (dBm) , LO Power (dBm)=4, RC=R5C10 16 , LO Power (dBm)=4, RC=R5C13 , LO Power (dBm)=4, RC=R7C11 14 , LO Power (dBm)=4, RC=R7C13 , LO Power (dBm)=0, RC=R5C10 12 , LO Power (dBm)=0, RC=R5C13 , LO Power (dBm)=0, RC=R7C11 10 OIP3 and IIP3 (dBm) OIP3 and IIP3 (dBm) 20 , LO Power (dBm)=2, RC=R5C13 IIP3 (dBm) , LO Power (dBm)=2, RC=R7C11 18 , LO Power (dBm)=2, RC=R7C13 , LO Power (dBm)=4, RC=R5C10 16 , LO Power (dBm)=4, RC=R5C13 , LO Power (dBm)=4, RC=R7C11 14 , LO Power (dBm)=4, RC=R7C13 , LO Power (dBm)=0, RC=R5C10 12 , LO Power (dBm)=0, RC=R5C13 , LO Power (dBm)=0, RC=R7C11 10 , LO Power (dBm)=0, RC=R7C13 , LO Power (dBm)=0, RC=R7C13 , LO Power (dBm)=2, RC=R5C10 8 , LO Power (dBm)=2, RC=R5C10 8 , LO Power (dBm)=2, RC=R5C13 6 , LO Power (dBm)=2, RC=R7C11 , LO Power (dBm)=2, RC=R5C13 6 , LO Power (dBm)=2, RC=R7C11 , LO Power (dBm)=2, RC=R7C13 , LO Power (dBm)=2, RC=R7C13 4 , LO Power (dBm)=4, RC=R5C10 4 , LO Power (dBm)=4, RC=R5C10 , LO Power (dBm)=4, RC=R5C13 2 , LO Power (dBm)=4, RC=R7C11 , LO Power (dBm)=4, RC=R5C13 2 , LO Power (dBm)=4, RC=R7C11 , LO Power (dBm)=4, RC=R7C13 , LO Power (dBm)=4, RC=R7C13 0 0 19 20 21 22 23 24 25 RF USB (GHz) 26 27 28 29 30 31 19 20 21 22 23 24 25 26 27 28 29 30 31 RF LSB (GHz) Mimix Broadband, Inc., 10795 Rockley Rd., Houston, Texas 77099 Tel: 281.988.4600 Fax: 281.988.4615 mimixbroadband.com Page 2 of 8 Characteristic Data and Specifications are subject to change without notice. ©2007 Mimix Broadband, Inc. Export of this item may require appropriate export licensing from the U.S. Government. In purchasing these parts, U.S. Domestic customers accept their obligation to be compliant with U.S. Export Laws. 18.0-36.0 GHz GaAs MMIC Transmitter U1009-BD July 2007 - Rev 27-Jul-07 Transmitter Measurements (cont.) XU1009-BD_5samples: USB Conversion gain (dB) vs. Vg1 (V) IF1_ONLY = 1.84 GHz, -10dBm, LO = 0, 2 & 4 dBm 15 , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO , LO 10 5 USB Conversion gain (dB) 0 -5 -10 -15 -20 -25 -30 -35 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 Vg1 (V) 450 20 400 15 350 10 300 5 250 0 200 -5 150 -10 100 -15 50 -20 0 -1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 , RF USB (GHz)=21, RC=R5C10 , RF USB (GHz)=21, RC=R5C12 , RF USB (GHz)=21, RC=R6C11 , RF USB (GHz)=21, RC=R7C11 , RF USB (GHz)=21, RC=R7C13 , RF USB (GHz)=23, RC=R5C10 , RF USB (GHz)=23, RC=R5C12 , RF USB (GHz)=23, RC=R6C11 , RF USB (GHz)=23, RC=R7C11 , RF USB (GHz)=23, RC=R7C13 , RF USB (GHz)=25, RC=R5C10 , RF USB (GHz)=25, RC=R5C12 , RF USB (GHz)=25, RC=R6C11 , RF USB (GHz)=25, RC=R7C11 , RF USB (GHz)=25, RC=R7C13 , RF USB (GHz)=27, RC=R5C10 , RF USB (GHz)=27, RC=R5C12 , RF USB (GHz)=27, RC=R6C11 , RF USB (GHz)=27, RC=R7C11 , RF USB (GHz)=27, RC=R7C13 , RF USB (GHz)=29, RC=R5C10 , RF USB (GHz)=29, RC=R5C12 , RF USB (GHz)=29, RC=R6C11 , RF USB (GHz)=29, RC=R7C11 , RF USB (GHz)=29, RC=R7C13 , RF USB (GHz)=21, RC=R5C10 , RF USB (GHz)=21, RC=R5C12 , RF USB (GHz)=21, RC=R6C11 , RF USB (GHz)=21, RC=R7C11 , RF USB (GHz)=21, RC=R7C13 , RF USB (GHz)=23, RC=R5C10 , RF USB (GHz)=23, RC=R5C12 , RF USB (GHz)=23, RC=R6C11 , RF USB (GHz)=23, RC=R7C11 , RF USB (GHz)=23, RC=R7C13 , RF USB (GHz)=25, RC=R5C10 , RF USB (GHz)=25, RC=R6C11 , RF USB (GHz)=25, RC=R7C11 , RF USB (GHz)=25, RC=R7C13 , RF USB (GHz)=27, RC=R5C10 , RF USB (GHz)=27, RC=R5C12 , RF USB (GHz)=27, RC=R6C11 , RF USB (GHz)=27, RC=R7C11 , RF USB (GHz)=27, RC=R7C13 , RF USB (GHz)=29, RC=R5C10 , RF USB (GHz)=29, RC=R5C12 , RF USB (GHz)=29, RC=R6C11 , RF USB (GHz)=29, RC=R7C11 , RF USB (GHz)=29, RC=R7C13 , RF USB (GHz)=21, RC=R5C10 , RF USB (GHz)=21, RC=R5C12 , RF USB (GHz)=21, RC=R6C11 , RF USB (GHz)=21, RC=R7C11 , RF USB (GHz)=21, RC=R7C13 , RF USB (GHz)=23, RC=R5C10 , RF USB (GHz)=23, RC=R5C12 , RF USB (GHz)=23, RC=R6C11 , RF USB (GHz)=23, RC=R7C11 , RF USB (GHz)=23, RC=R7C13 , RF USB (GHz)=25, RC=R5C10 , RF USB (GHz)=25, RC=R5C12 , RF USB (GHz)=25, RC=R6C11 , RF USB (GHz)=25, RC=R7C11 , RF USB (GHz)=25, RC=R7C13 , RF USB (GHz)=27, RC=R5C10 RF USB (GHz)=27 RC=R5C12 XU1009-BD_5samples: LSB Conv Gain (dB) and IIP3 (dBm) vs. Vg1 (V) IF1_ONLY = -3dBm per Tone, 2 and 2.1 GHz, LO = 2dBm 25 20 15 LSB Conv Gain (dB) and IIP3 (dBm) USB Conv Gain (dB) and IIP3 (dBm) XU1009-BD_5samples: USB Conv Gain (dB), Id1 & IIP3 (dBm) vs. Vg1 (V) IF1_ONLY = -3dBm per Tone, 2 and 2.1 GHz, LO = 2dBm 25 Power (dBm)=2, RF freq (GHz)=20, RC=R5C10 Power (dBm)=2, RF freq (GHz)=20, RC=R5C13 Power (dBm)=2, RF freq (GHz)=20, RC=R6C11 Power (dBm)=2, RF freq (GHz)=20, RC=R7C11 Power (dBm)=2, RF freq (GHz)=20, RC=R7C13 Power (dBm)=2, RF freq (GHz)=21, RC=R5C10 Power (dBm)=2, RF freq (GHz)=21, RC=R5C13 Power (dBm)=2, RF freq (GHz)=21, RC=R6C11 Power (dBm)=2, RF freq (GHz)=21, RC=R7C11 Power (dBm)=2, RF freq (GHz)=21, RC=R7C13 Power (dBm)=2, RF freq (GHz)=22, RC=R5C10 Power (dBm)=2, RF freq (GHz)=22, RC=R5C13 Power (dBm)=2, RF freq (GHz)=22, RC=R6C11 Power (dBm)=2, RF freq (GHz)=22, RC=R7C11 Power (dBm)=2, RF freq (GHz)=22, RC=R7C13 Power (dBm)=2, RF freq (GHz)=23, RC=R5C10 Power (dBm)=2, RF freq (GHz)=23, RC=R5C13 Power (dBm)=2, RF freq (GHz)=23, RC=R6C11 Power (dBm)=2, RF freq (GHz)=23, RC=R7C11 Power (dBm)=2, RF freq (GHz)=23, RC=R7C13 Power (dBm)=2, RF freq (GHz)=24, RC=R5C10 Power (dBm)=2, RF freq (GHz)=24, RC=R5C13 Power (dBm)=2, RF freq (GHz)=24, RC=R6C11 Power (dBm)=2, RF freq (GHz)=24, RC=R7C11 Power (dBm)=2, RF freq (GHz)=24, RC=R7C13 Power (dBm)=2, RF freq (GHz)=25, RC=R5C10 Power (dBm)=2, RF freq (GHz)=25, RC=R5C13 Power (dBm)=2, RF freq (GHz)=25, RC=R6C11 Power (dBm)=2, RF freq (GHz)=25, RC=R7C11 Power (dBm)=2, RF freq (GHz)=25, RC=R7C13 Power (dBm)=2, RF freq (GHz)=26, RC=R5C10 Power (dBm)=2, RF freq (GHz)=26, RC=R5C13 Power (dBm)=2, RF freq (GHz)=26, RC=R6C11 Power (dBm)=2, RF freq (GHz)=26, RC=R7C11 Power (dBm)=2, RF freq (GHz)=26, RC=R7C13 Power (dBm)=2, RF freq (GHz)=27, RC=R5C10 Power (dBm)=2, RF freq (GHz)=27, RC=R5C13 Power (dBm)=2, RF freq (GHz)=27, RC=R6C11 Power (dBm)=2, RF freq (GHz)=27, RC=R7C11 Power (dBm)=2, RF freq (GHz)=27, RC=R7C13 Power (dBm)=2, RF freq (GHz)=28, RC=R5C10 Power (dBm)=2, RF freq (GHz)=28, RC=R5C13 Power (dBm)=2, RF freq (GHz)=28, RC=R6C11 Power (dBm)=2, RF freq (GHz)=28, RC=R7C11 Power (dBm)=2, RF freq (GHz)=28, RC=R7C13 Power (dBm)=2, RF freq (GHz)=29, RC=R5C10 Power (dBm)=2, RF freq (GHz)=29, RC=R5C13 Power (dBm)=2, RF freq (GHz)=29, RC=R6C11 Power (dBm)=2, RF freq (GHz)=29, RC=R7C11 Power (dBm)=2, RF freq (GHz)=29, RC=R7C13 Power (dBm)=2, RF freq (GHz)=30, RC=R5C10 Power (dBm)=2, RF freq (GHz)=30, RC=R5C13 Power (dBm)=2, RF freq (GHz)=30, RC=R6C11 Power (dBm)=2, RF freq (GHz)=30, RC=R7C11 Power (dBm)=2, RF freq (GHz)=30, RC=R7C13 10 5 0 -5 -10 -15 -20 -1 -0.9 -0.8 -0.7 -0.6 -0.5 Vg1 (V) -0.3 -0.2 -0.1 0 0.1 0.2 Vg1 (V) XU1009-0BD_4samples: LSB Conversion Gain (dB) vs. RF (GHz) IF = -10 dBm per tone, LO Power = 2 and 4 dBm, Nominal Bias XU1009-BD_4samples: USB Conversion Gain (dB) vs. RF (GHz) IF = -10 dBm per tone, LO Power = 2 and 4 dBm, Nominal Bias 15 15 14 14 13 13 12 12 11 11 10 , Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R5C10 9 , Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R6C11 , Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R7C11 8 , Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R7C13 7 , Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R5C10 , Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R6C11 6 , Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R7C11 5 , Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R7C13 LSB Conversion Gain (dB) USB Conversion Gain (dB) -0.4 , RF LSB (GHz)=21, RC=R5C10 , RF LSB (GHz)=21, RC=R5C12 , RF LSB (GHz)=21, RC=R6C11 , RF LSB (GHz)=21, RC=R7C11 , RF LSB (GHz)=21, RC=R7C13 , RF LSB (GHz)=23, RC=R5C10 , RF LSB (GHz)=23, RC=R5C12 , RF LSB (GHz)=23, RC=R6C11 , RF LSB (GHz)=23, RC=R7C11 , RF LSB (GHz)=23, RC=R7C13 , RF LSB (GHz)=25, RC=R5C10 , RF LSB (GHz)=25, RC=R5C12 , RF LSB (GHz)=25, RC=R6C11 , RF LSB (GHz)=25, RC=R7C11 , RF LSB (GHz)=25, RC=R7C13 , RF LSB (GHz)=27, RC=R5C10 , RF LSB (GHz)=27, RC=R5C12 , RF LSB (GHz)=27, RC=R6C11 , RF LSB (GHz)=27, RC=R7C11 , RF LSB (GHz)=27, RC=R7C13 , RF LSB (GHz)=29, RC=R5C10 , RF LSB (GHz)=29, RC=R5C12 , RF LSB (GHz)=29, RC=R6C11 , RF LSB (GHz)=29, RC=R7C13 , RF LSB (GHz)=21, RC=R5C10 , RF LSB (GHz)=21, RC=R5C12 , RF LSB (GHz)=21, RC=R6C11 , RF LSB (GHz)=21, RC=R7C11 , RF LSB (GHz)=21, RC=R7C13 , RF LSB (GHz)=23, RC=R5C10 , RF LSB (GHz)=23, RC=R5C12 , RF LSB (GHz)=23, RC=R6C11 , RF LSB (GHz)=23, RC=R7C11 , RF LSB (GHz)=23, RC=R7C13 , RF LSB (GHz)=25, RC=R5C10 , RF LSB (GHz)=25, RC=R5C12 , RF LSB (GHz)=25, RC=R6C11 , RF LSB (GHz)=25, RC=R7C11 , RF LSB (GHz)=25, RC=R7C13 , RF LSB (GHz)=27, RC=R5C10 , RF LSB (GHz)=27, RC=R5C12 , RF LSB (GHz)=27, RC=R6C11 , RF LSB (GHz)=27, RC=R7C11 , RF LSB (GHz)=27, RC=R7C13 , RF LSB (GHz)=29, RC=R5C10 , RF LSB (GHz)=29, RC=R5C12 , RF LSB (GHz)=29, RC=R6C11 , RF LSB (GHz)=29, RC=R7C13 10 , Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R5C10 9 , Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R6C11 , Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R7C11 8 , Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R7C13 7 , Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R5C10 , Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R6C11 6 , Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R7C11 5 4 4 3 3 2 2 , Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R7C13 1 1 0 0 12 14 16 18 20 22 24 26 28 RF USB (GHz) 30 32 34 36 38 40 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 RF LSB (GHz) Mimix Broadband, Inc., 10795 Rockley Rd., Houston, Texas 77099 Tel: 281.988.4600 Fax: 281.988.4615 mimixbroadband.com Page 3 of 9 Characteristic Data and Specifications are subject to change without notice. ©2007 Mimix Broadband, Inc. Export of this item may require appropriate export licensing from the U.S. Government. In purchasing these parts, U.S. Domestic customers accept their obligation to be compliant with U.S. Export Laws. 18.0-36.0 GHz GaAs MMIC Transmitter U1009-BD July 2007 - Rev 27-Jul-07 Transmitter Measurements (cont.) XU1009-BD_4samples: USB IIP3 (dBm) vs. RF (GHz) IF = -10 dBm per tone, LO Power = 2 and 4 dBm, Nominal Bias XU1009-BD_4samples: LSB IIP3 (dBm) vs. RF (GHz) IF = -10dBm per tone, LO Power = 2 and 4dBm, Nominal Bias 17 20 16 19 15 18 14 17 13 16 15 12 14 11 10 13 9 , Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R7C11 8 , Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R7C13 7 , Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R5C10 LSB IIP3 (dBm) , Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R6C11 , Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R6C11 6 , Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R5C12 , Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R6C11 11 , Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R7C11 10 , Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R7C13 , Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R5C10 9 , Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R5C12 8 7 , Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R7C13 6 4 , Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R5C10 12 , Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R7C11 5 , Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R6C11 , Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R7C11 , Vg1 (V)=-0.2, LO Power (dBm)=4, RC=R7C13 5 3 4 2 3 1 2 1 0 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 0 12 RF USB (GHz) 14 16 18 20 22 24 26 28 30 32 34 36 38 40 RF LSB (GHz) 250 60 225 55 200 50 175 45 150 40 125 35 100 Rth (C/W) XU1009-BD Tch_max and Rth vs. Backplate Temp Nominal Datasheet Bias Conditions Tch_max (C) USB IIP3 (dBm) , Vg1 (V)=-0.2, LO Power (dBm)=2, RC=R5C10 30 Tch_max (C) 75 Rth (C/W) 50 20 30 40 50 60 70 80 90 100 110 120 130 25 20 140 Backplate Temp (C) Mimix Broadband, Inc., 10795 Rockley Rd., Houston, Texas 77099 Tel: 281.988.4600 Fax: 281.988.4615 mimixbroadband.com Page 4 of 9 Characteristic Data and Specifications are subject to change without notice. ©2007 Mimix Broadband, Inc. Export of this item may require appropriate export licensing from the U.S. Government. In purchasing these parts, U.S. Domestic customers accept their obligation to be compliant with U.S. Export Laws. 18.0-36.0 GHz GaAs MMIC Transmitter U1009-BD July 2007 - Rev 27-Jul-07 Mechanical Drawing 0.305 (0.012) 0.904 (0.036) 2 3 2.000 (0.079) 1.904 2.104 (0.075) (0.083) 4 5 2.504 (0.099) 2.904 (0.114) 6 7 8 0.295 (0.012) 1 0.996 (0.039) XU1009-BD 12 11 0.504 (0.020) 0.904 (0.036) 0.0 0.0 10 9 2.305 (0.091) 2.704 (0.106) 3.200 (0.126) (Note: Engineering designator is 26TX0555) Units: millimeters (inches) Bond pad dimensions are shown to center of bond pad. Thickness: 0.110 +/- 0.010 (0.0043 +/- 0.0004), Backside is ground, Bond Pad/Backside Metallization: Gold All DC/IF Bond Pads are 0.100 x 0.100 (0.004 x 0.004). All RF Bond Pads are 0.100 x 0.200 (0.004 x 0.008). Bond pad centers are approximately 0.109 (0.004) from the edge of the chip. Dicing tolerance: +/- 0.005 (+/- 0.0002). Approximate weight: 3.968 mg. Bond Pad #1 (RF Out) Bond Pad #2 (Vd1) Bond Pad #3 (IF1) Bond Pad #4 (Vg4) Bond Pad #5 (Vg3) Bond Pad #6 (Vg2) Bias Arrangement Bond Pad #7 (Vss) Bond Pad #8 (LO) Bond Pad #9 (Vd3) Bond Pad #10 (Vd2) Bond Pad #11 (IF2) Bond Pad #12 (Vg1) Vg3 Vd1 Vg4 Vg2 Vss Bypass Capacitors - See App Note [2] IF1 2 3 4 5 6 7 8 RF 1 LO XU1009-BD 12 11 10 9 IF2 Vg1 Vd2 Vd3 Mimix Broadband, Inc., 10795 Rockley Rd., Houston, Texas 77099 Tel: 281.988.4600 Fax: 281.988.4615 mimixbroadband.com Page 5 of 9 Characteristic Data and Specifications are subject to change without notice. ©2007 Mimix Broadband, Inc. Export of this item may require appropriate export licensing from the U.S. Government. In purchasing these parts, U.S. Domestic customers accept their obligation to be compliant with U.S. Export Laws. 18.0-36.0 GHz GaAs MMIC Transmitter U1009-BD July 2007 - Rev 27-Jul-07 App Note [1] Biasing - As shown in the bonding diagram, this device is operated by separately biasing Vd(1,2,3)=5.0V, Vss=-5.0V, Id1=230mA, Id2=140mA, Id3=75mA and Iss=50mA. Additionally, a mixer and doubler bias are also required with Vg3=Vg4=-0.5V. Adjusting Vg3 and Vg4 above or below this value can adversely affect conversion gain, LO/RF isolation and intercept point performance. Gain control can be adjusted by varying Vg1 from 0.0 to -1.2 V with 0.0 V providing minimum attenuation and -1.2 V providing maximum attenuation. It is also recommended to use active biasing to keep the currents constant as the RF power and temperature vary; this gives the most reproducible results. Depending on the supply voltage available and the power dissipation constraints, the bias circuit may be a single transistor or a low power operational amplifier, with a low value resistor in series with the drain supply used to sense the current. The gate of the pHEMT is controlled to maintain correct drain current and thus drain voltage. The typical gate voltage needed to do this is -0.2V. Typically the gate is protected with Silicon diodes to limit the applied voltage. Also, make sure to sequence the applied voltage to ensure negative gate bias is available before applying the positive drain supply. App Note [2] Bias Arrangement For Parallel Stage Bias (Recommended for general applications) -- The same as Individual Stage Bias but all the drain or gate pad DC bypass capacitors (~100-200 pF) can be combined. Additional DC bypass capacitance (~0.01 uF) is also recommended to all DC or combination (if gate or drains are tied together) of DC bias pads. For Individual Stage Bias -- Each DC pad (Vd1,2,3, Vss, and Vg1,2,3,4) needs to have DC bypass capacitance (~100-200 pF) as close to the device as possible. Additional DC bypass capacitance (~0.01 uF) is also recommended. MTTF These numbers were calculated based on accelerated life test information and thermal model analysis received from the fabricating foundry. XU1009-BD MTTF (hours) vs. Backplate Temp (degC) Nominal Datasheet Bias Conditions 1.0E+10 1.0E+09 MTTF (hours) 1.0E+08 1.0E+07 1.0E+06 1.0E+05 1.0E+04 20 30 40 50 60 70 80 90 100 110 120 130 Backplate Temp (C) Mimix Broadband, Inc., 10795 Rockley Rd., Houston, Texas 77099 Tel: 281.988.4600 Fax: 281.988.4615 mimixbroadband.com Page 6 of 9 Characteristic Data and Specifications are subject to change without notice. ©2007 Mimix Broadband, Inc. Export of this item may require appropriate export licensing from the U.S. Government. In purchasing these parts, U.S. Domestic customers accept their obligation to be compliant with U.S. Export Laws. 18.0-36.0 GHz GaAs MMIC Transmitter U1009-BD July 2007 - Rev 27-Jul-07 App Note [3] USB/LSB Selection - LSB USB IF2 For Upper Side Band operation (USB): With IF1 and IF2 connected to the direct port (0º) and coupled port (180º) respectively as shown in the diagram, the USB signal will reside on the isolated port. The input port must be loaded with 50 ohms. For Lower Side Band operation (LSB): With IF1 and IF2 connected to the direct port (0º) and coupled port (180º) respectively as shown in the diagram, the LSB signal will reside on the input port. The isolated port must be loaded with 50 ohms. IF1 An alternate method of Selection of USB or LSB: USB LSB In Phase Combiner In Phase Combiner -180º -180º IF2 IF1 IF2 IF1 Mimix Broadband, Inc., 10795 Rockley Rd., Houston, Texas 77099 Tel: 281.988.4600 Fax: 281.988.4615 mimixbroadband.com Page 7 of 9 Characteristic Data and Specifications are subject to change without notice. ©2007 Mimix Broadband, Inc. Export of this item may require appropriate export licensing from the U.S. Government. In purchasing these parts, U.S. Domestic customers accept their obligation to be compliant with U.S. Export Laws. 18.0-36.0 GHz GaAs MMIC Transmitter U1009-BD July 2007 - Rev 27-Jul-07 Device Schematic Block Diagram Vd1 Mixer Output Amp RF Out RF Out Vg1 RF In RF Vg4 LO Out LO In Vg2 Vss Doubler LO Buffer LO IF2 Vd3 Vd2 IF1 LO Out LO In LO Vg3 Mimix Broadband, Inc., 10795 Rockley Rd., Houston, Texas 77099 Tel: 281.988.4600 Fax: 281.988.4615 mimixbroadband.com Page 8 of 9 Characteristic Data and Specifications are subject to change without notice. ©2007 Mimix Broadband, Inc. Export of this item may require appropriate export licensing from the U.S. Government. In purchasing these parts, U.S. Domestic customers accept their obligation to be compliant with U.S. Export Laws. 18.0-36.0 GHz GaAs MMIC Transmitter U1009-BD July 2007 - Rev 27-Jul-07 Handling and Assembly Information CAUTION! - Mimix Broadband MMIC Products contain gallium arsenide (GaAs) which can be hazardous to the human body and the environment. For safety, observe the following procedures: Do not ingest. Do not alter the form of this product into a gas, powder, or liquid through burning, crushing, or chemical processing as these by-products are dangerous to the human body if inhaled, ingested, or swallowed. Observe government laws and company regulations when discarding this product. This product must be discarded in accordance with methods specified by applicable hazardous waste procedures. Life Support Policy - Mimix Broadband's products are not authorized for use as critical components in life support devices or systems without the express written approval of the President and General Counsel of Mimix Broadband. As used herein: (1) Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. (2) A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. ESD - Gallium Arsenide (GaAs) devices are susceptible to electrostatic and mechanical damage. Die are supplied in antistatic containers, which should be opened in cleanroom conditions at an appropriately grounded antistatic workstation. Devices need careful handling using correctly designed collets, vacuum pickups or, with care, sharp tweezers. Die Attachment - GaAs Products from Mimix Broadband are 0.100 mm (0.004") thick and have vias through to the backside to enable grounding to the circuit. Microstrip substrates should be brought as close to the die as possible. The mounting surface should be clean and flat. If using conductive epoxy, recommended epoxies are Tanaka TS3332LD, Die Mat DM6030HK or DM6030HK-Pt cured in a nitrogen atmosphere per manufacturer's cure schedule. Apply epoxy sparingly to avoid getting any on to the top surface of the die. An epoxy fillet should be visible around the total die periphery. For additional information please see the Mimix "Epoxy Specifications for Bare Die" application note. If eutectic mounting is preferred, then a fluxless gold-tin (AuSn) preform, approximately 0.0012 thick, placed between the die and the attachment surface should be used. A die bonder that utilizes a heated collet and provides scrubbing action to ensure total wetting to prevent void formation in a nitrogen atmosphere is recommended. The gold-tin eutectic (80% Au 20% Sn) has a melting point of approximately 280 ºC (Note: Gold Germanium should be avoided). The work station temperature should be 310 ºC +/- 10 ºC. Exposure to these extreme temperatures should be kept to minimum. The collet should be heated, and the die pre-heated to avoid excessive thermal shock. Avoidance of air bridges and force impact are critical during placement. Wire Bonding - Windows in the surface passivation above the bond pads are provided to allow wire bonding to the die's gold bond pads. The recommended wire bonding procedure uses 0.076 mm x 0.013 mm (0.003" x 0.0005") 99.99% pure gold ribbon with 0.5-2% elongation to minimize RF port bond inductance. Gold 0.025 mm (0.001") diameter wedge or ball bonds are acceptable for DC Bias connections. Aluminum wire should be avoided. Thermo-compression bonding is recommended though thermosonic bonding may be used providing the ultrasonic content of the bond is minimized. Bond force, time and ultrasonics are all critical parameters. Bonds should be made from the bond pads on the die to the package or substrate. All bonds should be as short as possible. Ordering Information Part Number XU1009-BD-000V XU1009-BD-EV1 Description Where “V” is RoHS compliant die packed in vacuum release gel paks XU1009 die evaluation module Mimix Broadband, Inc., 10795 Rockley Rd., Houston, Texas 77099 Tel: 281.988.4600 Fax: 281.988.4615 mimixbroadband.com Page 9 of 9 Characteristic Data and Specifications are subject to change without notice. ©2007 Mimix Broadband, Inc. Export of this item may require appropriate export licensing from the U.S. Government. In purchasing these parts, U.S. Domestic customers accept their obligation to be compliant with U.S. Export Laws.