SCES130L − MARCH 1998 − REVISED DECEMBER 2004 SN54LVU04A . . . J OR W PACKAGE SN74LVU04A . . . D, DB, DGV, NS, OR PW PACKAGE (TOP VIEW) 13 3 12 4 11 5 10 6 7 9 8 SN54LVU04A . . . FK PACKAGE (TOP VIEW) VCC 6A 6Y 5A 5Y 4A 4Y 1Y 2A 2Y 3A 3Y 1 14 1Y 1A NC VCC 6A SN74LVU04A . . . RGY PACKAGE (TOP VIEW) 2 13 6A 3 12 6Y 4 11 5A 5 10 5Y 9 4A 6 7 8 2A NC 2Y NC 3A 4 3 2 1 20 19 18 5 17 6 16 7 15 8 14 9 10 11 12 13 6Y NC 5A NC 5Y 3Y GND NC 4Y 4A 14 2 D VCC 1 D 4Y 1A 1Y 2A 2Y 3A 3Y GND All Ports Latch-Up Performance Exceeds 250 mA Per JESD 17 ESD Protection Exceeds JESD 22 − 2000-V Human-Body Model (A114-A) − 200-V Machine Model (A115-A) − 1000-V Charged-Device Model (C101) 1A D D Support Mixed-Mode Voltage Operation on 2-V to 5.5-V VCC Operation Unbuffered Outputs Max tpd of 6.5 ns at 5 V Typical VOLP (Output Ground Bounce) <0.8 V at VCC = 3.3 V, TA = 25°C Typical VOHV (Output VOH Undershoot) >2.3 V at VCC = 3.3 V, TA = 25°C GND D D D D NC − No internal connection description/ordering information These hex inverters are designed for 2-V to 5.5-V VCC operation. The ’LVU04A devices contain six independent inverters with unbuffered outputs. These devices perform the Boolean function Y = A. ORDERING INFORMATION QFN − RGY SN74LVU04ARGYR Tube of 50 SN74LVU04AD Reel of 2500 SN74LVU04ADR SOP − NS Reel of 2000 SN74LVU04ANSR LVU04A SSOP − DB Reel of 2000 SN74LVU04ADBR LU04A Tube of 90 SN74LVU04APW Reel of 2000 SN74LVU04APWR Reel of 250 SN74LVU04APWT TVSOP − DGV Reel of 2000 SN74LVU04ADGVR LU04A CDIP − J Tube of 25 SNJ54LVU04AJ SNJ54LVU04AJ CFP − W Tube of 150 SNJ54LVU04AW SNJ54LVU04AW TSSOP − PW −55°C 125°C −55 C to 125 C TOP-SIDE MARKING Reel of 1000 SOIC − D −40°C −40 C to 85 85°C C ORDERABLE PART NUMBER PACKAGE† TA LVU04A LVU04A LU04A LCCC − FK Tube of 85 SNJ54LVU04AFK SNJ54LVU04AFK † Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Copyright 2004, Texas Instruments Incorporated ! "# $%! %% ! $ &'(! !) "% $% &$! &% % $ *! % !!% +!%%!,) "% &%- !%(, ( - $ !(( &!%!%) POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 SCES130L − MARCH 1998 − REVISED DECEMBER 2004 FUNCTION TABLE (each inverter) INPUT A OUTPUT Y H L L H logic diagram, each inverter (positive logic) A Y absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† Supply voltage range, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 7 V Input voltage range, VI (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 7 V Output voltage range, VO (see Notes 1 and 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to VCC + 0.5 V Input clamp current, IIK (VI < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −20 mA Output clamp current, IOK (VO < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −50 mA Continuous output current, IO (VO = 0 to VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±25 mA Continuous current through VCC or GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±50 mA Package thermal impedance, θJA (see Note 3): D package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86°C/W (see Note 3): DB package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96°C/W (see Note 3): DGV package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127°C/W (see Note 3): NS package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76°C/W (see Note 3): PW package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113°C/W (see Note 4): RGY package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47°C/W Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed. 2. This value is limited to 5.5 V maximum. 3. The package thermal impedance is calculated in accordance with JESD 51-7. 4. The package thermal impedance is calculated in accordance with JESD 51-5. 2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SCES130L − MARCH 1998 − REVISED DECEMBER 2004 recommended operating conditions (see Note 5) SN54LVU04A VCC VIH High-level input voltage VIL Low-level input voltage VI VO Input voltage IOH IOL MIN MAX 2 5.5 Supply voltage VCC = 2 V VCC = 2.3 V to 2.7 V VCC = 3 V to 3.6 V VCC = 4.5 V to 5.5 V 1.7 MAX 2 5.5 VCC × 0.8 VCC × 0.8 VCC × 0.8 VCC × 0.8 VCC × 0.8 VCC × 0.8 V 0.3 VCC × 0.2 VCC × 0.2 VCC × 0.2 5.5 0 Output voltage UNIT V 0.3 VCC × 0.2 VCC × 0.2 VCC = 3 V to 3.6 V VCC = 4.5 V to 5.5 V 0 0 VCC −50 VCC = 2 V VCC = 2.3 V to 2.7 V V VCC × 0.2 5.5 V VCC −50 µA 0 −2 VCC = 3 V to 3.6 V VCC = 4.5 V to 5.5 V Low-level output current MIN 1.7 VCC = 2 V VCC = 2.3 V to 2.7 V High-level output current SN74LVU04A V −2 −6 −6 −12 −12 VCC = 2 V VCC = 2.3 V to 2.7 V 50 50 2 2 VCC = 3 V to 3.6 V VCC = 4.5 V to 5.5 V 6 6 12 12 mA µA mA TA Operating free-air temperature −55 125 −40 85 °C NOTE 5: All unused inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004. electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) SN54LVU04A PARAMETER VOH VOL TEST CONDITIONS VCC MIN IOH = −50 µA IOH = −2 mA 2 V to 5.5 V IOH = −6 mA IOH = −12 mA TYP SN74LVU04A MAX MIN VCC−0.1 2 VCC−0.1 2 3V 2.48 2.48 4.5 V 3.8 2.3 V TYP MAX UNIT V 3.8 IOL = 50 µA IOL = 2 mA 2 V to 5.5 V 0.1 0.1 2.3 V 0.4 0.4 IOL = 6 mA IOL = 12 mA 3V 0.44 0.44 4.5 V 0.55 0.55 ±1 ±1 µA 20 µA II ICC VI = 5.5 V or GND VI = VCC or GND, Ci VI = VCC or GND 0 V to 5.5 V IO = 0 5.5 V 20 3.3 V 4 4 V pF "# " $%! % &% $%!. % - &! $ .(&) #!%!% !! ! % &$! !% - -!() *! % %%. %- !- % &% + ) POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3 SCES130L − MARCH 1998 − REVISED DECEMBER 2004 switching characteristics over recommended operating VCC = 2.5 V ± 0.2 V (unless otherwise noted) (see Figure 1) PARAMETER FROM (INPUT) TO (OUTPUT) tpd A Y LOAD CAPACITANCE MIN free-air TA = 25°C TYP MAX temperature SN54LVU04A range, SN74LVU04A MIN MAX MIN MAX CL = 15 pF 3.2* 10.9* 1* 14* 1 14 CL = 50 pF 6.6 13.4 1 16 1 16 UNIT ns * On products compliant to MIL-PRF-38535, this parameter is not production tested. switching characteristics over recommended operating VCC = 3.3 V ± 0.3 V (unless otherwise noted) (see Figure 1) PARAMETER FROM (INPUT) TO (OUTPUT) tpd A Y free-air LOAD CAPACITANCE TA = 25°C MIN TYP MAX CL = 15 pF 2.5* CL = 50 pF 4.7 temperature SN54LVU04A range, SN74LVU04A MIN MAX MIN MAX 8.9* 1* 10.5* 1 10.5 11.4 1 13 1 13 UNIT ns * On products compliant to MIL-PRF-38535, this parameter is not production tested. switching characteristics over recommended operating VCC = 5 V ± 0.5 V (unless otherwise noted) (see Figure 1) PARAMETER FROM (INPUT) TO (OUTPUT) tpd A Y LOAD CAPACITANCE MIN free-air TA = 25°C TYP MAX temperature SN54LVU04A range, SN74LVU04A MIN MAX MIN MAX CL = 15 pF 2.2* 5.5* 1* 6.5* 1 6.5 CL = 50 pF 3.9 7 1 8 1 8 UNIT ns * On products compliant to MIL-PRF-38535, this parameter is not production tested. noise characteristics, VCC = 3.3 V, CL = 50 pF, TA = 25°C (see Note 6) SN74LVU04A PARAMETER MIN TYP MAX UNIT VOL(P) VOL(V) Quiet output, maximum dynamic VOL 0.5 0.8 V Quiet output, minimum dynamic VOL −0.1 −0.8 V VOH(V) VIH(D) Quiet output, minimum dynamic VOH 3 High-level dynamic input voltage V 2.31 V VIL(D) Low-level dynamic input voltage NOTE 6: Characteristics are for surface-mount packages only. 0.99 V VCC 3.3 V TYP UNIT 5V 6.7 operating characteristics, TA = 25°C PARAMETER Cpd Power dissipation capacitance TEST CONDITIONS CL = 50 pF, "# " $%! % &% $%!. % - &! $ .(&) #!%!% !! ! % &$! !% - -!() *! % %%. %- !- % &% + ) 4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 f = 10 MHz 5.6 pF SCES130L − MARCH 1998 − REVISED DECEMBER 2004 PARAMETER MEASUREMENT INFORMATION From Output Under Test From Output Under Test Test Point RL = 1 kΩ VCC Open S1 TEST GND CL (see Note A) CL (see Note A) S1 tPLH/tPHL tPLZ/tPZL tPHZ/tPZH Open Drain Open VCC GND VCC LOAD CIRCUIT FOR 3-STATE AND OPEN-DRAIN OUTPUTS LOAD CIRCUIT FOR TOTEM-POLE OUTPUTS VCC 50% VCC Timing Input 0V tw tsu VCC 50% VCC Input 50% VCC th VCC 50% VCC Data Input 50% VCC 0V 0V VOLTAGE WAVEFORMS PULSE DURATION VOLTAGE WAVEFORMS SETUP AND HOLD TIMES VCC 50% VCC Input 50% VCC tPLH In-Phase Output 50% VCC VOH 50% VCC VOL VOH 50% VCC VOL VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS 50% VCC 0V Output Waveform 1 S1 at VCC (see Note B) tPLH 50% VCC 50% VCC tPLZ tPZL tPHL tPHL Out-of-Phase Output 0V VCC Output Control ≈VCC 50% VCC tPHZ tPZH Output Waveform 2 S1 at GND (see Note B) VOL + 0.3 V VOL 50% VCC VOH − 0.3 V VOH ≈0 V VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING NOTES: A. CL includes probe and jig capacitance. B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 1 MHz, ZO = 50 Ω, tr ≤ 3 ns, tf ≤ 3 ns. D. The outputs are measured one at a time, with one input transition per measurement. E. tPLZ and tPHZ are the same as tdis. F. tPZL and tPZH are the same as ten. G. tPHL and tPLH are the same as tpd. H. All parameters and waveforms are not applicable to all devices. Figure 1. Load Circuit and Voltage Waveforms POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5 PACKAGE OPTION ADDENDUM www.ti.com 8-Dec-2009 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing Pins Package Eco Plan (2) Qty SN74LVU04AD ACTIVE SOIC D 14 SN74LVU04ADBLE OBSOLETE SSOP DB 14 SN74LVU04ADBR ACTIVE SSOP DB 14 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LVU04ADBRE4 ACTIVE SSOP DB 14 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LVU04ADBRG4 ACTIVE SSOP DB 14 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LVU04ADE4 ACTIVE SOIC D 14 50 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LVU04ADG4 ACTIVE SOIC D 14 50 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LVU04ADGVR ACTIVE TVSOP DGV 14 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LVU04ADGVRE4 ACTIVE TVSOP DGV 14 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LVU04ADGVRG4 ACTIVE TVSOP DGV 14 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LVU04ADR ACTIVE SOIC D 14 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LVU04ADRE4 ACTIVE SOIC D 14 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LVU04ADRG4 ACTIVE SOIC D 14 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LVU04ANSR ACTIVE SO NS 14 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LVU04ANSRE4 ACTIVE SO NS 14 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LVU04ANSRG4 ACTIVE SO NS 14 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LVU04APW ACTIVE TSSOP PW 14 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LVU04APWE4 ACTIVE TSSOP PW 14 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LVU04APWG4 ACTIVE TSSOP PW 14 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LVU04APWLE OBSOLETE TSSOP PW 14 SN74LVU04APWR ACTIVE TSSOP PW 14 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LVU04APWRE4 ACTIVE TSSOP PW 14 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LVU04APWRG4 ACTIVE TSSOP PW 14 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LVU04APWT ACTIVE TSSOP PW 14 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LVU04APWTE4 ACTIVE TSSOP PW 14 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LVU04APWTG4 ACTIVE TSSOP PW 14 250 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM 50 Green (RoHS & no Sb/Br) TBD TBD Addendum-Page 1 Lead/Ball Finish CU NIPDAU Call TI Call TI MSL Peak Temp (3) Level-1-260C-UNLIM Call TI Call TI PACKAGE OPTION ADDENDUM www.ti.com 8-Dec-2009 Orderable Device Status (1) Package Type Package Drawing Pins Package Eco Plan (2) Qty SN74LVU04ARGYR ACTIVE VQFN RGY 14 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR SN74LVU04ARGYRG4 ACTIVE VQFN RGY 14 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR Lead/Ball Finish MSL Peak Temp (3) no Sb/Br) (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. OTHER QUALIFIED VERSIONS OF SN74LVU04A : • Automotive: SN74LVU04A-Q1 NOTE: Qualified Version Definitions: • Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects Addendum-Page 2 PACKAGE MATERIALS INFORMATION www.ti.com 20-Jul-2010 TAPE AND REEL INFORMATION *All dimensions are nominal Device Package Package Pins Type Drawing SPQ Reel Reel A0 Diameter Width (mm) (mm) W1 (mm) B0 (mm) K0 (mm) P1 (mm) W Pin1 (mm) Quadrant SN74LVU04ADBR SSOP DB 14 2000 330.0 16.4 8.2 6.6 2.5 12.0 16.0 Q1 SN74LVU04ADGVR TVSOP DGV 14 2000 330.0 12.4 6.8 4.0 1.6 8.0 12.0 Q1 SN74LVU04ADR SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1 SN74LVU04ANSR SO NS 14 2000 330.0 16.4 8.2 10.5 2.5 12.0 16.0 Q1 SN74LVU04APWR TSSOP PW 14 2000 330.0 12.4 7.0 5.6 1.6 8.0 12.0 Q1 SN74LVU04ARGYR VQFN RGY 14 3000 330.0 12.4 3.75 3.75 1.15 8.0 12.0 Q1 Pack Materials-Page 1 PACKAGE MATERIALS INFORMATION www.ti.com 20-Jul-2010 *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) SN74LVU04ADBR SSOP DB 14 2000 346.0 346.0 33.0 SN74LVU04ADGVR TVSOP DGV 14 2000 346.0 346.0 29.0 SN74LVU04ADR SOIC D 14 2500 346.0 346.0 33.0 SN74LVU04ANSR SO NS 14 2000 346.0 346.0 33.0 SN74LVU04APWR TSSOP PW 14 2000 346.0 346.0 29.0 SN74LVU04ARGYR VQFN RGY 14 3000 346.0 346.0 29.0 Pack Materials-Page 2 MECHANICAL DATA MPDS006C – FEBRUARY 1996 – REVISED AUGUST 2000 DGV (R-PDSO-G**) PLASTIC SMALL-OUTLINE 24 PINS SHOWN 0,40 0,23 0,13 24 13 0,07 M 0,16 NOM 4,50 4,30 6,60 6,20 Gage Plane 0,25 0°–8° 1 0,75 0,50 12 A Seating Plane 0,15 0,05 1,20 MAX PINS ** 0,08 14 16 20 24 38 48 56 A MAX 3,70 3,70 5,10 5,10 7,90 9,80 11,40 A MIN 3,50 3,50 4,90 4,90 7,70 9,60 11,20 DIM 4073251/E 08/00 NOTES: A. B. C. D. All linear dimensions are in millimeters. This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side. Falls within JEDEC: 24/48 Pins – MO-153 14/16/20/56 Pins – MO-194 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MECHANICAL DATA MSSO002E – JANUARY 1995 – REVISED DECEMBER 2001 DB (R-PDSO-G**) PLASTIC SMALL-OUTLINE 28 PINS SHOWN 0,38 0,22 0,65 28 0,15 M 15 0,25 0,09 8,20 7,40 5,60 5,00 Gage Plane 1 14 0,25 A 0°–ā8° 0,95 0,55 Seating Plane 2,00 MAX 0,10 0,05 MIN PINS ** 14 16 20 24 28 30 38 A MAX 6,50 6,50 7,50 8,50 10,50 10,50 12,90 A MIN 5,90 5,90 6,90 7,90 9,90 9,90 12,30 DIM 4040065 /E 12/01 NOTES: A. B. C. D. All linear dimensions are in millimeters. This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion not to exceed 0,15. Falls within JEDEC MO-150 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MECHANICAL DATA MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999 PW (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE 14 PINS SHOWN 0,30 0,19 0,65 14 0,10 M 8 0,15 NOM 4,50 4,30 6,60 6,20 Gage Plane 0,25 1 7 0°– 8° A 0,75 0,50 Seating Plane 0,15 0,05 1,20 MAX PINS ** 0,10 8 14 16 20 24 28 A MAX 3,10 5,10 5,10 6,60 7,90 9,80 A MIN 2,90 4,90 4,90 6,40 7,70 9,60 DIM 4040064/F 01/97 NOTES: A. B. C. D. All linear dimensions are in millimeters. This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion not to exceed 0,15. Falls within JEDEC MO-153 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Applications Amplifiers amplifier.ti.com Audio www.ti.com/audio Data Converters dataconverter.ti.com Automotive www.ti.com/automotive DLP® Products www.dlp.com Communications and Telecom www.ti.com/communications DSP dsp.ti.com Computers and Peripherals www.ti.com/computers Clocks and Timers www.ti.com/clocks Consumer Electronics www.ti.com/consumer-apps Interface interface.ti.com Energy www.ti.com/energy Logic logic.ti.com Industrial www.ti.com/industrial Power Mgmt power.ti.com Medical www.ti.com/medical Microcontrollers microcontroller.ti.com Security www.ti.com/security RFID www.ti-rfid.com Space, Avionics & Defense www.ti.com/space-avionics-defense RF/IF and ZigBee® Solutions www.ti.com/lprf Video and Imaging www.ti.com/video Wireless www.ti.com/wireless-apps Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2010, Texas Instruments Incorporated