HOLTIC HI-8436PQIF

HI-8436
32-Channel Ground/Open or Supply/Open
Low Threshold Sensor with SPI Interface
August 2013
APPLICATION
GENERAL DESCRIPTION
· Avionics Discrete to Digital Sensing
PIN CONFIGURATIONS
- VLOGIC
- SCK
- nCS
- SI
- SO
- MRB
- GND
- SENSE_31
- SENSE_30
- SENSE_29
- SENSE_28
The HI-8436 is a 32-channel discrete-to-digital sensor
fabricated with Silicon-on-Insulator (SOI) technology
designed to interface with a Serial Peripheral Interface
(SPI).
All sense inputs are internally lightning protected to
DO160G, Section 22, Cat AZ, BZ and ZZ without external
components.
The sensing circuit window comparator thresholds are set
by programming the center threshold and hysteresis
registers to values from 0.4V to 5.2V. The digital values of
the sensed inputs can be read either one bank at a time or
all 4 banks with one command.
44
43
42
41
40
39
38
37
36
35
34
Four banks of 8 sense inputs can be programmed as either
GND/Open or Supply/Open sensors. Supply/Open
sensing is also referred to as 28V/Open sensing.
VWET0 - 1
SENSE_0 - 2
SENSE_1 - 3
SENSE_2 - 4
SENSE_3 - 5
SENSE_4 - 6
SENSE_5 - 7
SENSE_6 - 8
SENSE_7 - 9
SENSE_8-10
SENSE_9-11
VWET1
NC
SENSE_10
SENSE_11
SENSE_12
SENSE_13
SENSE_14
SENSE_15
SENSE_16
SENSE_17
VWET2
44 Pin Plastic Quad Flat Pack (PQFP)
10mm x 10mm
44 - VLOGIC
43 - SCK
42 - nCS
41 - SI
40 - SO
39 - nMR
38 - GND
37 - SENSE_31
36 - SENSE_30
35 - SENSE_29
34 - SENSE_28
Interface to the digital subsystem is simple CMOS logic
inputs and outputs. The logic pins are compatible with 3.3V
logic allowing direct connection to a wide range of
microcontrollers or FPGAs.
FEATURES
· Robust CMOS Silicon-on-Insulator (SOI) technology
· 32-channel Programmable Sense Operation,
GND/Open or Supply/Open, 4 X 8 Input Sensors
· Programmable HI/LO Threshold and Hysteresis in
0.1V steps, from 0.4V to 5.2V.
VWET0 - 1
SENSE_0 - 2
SENSE_1 - 3
SENSE_2 - 4
SENSE_3 - 5
SENSE_4 - 6
SENSE_5 - 7
SENSE_6 - 8
SENSE_7 - 9
SENSE_8 -10
SENSE_9 -11
HI-8436PC
33 - SENSE_27
32 - VWET3
31 - SENSE_26
30 - SENSE_25
29 - SENSE_24
28 - SENSE_23
27 - SENSE_22
26 - SENSE_21
25 - SENSE_20
24 - SENSE_19
23 - SENSE_18
VWET1 - 12
NC - 13
SENSE_10 - 14
SENSE_11 - 15
SENSE_12 - 16
SENSE_13 - 17
SENSE_14 - 18
SENSE_15 - 19
SENSE_16 - 20
SENSE_17 - 21
VWET2 - 22
· Single Low Voltage Supply Operation for low
thresholds applications.
HI-8436PQI
HI-8436PQT
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
Each bank of sensors have a VWETn pin available for
optional application of a voltage higher than the logic
supply to provide wetting current to Ground side relay
contacts. If the Ground offset is small, then the wetting
source will automatically be provided from VLOGIC without
connecting VWETn.
33 - SENSE_27
32 - VWET3
31 - SENSE_26
30 - SENSE_25
29 - SENSE_24
28 - SENSE_23
27 - SENSE_22
26 - SENSE_21
25 - SENSE_20
24 - SENSE_19
23 - SENSE_18
· Logic Operation from 3.0V to 3.6V
· 20 MHz Serial Peripheral Interface (SPI)
· Lightning Protected Sense Inputs
· Internal Self-Test
44 Pin Plastic QFN
7mm x 7mm
HOLT INTEGRATED CIRCUITS
www.holtic.com
(DS8436 Rev. New.)
08/13
HI-8436
BLOCK DIAGRAM
VLOGIC
VWET0-3
4
VLOGIC
MRB
32
SO_31-0
SI
SPI
SO
TEST
12
CSN
DAC
VALUE/HYSTERESIS
SCK
DAC
THRESHOLDS
PU
PD
HI LO HI LO
4
VWET0
SO_7-0
PSEN_n
VLOGIC
50K
PSEN_n
VTHI/10
VLOGIC
TESTHI
23.8K
3.3K
LIGHTNING
PROTECTION
29K
+
-
+
TESTLO
VTHI/10
-
200K
PSEN_n
200K
SENSE_7-0
SO_31-24
SO_23-16
SO_15-8
VREF
PSEN_3-0
8
SENSE_15-8
8
SENSE_23-16
8
SENSE_31-24
GND
Figure 2.
HOLT INTEGRATED CIRCUITS
2
8
8
8
8
HI-8436
PIN DESCRIPTIONS
DESCRIPTION
PIN
FUNCTION
VLOGIC
Supply
3.3V Power Supply for both sensors and logic.
VWET<0-3>
Supply
Optional inputs to supply relay wetting current to sense lines in GND/Open
operation. Each of the 4 banks of 8 inputs has a VWETn pin. 50KΩ to GND.
4 banks of 8 discrete inputs programmable through the SPI to be either
GND/Open or Supply/Open.
The type of input is programmed by bank, PSEN<3:0> bits. “0” makes the
bank GND/Open sensors, “1” makes the bank SUPPLY/Open sensors
The status of the inputs SENSE<31:0> are stored in SO<31:0>
See SPI section for programming and reading sensors.
SENSE<31:0>
Discrete Input
GND
Supply
SCK
Digital Input
SPI Clock.
nCS
Digital Input
SPI Chip Select, Active Low, internal 30KΩ pull-up.
SI
Digital Input
SPI serial data input, internal 30KΩ pull-down.
SO
Digital Output
nMR
Digital Input
0V Ground for Sensor and Logic.
SPI serial data output.
Master Reset, Active Low, internal 30KΩ pull-up.
Table 1.
SPI COMMANDS
OP Code
R/W
# Data
Bytes
0x02
W
1
Write Control Register
0x04
W
1
Write Program Sense Banks Register, PSEN<3:0>, to program SENSE Inputs
0x3A
W
2
Write GND/Open Threshold Center Value and Hysteresis
0x3C
W
2
Write Supply/Open Threshold Center Value and Hysteresis
0x1E
W
1
Write Test Mode Data Register
0x82
R
1
Read Control Register
0x84
R
1
Read Program Sense Banks Register, to read programmed bank type
0xBA
R
2
Read GND/Open Threshold Center Value and Hysteresis
0xBC
R
2
Read Supply/Open Threshold Center Value and Hysteresis
0x9E
R
1
Read Test Mode Data Register
0x90
R
1
Read Bank 0, SOUT Register, SO<7:0>, status of SENSE<7:0> Inputs
0x92
R
1
Read Bank 1, SOUT Register, SO<15:8>, status of SENSE<15:8> Inputs
0x94
R
1
Read Bank 2, SOUT Register, SO<23:16>, status of SENSE<23:16> Inputs
0x96
R
1
Read Bank 3, SOUT Register, SO<31:24>, status of SENSE<31:24> Inputs
0xF8
R
4
Read All Banks, SOUT Register, SO<31:0>, status of SENSE<31:0> Inputs
DESCRIPTION
Table 2.
HOLT INTEGRATED CIRCUITS
3
HI-8436
SERIAL PERIPHERAL
INTERFACE (SPI)
SPI BASICS
HI-8436 SPI INSTRUCTIONS
The HI-8436 uses a SPI (Serial Peripheral Interface) for host
access to internal registers which program the chip and store
sensor status. Host serial communication is enabled through
the active low, Chip Select (nCS) pin, and is accessed via a
four-wire interface consisting of Serial Data Input (SI) from the
host, Serial Data Output (SO) to the host, the Serial Clock
(SCK) and the nCS. All read / write cycles are completely selftimed.
The SPI Instructions used to read, write and configure the
HI-8436 consist of an opcode and data bytes. Each SPI
instruction begins with an 8-bit opcode with the format shown
below. The most significant bit (MSB) specifies whether the
instruction is a write, “0”, or a read, “1”, transfer.
When nCS goes low, the first 8 rising edges of the SCK shift the
op code into the decoder register, MSB first. The SPI can be
clocked up to 20 MHz.
R
/W
The SPI protocol specifies master and slave operation; the
HI-8436 operates as a SPI slave.
The SPI protocol defines two parameters, CPOL (clock
polarity) and CPHA (clock phase). The possible CPOL-CPHA
combinations define four possible “SPI Modes”. Without
describing details of the SPI modes, the HI-8436 operates in
Mode 0 where input data for each device (master and slave) is
clocked on the rising edge of SCK, and output data for each
device changes on the falling edge (CPHA = 0, CPOL = 0). The
host SPI logic must be set for Mode 0 for proper
communications with the HI-8436.
As seen in Figure 3, SPI Mode 0 holds SCK in the low state
when idle. The SPI protocol transfers serial data in 8-bit bytes.
Once nCS is asserted, the rising edge of SCK shifts the input
data into the master and slave devices, starting with each byte's
most-significant bit. A rising edge on nCS completes the serial
transfer and re-initializes the HI-8436 SPI for the next transfer.
If nCS goes high before a full byte is clocked by SCK, the
incomplete byte clocked into the device SI pin is discarded.
In the general case, both master and slave simultaneously
send and receive serial data (full duplex), per Figure 3 below.
However the HI-8436 operates half duplex, maintaining high
impedance on the SO output, except when actually transmitting
serial data. When the HI-8436 is sending data on SO during
read operations, activity on its SI input is ignored. The host
likewise ignores its SI input activity while transmitting to the HI8436.
MSB
7
X
X
X
X
X
X
X
6
5
4
3
2
1
0
LSB
Figure 4. SPI OPCODE FORMAT
For write instructions, the next 8 rising SCK edges shift a data
byte into the buffer register. The specific instruction register is
loaded on the 8th rising SCK edge. This sequence is repeated
until the required number of data bytes for the instruction are
written.
For read instructions, the most significant bit of the requested
data word appears at the SO pin at the next falling SCK edge
after the last op code bit is clocked into the decoder. As in write
instructions, the number of data bytes varies with the read
instruction. SO data changes on the falling SCK edges.
Figure 5 to Figure 7 show read and write timing for single-byte,
dual-byte and four byte register operations. The instruction op
code is immediately followed by data bytes comprising the 8-bit
data bytes read or written. For a register read or write, nCS is
negated after all data bytes are transferred.
Table 2 summarizes the HI-8436 SPI instruction set.
SCK (SPI Mode 0)
SI
SO
High Z
MSB
LSB
MSB
LSB
nCS
FIGURE 3. Generalized Single-Byte Transfer Using SPI Protocol Mode 0
HOLT INTEGRATED CIRCUITS
4
High Z
HI-8436
Note: SPI Instruction op-codes not shown in Table 2 are
“reserved” and must not be used. Further, these op-codes will
not provide meaningful data in response to a read instruction.
0
1
2
3
5
4
6
7
Two instruction bytes cannot be “chained”; nCS must be
negated after each instruction, and then reasserted for the
following Read or Write instruction.
0
1
2
3
5
4
6
7
SCK
MSB
LSB
SI
Op-Code Byte
MSB
LSB
High Z
SO
High Z
Data Byte 0
nCS
FIGURE 5. Single-Byte Read From a Register
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
SCK
SPI Mode 0
MSB
LSB MSB
LSB
LSB MSB
SI
Op-Code Byte
Data Byte 1
Data Byte 0
High Z
SO
nCS
FIGURE 6. 2-Byte SPI Write Example
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
SCK
SPI Mode 0
MSB
LSB MSB
LSB MSB
LSB MSB
LSB MSB
LSB
SI
Op-Code Byte
SO
Data Byte 3
Data Byte 2
Data Byte 1
High Z
nCS
FIGURE 7. 4-Byte SPI Read Example
HOLT INTEGRATED CIRCUITS
5
Data Byte 0
HI-8436
REGISTER DESCRIPTIONS
SR
S
TE T
ST
CONTROL REGISTER : CTRL
Read: SPI Op-code 0x82
Write: SPI Op-code 0x02
7 6
MSB
Reset Value 00
[Opcode, DB0]
Bit
Name
DATA BYTE 0
X X X X X X
R/W Default
Description
5
4
3
2
1
0
LSB
7-2
-
R/W
0
Not Used.
1
SRST
R/W
0
Software Reset - Setting this bit to “1” holds all other registers and the TEST bit to their reset
values. SRST bit must be written back to “0” to release this reset
0
TEST
R/W
0
Setting this bit to “1” puts the HI-8436 in the self test mode. Input to sensors are internally set
according to the value of the TEST MODE DATA register
TABLE 3.
BA
Read: SPI Op-code 0x84
Write: SPI Op-code 0x04
X X X X
7 6
MSB
Reset Value 00
[Opcode, DB0]
Bit
Name
N
BA K3
N
BA K2
N
BA K1
N
K0
PROGRAM SENSE BANKS REGISTER: PSEN<3:0>
5
DATA BYTE 0
4
3
2
R/W Default
Description
7-4
-
R/W
0
Not Used.
3-0
BANK3-0
R/W
0
Program Sensor type for SENSE Inputs.
1
0
LSB
Bank 0 programs inputs SENSE<7:0>
Bank 1 programs inputs SENSE<15:8>
Bank 2 programs inputs SENSE<23:16>
Bank 3 programs inputs SENSE<31:24>
Setting a bit to “0” programs the 8 inputs in the bank to be GND/Open sensors.
Setting a bit to “1” programs the 8 inputs in the bank to be Supply/Open sensors.
TABLE 4.
Name
7-4
-
3-0
D
AL 0
L1
AL
L0
D
3
2
X X X X
7 6
MSB
Reset Value 00
[Opcode, DB0]
Bit
O
Read: SPI Op-code 0x9E
Write: SPI Op-code 0x1E
O
D
D
1
TEST MODE DATA REGISTER : TMDATA
5
4
DATA BYTE 0
1
0
R/W Default
Description
R/W
0
Not Used.
TMDATA3-0 R/W
0
These 4 bits program the internal inputs to the sense comparators when in the test
mode.
ODD1 = 1
Odd inputs are set high
ODD0 = 1
Odd inputs are set low
ALL1 = 1
All inputs are set high
ALL0 = 1
All inputs are set low
Note: Only one mode can be selected. If more than one bit is high the inputs will all be set low.
TABLE 5.
HOLT INTEGRATED CIRCUITS
6
HI-8436
REGISTER DESCRIPTIONS (cont.)
G
O
H
G YS
O 5
H
G YS
O 4
H
G YS
O 3
H
G YS
O 2
H
G YS
O 1
H
YS
0
GND/OPEN THRESHOLD CENTER VALUE AND HYSTERESIS REGISTER: GOCENHYS
Read: SPI Op-code 0xBA
Write: SPI Op-code 0x3A
X X
DATA BYTE 1
7 6
MSB
4
3
2
1
0
LSB
G
O
C
G VA
O L
C 5
G VA
O L
C 4
G VA
O L
C 3
G VA
O L2
C
G VA
O L
C 1
VA
L0
Reset Value 00
5
[opcode, DB1 , DB0]
X X
Bit
Name
7 6
MSB
DATA BYTE 0
5
4
3
2
1
0
LSB
R/W Default
Description
R/W
0
Not Used.
GOHYS5-0 R/W
0
GND/Open Hysteresis. For all inputs programmed to be GND/Open sensors the hysteresis
is set by these 6 bits. Hysteresis = 0.2V x GOHYS.
R/W
0
Not Used.
5- 0 GOCVAL5-0 R/W
0
GND/Open Threshold Center Value. For all inputs programmed to be GND/Open sensors the
center threshold is set by these 6 bits. Center Threshold = 0.1V x GOCVAL.
DATA WORD 1
7-6
5-0
-
DATA WORD 0
7-6
-
VTHI = Threshold center value + ½ Hysteresis, Max limit = 5.2V, Min limit = 0.6V
VTLO = Threshold center value - ½ Hysteresis, Max limit = 5.0V, Min limit = 0.4V
Example: GND/Open sensors with VTHI = 3.0V and VTLO = 1.0V:
a) Program GOHYS
Hysteresis = VTHI - VTLO = 0.2V x GOHYS
GOHYS = (3V - 1V)/(0.2V) = 10 LSB
b) Program GOCVAL
Center Value = (VTHI + VTLO) / 2 = 0.1V x GOCVAL
GOCVAL = (3V + 1V) / (2 x 0.1) = 20 LSB
c) Write 0x3A 0x0A 0x14 to SPI
0x3A writes to the GND/Open Threshold and Hysteresis Register.
0x0A = 10 LSB x 0.2V/LSB = 2V Hysteresis
0x14 = 20 LSB x 0.1V/LSB = 2V Center Threshold
VTHI = 2V + ½ (2V) = 3V
VTLO = 2V - ½ (2V) = 1V
Note: The maximum value for VTHI = 5.2V and the minimum value for VTLO = 0.4V. Also VTHI - VTLO >= 0.2V.
TABLE 6.
HOLT INTEGRATED CIRCUITS
7
HI-8436
REGISTER DESCRIPTIONS (cont.)
SO
H
SO YS
H 5
SO YS
H 4
SO YS
H 3
SO YS
H 2
SO YS
H 1
YS
0
SUPPLY/OPEN THRESHOLD CENTER VALUE AND HYSTERESIS REGISTER: SOCENHYS
Read: SPI Op-code 0xBC
Write: SPI Op-code 0x3C
X X
7 6
MSB
4
3
2
1
0
LSB
SO
C
SO VA
C L5
SO VA
C L4
SO VA
C L3
SO VAL
C 2
SO VA
C L1
VA
L0
Reset Value 00
DATA BYTE 1
5
[Opcode, DB1, DB0]
X X
Bit
Name
R/W Default
Description
7 6
MSB
DATA BYTE 0
5
4
3
2
1
0
LSB
DATA WORD 1
7-6
-
R/W
0
Not Used.
5-0
SOHYS5-0
R/W
0
Supply/Open Hysteresis. For all inputs programmed to be Supply/Open sensors the hysteresis
is set by these 6 bits. Hysteresis = 0.2V x SOHYS.
R/W
0
Not Used.
SOCVAL5-0 R/W
0
Supply/Open Threshold Center Value. For all inputs programmed to be Supply/Open sensors
the center threshold is set by these 6 bits. Center Threshold = 0.1V x SOCVAL.
DATA WORD 0
7-6
5- 0
-
VTHI = Threshold center value + ½ Hysteresis, Max limit = 5.2V, Min limit = 0.6V
VTLO = Threshold center value - ½ Hysteresis, Max limit = 5.0V, Min limit = 0.4V
Example: Supply/Open sensor with VTHI = 5V and VTLO = 2V:
a) Program SOHYS
Hysteresis = VTHI - VTLO = 0.2V x SOHYS
SOHYS = (5V - 2V)/(0.2V) = 15 LSB
b) Program SOCVAL
Center Value = (VTHI + VTLO) / 2 = 0.1V x SOCVAL
SOCVAL = (5V + 2V) / (2 x 0.1) = 35 LSB
c) write 0x3C 0x0F 0x23 to SPI
0x3C writes to the Supply/Open Threshold and Hysteresis Registers.
0x0F = 15 LSB x 0.2V/LSB = 3V Hysteresis
0x23 = 35 LSB x 0.1V/LSB = 3.5V Center Value
VTHI = 3.5 + ½ (3) = 5V
VTLO = 3.5 - ½ (3) = 2V
Note: The maximum value for VTHI = 5.2V and the minimum value for VTLO = 0.4V. Also VTHI - VTLO >= 0.2V.
TABLE 7.
HOLT INTEGRATED CIRCUITS
8
HI-8436
REGISTER DESCRIPTIONS (cont.)
SENSOR OUTPUT STATUS REGISTER: SO<31:0>
THIS 32 BIT REGISTER IS ACCESSED BY THE FOLLOWING 5 SPI COMMANDS
For GND/Open inputs,
SO<n> = “0” if the SENSE<n> pin is open or > VTHI
SO<n> = “1” if the SENSE<n> pin is <= VTLO
For Supply/Open inputs, SO<n> = “1” if the SENSE<n> pin is open or < VTLO
SO<n> = “0” if the SENSE<n> pin is >= VTHI
SO
<7
SO >
<
SO 6>
<
SO 5>
<
SO 4>
<
SO 3>
<2
SO >
<
SO 1>
<0
>
SENSOR STATUS BANK 0 REGISTER: SO<7:0>
Read: SPI Op-code 0x90
Write: NA, read only
DATA BYTE 0
7 6
MSB
Reset Value 00
[Opcode, DB0]
Bit
Name
7-0
SO<7:0>
R/W Default
R
0
5
4
3
2
1
0
LSB
Description
Sensor output status, SO<7:0> reports the state of SENSE<7:0>.
SO
Read: SPI Op-code 0x92
Write: NA, read only
DATA BYTE 0
7 6
MSB
Reset Value 00
[Opcode, DB0]
Bit
Name
7-0
SO<15:8>
<1
SENSOR STATUS BANK 1 REGISTER: SO<15:8>
SO 5>
<
SO 14>
<
SO 13>
<
SO 12>
<
SO 11>
<1
SO 0>
<
SO 9>
<8
>
TABLE 8.
R/W Default
R
0
5
4
3
2
1
0
LSB
Description
Sensor output status, SO<15:8> reports the state of SENSE<15:8>.
Read: SPI Op-code 0x94
Write: NA, read only
DATA BYTE 0
7 6
MSB
Reset Value 00
[Opcode, DB0]
Bit
Name
7-0
SO<23:16>
<2
SO
SENSOR STATUS BANK 2 REGISTER: SO<23:16>
SO 3>
<
SO 22>
<
SO 21>
<
SO 20>
<
SO 19>
<1
SO 8>
<
SO 17>
<1
6>
TABLE 9.
R/W Default
R
0
5
4
3
2
1
0
LSB
Description
Sensor output status, SO<23:16> reports the state of SENSE<23:16>.
Read: SPI Op-code 0x96
Write: NA, read only
DATA BYTE 0
7 6
MSB
Reset Value 00
[Opcode, DB0]
Bit
Name
7-0
SO<31:24>
<3
SO
SENSOR STATUS BANK 3 REGISTER: SO<31:24>
SO 1>
<
SO 30>
<
SO 29>
<
SO 28>
<
SO 27>
<2
SO 6>
<
SO 25>
<2
4>
TABLE 10.
R/W Default
R
0
5
4
3
2
1
0
LSB
Description
Sensor output status, SO<31:24> reports the state of SENSE<31:24>.
TABLE 11.
HOLT INTEGRATED CIRCUITS
9
HI-8436
REGISTER DESCRIPTIONS (cont.)
SO
<3
SO 1>
<
SO 30>
<
SO 29>
<
SO 28>
<
SO 27>
<2
SO 6>
<
SO 25>
<2
4>
SENSOR STATUS ALL BANKS REGISTER: SO<31:0>
Read: SPI Op-code 0xF8
Write: NA, read only
DATA BYTE 3
7 6
MSB
4
3
2
1
0
LSB
SO
<2
SO 3>
<
SO 22>
<
SO 21>
<
SO 20>
<
SO 19>
<1
SO 8>
<
SO 17>
<1
6>
Reset Value 00
5
[Opcode, DB3, DB2, DB1, DB0]
DATA BYTE 2
5
4
3
2
1
0
LSB
SO
<1
SO 5>
<
SO 14>
<
SO 13>
<
SO 12>
<
SO 11>
<1
SO 0>
<
SO 9>
<8
>
7 6
MSB
DATA BYTE 1
4
3
2
1
0
LSB
<
SO 6>
<
SO 5>
<
SO 4>
<
SO 3>
<2
SO >
<
SO 1>
<0
>
5
SO
SO
<7
>
7 6
MSB
DATA BYTE 0
Bit
Name
31-0
SO<31:0>
R/W Default
R
0
7 6
MSB
Description
5
4
3
2
1
0
LSB
Sensor output status, SO<31:0> reports the state of SENSE<31:0>.
TABLE 12.
SPI Format Examples
SO
SO<7>
SO<6>
SO<5>
SO<4>
SO<3>
SO<2
>
SO<1>
<0
>
Example 1. Single Data Byte, Read Sense Data in SENSE BANK 0 (Op-Code 0x90).
SPI Op-Code
Data Word Bits
1 0 0 1 0 0 0 0
LSB
MSB
1 0 1 1 1 0 1 1
MSB
LSB
Data Byte 0
SPI Op-Code
Threshold Center Value
Hysteresis Value
0 0 1 1 1 0 1 0
LSB
MSB
0 0 0 0 0 1 1 0
MSB
G
O
G CV
O A
G CV L5
O A
G CV L4
O A
G CV L3
O A
G CV L2
O A
C L1
VA
L0
G
O
G HY
O S
G HY 5
O S
G HY 4
O S
G HY 3
O S
G HY 2
O S
H 1
YS
0
Example 2. Double Data Byte, Write GND/Open Threshold Center Value and Hysteresis (Op-Code 0x3A) .
0 0 0 0 1 1 1 1
LSB
LSB MSB
Data Byte 1
Data Byte 0
SO
SO<31
SO<3 >
0
SO<29>
>
<
SO 28
<
SO 2 >
7>
SO<26
>
SO<2
<25>
SO 4>
<
SO 23
>
SO<2
2>
<
SO 21
SO<2 >
0
SO19>>
SO<18
SO<1 >
<17>
6
SO >
SO<1
5
SO<1 >
4
<
SO 13>
SO<1 >
2
SO<11 >
SO<10>
SO<9>>
<8
>
SO
<
SO 7>
SO<6>
SO<5>
SO<4>
SO<3>
SO<2
>
SO<1>
<0
>
Example 3. 4 Data Byte, Read all sense values, SENSE ALL BANKS (Op-Code 0xF8).
SPI Op-Code
1 1 1 1 1 0 0 0
MSB
LSB
0 0 0 0 1 0 0 1
LSB
MSB
Data Byte 3
1 1 1 0 0 0 1 0
LSB
MSB
Data Byte 2
1 1 0 0 0 1 0 1
0 0 1 1 0 1 1 0
LSB MSB
MSB
Data Byte 1
TABLE 13.
HOLT INTEGRATED CIRCUITS
10
LSB
Data Byte 0
HI-8436
FUNCTIONAL DESCRIPTION
FUNCTION TABLE
Table 14. Function Table
OVERVIEW
The HI-8436 is comprised of 32 sensors arranged in 4
banks of 8 inputs, easily accessible via a four wire SPI
communication bus. Each bank of sensors can be
programmed as either GND/Open or Supply/Open. The
state of each sensor can be read out through the SPI.
The GND/Open high/low thresholds can be programmed
independently of the Supply/Open high/low thresholds.
Table 14 summarizes basic function selection and Table 16
gives more details on possible threshold values.
An internal test mode is available which sets the input to
each sensor comparator to the test value as programmed
by the Test Mode Data Register.
PSEN_n
SO_n
VWET_n
Open or > VTHI
L
(GND/OPEN)
L
**
< VTLO
L
(GND/OPEN)
H
**
Open or < VTLO
H
(V+/OPEN)
H
open
> VTHI
H
(V+/OPEN)
L
open
H = VLOGIC, L = GND
VTHI = Threshold Center Value + ½ Hsyteresis
VTLO = Threshold Center Value - ½ Hysteresis
**For GND/Open applications with thresholds > VLOGIC use VWETn
VWETn > VTHI/0.9 + 2.75V
INITIALIZATION AND RESET
The HI-8436 generates a full reset upon application of
power. This power-on-reset (POR) sets all registers to their
default values.
The part can also be initialized to the full reset state by
applying a 100ns active low pulse to the external nMR pin.
A software reset is also possible via the SPI by writing a “1’
to CTRL<1>. This reset is the same as the full reset except
the part is held in the reset mode until the CTRL<1> bit is
written back to a “0”.
CONFIGURATION
The user configures the HI-8436 for specific applications by:
1) Programming the sensor type for each of the 4 banks.
2) Convert the required VTHI and VTLO into center and
hysteresis values as shown in example below.
3) For GND/Open sensors, VWETn must be set greater
than VTHI/0.9 + 2.75V.
PROGRAMMING THRESHOLDS
The HI-8436’s on-chip DAC takes the 6-bit programmed
center and hysteresis values from the Threshold Center
Value and Hysteresis Registers (GOCENHYS and
SOCENHYS) and converts them to VTHI and VTLO values.
Maximum and minimum values may be found in Table 16.
The gain of the DAC is 0.1V per LSB.
VTHI = center value + ½ hysteresis
VTLO = center value - ½ hysteresis
SENSE_n
To program the thresholds:
a) Select VTHI and VTLO.
b) Hysteresis = (VTHI - VTLO) / (0.2V/LSB)
c) Center Value = (VTHI - VTLO)/2 / (0.1V/LSB)
d) Program the register.
GND/OPEN SENSING
For GND/Open sensing, the PSENn bit is set to 0.
Referring to the Block Diagram, Figure 2, this selection will
connect a 3.3KΩ pull-up resistor through a diode to
VLOGIC. This resistor gives extra noise immunity for
detecting the open state while providing relay wetting
current. The user programs the desired
threshold/hysteresis levels and then determines the open
input voltage to set VWETn.
OPEN INPUT VOLTAGE
For correct operation, the VSENSE_n when open, must be
higher than VTHI so SO_n will be low. This condition
requires VWET to be set greater than (VTHI/0.9 + 2.75V).
In the case where VTHI ≤ 1.4V, VWET may be left OPEN.
Various ARINC standards such as ARINC 763 define the
standard “Open” signal as characterized by a resistance of
100KΩ or more with respect to signal common. The user
should consider this 100KΩ to ground case when setting
the thresholds.
HOLT INTEGRATED CIRCUITS
11
HI-8436
FUNCTIONAL DESCRIPTION (cont.)
WETTING CURRENT
WETTING CURRENT
For GND/Open applications with VWET open, the wetting
current with the input voltage at GND is simply (VLOGIC 0.75)/3.3K. When applying a higher voltage at VWET_n the
wetting current is (VLOGIC - 0.75)/3.3K + (VWET 4.2)/127K. Additional wetting current can be achieved by
placing an external resistor and a diode between VWET_n
and the individual sense inputs.
For the V+/Open case the wetting current into the sense
input is simply the current sunk by the effective 30KΩ to
GND. For VSENSE_n = 28V, IWET is 1ma. See Figure 8.
SUPPLY/OPEN SENSING
When programmed as Supply/Open sensors, PSEN_n is set
to a logic 1. Referring to Figure 2, a 32KΩ resistor in series
with a diode is switched to provide a pull down in addition to
the 400KΩ of the comparator input divider to GND. The user
programs the desired threshold and hysteresis levels.
VWET_n must be left open for any bank that is programmed
as Supply/Open sensors.
THRESHOLD SELECT
TEST MODE
Writing a high in CTRL<0> puts the HI-8436 into the test
mode.
Referring to Figure 2, when in the test mode each of the
internal inputs to the sense comparators are set to either a
high or low. Since the input sense pin is isolated by a
200KΩ resistor, this test mode will not disturb the actual
status of the input pin.
By programming the Test Mode Data Register, one of four
input data patterns can be selected. See Table 5 on page 6
for options. The comparator results are read through the
SPI just as in normal operation.
Before entering Test Mode the sensors must be
programmed with valid threshold values.
The threshold selections are handled the same was as
stated above for the GND/OPEN case. See Table 16 for maximum and minimum values.
Figure 8. Input Current Vs. Input Voltage
HOLT INTEGRATED CIRCUITS
12
HI-8436
FUNCTIONAL DESCRIPTION (cont.)
96 Channel Sensor Application using HI-8436
nCS_1
nCS_2
nCS_3
SCK
nCS
SI
SO
GP1
GP2
GP3
HI - 8436
Device 1
From Sense Inputs 31-0
32
SENSE<31-0>
SCK
nCS
SI
SO
Host Controller
SO
SI
SCK
HI - 8436
Device 2
From Sense Inputs 63-32
32
SENSE<31-0>
SCK
nCS
SI
SO
SO
SI
SCK
HI - 8436
Device 3
From Sense Inputs 95-64
32
SENSE<31-0>
Figure 9. Multiple Chip Connection
HOLT INTEGRATED CIRCUITS
13
HI-8436
FUNCTIONAL DESCRIPTION (cont.)
LIGHTNING PROTECTION
All SENSE_n inputs are protected to RTCA/DO-160G, Section 22, Categories AZ and BZ, Waveforms 3, 4, 5A, with no external
components. In addition, all inputs are also protected to ZZ, Waveforms 3 and 5B, to provide more robustness in composite
airframe applications. Table 15 and Figure 10 give values and waveforms.
Waveforms
3/3
4/1
5A/5A
5B/5B
Voc (V) / Isc (A)
Voc (V) / Isc (A)
Voc (V) / Isc (A)
Voc (V) / Isc (A)
2
250/10
125/25
125/125
125/125
Z
500/20
300/60
300/300
300/300
3
600/24
300/60
300/300
300/300
Level
Table 15. Waveform Peak Amplitudes
V/I (%)
Peak
1.0
Voltage/Current Waveform 3
Voltage Waveform 4
V (%)
Peak
1.0
50%
0.5
0.8
0.0
0.5
-0.5
0.3
-1.0
t
I/V (%)
1.0
Peak
1us/div.
Current/Voltage Waveform 5A
0.0
T1
I/V (%)
1.0
0.8
50%
Peak
t
T1 = 6.4µs +/-20%
T2 = 69µs +/-20%
Current/Voltage Waveform 5B
0.8
50%
0.5
0.5
0.3
0.3
0.0
T2
T1
t
T2
T1 = 40µs +/-20%
T2 = 120µs +/-20%
50%
0.0
T1
Figure 10. Lightning Waveforms
HOLT INTEGRATED CIRCUITS
14
t
T2
T1 = 50µs +/-20%
T2 = 500µs +/-20%
HI-8436
FUNCTIONAL DESCRIPTION (cont.)
Table 16. Configuration examples and allowed threshold values -55C to 125C.
Guaranteed
High
Threshold*
Guaranteed
Low
Threshold*
0.4V
VTHI + 0.3V
VTLO - 0.2V
5.2V
0.4V
VTHI + 1.0V
VTLO - 0.2V
5.2V
0.4V
VTHI + 1.0V
VTLO - 0.2V
Programmed Programmed
VTLO
VTHI
VLOGIC
VWET
Pin
PSENn
Operation
3.0V to 3.6V
OPEN
L
GND/OPEN
1.4V
3.0V to 3.6V
8.5 to 28V
L
GND/OPEN
3.0V to 3.6V
OPEN
H
V+/OPEN
NOTE: VTHI = Center Value + 0.5 x Hysteresis, VTLO = Center Value - 0.5 x Hysteresis
*: See Figure 11 for guaranteed tolerance for programmed VTHI and VTLO
Threshold Tolerance
7
6
Voltage (V)
5
4
Max limit
Programmed
Min limit
3
2
1
0
0
1
2
3
4
5
VTHI or VTLO (V)
Figure 11: Threshold tolerance over Programmed value
HOLT INTEGRATED CIRCUITS
15
6
HI-8436
ABSOLUTE MAXIMUM RATINGS
RECOMMENDED
OPERATING CONDITIONS
Voltages referenced to Ground
Supply Voltage
Supply Voltage (VLOGIC)
.........................
VLOGIC
-0.3V to +7V
................................. 3.0V to 3.6V
VWET_n ................................. 4.5V to 36V
VWETn
..........................
Logic Input Voltage Range
-0.3V to +80V
Sense_n ...............................
................ -0.3V to VLOGIC+0.3V
Discrete Input Voltage Range
(DC)
(AC, 60 - 400Hz)
................... -80V to +80V
...................
115Vrms
Continuous Power Dissipation (TA=+70°C)
QFN (derate 21.3mW/°C above +70°C) ........
QFP (derate 10.0mW/°C above +70°C) ........
Solder Temperature (reflow)
Digital Inputs ..........................
0 to VLOGIC
-4.0V to 36V
Operating Temperature Range
Industrial Screening ............. -40°C to +85°C
Hi-Temp Screening ............. -55°C to +125°C
1.7W
1.5W
.............................
260°C
Junction Temperature
.............................
175°C
Storage Temperature
............................
-65°C to -150°C
NOTE: Stresses above absolute maximum ratings or outside recommended operating conditions may cause permanent damage to
the device. These are stress ratings only. Operation at the limits is not recommended.
D.C. ELECTRICAL CHARACTERISTICS
VDD = 3.3V, GND = 0V, TA = Operating Temperature Range (unless otherwise specified).
PARAMETER
SYM
CONDITION
MIN
TYP
MAX
UNITS
DISCRETE INPUTS
SENSE V+/OPEN
Resistance to Ground
RIN
Threshold DAC Gain
VTHAC
1 DAC bit = 0.1V. Guaranteed monotonic
Max Threshold High
(V+ State Input Voltage)
VTHIMAX
VTHI = Center Value + ½ Hysteresis
Input voltage to give Low output
Min Threshold Low
(Open State Input Voltage)
VTLOMIN
VTLO = Center Value - ½ Hysteresis
Input voltage to give High output
Input Current at 28V
IIN28
30
KΩ
0.1
V/bit
Refer to
Figure 11
VTHI - VTLO ≥ 0.2V
VTHI - VTLO ≥ 0.2V
VIN = 28V
HOLT INTEGRATED CIRCUITS
16
Refer to
Figure 11
V
V
0.95
mA
HI-8436
D.C. ELECTRICAL CHARACTERISTICS (cont)
VDD = 3.3V, GND = 0V, TA = Operating Temperature Range (unless otherwise specified).
PARAMETER
SYM
CONDITION
MIN
TYP
MAX
UNIT
DISCRETE INPUTS
SENSE GND/OPEN
Resistance in series with diode to VLOGIC
RIN
3.3
KΩ
Resistance in series with diode to VWET
RW
28
KΩ
0.1
V/bit
Threshold DAC Gain
VTDG
1 DAC bit = 0.1V. Guaranteed monotonic
Max Threshold High
(Open State Input Voltage)
VTHIMAX
VTHI = Center Value + ½ Hysteresis
Input voltage to give Low output
Min Threshold Low
(Ground State Input Voltage)
VTLOMIN
VTLO = Center Value - ½ Hysteresis
Input voltage to give High output
Input Current at 0V
Refer to
Figure 11
VTHI - VTLO ≥ 0.2V
VTHI - VTLO ≥ 0.2V
Refer to
Figure 11
V
V
IIN0
VIN = 0V, VWET = open
VIH
Input Voltage HI
VIL
Input Votage LO
30%
VLOGIC
VIN = VLOGIC, 30KΩ pull down
125
μA
VIN = GND
0.1
μA
-0.65
mA
LOGIC INPUTS
Input Voltage
Input Current, SI
ISINK
ISOURCE
Input Current, MRB, CSN
70%
VLOGIC
VIN = VLOGIC
0.1
μA
VIN = GND , 30KΩ pull up
125
μA
VOH
IOH = -100μA
90%
VLOGIC
VOL
IOL = 100μA
IOL
VOUT= 0.4V
IOH
VOUT = VLOGIC - 0.4V
ISINK
ISOURCE
LOGIC OUTPUTS
Output Voltage
Output Current
Output Capacitance
10%
1.6
mA
-1.0
15
CO
VLOGIC
mA
pF
SUPPLY
Operating VLOGIC range
Operation VWET range
VLOGIC
3.0
3.6
V
VWET
4.5
28
V
All Sense Pins Open
15
mA
All Inputs for bank = 0V, VWETn = 28V
35
mA
VLOGIC Current
IDD1
VWETn Current
IVWETn
HOLT INTEGRATED CIRCUITS
17
HI-8436
AC ELECTRICAL CHARACTERISTICS
VDD = 3.3V, TA = Operating Temperature Range
LIMITS
PARAMETER
SYMBOL
MIN
TYP
MAX
UNITS
SPI INTERFACE TIMINGS
SCK clock period
tCYC
50
ns
CS active after last SCK rising edge
tCHH
5
ns
CS setup time to first SCK rising edge
tCES
5
ns
CS hold time after last SCK falling edge
tCEH
5
ns
CS inactive between SPI instructions
tCPH
55
ns
SPI SI Data set-up time to SCK rising edge
tDS
10
ns
SPI SI Data hold time after SCK rising edge
tDH
10
ns
SCK rise time
tSCKR
10
ns
SCK fall time
tSCKF
10
ns
SCK pulse width high
tSCKH
20
ns
SCK pulse width low
tSCKL
20
ns
SO valid after SCK falling edge
tDV
20
SO high-impedance after SCK falling edge
tCHZ
20
MR pulse width
tMR
100
ns
ns
SENSOR TIMINGS
Delay, change at sense input to valid status in SO_n
1
μs
Delay, change of Threshold to valid status in SO_n
1
μs
t CPH
t CYC
CS
tCHH
t SCKF
t CES
t CEH
SCK
t DS
t DH
SI
t SCKR
MSB
LSB
t CPH
FIGURE 12. SPI Serial Input Timing
CS
t CYC
t SCKH
t SCKL
SCK
t CHZ
t DV
SO
Hi Impedance
MSB
FIGURE 13. SPI Serial Output Timing
HOLT INTEGRATED CIRCUITS
18
LSB
Hi Impedance
HI-8436
ORDERING INFORMATION
HI - 8436xx x x
PART
NUMBER
Blank
LEAD
FINISH
Tin / Lead (Sn /Pb) Solder
100% Matte Tin (Pb-free, RoHS compliant)
F
PART
NUMBER
TEMPERATURE
RANGE
FLOW
BURN
IN
I
-40°C TO +85°C
I
NO
T
-55°C TO +125°C
T
NO
PART
NUMBER
PACKAGE
DESCRIPTION
8436PQ
44 PIN PLASTIC QUAD FLAT PACK, PQFP
(44PMQS)
8436PC
44 PIN PLASTIC CHIP-SCALE, QFN
(44PCS)
HOLT INTEGRATED CIRCUITS
19
HI-8436
REVISION HISTORY
P/N
Rev
DS8436 New
Date
08/01/13
Description of Change
Initial Release.
HOLT INTEGRATED CIRCUITS
20
PACKAGE DIMENSIONS
inches (millimeters)
44-PIN PLASTIC QUAD FLAT PACK (PQFP)
Package Type:
44PMQS
.009 MAX.
(.23)
.0315
BSC
(.80)
.394 ± .004
(10.0 ± .10)
SQ.
.520 ± .010
(13.20 ± .25)
SQ.
.014 ± .003
(.37 ± .08)
.035 ± .006
(.88 ± .15)
.012
R MAX.
(.30)
See Detail A
.079 ± .008
(2.0 ± .20)
.096
MAX.
(2.45)
.005
R MIN. Detail A
(.13)
BSC = “Basic Spacing between Centers”
is theoretical true position dimension and
has no tolerance. (JEDEC Standard 95)
44-PIN PLASTIC CHIP-SCALE PACKAGE (QFN)
Electrically isolated pad on
bottom of package. Connect
to any ground or power plane
for optimum thermal
dissipation.
.276
BSC
(7.00)
0° £ Q £ 7°
inches (millimeters)
Package Type: 44PCS
.216 ± .002
(5.5 ± .05)
.020 BSC
(0.50)
.276
BSC
(7.00)
.216 ± .002
(5.5 ± .05)
Top View
Bottom
View
.010
(0.25) typ
.039
max
(1.00)
.008 typ
(0.2)
BSC = “Basic Spacing between Centers”
is theoretical true position dimension and
has no tolerance. (JEDEC Standard 95)
HOLT INTEGRATED CIRCUITS
21
.016 ± .002
(0.40 ± .05)